1 //===- SIMemoryLegalizer.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Memory legalizer - implements memory model. More information can be 11 /// found here: 12 /// http://llvm.org/docs/AMDGPUUsage.html#memory-model 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPU.h" 17 #include "AMDGPUMachineModuleInfo.h" 18 #include "GCNSubtarget.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "llvm/ADT/BitmaskEnum.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/Support/AtomicOrdering.h" 25 #include "llvm/TargetParser/TargetParser.h" 26 27 using namespace llvm; 28 using namespace llvm::AMDGPU; 29 30 #define DEBUG_TYPE "si-memory-legalizer" 31 #define PASS_NAME "SI Memory Legalizer" 32 33 static cl::opt<bool> AmdgcnSkipCacheInvalidations( 34 "amdgcn-skip-cache-invalidations", cl::init(false), cl::Hidden, 35 cl::desc("Use this to skip inserting cache invalidating instructions.")); 36 37 namespace { 38 39 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 40 41 /// Memory operation flags. Can be ORed together. 42 enum class SIMemOp { 43 NONE = 0u, 44 LOAD = 1u << 0, 45 STORE = 1u << 1, 46 LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ STORE) 47 }; 48 49 /// Position to insert a new instruction relative to an existing 50 /// instruction. 51 enum class Position { 52 BEFORE, 53 AFTER 54 }; 55 56 /// The atomic synchronization scopes supported by the AMDGPU target. 57 enum class SIAtomicScope { 58 NONE, 59 SINGLETHREAD, 60 WAVEFRONT, 61 WORKGROUP, 62 AGENT, 63 SYSTEM 64 }; 65 66 /// The distinct address spaces supported by the AMDGPU target for 67 /// atomic memory operation. Can be ORed together. 68 enum class SIAtomicAddrSpace { 69 NONE = 0u, 70 GLOBAL = 1u << 0, 71 LDS = 1u << 1, 72 SCRATCH = 1u << 2, 73 GDS = 1u << 3, 74 OTHER = 1u << 4, 75 76 /// The address spaces that can be accessed by a FLAT instruction. 77 FLAT = GLOBAL | LDS | SCRATCH, 78 79 /// The address spaces that support atomic instructions. 80 ATOMIC = GLOBAL | LDS | SCRATCH | GDS, 81 82 /// All address spaces. 83 ALL = GLOBAL | LDS | SCRATCH | GDS | OTHER, 84 85 LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL) 86 }; 87 88 class SIMemOpInfo final { 89 private: 90 91 friend class SIMemOpAccess; 92 93 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 94 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 95 SIAtomicScope Scope = SIAtomicScope::SYSTEM; 96 SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; 97 SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE; 98 bool IsCrossAddressSpaceOrdering = false; 99 bool IsVolatile = false; 100 bool IsNonTemporal = false; 101 bool IsLastUse = false; 102 103 SIMemOpInfo( 104 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent, 105 SIAtomicScope Scope = SIAtomicScope::SYSTEM, 106 SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::ATOMIC, 107 SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::ALL, 108 bool IsCrossAddressSpaceOrdering = true, 109 AtomicOrdering FailureOrdering = AtomicOrdering::SequentiallyConsistent, 110 bool IsVolatile = false, bool IsNonTemporal = false, 111 bool IsLastUse = false) 112 : Ordering(Ordering), FailureOrdering(FailureOrdering), Scope(Scope), 113 OrderingAddrSpace(OrderingAddrSpace), InstrAddrSpace(InstrAddrSpace), 114 IsCrossAddressSpaceOrdering(IsCrossAddressSpaceOrdering), 115 IsVolatile(IsVolatile), IsNonTemporal(IsNonTemporal), 116 IsLastUse(IsLastUse) { 117 118 if (Ordering == AtomicOrdering::NotAtomic) { 119 assert(Scope == SIAtomicScope::NONE && 120 OrderingAddrSpace == SIAtomicAddrSpace::NONE && 121 !IsCrossAddressSpaceOrdering && 122 FailureOrdering == AtomicOrdering::NotAtomic); 123 return; 124 } 125 126 assert(Scope != SIAtomicScope::NONE && 127 (OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != 128 SIAtomicAddrSpace::NONE && 129 (InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) != 130 SIAtomicAddrSpace::NONE); 131 132 // There is also no cross address space ordering if the ordering 133 // address space is the same as the instruction address space and 134 // only contains a single address space. 135 if ((OrderingAddrSpace == InstrAddrSpace) && 136 isPowerOf2_32(uint32_t(InstrAddrSpace))) 137 this->IsCrossAddressSpaceOrdering = false; 138 139 // Limit the scope to the maximum supported by the instruction's address 140 // spaces. 141 if ((InstrAddrSpace & ~SIAtomicAddrSpace::SCRATCH) == 142 SIAtomicAddrSpace::NONE) { 143 this->Scope = std::min(Scope, SIAtomicScope::SINGLETHREAD); 144 } else if ((InstrAddrSpace & 145 ~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS)) == 146 SIAtomicAddrSpace::NONE) { 147 this->Scope = std::min(Scope, SIAtomicScope::WORKGROUP); 148 } else if ((InstrAddrSpace & 149 ~(SIAtomicAddrSpace::SCRATCH | SIAtomicAddrSpace::LDS | 150 SIAtomicAddrSpace::GDS)) == SIAtomicAddrSpace::NONE) { 151 this->Scope = std::min(Scope, SIAtomicScope::AGENT); 152 } 153 } 154 155 public: 156 /// \returns Atomic synchronization scope of the machine instruction used to 157 /// create this SIMemOpInfo. 158 SIAtomicScope getScope() const { 159 return Scope; 160 } 161 162 /// \returns Ordering constraint of the machine instruction used to 163 /// create this SIMemOpInfo. 164 AtomicOrdering getOrdering() const { 165 return Ordering; 166 } 167 168 /// \returns Failure ordering constraint of the machine instruction used to 169 /// create this SIMemOpInfo. 170 AtomicOrdering getFailureOrdering() const { 171 return FailureOrdering; 172 } 173 174 /// \returns The address spaces be accessed by the machine 175 /// instruction used to create this SIMemOpInfo. 176 SIAtomicAddrSpace getInstrAddrSpace() const { 177 return InstrAddrSpace; 178 } 179 180 /// \returns The address spaces that must be ordered by the machine 181 /// instruction used to create this SIMemOpInfo. 182 SIAtomicAddrSpace getOrderingAddrSpace() const { 183 return OrderingAddrSpace; 184 } 185 186 /// \returns Return true iff memory ordering of operations on 187 /// different address spaces is required. 188 bool getIsCrossAddressSpaceOrdering() const { 189 return IsCrossAddressSpaceOrdering; 190 } 191 192 /// \returns True if memory access of the machine instruction used to 193 /// create this SIMemOpInfo is volatile, false otherwise. 194 bool isVolatile() const { 195 return IsVolatile; 196 } 197 198 /// \returns True if memory access of the machine instruction used to 199 /// create this SIMemOpInfo is nontemporal, false otherwise. 200 bool isNonTemporal() const { 201 return IsNonTemporal; 202 } 203 204 /// \returns True if memory access of the machine instruction used to 205 /// create this SIMemOpInfo is last use, false otherwise. 206 bool isLastUse() const { return IsLastUse; } 207 208 /// \returns True if ordering constraint of the machine instruction used to 209 /// create this SIMemOpInfo is unordered or higher, false otherwise. 210 bool isAtomic() const { 211 return Ordering != AtomicOrdering::NotAtomic; 212 } 213 214 }; 215 216 class SIMemOpAccess final { 217 private: 218 AMDGPUMachineModuleInfo *MMI = nullptr; 219 220 /// Reports unsupported message \p Msg for \p MI to LLVM context. 221 void reportUnsupported(const MachineBasicBlock::iterator &MI, 222 const char *Msg) const; 223 224 /// Inspects the target synchronization scope \p SSID and determines 225 /// the SI atomic scope it corresponds to, the address spaces it 226 /// covers, and whether the memory ordering applies between address 227 /// spaces. 228 std::optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>> 229 toSIAtomicScope(SyncScope::ID SSID, SIAtomicAddrSpace InstrAddrSpace) const; 230 231 /// \return Return a bit set of the address spaces accessed by \p AS. 232 SIAtomicAddrSpace toSIAtomicAddrSpace(unsigned AS) const; 233 234 /// \returns Info constructed from \p MI, which has at least machine memory 235 /// operand. 236 std::optional<SIMemOpInfo> 237 constructFromMIWithMMO(const MachineBasicBlock::iterator &MI) const; 238 239 public: 240 /// Construct class to support accessing the machine memory operands 241 /// of instructions in the machine function \p MF. 242 SIMemOpAccess(MachineFunction &MF); 243 244 /// \returns Load info if \p MI is a load operation, "std::nullopt" otherwise. 245 std::optional<SIMemOpInfo> 246 getLoadInfo(const MachineBasicBlock::iterator &MI) const; 247 248 /// \returns Store info if \p MI is a store operation, "std::nullopt" 249 /// otherwise. 250 std::optional<SIMemOpInfo> 251 getStoreInfo(const MachineBasicBlock::iterator &MI) const; 252 253 /// \returns Atomic fence info if \p MI is an atomic fence operation, 254 /// "std::nullopt" otherwise. 255 std::optional<SIMemOpInfo> 256 getAtomicFenceInfo(const MachineBasicBlock::iterator &MI) const; 257 258 /// \returns Atomic cmpxchg/rmw info if \p MI is an atomic cmpxchg or 259 /// rmw operation, "std::nullopt" otherwise. 260 std::optional<SIMemOpInfo> 261 getAtomicCmpxchgOrRmwInfo(const MachineBasicBlock::iterator &MI) const; 262 }; 263 264 class SICacheControl { 265 protected: 266 267 /// AMDGPU subtarget info. 268 const GCNSubtarget &ST; 269 270 /// Instruction info. 271 const SIInstrInfo *TII = nullptr; 272 273 IsaVersion IV; 274 275 /// Whether to insert cache invalidating instructions. 276 bool InsertCacheInv; 277 278 SICacheControl(const GCNSubtarget &ST); 279 280 /// Sets named bit \p BitName to "true" if present in instruction \p MI. 281 /// \returns Returns true if \p MI is modified, false otherwise. 282 bool enableNamedBit(const MachineBasicBlock::iterator MI, 283 AMDGPU::CPol::CPol Bit) const; 284 285 public: 286 287 /// Create a cache control for the subtarget \p ST. 288 static std::unique_ptr<SICacheControl> create(const GCNSubtarget &ST); 289 290 /// Update \p MI memory load instruction to bypass any caches up to 291 /// the \p Scope memory scope for address spaces \p 292 /// AddrSpace. Return true iff the instruction was modified. 293 virtual bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, 294 SIAtomicScope Scope, 295 SIAtomicAddrSpace AddrSpace) const = 0; 296 297 /// Update \p MI memory store instruction to bypass any caches up to 298 /// the \p Scope memory scope for address spaces \p 299 /// AddrSpace. Return true iff the instruction was modified. 300 virtual bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, 301 SIAtomicScope Scope, 302 SIAtomicAddrSpace AddrSpace) const = 0; 303 304 /// Update \p MI memory read-modify-write instruction to bypass any caches up 305 /// to the \p Scope memory scope for address spaces \p AddrSpace. Return true 306 /// iff the instruction was modified. 307 virtual bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, 308 SIAtomicScope Scope, 309 SIAtomicAddrSpace AddrSpace) const = 0; 310 311 /// Update \p MI memory instruction of kind \p Op associated with address 312 /// spaces \p AddrSpace to indicate it is volatile and/or 313 /// nontemporal/last-use. Return true iff the instruction was modified. 314 virtual bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, 315 SIAtomicAddrSpace AddrSpace, 316 SIMemOp Op, bool IsVolatile, 317 bool IsNonTemporal, 318 bool IsLastUse = false) const = 0; 319 320 virtual bool expandSystemScopeStore(MachineBasicBlock::iterator &MI) const { 321 return false; 322 }; 323 324 /// Inserts any necessary instructions at position \p Pos relative 325 /// to instruction \p MI to ensure memory instructions before \p Pos of kind 326 /// \p Op associated with address spaces \p AddrSpace have completed. Used 327 /// between memory instructions to enforce the order they become visible as 328 /// observed by other memory instructions executing in memory scope \p Scope. 329 /// \p IsCrossAddrSpaceOrdering indicates if the memory ordering is between 330 /// address spaces. Returns true iff any instructions inserted. 331 virtual bool insertWait(MachineBasicBlock::iterator &MI, 332 SIAtomicScope Scope, 333 SIAtomicAddrSpace AddrSpace, 334 SIMemOp Op, 335 bool IsCrossAddrSpaceOrdering, 336 Position Pos) const = 0; 337 338 /// Inserts any necessary instructions at position \p Pos relative to 339 /// instruction \p MI to ensure any subsequent memory instructions of this 340 /// thread with address spaces \p AddrSpace will observe the previous memory 341 /// operations by any thread for memory scopes up to memory scope \p Scope . 342 /// Returns true iff any instructions inserted. 343 virtual bool insertAcquire(MachineBasicBlock::iterator &MI, 344 SIAtomicScope Scope, 345 SIAtomicAddrSpace AddrSpace, 346 Position Pos) const = 0; 347 348 /// Inserts any necessary instructions at position \p Pos relative to 349 /// instruction \p MI to ensure previous memory instructions by this thread 350 /// with address spaces \p AddrSpace have completed and can be observed by 351 /// subsequent memory instructions by any thread executing in memory scope \p 352 /// Scope. \p IsCrossAddrSpaceOrdering indicates if the memory ordering is 353 /// between address spaces. Returns true iff any instructions inserted. 354 virtual bool insertRelease(MachineBasicBlock::iterator &MI, 355 SIAtomicScope Scope, 356 SIAtomicAddrSpace AddrSpace, 357 bool IsCrossAddrSpaceOrdering, 358 Position Pos) const = 0; 359 360 /// Virtual destructor to allow derivations to be deleted. 361 virtual ~SICacheControl() = default; 362 363 virtual bool tryForceStoreSC0SC1(const SIMemOpInfo &MOI, 364 MachineBasicBlock::iterator &MI) const { 365 return false; 366 } 367 }; 368 369 class SIGfx6CacheControl : public SICacheControl { 370 protected: 371 372 /// Sets GLC bit to "true" if present in \p MI. Returns true if \p MI 373 /// is modified, false otherwise. 374 bool enableGLCBit(const MachineBasicBlock::iterator &MI) const { 375 return enableNamedBit(MI, AMDGPU::CPol::GLC); 376 } 377 378 /// Sets SLC bit to "true" if present in \p MI. Returns true if \p MI 379 /// is modified, false otherwise. 380 bool enableSLCBit(const MachineBasicBlock::iterator &MI) const { 381 return enableNamedBit(MI, AMDGPU::CPol::SLC); 382 } 383 384 public: 385 386 SIGfx6CacheControl(const GCNSubtarget &ST) : SICacheControl(ST) {} 387 388 bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, 389 SIAtomicScope Scope, 390 SIAtomicAddrSpace AddrSpace) const override; 391 392 bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, 393 SIAtomicScope Scope, 394 SIAtomicAddrSpace AddrSpace) const override; 395 396 bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, 397 SIAtomicScope Scope, 398 SIAtomicAddrSpace AddrSpace) const override; 399 400 bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, 401 SIAtomicAddrSpace AddrSpace, SIMemOp Op, 402 bool IsVolatile, bool IsNonTemporal, 403 bool IsLastUse) const override; 404 405 bool insertWait(MachineBasicBlock::iterator &MI, 406 SIAtomicScope Scope, 407 SIAtomicAddrSpace AddrSpace, 408 SIMemOp Op, 409 bool IsCrossAddrSpaceOrdering, 410 Position Pos) const override; 411 412 bool insertAcquire(MachineBasicBlock::iterator &MI, 413 SIAtomicScope Scope, 414 SIAtomicAddrSpace AddrSpace, 415 Position Pos) const override; 416 417 bool insertRelease(MachineBasicBlock::iterator &MI, 418 SIAtomicScope Scope, 419 SIAtomicAddrSpace AddrSpace, 420 bool IsCrossAddrSpaceOrdering, 421 Position Pos) const override; 422 }; 423 424 class SIGfx7CacheControl : public SIGfx6CacheControl { 425 public: 426 427 SIGfx7CacheControl(const GCNSubtarget &ST) : SIGfx6CacheControl(ST) {} 428 429 bool insertAcquire(MachineBasicBlock::iterator &MI, 430 SIAtomicScope Scope, 431 SIAtomicAddrSpace AddrSpace, 432 Position Pos) const override; 433 434 }; 435 436 class SIGfx90ACacheControl : public SIGfx7CacheControl { 437 public: 438 439 SIGfx90ACacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {} 440 441 bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, 442 SIAtomicScope Scope, 443 SIAtomicAddrSpace AddrSpace) const override; 444 445 bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, 446 SIAtomicScope Scope, 447 SIAtomicAddrSpace AddrSpace) const override; 448 449 bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, 450 SIAtomicScope Scope, 451 SIAtomicAddrSpace AddrSpace) const override; 452 453 bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, 454 SIAtomicAddrSpace AddrSpace, SIMemOp Op, 455 bool IsVolatile, bool IsNonTemporal, 456 bool IsLastUse) const override; 457 458 bool insertWait(MachineBasicBlock::iterator &MI, 459 SIAtomicScope Scope, 460 SIAtomicAddrSpace AddrSpace, 461 SIMemOp Op, 462 bool IsCrossAddrSpaceOrdering, 463 Position Pos) const override; 464 465 bool insertAcquire(MachineBasicBlock::iterator &MI, 466 SIAtomicScope Scope, 467 SIAtomicAddrSpace AddrSpace, 468 Position Pos) const override; 469 470 bool insertRelease(MachineBasicBlock::iterator &MI, 471 SIAtomicScope Scope, 472 SIAtomicAddrSpace AddrSpace, 473 bool IsCrossAddrSpaceOrdering, 474 Position Pos) const override; 475 }; 476 477 class SIGfx940CacheControl : public SIGfx90ACacheControl { 478 protected: 479 480 /// Sets SC0 bit to "true" if present in \p MI. Returns true if \p MI 481 /// is modified, false otherwise. 482 bool enableSC0Bit(const MachineBasicBlock::iterator &MI) const { 483 return enableNamedBit(MI, AMDGPU::CPol::SC0); 484 } 485 486 /// Sets SC1 bit to "true" if present in \p MI. Returns true if \p MI 487 /// is modified, false otherwise. 488 bool enableSC1Bit(const MachineBasicBlock::iterator &MI) const { 489 return enableNamedBit(MI, AMDGPU::CPol::SC1); 490 } 491 492 /// Sets NT bit to "true" if present in \p MI. Returns true if \p MI 493 /// is modified, false otherwise. 494 bool enableNTBit(const MachineBasicBlock::iterator &MI) const { 495 return enableNamedBit(MI, AMDGPU::CPol::NT); 496 } 497 498 public: 499 500 SIGfx940CacheControl(const GCNSubtarget &ST) : SIGfx90ACacheControl(ST) {}; 501 502 bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, 503 SIAtomicScope Scope, 504 SIAtomicAddrSpace AddrSpace) const override; 505 506 bool enableStoreCacheBypass(const MachineBasicBlock::iterator &MI, 507 SIAtomicScope Scope, 508 SIAtomicAddrSpace AddrSpace) const override; 509 510 bool enableRMWCacheBypass(const MachineBasicBlock::iterator &MI, 511 SIAtomicScope Scope, 512 SIAtomicAddrSpace AddrSpace) const override; 513 514 bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, 515 SIAtomicAddrSpace AddrSpace, SIMemOp Op, 516 bool IsVolatile, bool IsNonTemporal, 517 bool IsLastUse) const override; 518 519 bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, 520 SIAtomicAddrSpace AddrSpace, Position Pos) const override; 521 522 bool insertRelease(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, 523 SIAtomicAddrSpace AddrSpace, bool IsCrossAddrSpaceOrdering, 524 Position Pos) const override; 525 526 bool tryForceStoreSC0SC1(const SIMemOpInfo &MOI, 527 MachineBasicBlock::iterator &MI) const override { 528 bool Changed = false; 529 if (ST.hasForceStoreSC0SC1() && 530 (MOI.getInstrAddrSpace() & (SIAtomicAddrSpace::SCRATCH | 531 SIAtomicAddrSpace::GLOBAL | 532 SIAtomicAddrSpace::OTHER)) != 533 SIAtomicAddrSpace::NONE) { 534 Changed |= enableSC0Bit(MI); 535 Changed |= enableSC1Bit(MI); 536 } 537 return Changed; 538 } 539 }; 540 541 class SIGfx10CacheControl : public SIGfx7CacheControl { 542 protected: 543 544 /// Sets DLC bit to "true" if present in \p MI. Returns true if \p MI 545 /// is modified, false otherwise. 546 bool enableDLCBit(const MachineBasicBlock::iterator &MI) const { 547 return enableNamedBit(MI, AMDGPU::CPol::DLC); 548 } 549 550 public: 551 552 SIGfx10CacheControl(const GCNSubtarget &ST) : SIGfx7CacheControl(ST) {} 553 554 bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, 555 SIAtomicScope Scope, 556 SIAtomicAddrSpace AddrSpace) const override; 557 558 bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, 559 SIAtomicAddrSpace AddrSpace, SIMemOp Op, 560 bool IsVolatile, bool IsNonTemporal, 561 bool IsLastUse) const override; 562 563 bool insertWait(MachineBasicBlock::iterator &MI, 564 SIAtomicScope Scope, 565 SIAtomicAddrSpace AddrSpace, 566 SIMemOp Op, 567 bool IsCrossAddrSpaceOrdering, 568 Position Pos) const override; 569 570 bool insertAcquire(MachineBasicBlock::iterator &MI, 571 SIAtomicScope Scope, 572 SIAtomicAddrSpace AddrSpace, 573 Position Pos) const override; 574 }; 575 576 class SIGfx11CacheControl : public SIGfx10CacheControl { 577 public: 578 SIGfx11CacheControl(const GCNSubtarget &ST) : SIGfx10CacheControl(ST) {} 579 580 bool enableLoadCacheBypass(const MachineBasicBlock::iterator &MI, 581 SIAtomicScope Scope, 582 SIAtomicAddrSpace AddrSpace) const override; 583 584 bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, 585 SIAtomicAddrSpace AddrSpace, SIMemOp Op, 586 bool IsVolatile, bool IsNonTemporal, 587 bool IsLastUse) const override; 588 }; 589 590 class SIGfx12CacheControl : public SIGfx11CacheControl { 591 protected: 592 // Sets TH policy to \p Value if CPol operand is present in instruction \p MI. 593 // \returns Returns true if \p MI is modified, false otherwise. 594 bool setTH(const MachineBasicBlock::iterator MI, 595 AMDGPU::CPol::CPol Value) const; 596 // Sets Scope policy to \p Value if CPol operand is present in instruction \p 597 // MI. \returns Returns true if \p MI is modified, false otherwise. 598 bool setScope(const MachineBasicBlock::iterator MI, 599 AMDGPU::CPol::CPol Value) const; 600 601 // Stores with system scope (SCOPE_SYS) need to wait for: 602 // - loads or atomics(returning) - wait for {LOAD|SAMPLE|BVH|KM}CNT==0 603 // - non-returning-atomics - wait for STORECNT==0 604 // TODO: SIInsertWaitcnts will not always be able to remove STORECNT waits 605 // since it does not distinguish atomics-with-return from regular stores. 606 // There is no need to wait if memory is cached (mtype != UC). 607 bool 608 insertWaitsBeforeSystemScopeStore(const MachineBasicBlock::iterator MI) const; 609 610 public: 611 SIGfx12CacheControl(const GCNSubtarget &ST) : SIGfx11CacheControl(ST) {} 612 613 bool insertWait(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, 614 SIAtomicAddrSpace AddrSpace, SIMemOp Op, 615 bool IsCrossAddrSpaceOrdering, Position Pos) const override; 616 617 bool insertAcquire(MachineBasicBlock::iterator &MI, SIAtomicScope Scope, 618 SIAtomicAddrSpace AddrSpace, Position Pos) const override; 619 620 bool enableVolatileAndOrNonTemporal(MachineBasicBlock::iterator &MI, 621 SIAtomicAddrSpace AddrSpace, SIMemOp Op, 622 bool IsVolatile, bool IsNonTemporal, 623 bool IsLastUse) const override; 624 625 bool expandSystemScopeStore(MachineBasicBlock::iterator &MI) const override; 626 }; 627 628 class SIMemoryLegalizer final : public MachineFunctionPass { 629 private: 630 631 /// Cache Control. 632 std::unique_ptr<SICacheControl> CC = nullptr; 633 634 /// List of atomic pseudo instructions. 635 std::list<MachineBasicBlock::iterator> AtomicPseudoMIs; 636 637 /// Return true iff instruction \p MI is a atomic instruction that 638 /// returns a result. 639 bool isAtomicRet(const MachineInstr &MI) const { 640 return SIInstrInfo::isAtomicRet(MI); 641 } 642 643 /// Removes all processed atomic pseudo instructions from the current 644 /// function. Returns true if current function is modified, false otherwise. 645 bool removeAtomicPseudoMIs(); 646 647 /// Expands load operation \p MI. Returns true if instructions are 648 /// added/deleted or \p MI is modified, false otherwise. 649 bool expandLoad(const SIMemOpInfo &MOI, 650 MachineBasicBlock::iterator &MI); 651 /// Expands store operation \p MI. Returns true if instructions are 652 /// added/deleted or \p MI is modified, false otherwise. 653 bool expandStore(const SIMemOpInfo &MOI, 654 MachineBasicBlock::iterator &MI); 655 /// Expands atomic fence operation \p MI. Returns true if 656 /// instructions are added/deleted or \p MI is modified, false otherwise. 657 bool expandAtomicFence(const SIMemOpInfo &MOI, 658 MachineBasicBlock::iterator &MI); 659 /// Expands atomic cmpxchg or rmw operation \p MI. Returns true if 660 /// instructions are added/deleted or \p MI is modified, false otherwise. 661 bool expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI, 662 MachineBasicBlock::iterator &MI); 663 664 public: 665 static char ID; 666 667 SIMemoryLegalizer() : MachineFunctionPass(ID) {} 668 669 void getAnalysisUsage(AnalysisUsage &AU) const override { 670 AU.setPreservesCFG(); 671 MachineFunctionPass::getAnalysisUsage(AU); 672 } 673 674 StringRef getPassName() const override { 675 return PASS_NAME; 676 } 677 678 bool runOnMachineFunction(MachineFunction &MF) override; 679 }; 680 681 } // end namespace anonymous 682 683 void SIMemOpAccess::reportUnsupported(const MachineBasicBlock::iterator &MI, 684 const char *Msg) const { 685 const Function &Func = MI->getParent()->getParent()->getFunction(); 686 DiagnosticInfoUnsupported Diag(Func, Msg, MI->getDebugLoc()); 687 Func.getContext().diagnose(Diag); 688 } 689 690 std::optional<std::tuple<SIAtomicScope, SIAtomicAddrSpace, bool>> 691 SIMemOpAccess::toSIAtomicScope(SyncScope::ID SSID, 692 SIAtomicAddrSpace InstrAddrSpace) const { 693 if (SSID == SyncScope::System) 694 return std::tuple(SIAtomicScope::SYSTEM, SIAtomicAddrSpace::ATOMIC, true); 695 if (SSID == MMI->getAgentSSID()) 696 return std::tuple(SIAtomicScope::AGENT, SIAtomicAddrSpace::ATOMIC, true); 697 if (SSID == MMI->getWorkgroupSSID()) 698 return std::tuple(SIAtomicScope::WORKGROUP, SIAtomicAddrSpace::ATOMIC, 699 true); 700 if (SSID == MMI->getWavefrontSSID()) 701 return std::tuple(SIAtomicScope::WAVEFRONT, SIAtomicAddrSpace::ATOMIC, 702 true); 703 if (SSID == SyncScope::SingleThread) 704 return std::tuple(SIAtomicScope::SINGLETHREAD, SIAtomicAddrSpace::ATOMIC, 705 true); 706 if (SSID == MMI->getSystemOneAddressSpaceSSID()) 707 return std::tuple(SIAtomicScope::SYSTEM, 708 SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); 709 if (SSID == MMI->getAgentOneAddressSpaceSSID()) 710 return std::tuple(SIAtomicScope::AGENT, 711 SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); 712 if (SSID == MMI->getWorkgroupOneAddressSpaceSSID()) 713 return std::tuple(SIAtomicScope::WORKGROUP, 714 SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); 715 if (SSID == MMI->getWavefrontOneAddressSpaceSSID()) 716 return std::tuple(SIAtomicScope::WAVEFRONT, 717 SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); 718 if (SSID == MMI->getSingleThreadOneAddressSpaceSSID()) 719 return std::tuple(SIAtomicScope::SINGLETHREAD, 720 SIAtomicAddrSpace::ATOMIC & InstrAddrSpace, false); 721 return std::nullopt; 722 } 723 724 SIAtomicAddrSpace SIMemOpAccess::toSIAtomicAddrSpace(unsigned AS) const { 725 if (AS == AMDGPUAS::FLAT_ADDRESS) 726 return SIAtomicAddrSpace::FLAT; 727 if (AS == AMDGPUAS::GLOBAL_ADDRESS) 728 return SIAtomicAddrSpace::GLOBAL; 729 if (AS == AMDGPUAS::LOCAL_ADDRESS) 730 return SIAtomicAddrSpace::LDS; 731 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 732 return SIAtomicAddrSpace::SCRATCH; 733 if (AS == AMDGPUAS::REGION_ADDRESS) 734 return SIAtomicAddrSpace::GDS; 735 736 return SIAtomicAddrSpace::OTHER; 737 } 738 739 SIMemOpAccess::SIMemOpAccess(MachineFunction &MF) { 740 MMI = &MF.getMMI().getObjFileInfo<AMDGPUMachineModuleInfo>(); 741 } 742 743 std::optional<SIMemOpInfo> SIMemOpAccess::constructFromMIWithMMO( 744 const MachineBasicBlock::iterator &MI) const { 745 assert(MI->getNumMemOperands() > 0); 746 747 SyncScope::ID SSID = SyncScope::SingleThread; 748 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 749 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 750 SIAtomicAddrSpace InstrAddrSpace = SIAtomicAddrSpace::NONE; 751 bool IsNonTemporal = true; 752 bool IsVolatile = false; 753 bool IsLastUse = false; 754 755 // Validator should check whether or not MMOs cover the entire set of 756 // locations accessed by the memory instruction. 757 for (const auto &MMO : MI->memoperands()) { 758 IsNonTemporal &= MMO->isNonTemporal(); 759 IsVolatile |= MMO->isVolatile(); 760 IsLastUse |= MMO->getFlags() & MOLastUse; 761 InstrAddrSpace |= 762 toSIAtomicAddrSpace(MMO->getPointerInfo().getAddrSpace()); 763 AtomicOrdering OpOrdering = MMO->getSuccessOrdering(); 764 if (OpOrdering != AtomicOrdering::NotAtomic) { 765 const auto &IsSyncScopeInclusion = 766 MMI->isSyncScopeInclusion(SSID, MMO->getSyncScopeID()); 767 if (!IsSyncScopeInclusion) { 768 reportUnsupported(MI, 769 "Unsupported non-inclusive atomic synchronization scope"); 770 return std::nullopt; 771 } 772 773 SSID = *IsSyncScopeInclusion ? SSID : MMO->getSyncScopeID(); 774 Ordering = getMergedAtomicOrdering(Ordering, OpOrdering); 775 assert(MMO->getFailureOrdering() != AtomicOrdering::Release && 776 MMO->getFailureOrdering() != AtomicOrdering::AcquireRelease); 777 FailureOrdering = 778 getMergedAtomicOrdering(FailureOrdering, MMO->getFailureOrdering()); 779 } 780 } 781 782 SIAtomicScope Scope = SIAtomicScope::NONE; 783 SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; 784 bool IsCrossAddressSpaceOrdering = false; 785 if (Ordering != AtomicOrdering::NotAtomic) { 786 auto ScopeOrNone = toSIAtomicScope(SSID, InstrAddrSpace); 787 if (!ScopeOrNone) { 788 reportUnsupported(MI, "Unsupported atomic synchronization scope"); 789 return std::nullopt; 790 } 791 std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) = 792 *ScopeOrNone; 793 if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) || 794 ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace) || 795 ((InstrAddrSpace & SIAtomicAddrSpace::ATOMIC) == SIAtomicAddrSpace::NONE)) { 796 reportUnsupported(MI, "Unsupported atomic address space"); 797 return std::nullopt; 798 } 799 } 800 return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, InstrAddrSpace, 801 IsCrossAddressSpaceOrdering, FailureOrdering, IsVolatile, 802 IsNonTemporal, IsLastUse); 803 } 804 805 std::optional<SIMemOpInfo> 806 SIMemOpAccess::getLoadInfo(const MachineBasicBlock::iterator &MI) const { 807 assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); 808 809 if (!(MI->mayLoad() && !MI->mayStore())) 810 return std::nullopt; 811 812 // Be conservative if there are no memory operands. 813 if (MI->getNumMemOperands() == 0) 814 return SIMemOpInfo(); 815 816 return constructFromMIWithMMO(MI); 817 } 818 819 std::optional<SIMemOpInfo> 820 SIMemOpAccess::getStoreInfo(const MachineBasicBlock::iterator &MI) const { 821 assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); 822 823 if (!(!MI->mayLoad() && MI->mayStore())) 824 return std::nullopt; 825 826 // Be conservative if there are no memory operands. 827 if (MI->getNumMemOperands() == 0) 828 return SIMemOpInfo(); 829 830 return constructFromMIWithMMO(MI); 831 } 832 833 std::optional<SIMemOpInfo> 834 SIMemOpAccess::getAtomicFenceInfo(const MachineBasicBlock::iterator &MI) const { 835 assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); 836 837 if (MI->getOpcode() != AMDGPU::ATOMIC_FENCE) 838 return std::nullopt; 839 840 AtomicOrdering Ordering = 841 static_cast<AtomicOrdering>(MI->getOperand(0).getImm()); 842 843 SyncScope::ID SSID = static_cast<SyncScope::ID>(MI->getOperand(1).getImm()); 844 auto ScopeOrNone = toSIAtomicScope(SSID, SIAtomicAddrSpace::ATOMIC); 845 if (!ScopeOrNone) { 846 reportUnsupported(MI, "Unsupported atomic synchronization scope"); 847 return std::nullopt; 848 } 849 850 SIAtomicScope Scope = SIAtomicScope::NONE; 851 SIAtomicAddrSpace OrderingAddrSpace = SIAtomicAddrSpace::NONE; 852 bool IsCrossAddressSpaceOrdering = false; 853 std::tie(Scope, OrderingAddrSpace, IsCrossAddressSpaceOrdering) = 854 *ScopeOrNone; 855 856 if ((OrderingAddrSpace == SIAtomicAddrSpace::NONE) || 857 ((OrderingAddrSpace & SIAtomicAddrSpace::ATOMIC) != OrderingAddrSpace)) { 858 reportUnsupported(MI, "Unsupported atomic address space"); 859 return std::nullopt; 860 } 861 862 return SIMemOpInfo(Ordering, Scope, OrderingAddrSpace, SIAtomicAddrSpace::ATOMIC, 863 IsCrossAddressSpaceOrdering, AtomicOrdering::NotAtomic); 864 } 865 866 std::optional<SIMemOpInfo> SIMemOpAccess::getAtomicCmpxchgOrRmwInfo( 867 const MachineBasicBlock::iterator &MI) const { 868 assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic); 869 870 if (!(MI->mayLoad() && MI->mayStore())) 871 return std::nullopt; 872 873 // Be conservative if there are no memory operands. 874 if (MI->getNumMemOperands() == 0) 875 return SIMemOpInfo(); 876 877 return constructFromMIWithMMO(MI); 878 } 879 880 SICacheControl::SICacheControl(const GCNSubtarget &ST) : ST(ST) { 881 TII = ST.getInstrInfo(); 882 IV = getIsaVersion(ST.getCPU()); 883 InsertCacheInv = !AmdgcnSkipCacheInvalidations; 884 } 885 886 bool SICacheControl::enableNamedBit(const MachineBasicBlock::iterator MI, 887 AMDGPU::CPol::CPol Bit) const { 888 MachineOperand *CPol = TII->getNamedOperand(*MI, AMDGPU::OpName::cpol); 889 if (!CPol) 890 return false; 891 892 CPol->setImm(CPol->getImm() | Bit); 893 return true; 894 } 895 896 /* static */ 897 std::unique_ptr<SICacheControl> SICacheControl::create(const GCNSubtarget &ST) { 898 GCNSubtarget::Generation Generation = ST.getGeneration(); 899 if (ST.hasGFX940Insts()) 900 return std::make_unique<SIGfx940CacheControl>(ST); 901 if (ST.hasGFX90AInsts()) 902 return std::make_unique<SIGfx90ACacheControl>(ST); 903 if (Generation <= AMDGPUSubtarget::SOUTHERN_ISLANDS) 904 return std::make_unique<SIGfx6CacheControl>(ST); 905 if (Generation < AMDGPUSubtarget::GFX10) 906 return std::make_unique<SIGfx7CacheControl>(ST); 907 if (Generation < AMDGPUSubtarget::GFX11) 908 return std::make_unique<SIGfx10CacheControl>(ST); 909 if (Generation < AMDGPUSubtarget::GFX12) 910 return std::make_unique<SIGfx11CacheControl>(ST); 911 return std::make_unique<SIGfx12CacheControl>(ST); 912 } 913 914 bool SIGfx6CacheControl::enableLoadCacheBypass( 915 const MachineBasicBlock::iterator &MI, 916 SIAtomicScope Scope, 917 SIAtomicAddrSpace AddrSpace) const { 918 assert(MI->mayLoad() && !MI->mayStore()); 919 bool Changed = false; 920 921 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 922 switch (Scope) { 923 case SIAtomicScope::SYSTEM: 924 case SIAtomicScope::AGENT: 925 // Set L1 cache policy to MISS_EVICT. 926 // Note: there is no L2 cache bypass policy at the ISA level. 927 Changed |= enableGLCBit(MI); 928 break; 929 case SIAtomicScope::WORKGROUP: 930 case SIAtomicScope::WAVEFRONT: 931 case SIAtomicScope::SINGLETHREAD: 932 // No cache to bypass. 933 break; 934 default: 935 llvm_unreachable("Unsupported synchronization scope"); 936 } 937 } 938 939 /// The scratch address space does not need the global memory caches 940 /// to be bypassed as all memory operations by the same thread are 941 /// sequentially consistent, and no other thread can access scratch 942 /// memory. 943 944 /// Other address spaces do not have a cache. 945 946 return Changed; 947 } 948 949 bool SIGfx6CacheControl::enableStoreCacheBypass( 950 const MachineBasicBlock::iterator &MI, 951 SIAtomicScope Scope, 952 SIAtomicAddrSpace AddrSpace) const { 953 assert(!MI->mayLoad() && MI->mayStore()); 954 bool Changed = false; 955 956 /// The L1 cache is write through so does not need to be bypassed. There is no 957 /// bypass control for the L2 cache at the isa level. 958 959 return Changed; 960 } 961 962 bool SIGfx6CacheControl::enableRMWCacheBypass( 963 const MachineBasicBlock::iterator &MI, 964 SIAtomicScope Scope, 965 SIAtomicAddrSpace AddrSpace) const { 966 assert(MI->mayLoad() && MI->mayStore()); 967 bool Changed = false; 968 969 /// Do not set GLC for RMW atomic operations as L0/L1 cache is automatically 970 /// bypassed, and the GLC bit is instead used to indicate if they are 971 /// return or no-return. 972 /// Note: there is no L2 cache coherent bypass control at the ISA level. 973 974 return Changed; 975 } 976 977 bool SIGfx6CacheControl::enableVolatileAndOrNonTemporal( 978 MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, 979 bool IsVolatile, bool IsNonTemporal, bool IsLastUse = false) const { 980 // Only handle load and store, not atomic read-modify-write insructions. The 981 // latter use glc to indicate if the atomic returns a result and so must not 982 // be used for cache control. 983 assert(MI->mayLoad() ^ MI->mayStore()); 984 985 // Only update load and store, not LLVM IR atomic read-modify-write 986 // instructions. The latter are always marked as volatile so cannot sensibly 987 // handle it as do not want to pessimize all atomics. Also they do not support 988 // the nontemporal attribute. 989 assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); 990 991 bool Changed = false; 992 993 if (IsVolatile) { 994 // Set L1 cache policy to be MISS_EVICT for load instructions 995 // and MISS_LRU for store instructions. 996 // Note: there is no L2 cache bypass policy at the ISA level. 997 if (Op == SIMemOp::LOAD) 998 Changed |= enableGLCBit(MI); 999 1000 // Ensure operation has completed at system scope to cause all volatile 1001 // operations to be visible outside the program in a global order. Do not 1002 // request cross address space as only the global address space can be 1003 // observable outside the program, so no need to cause a waitcnt for LDS 1004 // address space operations. 1005 Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, 1006 Position::AFTER); 1007 1008 return Changed; 1009 } 1010 1011 if (IsNonTemporal) { 1012 // Setting both GLC and SLC configures L1 cache policy to MISS_EVICT 1013 // for both loads and stores, and the L2 cache policy to STREAM. 1014 Changed |= enableGLCBit(MI); 1015 Changed |= enableSLCBit(MI); 1016 return Changed; 1017 } 1018 1019 return Changed; 1020 } 1021 1022 bool SIGfx6CacheControl::insertWait(MachineBasicBlock::iterator &MI, 1023 SIAtomicScope Scope, 1024 SIAtomicAddrSpace AddrSpace, 1025 SIMemOp Op, 1026 bool IsCrossAddrSpaceOrdering, 1027 Position Pos) const { 1028 bool Changed = false; 1029 1030 MachineBasicBlock &MBB = *MI->getParent(); 1031 DebugLoc DL = MI->getDebugLoc(); 1032 1033 if (Pos == Position::AFTER) 1034 ++MI; 1035 1036 bool VMCnt = false; 1037 bool LGKMCnt = false; 1038 1039 if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) != 1040 SIAtomicAddrSpace::NONE) { 1041 switch (Scope) { 1042 case SIAtomicScope::SYSTEM: 1043 case SIAtomicScope::AGENT: 1044 VMCnt |= true; 1045 break; 1046 case SIAtomicScope::WORKGROUP: 1047 case SIAtomicScope::WAVEFRONT: 1048 case SIAtomicScope::SINGLETHREAD: 1049 // The L1 cache keeps all memory operations in order for 1050 // wavefronts in the same work-group. 1051 break; 1052 default: 1053 llvm_unreachable("Unsupported synchronization scope"); 1054 } 1055 } 1056 1057 if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { 1058 switch (Scope) { 1059 case SIAtomicScope::SYSTEM: 1060 case SIAtomicScope::AGENT: 1061 case SIAtomicScope::WORKGROUP: 1062 // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is 1063 // not needed as LDS operations for all waves are executed in a total 1064 // global ordering as observed by all waves. Required if also 1065 // synchronizing with global/GDS memory as LDS operations could be 1066 // reordered with respect to later global/GDS memory operations of the 1067 // same wave. 1068 LGKMCnt |= IsCrossAddrSpaceOrdering; 1069 break; 1070 case SIAtomicScope::WAVEFRONT: 1071 case SIAtomicScope::SINGLETHREAD: 1072 // The LDS keeps all memory operations in order for 1073 // the same wavefront. 1074 break; 1075 default: 1076 llvm_unreachable("Unsupported synchronization scope"); 1077 } 1078 } 1079 1080 if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) { 1081 switch (Scope) { 1082 case SIAtomicScope::SYSTEM: 1083 case SIAtomicScope::AGENT: 1084 // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)" 1085 // is not needed as GDS operations for all waves are executed in a total 1086 // global ordering as observed by all waves. Required if also 1087 // synchronizing with global/LDS memory as GDS operations could be 1088 // reordered with respect to later global/LDS memory operations of the 1089 // same wave. 1090 LGKMCnt |= IsCrossAddrSpaceOrdering; 1091 break; 1092 case SIAtomicScope::WORKGROUP: 1093 case SIAtomicScope::WAVEFRONT: 1094 case SIAtomicScope::SINGLETHREAD: 1095 // The GDS keeps all memory operations in order for 1096 // the same work-group. 1097 break; 1098 default: 1099 llvm_unreachable("Unsupported synchronization scope"); 1100 } 1101 } 1102 1103 if (VMCnt || LGKMCnt) { 1104 unsigned WaitCntImmediate = 1105 AMDGPU::encodeWaitcnt(IV, 1106 VMCnt ? 0 : getVmcntBitMask(IV), 1107 getExpcntBitMask(IV), 1108 LGKMCnt ? 0 : getLgkmcntBitMask(IV)); 1109 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT_soft)) 1110 .addImm(WaitCntImmediate); 1111 Changed = true; 1112 } 1113 1114 if (Pos == Position::AFTER) 1115 --MI; 1116 1117 return Changed; 1118 } 1119 1120 bool SIGfx6CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, 1121 SIAtomicScope Scope, 1122 SIAtomicAddrSpace AddrSpace, 1123 Position Pos) const { 1124 if (!InsertCacheInv) 1125 return false; 1126 1127 bool Changed = false; 1128 1129 MachineBasicBlock &MBB = *MI->getParent(); 1130 DebugLoc DL = MI->getDebugLoc(); 1131 1132 if (Pos == Position::AFTER) 1133 ++MI; 1134 1135 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1136 switch (Scope) { 1137 case SIAtomicScope::SYSTEM: 1138 case SIAtomicScope::AGENT: 1139 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBINVL1)); 1140 Changed = true; 1141 break; 1142 case SIAtomicScope::WORKGROUP: 1143 case SIAtomicScope::WAVEFRONT: 1144 case SIAtomicScope::SINGLETHREAD: 1145 // No cache to invalidate. 1146 break; 1147 default: 1148 llvm_unreachable("Unsupported synchronization scope"); 1149 } 1150 } 1151 1152 /// The scratch address space does not need the global memory cache 1153 /// to be flushed as all memory operations by the same thread are 1154 /// sequentially consistent, and no other thread can access scratch 1155 /// memory. 1156 1157 /// Other address spaces do not have a cache. 1158 1159 if (Pos == Position::AFTER) 1160 --MI; 1161 1162 return Changed; 1163 } 1164 1165 bool SIGfx6CacheControl::insertRelease(MachineBasicBlock::iterator &MI, 1166 SIAtomicScope Scope, 1167 SIAtomicAddrSpace AddrSpace, 1168 bool IsCrossAddrSpaceOrdering, 1169 Position Pos) const { 1170 return insertWait(MI, Scope, AddrSpace, SIMemOp::LOAD | SIMemOp::STORE, 1171 IsCrossAddrSpaceOrdering, Pos); 1172 } 1173 1174 bool SIGfx7CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, 1175 SIAtomicScope Scope, 1176 SIAtomicAddrSpace AddrSpace, 1177 Position Pos) const { 1178 if (!InsertCacheInv) 1179 return false; 1180 1181 bool Changed = false; 1182 1183 MachineBasicBlock &MBB = *MI->getParent(); 1184 DebugLoc DL = MI->getDebugLoc(); 1185 1186 const GCNSubtarget &STM = MBB.getParent()->getSubtarget<GCNSubtarget>(); 1187 1188 const unsigned InvalidateL1 = STM.isAmdPalOS() || STM.isMesa3DOS() 1189 ? AMDGPU::BUFFER_WBINVL1 1190 : AMDGPU::BUFFER_WBINVL1_VOL; 1191 1192 if (Pos == Position::AFTER) 1193 ++MI; 1194 1195 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1196 switch (Scope) { 1197 case SIAtomicScope::SYSTEM: 1198 case SIAtomicScope::AGENT: 1199 BuildMI(MBB, MI, DL, TII->get(InvalidateL1)); 1200 Changed = true; 1201 break; 1202 case SIAtomicScope::WORKGROUP: 1203 case SIAtomicScope::WAVEFRONT: 1204 case SIAtomicScope::SINGLETHREAD: 1205 // No cache to invalidate. 1206 break; 1207 default: 1208 llvm_unreachable("Unsupported synchronization scope"); 1209 } 1210 } 1211 1212 /// The scratch address space does not need the global memory cache 1213 /// to be flushed as all memory operations by the same thread are 1214 /// sequentially consistent, and no other thread can access scratch 1215 /// memory. 1216 1217 /// Other address spaces do not have a cache. 1218 1219 if (Pos == Position::AFTER) 1220 --MI; 1221 1222 return Changed; 1223 } 1224 1225 bool SIGfx90ACacheControl::enableLoadCacheBypass( 1226 const MachineBasicBlock::iterator &MI, 1227 SIAtomicScope Scope, 1228 SIAtomicAddrSpace AddrSpace) const { 1229 assert(MI->mayLoad() && !MI->mayStore()); 1230 bool Changed = false; 1231 1232 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1233 switch (Scope) { 1234 case SIAtomicScope::SYSTEM: 1235 case SIAtomicScope::AGENT: 1236 // Set the L1 cache policy to MISS_LRU. 1237 // Note: there is no L2 cache bypass policy at the ISA level. 1238 Changed |= enableGLCBit(MI); 1239 break; 1240 case SIAtomicScope::WORKGROUP: 1241 // In threadgroup split mode the waves of a work-group can be executing on 1242 // different CUs. Therefore need to bypass the L1 which is per CU. 1243 // Otherwise in non-threadgroup split mode all waves of a work-group are 1244 // on the same CU, and so the L1 does not need to be bypassed. 1245 if (ST.isTgSplitEnabled()) 1246 Changed |= enableGLCBit(MI); 1247 break; 1248 case SIAtomicScope::WAVEFRONT: 1249 case SIAtomicScope::SINGLETHREAD: 1250 // No cache to bypass. 1251 break; 1252 default: 1253 llvm_unreachable("Unsupported synchronization scope"); 1254 } 1255 } 1256 1257 /// The scratch address space does not need the global memory caches 1258 /// to be bypassed as all memory operations by the same thread are 1259 /// sequentially consistent, and no other thread can access scratch 1260 /// memory. 1261 1262 /// Other address spaces do not have a cache. 1263 1264 return Changed; 1265 } 1266 1267 bool SIGfx90ACacheControl::enableStoreCacheBypass( 1268 const MachineBasicBlock::iterator &MI, 1269 SIAtomicScope Scope, 1270 SIAtomicAddrSpace AddrSpace) const { 1271 assert(!MI->mayLoad() && MI->mayStore()); 1272 bool Changed = false; 1273 1274 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1275 switch (Scope) { 1276 case SIAtomicScope::SYSTEM: 1277 case SIAtomicScope::AGENT: 1278 /// Do not set glc for store atomic operations as they implicitly write 1279 /// through the L1 cache. 1280 break; 1281 case SIAtomicScope::WORKGROUP: 1282 case SIAtomicScope::WAVEFRONT: 1283 case SIAtomicScope::SINGLETHREAD: 1284 // No cache to bypass. Store atomics implicitly write through the L1 1285 // cache. 1286 break; 1287 default: 1288 llvm_unreachable("Unsupported synchronization scope"); 1289 } 1290 } 1291 1292 /// The scratch address space does not need the global memory caches 1293 /// to be bypassed as all memory operations by the same thread are 1294 /// sequentially consistent, and no other thread can access scratch 1295 /// memory. 1296 1297 /// Other address spaces do not have a cache. 1298 1299 return Changed; 1300 } 1301 1302 bool SIGfx90ACacheControl::enableRMWCacheBypass( 1303 const MachineBasicBlock::iterator &MI, 1304 SIAtomicScope Scope, 1305 SIAtomicAddrSpace AddrSpace) const { 1306 assert(MI->mayLoad() && MI->mayStore()); 1307 bool Changed = false; 1308 1309 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1310 switch (Scope) { 1311 case SIAtomicScope::SYSTEM: 1312 case SIAtomicScope::AGENT: 1313 /// Do not set glc for RMW atomic operations as they implicitly bypass 1314 /// the L1 cache, and the glc bit is instead used to indicate if they are 1315 /// return or no-return. 1316 break; 1317 case SIAtomicScope::WORKGROUP: 1318 case SIAtomicScope::WAVEFRONT: 1319 case SIAtomicScope::SINGLETHREAD: 1320 // No cache to bypass. RMW atomics implicitly bypass the L1 cache. 1321 break; 1322 default: 1323 llvm_unreachable("Unsupported synchronization scope"); 1324 } 1325 } 1326 1327 return Changed; 1328 } 1329 1330 bool SIGfx90ACacheControl::enableVolatileAndOrNonTemporal( 1331 MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, 1332 bool IsVolatile, bool IsNonTemporal, bool IsLastUse = false) const { 1333 // Only handle load and store, not atomic read-modify-write insructions. The 1334 // latter use glc to indicate if the atomic returns a result and so must not 1335 // be used for cache control. 1336 assert(MI->mayLoad() ^ MI->mayStore()); 1337 1338 // Only update load and store, not LLVM IR atomic read-modify-write 1339 // instructions. The latter are always marked as volatile so cannot sensibly 1340 // handle it as do not want to pessimize all atomics. Also they do not support 1341 // the nontemporal attribute. 1342 assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); 1343 1344 bool Changed = false; 1345 1346 if (IsVolatile) { 1347 // Set L1 cache policy to be MISS_EVICT for load instructions 1348 // and MISS_LRU for store instructions. 1349 // Note: there is no L2 cache bypass policy at the ISA level. 1350 if (Op == SIMemOp::LOAD) 1351 Changed |= enableGLCBit(MI); 1352 1353 // Ensure operation has completed at system scope to cause all volatile 1354 // operations to be visible outside the program in a global order. Do not 1355 // request cross address space as only the global address space can be 1356 // observable outside the program, so no need to cause a waitcnt for LDS 1357 // address space operations. 1358 Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, 1359 Position::AFTER); 1360 1361 return Changed; 1362 } 1363 1364 if (IsNonTemporal) { 1365 // Setting both GLC and SLC configures L1 cache policy to MISS_EVICT 1366 // for both loads and stores, and the L2 cache policy to STREAM. 1367 Changed |= enableGLCBit(MI); 1368 Changed |= enableSLCBit(MI); 1369 return Changed; 1370 } 1371 1372 return Changed; 1373 } 1374 1375 bool SIGfx90ACacheControl::insertWait(MachineBasicBlock::iterator &MI, 1376 SIAtomicScope Scope, 1377 SIAtomicAddrSpace AddrSpace, 1378 SIMemOp Op, 1379 bool IsCrossAddrSpaceOrdering, 1380 Position Pos) const { 1381 if (ST.isTgSplitEnabled()) { 1382 // In threadgroup split mode the waves of a work-group can be executing on 1383 // different CUs. Therefore need to wait for global or GDS memory operations 1384 // to complete to ensure they are visible to waves in the other CUs. 1385 // Otherwise in non-threadgroup split mode all waves of a work-group are on 1386 // the same CU, so no need to wait for global memory as all waves in the 1387 // work-group access the same the L1, nor wait for GDS as access are ordered 1388 // on a CU. 1389 if (((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH | 1390 SIAtomicAddrSpace::GDS)) != SIAtomicAddrSpace::NONE) && 1391 (Scope == SIAtomicScope::WORKGROUP)) { 1392 // Same as GFX7 using agent scope. 1393 Scope = SIAtomicScope::AGENT; 1394 } 1395 // In threadgroup split mode LDS cannot be allocated so no need to wait for 1396 // LDS memory operations. 1397 AddrSpace &= ~SIAtomicAddrSpace::LDS; 1398 } 1399 return SIGfx7CacheControl::insertWait(MI, Scope, AddrSpace, Op, 1400 IsCrossAddrSpaceOrdering, Pos); 1401 } 1402 1403 bool SIGfx90ACacheControl::insertAcquire(MachineBasicBlock::iterator &MI, 1404 SIAtomicScope Scope, 1405 SIAtomicAddrSpace AddrSpace, 1406 Position Pos) const { 1407 if (!InsertCacheInv) 1408 return false; 1409 1410 bool Changed = false; 1411 1412 MachineBasicBlock &MBB = *MI->getParent(); 1413 DebugLoc DL = MI->getDebugLoc(); 1414 1415 if (Pos == Position::AFTER) 1416 ++MI; 1417 1418 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1419 switch (Scope) { 1420 case SIAtomicScope::SYSTEM: 1421 // Ensures that following loads will not see stale remote VMEM data or 1422 // stale local VMEM data with MTYPE NC. Local VMEM data with MTYPE RW and 1423 // CC will never be stale due to the local memory probes. 1424 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INVL2)); 1425 // Inserting a "S_WAITCNT vmcnt(0)" after is not required because the 1426 // hardware does not reorder memory operations by the same wave with 1427 // respect to a preceding "BUFFER_INVL2". The invalidate is guaranteed to 1428 // remove any cache lines of earlier writes by the same wave and ensures 1429 // later reads by the same wave will refetch the cache lines. 1430 Changed = true; 1431 break; 1432 case SIAtomicScope::AGENT: 1433 // Same as GFX7. 1434 break; 1435 case SIAtomicScope::WORKGROUP: 1436 // In threadgroup split mode the waves of a work-group can be executing on 1437 // different CUs. Therefore need to invalidate the L1 which is per CU. 1438 // Otherwise in non-threadgroup split mode all waves of a work-group are 1439 // on the same CU, and so the L1 does not need to be invalidated. 1440 if (ST.isTgSplitEnabled()) { 1441 // Same as GFX7 using agent scope. 1442 Scope = SIAtomicScope::AGENT; 1443 } 1444 break; 1445 case SIAtomicScope::WAVEFRONT: 1446 case SIAtomicScope::SINGLETHREAD: 1447 // Same as GFX7. 1448 break; 1449 default: 1450 llvm_unreachable("Unsupported synchronization scope"); 1451 } 1452 } 1453 1454 /// The scratch address space does not need the global memory cache 1455 /// to be flushed as all memory operations by the same thread are 1456 /// sequentially consistent, and no other thread can access scratch 1457 /// memory. 1458 1459 /// Other address spaces do not have a cache. 1460 1461 if (Pos == Position::AFTER) 1462 --MI; 1463 1464 Changed |= SIGfx7CacheControl::insertAcquire(MI, Scope, AddrSpace, Pos); 1465 1466 return Changed; 1467 } 1468 1469 bool SIGfx90ACacheControl::insertRelease(MachineBasicBlock::iterator &MI, 1470 SIAtomicScope Scope, 1471 SIAtomicAddrSpace AddrSpace, 1472 bool IsCrossAddrSpaceOrdering, 1473 Position Pos) const { 1474 bool Changed = false; 1475 1476 MachineBasicBlock &MBB = *MI->getParent(); 1477 const DebugLoc &DL = MI->getDebugLoc(); 1478 1479 if (Pos == Position::AFTER) 1480 ++MI; 1481 1482 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1483 switch (Scope) { 1484 case SIAtomicScope::SYSTEM: 1485 // Inserting a "S_WAITCNT vmcnt(0)" before is not required because the 1486 // hardware does not reorder memory operations by the same wave with 1487 // respect to a following "BUFFER_WBL2". The "BUFFER_WBL2" is guaranteed 1488 // to initiate writeback of any dirty cache lines of earlier writes by the 1489 // same wave. A "S_WAITCNT vmcnt(0)" is needed after to ensure the 1490 // writeback has completed. 1491 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2)) 1492 // Set SC bits to indicate system scope. 1493 .addImm(AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1); 1494 // Followed by same as GFX7, which will ensure the necessary "S_WAITCNT 1495 // vmcnt(0)" needed by the "BUFFER_WBL2". 1496 Changed = true; 1497 break; 1498 case SIAtomicScope::AGENT: 1499 case SIAtomicScope::WORKGROUP: 1500 case SIAtomicScope::WAVEFRONT: 1501 case SIAtomicScope::SINGLETHREAD: 1502 // Same as GFX7. 1503 break; 1504 default: 1505 llvm_unreachable("Unsupported synchronization scope"); 1506 } 1507 } 1508 1509 if (Pos == Position::AFTER) 1510 --MI; 1511 1512 Changed |= 1513 SIGfx7CacheControl::insertRelease(MI, Scope, AddrSpace, 1514 IsCrossAddrSpaceOrdering, Pos); 1515 1516 return Changed; 1517 } 1518 1519 bool SIGfx940CacheControl::enableLoadCacheBypass( 1520 const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, 1521 SIAtomicAddrSpace AddrSpace) const { 1522 assert(MI->mayLoad() && !MI->mayStore()); 1523 bool Changed = false; 1524 1525 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1526 switch (Scope) { 1527 case SIAtomicScope::SYSTEM: 1528 // Set SC bits to indicate system scope. 1529 Changed |= enableSC0Bit(MI); 1530 Changed |= enableSC1Bit(MI); 1531 break; 1532 case SIAtomicScope::AGENT: 1533 // Set SC bits to indicate agent scope. 1534 Changed |= enableSC1Bit(MI); 1535 break; 1536 case SIAtomicScope::WORKGROUP: 1537 // In threadgroup split mode the waves of a work-group can be executing on 1538 // different CUs. Therefore need to bypass the L1 which is per CU. 1539 // Otherwise in non-threadgroup split mode all waves of a work-group are 1540 // on the same CU, and so the L1 does not need to be bypassed. Setting SC 1541 // bits to indicate work-group scope will do this automatically. 1542 Changed |= enableSC0Bit(MI); 1543 break; 1544 case SIAtomicScope::WAVEFRONT: 1545 case SIAtomicScope::SINGLETHREAD: 1546 // Leave SC bits unset to indicate wavefront scope. 1547 break; 1548 default: 1549 llvm_unreachable("Unsupported synchronization scope"); 1550 } 1551 } 1552 1553 /// The scratch address space does not need the global memory caches 1554 /// to be bypassed as all memory operations by the same thread are 1555 /// sequentially consistent, and no other thread can access scratch 1556 /// memory. 1557 1558 /// Other address spaces do not have a cache. 1559 1560 return Changed; 1561 } 1562 1563 bool SIGfx940CacheControl::enableStoreCacheBypass( 1564 const MachineBasicBlock::iterator &MI, 1565 SIAtomicScope Scope, SIAtomicAddrSpace AddrSpace) const { 1566 assert(!MI->mayLoad() && MI->mayStore()); 1567 bool Changed = false; 1568 1569 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1570 switch (Scope) { 1571 case SIAtomicScope::SYSTEM: 1572 // Set SC bits to indicate system scope. 1573 Changed |= enableSC0Bit(MI); 1574 Changed |= enableSC1Bit(MI); 1575 break; 1576 case SIAtomicScope::AGENT: 1577 // Set SC bits to indicate agent scope. 1578 Changed |= enableSC1Bit(MI); 1579 break; 1580 case SIAtomicScope::WORKGROUP: 1581 // Set SC bits to indicate workgroup scope. 1582 Changed |= enableSC0Bit(MI); 1583 break; 1584 case SIAtomicScope::WAVEFRONT: 1585 case SIAtomicScope::SINGLETHREAD: 1586 // Leave SC bits unset to indicate wavefront scope. 1587 break; 1588 default: 1589 llvm_unreachable("Unsupported synchronization scope"); 1590 } 1591 } 1592 1593 /// The scratch address space does not need the global memory caches 1594 /// to be bypassed as all memory operations by the same thread are 1595 /// sequentially consistent, and no other thread can access scratch 1596 /// memory. 1597 1598 /// Other address spaces do not have a cache. 1599 1600 return Changed; 1601 } 1602 1603 bool SIGfx940CacheControl::enableRMWCacheBypass( 1604 const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, 1605 SIAtomicAddrSpace AddrSpace) const { 1606 assert(MI->mayLoad() && MI->mayStore()); 1607 bool Changed = false; 1608 1609 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1610 switch (Scope) { 1611 case SIAtomicScope::SYSTEM: 1612 // Set SC1 bit to indicate system scope. 1613 Changed |= enableSC1Bit(MI); 1614 break; 1615 case SIAtomicScope::AGENT: 1616 case SIAtomicScope::WORKGROUP: 1617 case SIAtomicScope::WAVEFRONT: 1618 case SIAtomicScope::SINGLETHREAD: 1619 // RMW atomic operations implicitly bypass the L1 cache and only use SC1 1620 // to indicate system or agent scope. The SC0 bit is used to indicate if 1621 // they are return or no-return. Leave SC1 bit unset to indicate agent 1622 // scope. 1623 break; 1624 default: 1625 llvm_unreachable("Unsupported synchronization scope"); 1626 } 1627 } 1628 1629 return Changed; 1630 } 1631 1632 bool SIGfx940CacheControl::enableVolatileAndOrNonTemporal( 1633 MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, 1634 bool IsVolatile, bool IsNonTemporal, bool IsLastUse = false) const { 1635 // Only handle load and store, not atomic read-modify-write insructions. The 1636 // latter use glc to indicate if the atomic returns a result and so must not 1637 // be used for cache control. 1638 assert(MI->mayLoad() ^ MI->mayStore()); 1639 1640 // Only update load and store, not LLVM IR atomic read-modify-write 1641 // instructions. The latter are always marked as volatile so cannot sensibly 1642 // handle it as do not want to pessimize all atomics. Also they do not support 1643 // the nontemporal attribute. 1644 assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); 1645 1646 bool Changed = false; 1647 1648 if (IsVolatile) { 1649 // Set SC bits to indicate system scope. 1650 Changed |= enableSC0Bit(MI); 1651 Changed |= enableSC1Bit(MI); 1652 1653 // Ensure operation has completed at system scope to cause all volatile 1654 // operations to be visible outside the program in a global order. Do not 1655 // request cross address space as only the global address space can be 1656 // observable outside the program, so no need to cause a waitcnt for LDS 1657 // address space operations. 1658 Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, 1659 Position::AFTER); 1660 1661 return Changed; 1662 } 1663 1664 if (IsNonTemporal) { 1665 Changed |= enableNTBit(MI); 1666 return Changed; 1667 } 1668 1669 return Changed; 1670 } 1671 1672 bool SIGfx940CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, 1673 SIAtomicScope Scope, 1674 SIAtomicAddrSpace AddrSpace, 1675 Position Pos) const { 1676 if (!InsertCacheInv) 1677 return false; 1678 1679 bool Changed = false; 1680 1681 MachineBasicBlock &MBB = *MI->getParent(); 1682 DebugLoc DL = MI->getDebugLoc(); 1683 1684 if (Pos == Position::AFTER) 1685 ++MI; 1686 1687 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1688 switch (Scope) { 1689 case SIAtomicScope::SYSTEM: 1690 // Ensures that following loads will not see stale remote VMEM data or 1691 // stale local VMEM data with MTYPE NC. Local VMEM data with MTYPE RW and 1692 // CC will never be stale due to the local memory probes. 1693 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INV)) 1694 // Set SC bits to indicate system scope. 1695 .addImm(AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1); 1696 // Inserting a "S_WAITCNT vmcnt(0)" after is not required because the 1697 // hardware does not reorder memory operations by the same wave with 1698 // respect to a preceding "BUFFER_INV". The invalidate is guaranteed to 1699 // remove any cache lines of earlier writes by the same wave and ensures 1700 // later reads by the same wave will refetch the cache lines. 1701 Changed = true; 1702 break; 1703 case SIAtomicScope::AGENT: 1704 // Ensures that following loads will not see stale remote date or local 1705 // MTYPE NC global data. Local MTYPE RW and CC memory will never be stale 1706 // due to the memory probes. 1707 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INV)) 1708 // Set SC bits to indicate agent scope. 1709 .addImm(AMDGPU::CPol::SC1); 1710 // Inserting "S_WAITCNT vmcnt(0)" is not required because the hardware 1711 // does not reorder memory operations with respect to preceeding buffer 1712 // invalidate. The invalidate is guaranteed to remove any cache lines of 1713 // earlier writes and ensures later writes will refetch the cache lines. 1714 Changed = true; 1715 break; 1716 case SIAtomicScope::WORKGROUP: 1717 // In threadgroup split mode the waves of a work-group can be executing on 1718 // different CUs. Therefore need to invalidate the L1 which is per CU. 1719 // Otherwise in non-threadgroup split mode all waves of a work-group are 1720 // on the same CU, and so the L1 does not need to be invalidated. 1721 if (ST.isTgSplitEnabled()) { 1722 // Ensures L1 is invalidated if in threadgroup split mode. In 1723 // non-threadgroup split mode it is a NOP, but no point generating it in 1724 // that case if know not in that mode. 1725 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_INV)) 1726 // Set SC bits to indicate work-group scope. 1727 .addImm(AMDGPU::CPol::SC0); 1728 // Inserting "S_WAITCNT vmcnt(0)" is not required because the hardware 1729 // does not reorder memory operations with respect to preceeding buffer 1730 // invalidate. The invalidate is guaranteed to remove any cache lines of 1731 // earlier writes and ensures later writes will refetch the cache lines. 1732 Changed = true; 1733 } 1734 break; 1735 case SIAtomicScope::WAVEFRONT: 1736 case SIAtomicScope::SINGLETHREAD: 1737 // Could generate "BUFFER_INV" but it would do nothing as there are no 1738 // caches to invalidate. 1739 break; 1740 default: 1741 llvm_unreachable("Unsupported synchronization scope"); 1742 } 1743 } 1744 1745 /// The scratch address space does not need the global memory cache 1746 /// to be flushed as all memory operations by the same thread are 1747 /// sequentially consistent, and no other thread can access scratch 1748 /// memory. 1749 1750 /// Other address spaces do not have a cache. 1751 1752 if (Pos == Position::AFTER) 1753 --MI; 1754 1755 return Changed; 1756 } 1757 1758 bool SIGfx940CacheControl::insertRelease(MachineBasicBlock::iterator &MI, 1759 SIAtomicScope Scope, 1760 SIAtomicAddrSpace AddrSpace, 1761 bool IsCrossAddrSpaceOrdering, 1762 Position Pos) const { 1763 bool Changed = false; 1764 1765 MachineBasicBlock &MBB = *MI->getParent(); 1766 DebugLoc DL = MI->getDebugLoc(); 1767 1768 if (Pos == Position::AFTER) 1769 ++MI; 1770 1771 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1772 switch (Scope) { 1773 case SIAtomicScope::SYSTEM: 1774 // Inserting a "S_WAITCNT vmcnt(0)" before is not required because the 1775 // hardware does not reorder memory operations by the same wave with 1776 // respect to a following "BUFFER_WBL2". The "BUFFER_WBL2" is guaranteed 1777 // to initiate writeback of any dirty cache lines of earlier writes by the 1778 // same wave. A "S_WAITCNT vmcnt(0)" is needed after to ensure the 1779 // writeback has completed. 1780 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2)) 1781 // Set SC bits to indicate system scope. 1782 .addImm(AMDGPU::CPol::SC0 | AMDGPU::CPol::SC1); 1783 // Since AddrSpace contains SIAtomicAddrSpace::GLOBAL and Scope is 1784 // SIAtomicScope::SYSTEM, the following insertWait will generate the 1785 // required "S_WAITCNT vmcnt(0)" needed by the "BUFFER_WBL2". 1786 Changed = true; 1787 break; 1788 case SIAtomicScope::AGENT: 1789 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_WBL2)) 1790 // Set SC bits to indicate agent scope. 1791 .addImm(AMDGPU::CPol::SC1); 1792 1793 // Since AddrSpace contains SIAtomicAddrSpace::GLOBAL and Scope is 1794 // SIAtomicScope::AGENT, the following insertWait will generate the 1795 // required "S_WAITCNT vmcnt(0)". 1796 Changed = true; 1797 break; 1798 case SIAtomicScope::WORKGROUP: 1799 case SIAtomicScope::WAVEFRONT: 1800 case SIAtomicScope::SINGLETHREAD: 1801 // Do not generate "BUFFER_WBL2" as there are no caches it would 1802 // writeback, and would require an otherwise unnecessary 1803 // "S_WAITCNT vmcnt(0)". 1804 break; 1805 default: 1806 llvm_unreachable("Unsupported synchronization scope"); 1807 } 1808 } 1809 1810 if (Pos == Position::AFTER) 1811 --MI; 1812 1813 // Ensure the necessary S_WAITCNT needed by any "BUFFER_WBL2" as well as other 1814 // S_WAITCNT needed. 1815 Changed |= insertWait(MI, Scope, AddrSpace, SIMemOp::LOAD | SIMemOp::STORE, 1816 IsCrossAddrSpaceOrdering, Pos); 1817 1818 return Changed; 1819 } 1820 1821 bool SIGfx10CacheControl::enableLoadCacheBypass( 1822 const MachineBasicBlock::iterator &MI, 1823 SIAtomicScope Scope, 1824 SIAtomicAddrSpace AddrSpace) const { 1825 assert(MI->mayLoad() && !MI->mayStore()); 1826 bool Changed = false; 1827 1828 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 1829 switch (Scope) { 1830 case SIAtomicScope::SYSTEM: 1831 case SIAtomicScope::AGENT: 1832 // Set the L0 and L1 cache policies to MISS_EVICT. 1833 // Note: there is no L2 cache coherent bypass control at the ISA level. 1834 Changed |= enableGLCBit(MI); 1835 Changed |= enableDLCBit(MI); 1836 break; 1837 case SIAtomicScope::WORKGROUP: 1838 // In WGP mode the waves of a work-group can be executing on either CU of 1839 // the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in 1840 // CU mode all waves of a work-group are on the same CU, and so the L0 1841 // does not need to be bypassed. 1842 if (!ST.isCuModeEnabled()) 1843 Changed |= enableGLCBit(MI); 1844 break; 1845 case SIAtomicScope::WAVEFRONT: 1846 case SIAtomicScope::SINGLETHREAD: 1847 // No cache to bypass. 1848 break; 1849 default: 1850 llvm_unreachable("Unsupported synchronization scope"); 1851 } 1852 } 1853 1854 /// The scratch address space does not need the global memory caches 1855 /// to be bypassed as all memory operations by the same thread are 1856 /// sequentially consistent, and no other thread can access scratch 1857 /// memory. 1858 1859 /// Other address spaces do not have a cache. 1860 1861 return Changed; 1862 } 1863 1864 bool SIGfx10CacheControl::enableVolatileAndOrNonTemporal( 1865 MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, 1866 bool IsVolatile, bool IsNonTemporal, bool IsLastUse = false) const { 1867 1868 // Only handle load and store, not atomic read-modify-write insructions. The 1869 // latter use glc to indicate if the atomic returns a result and so must not 1870 // be used for cache control. 1871 assert(MI->mayLoad() ^ MI->mayStore()); 1872 1873 // Only update load and store, not LLVM IR atomic read-modify-write 1874 // instructions. The latter are always marked as volatile so cannot sensibly 1875 // handle it as do not want to pessimize all atomics. Also they do not support 1876 // the nontemporal attribute. 1877 assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); 1878 1879 bool Changed = false; 1880 1881 if (IsVolatile) { 1882 // Set L0 and L1 cache policy to be MISS_EVICT for load instructions 1883 // and MISS_LRU for store instructions. 1884 // Note: there is no L2 cache coherent bypass control at the ISA level. 1885 if (Op == SIMemOp::LOAD) { 1886 Changed |= enableGLCBit(MI); 1887 Changed |= enableDLCBit(MI); 1888 } 1889 1890 // Ensure operation has completed at system scope to cause all volatile 1891 // operations to be visible outside the program in a global order. Do not 1892 // request cross address space as only the global address space can be 1893 // observable outside the program, so no need to cause a waitcnt for LDS 1894 // address space operations. 1895 Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, 1896 Position::AFTER); 1897 return Changed; 1898 } 1899 1900 if (IsNonTemporal) { 1901 // For loads setting SLC configures L0 and L1 cache policy to HIT_EVICT 1902 // and L2 cache policy to STREAM. 1903 // For stores setting both GLC and SLC configures L0 and L1 cache policy 1904 // to MISS_EVICT and the L2 cache policy to STREAM. 1905 if (Op == SIMemOp::STORE) 1906 Changed |= enableGLCBit(MI); 1907 Changed |= enableSLCBit(MI); 1908 1909 return Changed; 1910 } 1911 1912 return Changed; 1913 } 1914 1915 bool SIGfx10CacheControl::insertWait(MachineBasicBlock::iterator &MI, 1916 SIAtomicScope Scope, 1917 SIAtomicAddrSpace AddrSpace, 1918 SIMemOp Op, 1919 bool IsCrossAddrSpaceOrdering, 1920 Position Pos) const { 1921 bool Changed = false; 1922 1923 MachineBasicBlock &MBB = *MI->getParent(); 1924 DebugLoc DL = MI->getDebugLoc(); 1925 1926 if (Pos == Position::AFTER) 1927 ++MI; 1928 1929 bool VMCnt = false; 1930 bool VSCnt = false; 1931 bool LGKMCnt = false; 1932 1933 if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) != 1934 SIAtomicAddrSpace::NONE) { 1935 switch (Scope) { 1936 case SIAtomicScope::SYSTEM: 1937 case SIAtomicScope::AGENT: 1938 if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) 1939 VMCnt |= true; 1940 if ((Op & SIMemOp::STORE) != SIMemOp::NONE) 1941 VSCnt |= true; 1942 break; 1943 case SIAtomicScope::WORKGROUP: 1944 // In WGP mode the waves of a work-group can be executing on either CU of 1945 // the WGP. Therefore need to wait for operations to complete to ensure 1946 // they are visible to waves in the other CU as the L0 is per CU. 1947 // Otherwise in CU mode and all waves of a work-group are on the same CU 1948 // which shares the same L0. 1949 if (!ST.isCuModeEnabled()) { 1950 if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) 1951 VMCnt |= true; 1952 if ((Op & SIMemOp::STORE) != SIMemOp::NONE) 1953 VSCnt |= true; 1954 } 1955 break; 1956 case SIAtomicScope::WAVEFRONT: 1957 case SIAtomicScope::SINGLETHREAD: 1958 // The L0 cache keeps all memory operations in order for 1959 // work-items in the same wavefront. 1960 break; 1961 default: 1962 llvm_unreachable("Unsupported synchronization scope"); 1963 } 1964 } 1965 1966 if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { 1967 switch (Scope) { 1968 case SIAtomicScope::SYSTEM: 1969 case SIAtomicScope::AGENT: 1970 case SIAtomicScope::WORKGROUP: 1971 // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is 1972 // not needed as LDS operations for all waves are executed in a total 1973 // global ordering as observed by all waves. Required if also 1974 // synchronizing with global/GDS memory as LDS operations could be 1975 // reordered with respect to later global/GDS memory operations of the 1976 // same wave. 1977 LGKMCnt |= IsCrossAddrSpaceOrdering; 1978 break; 1979 case SIAtomicScope::WAVEFRONT: 1980 case SIAtomicScope::SINGLETHREAD: 1981 // The LDS keeps all memory operations in order for 1982 // the same wavefront. 1983 break; 1984 default: 1985 llvm_unreachable("Unsupported synchronization scope"); 1986 } 1987 } 1988 1989 if ((AddrSpace & SIAtomicAddrSpace::GDS) != SIAtomicAddrSpace::NONE) { 1990 switch (Scope) { 1991 case SIAtomicScope::SYSTEM: 1992 case SIAtomicScope::AGENT: 1993 // If no cross address space ordering then an GDS "S_WAITCNT lgkmcnt(0)" 1994 // is not needed as GDS operations for all waves are executed in a total 1995 // global ordering as observed by all waves. Required if also 1996 // synchronizing with global/LDS memory as GDS operations could be 1997 // reordered with respect to later global/LDS memory operations of the 1998 // same wave. 1999 LGKMCnt |= IsCrossAddrSpaceOrdering; 2000 break; 2001 case SIAtomicScope::WORKGROUP: 2002 case SIAtomicScope::WAVEFRONT: 2003 case SIAtomicScope::SINGLETHREAD: 2004 // The GDS keeps all memory operations in order for 2005 // the same work-group. 2006 break; 2007 default: 2008 llvm_unreachable("Unsupported synchronization scope"); 2009 } 2010 } 2011 2012 if (VMCnt || LGKMCnt) { 2013 unsigned WaitCntImmediate = 2014 AMDGPU::encodeWaitcnt(IV, 2015 VMCnt ? 0 : getVmcntBitMask(IV), 2016 getExpcntBitMask(IV), 2017 LGKMCnt ? 0 : getLgkmcntBitMask(IV)); 2018 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT_soft)) 2019 .addImm(WaitCntImmediate); 2020 Changed = true; 2021 } 2022 2023 if (VSCnt) { 2024 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAITCNT_VSCNT_soft)) 2025 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 2026 .addImm(0); 2027 Changed = true; 2028 } 2029 2030 if (Pos == Position::AFTER) 2031 --MI; 2032 2033 return Changed; 2034 } 2035 2036 bool SIGfx10CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, 2037 SIAtomicScope Scope, 2038 SIAtomicAddrSpace AddrSpace, 2039 Position Pos) const { 2040 if (!InsertCacheInv) 2041 return false; 2042 2043 bool Changed = false; 2044 2045 MachineBasicBlock &MBB = *MI->getParent(); 2046 DebugLoc DL = MI->getDebugLoc(); 2047 2048 if (Pos == Position::AFTER) 2049 ++MI; 2050 2051 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 2052 switch (Scope) { 2053 case SIAtomicScope::SYSTEM: 2054 case SIAtomicScope::AGENT: 2055 // The order of invalidates matter here. We must invalidate "outer in" 2056 // so L1 -> L0 to avoid L0 pulling in stale data from L1 when it is 2057 // invalidated. 2058 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL1_INV)); 2059 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV)); 2060 Changed = true; 2061 break; 2062 case SIAtomicScope::WORKGROUP: 2063 // In WGP mode the waves of a work-group can be executing on either CU of 2064 // the WGP. Therefore need to invalidate the L0 which is per CU. Otherwise 2065 // in CU mode and all waves of a work-group are on the same CU, and so the 2066 // L0 does not need to be invalidated. 2067 if (!ST.isCuModeEnabled()) { 2068 BuildMI(MBB, MI, DL, TII->get(AMDGPU::BUFFER_GL0_INV)); 2069 Changed = true; 2070 } 2071 break; 2072 case SIAtomicScope::WAVEFRONT: 2073 case SIAtomicScope::SINGLETHREAD: 2074 // No cache to invalidate. 2075 break; 2076 default: 2077 llvm_unreachable("Unsupported synchronization scope"); 2078 } 2079 } 2080 2081 /// The scratch address space does not need the global memory cache 2082 /// to be flushed as all memory operations by the same thread are 2083 /// sequentially consistent, and no other thread can access scratch 2084 /// memory. 2085 2086 /// Other address spaces do not have a cache. 2087 2088 if (Pos == Position::AFTER) 2089 --MI; 2090 2091 return Changed; 2092 } 2093 2094 bool SIGfx11CacheControl::enableLoadCacheBypass( 2095 const MachineBasicBlock::iterator &MI, SIAtomicScope Scope, 2096 SIAtomicAddrSpace AddrSpace) const { 2097 assert(MI->mayLoad() && !MI->mayStore()); 2098 bool Changed = false; 2099 2100 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) { 2101 switch (Scope) { 2102 case SIAtomicScope::SYSTEM: 2103 case SIAtomicScope::AGENT: 2104 // Set the L0 and L1 cache policies to MISS_EVICT. 2105 // Note: there is no L2 cache coherent bypass control at the ISA level. 2106 Changed |= enableGLCBit(MI); 2107 break; 2108 case SIAtomicScope::WORKGROUP: 2109 // In WGP mode the waves of a work-group can be executing on either CU of 2110 // the WGP. Therefore need to bypass the L0 which is per CU. Otherwise in 2111 // CU mode all waves of a work-group are on the same CU, and so the L0 2112 // does not need to be bypassed. 2113 if (!ST.isCuModeEnabled()) 2114 Changed |= enableGLCBit(MI); 2115 break; 2116 case SIAtomicScope::WAVEFRONT: 2117 case SIAtomicScope::SINGLETHREAD: 2118 // No cache to bypass. 2119 break; 2120 default: 2121 llvm_unreachable("Unsupported synchronization scope"); 2122 } 2123 } 2124 2125 /// The scratch address space does not need the global memory caches 2126 /// to be bypassed as all memory operations by the same thread are 2127 /// sequentially consistent, and no other thread can access scratch 2128 /// memory. 2129 2130 /// Other address spaces do not have a cache. 2131 2132 return Changed; 2133 } 2134 2135 bool SIGfx11CacheControl::enableVolatileAndOrNonTemporal( 2136 MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, 2137 bool IsVolatile, bool IsNonTemporal, bool IsLastUse = false) const { 2138 2139 // Only handle load and store, not atomic read-modify-write insructions. The 2140 // latter use glc to indicate if the atomic returns a result and so must not 2141 // be used for cache control. 2142 assert(MI->mayLoad() ^ MI->mayStore()); 2143 2144 // Only update load and store, not LLVM IR atomic read-modify-write 2145 // instructions. The latter are always marked as volatile so cannot sensibly 2146 // handle it as do not want to pessimize all atomics. Also they do not support 2147 // the nontemporal attribute. 2148 assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); 2149 2150 bool Changed = false; 2151 2152 if (IsVolatile) { 2153 // Set L0 and L1 cache policy to be MISS_EVICT for load instructions 2154 // and MISS_LRU for store instructions. 2155 // Note: there is no L2 cache coherent bypass control at the ISA level. 2156 if (Op == SIMemOp::LOAD) 2157 Changed |= enableGLCBit(MI); 2158 2159 // Set MALL NOALLOC for load and store instructions. 2160 Changed |= enableDLCBit(MI); 2161 2162 // Ensure operation has completed at system scope to cause all volatile 2163 // operations to be visible outside the program in a global order. Do not 2164 // request cross address space as only the global address space can be 2165 // observable outside the program, so no need to cause a waitcnt for LDS 2166 // address space operations. 2167 Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, 2168 Position::AFTER); 2169 return Changed; 2170 } 2171 2172 if (IsNonTemporal) { 2173 // For loads setting SLC configures L0 and L1 cache policy to HIT_EVICT 2174 // and L2 cache policy to STREAM. 2175 // For stores setting both GLC and SLC configures L0 and L1 cache policy 2176 // to MISS_EVICT and the L2 cache policy to STREAM. 2177 if (Op == SIMemOp::STORE) 2178 Changed |= enableGLCBit(MI); 2179 Changed |= enableSLCBit(MI); 2180 2181 // Set MALL NOALLOC for load and store instructions. 2182 Changed |= enableDLCBit(MI); 2183 return Changed; 2184 } 2185 2186 return Changed; 2187 } 2188 2189 bool SIGfx12CacheControl::setTH(const MachineBasicBlock::iterator MI, 2190 AMDGPU::CPol::CPol Value) const { 2191 MachineOperand *CPol = TII->getNamedOperand(*MI, OpName::cpol); 2192 if (!CPol) 2193 return false; 2194 2195 uint64_t NewTH = Value & AMDGPU::CPol::TH; 2196 if ((CPol->getImm() & AMDGPU::CPol::TH) != NewTH) { 2197 CPol->setImm((CPol->getImm() & ~AMDGPU::CPol::TH) | NewTH); 2198 return true; 2199 } 2200 2201 return false; 2202 } 2203 2204 bool SIGfx12CacheControl::setScope(const MachineBasicBlock::iterator MI, 2205 AMDGPU::CPol::CPol Value) const { 2206 MachineOperand *CPol = TII->getNamedOperand(*MI, OpName::cpol); 2207 if (!CPol) 2208 return false; 2209 2210 uint64_t NewScope = Value & AMDGPU::CPol::SCOPE; 2211 if ((CPol->getImm() & AMDGPU::CPol::SCOPE) != NewScope) { 2212 CPol->setImm((CPol->getImm() & ~AMDGPU::CPol::SCOPE) | NewScope); 2213 return true; 2214 } 2215 2216 return false; 2217 } 2218 2219 bool SIGfx12CacheControl::insertWaitsBeforeSystemScopeStore( 2220 const MachineBasicBlock::iterator MI) const { 2221 // TODO: implement flag for frontend to give us a hint not to insert waits. 2222 2223 MachineBasicBlock &MBB = *MI->getParent(); 2224 const DebugLoc &DL = MI->getDebugLoc(); 2225 2226 BuildMI(MBB, MI, DL, TII->get(S_WAIT_LOADCNT_soft)).addImm(0); 2227 BuildMI(MBB, MI, DL, TII->get(S_WAIT_SAMPLECNT_soft)).addImm(0); 2228 BuildMI(MBB, MI, DL, TII->get(S_WAIT_BVHCNT_soft)).addImm(0); 2229 BuildMI(MBB, MI, DL, TII->get(S_WAIT_KMCNT_soft)).addImm(0); 2230 BuildMI(MBB, MI, DL, TII->get(S_WAIT_STORECNT_soft)).addImm(0); 2231 2232 return true; 2233 } 2234 2235 bool SIGfx12CacheControl::insertWait(MachineBasicBlock::iterator &MI, 2236 SIAtomicScope Scope, 2237 SIAtomicAddrSpace AddrSpace, SIMemOp Op, 2238 bool IsCrossAddrSpaceOrdering, 2239 Position Pos) const { 2240 bool Changed = false; 2241 2242 MachineBasicBlock &MBB = *MI->getParent(); 2243 DebugLoc DL = MI->getDebugLoc(); 2244 2245 bool LOADCnt = false; 2246 bool DSCnt = false; 2247 bool STORECnt = false; 2248 2249 if (Pos == Position::AFTER) 2250 ++MI; 2251 2252 if ((AddrSpace & (SIAtomicAddrSpace::GLOBAL | SIAtomicAddrSpace::SCRATCH)) != 2253 SIAtomicAddrSpace::NONE) { 2254 switch (Scope) { 2255 case SIAtomicScope::SYSTEM: 2256 case SIAtomicScope::AGENT: 2257 if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) 2258 LOADCnt |= true; 2259 if ((Op & SIMemOp::STORE) != SIMemOp::NONE) 2260 STORECnt |= true; 2261 break; 2262 case SIAtomicScope::WORKGROUP: 2263 // In WGP mode the waves of a work-group can be executing on either CU of 2264 // the WGP. Therefore need to wait for operations to complete to ensure 2265 // they are visible to waves in the other CU as the L0 is per CU. 2266 // Otherwise in CU mode and all waves of a work-group are on the same CU 2267 // which shares the same L0. 2268 if (!ST.isCuModeEnabled()) { 2269 if ((Op & SIMemOp::LOAD) != SIMemOp::NONE) 2270 LOADCnt |= true; 2271 if ((Op & SIMemOp::STORE) != SIMemOp::NONE) 2272 STORECnt |= true; 2273 } 2274 break; 2275 case SIAtomicScope::WAVEFRONT: 2276 case SIAtomicScope::SINGLETHREAD: 2277 // The L0 cache keeps all memory operations in order for 2278 // work-items in the same wavefront. 2279 break; 2280 default: 2281 llvm_unreachable("Unsupported synchronization scope"); 2282 } 2283 } 2284 2285 if ((AddrSpace & SIAtomicAddrSpace::LDS) != SIAtomicAddrSpace::NONE) { 2286 switch (Scope) { 2287 case SIAtomicScope::SYSTEM: 2288 case SIAtomicScope::AGENT: 2289 case SIAtomicScope::WORKGROUP: 2290 // If no cross address space ordering then an "S_WAITCNT lgkmcnt(0)" is 2291 // not needed as LDS operations for all waves are executed in a total 2292 // global ordering as observed by all waves. Required if also 2293 // synchronizing with global/GDS memory as LDS operations could be 2294 // reordered with respect to later global/GDS memory operations of the 2295 // same wave. 2296 DSCnt |= IsCrossAddrSpaceOrdering; 2297 break; 2298 case SIAtomicScope::WAVEFRONT: 2299 case SIAtomicScope::SINGLETHREAD: 2300 // The LDS keeps all memory operations in order for 2301 // the same wavefront. 2302 break; 2303 default: 2304 llvm_unreachable("Unsupported synchronization scope"); 2305 } 2306 } 2307 2308 if (LOADCnt) { 2309 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAIT_BVHCNT_soft)).addImm(0); 2310 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAIT_SAMPLECNT_soft)).addImm(0); 2311 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAIT_LOADCNT_soft)).addImm(0); 2312 Changed = true; 2313 } 2314 2315 if (STORECnt) { 2316 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAIT_STORECNT_soft)).addImm(0); 2317 Changed = true; 2318 } 2319 2320 if (DSCnt) { 2321 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_WAIT_DSCNT_soft)).addImm(0); 2322 Changed = true; 2323 } 2324 2325 if (Pos == Position::AFTER) 2326 --MI; 2327 2328 return Changed; 2329 } 2330 2331 bool SIGfx12CacheControl::insertAcquire(MachineBasicBlock::iterator &MI, 2332 SIAtomicScope Scope, 2333 SIAtomicAddrSpace AddrSpace, 2334 Position Pos) const { 2335 if (!InsertCacheInv) 2336 return false; 2337 2338 MachineBasicBlock &MBB = *MI->getParent(); 2339 DebugLoc DL = MI->getDebugLoc(); 2340 2341 /// The scratch address space does not need the global memory cache 2342 /// to be flushed as all memory operations by the same thread are 2343 /// sequentially consistent, and no other thread can access scratch 2344 /// memory. 2345 2346 /// Other address spaces do not have a cache. 2347 if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) == SIAtomicAddrSpace::NONE) 2348 return false; 2349 2350 AMDGPU::CPol::CPol ScopeImm = AMDGPU::CPol::SCOPE_DEV; 2351 switch (Scope) { 2352 case SIAtomicScope::SYSTEM: 2353 ScopeImm = AMDGPU::CPol::SCOPE_SYS; 2354 break; 2355 case SIAtomicScope::AGENT: 2356 ScopeImm = AMDGPU::CPol::SCOPE_DEV; 2357 break; 2358 case SIAtomicScope::WORKGROUP: 2359 // In WGP mode the waves of a work-group can be executing on either CU of 2360 // the WGP. Therefore we need to invalidate the L0 which is per CU. 2361 // Otherwise in CU mode all waves of a work-group are on the same CU, and so 2362 // the L0 does not need to be invalidated. 2363 if (ST.isCuModeEnabled()) 2364 return false; 2365 2366 ScopeImm = AMDGPU::CPol::SCOPE_SE; 2367 break; 2368 case SIAtomicScope::WAVEFRONT: 2369 case SIAtomicScope::SINGLETHREAD: 2370 // No cache to invalidate. 2371 return false; 2372 default: 2373 llvm_unreachable("Unsupported synchronization scope"); 2374 } 2375 2376 if (Pos == Position::AFTER) 2377 ++MI; 2378 2379 BuildMI(MBB, MI, DL, TII->get(AMDGPU::GLOBAL_INV)).addImm(ScopeImm); 2380 2381 if (Pos == Position::AFTER) 2382 --MI; 2383 2384 return true; 2385 } 2386 2387 bool SIGfx12CacheControl::enableVolatileAndOrNonTemporal( 2388 MachineBasicBlock::iterator &MI, SIAtomicAddrSpace AddrSpace, SIMemOp Op, 2389 bool IsVolatile, bool IsNonTemporal, bool IsLastUse = false) const { 2390 2391 // Only handle load and store, not atomic read-modify-write instructions. 2392 assert(MI->mayLoad() ^ MI->mayStore()); 2393 2394 // Only update load and store, not LLVM IR atomic read-modify-write 2395 // instructions. The latter are always marked as volatile so cannot sensibly 2396 // handle it as do not want to pessimize all atomics. Also they do not support 2397 // the nontemporal attribute. 2398 assert(Op == SIMemOp::LOAD || Op == SIMemOp::STORE); 2399 2400 bool Changed = false; 2401 2402 if (IsLastUse) { 2403 // Set last-use hint. 2404 Changed |= setTH(MI, AMDGPU::CPol::TH_LU); 2405 } else if (IsNonTemporal) { 2406 // Set non-temporal hint for all cache levels. 2407 Changed |= setTH(MI, AMDGPU::CPol::TH_NT); 2408 } 2409 2410 if (IsVolatile) { 2411 Changed |= setScope(MI, AMDGPU::CPol::SCOPE_SYS); 2412 2413 if (Op == SIMemOp::STORE) 2414 Changed |= insertWaitsBeforeSystemScopeStore(MI); 2415 2416 // Ensure operation has completed at system scope to cause all volatile 2417 // operations to be visible outside the program in a global order. Do not 2418 // request cross address space as only the global address space can be 2419 // observable outside the program, so no need to cause a waitcnt for LDS 2420 // address space operations. 2421 Changed |= insertWait(MI, SIAtomicScope::SYSTEM, AddrSpace, Op, false, 2422 Position::AFTER); 2423 } 2424 2425 return Changed; 2426 } 2427 2428 bool SIGfx12CacheControl::expandSystemScopeStore( 2429 MachineBasicBlock::iterator &MI) const { 2430 MachineOperand *CPol = TII->getNamedOperand(*MI, OpName::cpol); 2431 if (CPol && ((CPol->getImm() & CPol::SCOPE) == CPol::SCOPE_SYS)) 2432 return insertWaitsBeforeSystemScopeStore(MI); 2433 2434 return false; 2435 } 2436 2437 bool SIMemoryLegalizer::removeAtomicPseudoMIs() { 2438 if (AtomicPseudoMIs.empty()) 2439 return false; 2440 2441 for (auto &MI : AtomicPseudoMIs) 2442 MI->eraseFromParent(); 2443 2444 AtomicPseudoMIs.clear(); 2445 return true; 2446 } 2447 2448 bool SIMemoryLegalizer::expandLoad(const SIMemOpInfo &MOI, 2449 MachineBasicBlock::iterator &MI) { 2450 assert(MI->mayLoad() && !MI->mayStore()); 2451 2452 bool Changed = false; 2453 2454 if (MOI.isAtomic()) { 2455 if (MOI.getOrdering() == AtomicOrdering::Monotonic || 2456 MOI.getOrdering() == AtomicOrdering::Acquire || 2457 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { 2458 Changed |= CC->enableLoadCacheBypass(MI, MOI.getScope(), 2459 MOI.getOrderingAddrSpace()); 2460 } 2461 2462 if (MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) 2463 Changed |= CC->insertWait(MI, MOI.getScope(), 2464 MOI.getOrderingAddrSpace(), 2465 SIMemOp::LOAD | SIMemOp::STORE, 2466 MOI.getIsCrossAddressSpaceOrdering(), 2467 Position::BEFORE); 2468 2469 if (MOI.getOrdering() == AtomicOrdering::Acquire || 2470 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { 2471 Changed |= CC->insertWait(MI, MOI.getScope(), 2472 MOI.getInstrAddrSpace(), 2473 SIMemOp::LOAD, 2474 MOI.getIsCrossAddressSpaceOrdering(), 2475 Position::AFTER); 2476 Changed |= CC->insertAcquire(MI, MOI.getScope(), 2477 MOI.getOrderingAddrSpace(), 2478 Position::AFTER); 2479 } 2480 2481 return Changed; 2482 } 2483 2484 // Atomic instructions already bypass caches to the scope specified by the 2485 // SyncScope operand. Only non-atomic volatile and nontemporal/last-use 2486 // instructions need additional treatment. 2487 Changed |= CC->enableVolatileAndOrNonTemporal( 2488 MI, MOI.getInstrAddrSpace(), SIMemOp::LOAD, MOI.isVolatile(), 2489 MOI.isNonTemporal(), MOI.isLastUse()); 2490 2491 return Changed; 2492 } 2493 2494 bool SIMemoryLegalizer::expandStore(const SIMemOpInfo &MOI, 2495 MachineBasicBlock::iterator &MI) { 2496 assert(!MI->mayLoad() && MI->mayStore()); 2497 2498 bool Changed = false; 2499 2500 if (MOI.isAtomic()) { 2501 if (MOI.getOrdering() == AtomicOrdering::Monotonic || 2502 MOI.getOrdering() == AtomicOrdering::Release || 2503 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { 2504 Changed |= CC->enableStoreCacheBypass(MI, MOI.getScope(), 2505 MOI.getOrderingAddrSpace()); 2506 } 2507 2508 if (MOI.getOrdering() == AtomicOrdering::Release || 2509 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) 2510 Changed |= CC->insertRelease(MI, MOI.getScope(), 2511 MOI.getOrderingAddrSpace(), 2512 MOI.getIsCrossAddressSpaceOrdering(), 2513 Position::BEFORE); 2514 2515 return Changed; 2516 } 2517 2518 // Atomic instructions already bypass caches to the scope specified by the 2519 // SyncScope operand. Only non-atomic volatile and nontemporal instructions 2520 // need additional treatment. 2521 Changed |= CC->enableVolatileAndOrNonTemporal( 2522 MI, MOI.getInstrAddrSpace(), SIMemOp::STORE, MOI.isVolatile(), 2523 MOI.isNonTemporal()); 2524 2525 // GFX12 specific, scope(desired coherence domain in cache hierarchy) is 2526 // instruction field, do not confuse it with atomic scope. 2527 Changed |= CC->expandSystemScopeStore(MI); 2528 return Changed; 2529 } 2530 2531 bool SIMemoryLegalizer::expandAtomicFence(const SIMemOpInfo &MOI, 2532 MachineBasicBlock::iterator &MI) { 2533 assert(MI->getOpcode() == AMDGPU::ATOMIC_FENCE); 2534 2535 AtomicPseudoMIs.push_back(MI); 2536 bool Changed = false; 2537 2538 if (MOI.isAtomic()) { 2539 if (MOI.getOrdering() == AtomicOrdering::Acquire) 2540 Changed |= CC->insertWait(MI, MOI.getScope(), MOI.getOrderingAddrSpace(), 2541 SIMemOp::LOAD | SIMemOp::STORE, 2542 MOI.getIsCrossAddressSpaceOrdering(), 2543 Position::BEFORE); 2544 2545 if (MOI.getOrdering() == AtomicOrdering::Release || 2546 MOI.getOrdering() == AtomicOrdering::AcquireRelease || 2547 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) 2548 /// TODO: This relies on a barrier always generating a waitcnt 2549 /// for LDS to ensure it is not reordered with the completion of 2550 /// the proceeding LDS operations. If barrier had a memory 2551 /// ordering and memory scope, then library does not need to 2552 /// generate a fence. Could add support in this file for 2553 /// barrier. SIInsertWaitcnt.cpp could then stop unconditionally 2554 /// adding S_WAITCNT before a S_BARRIER. 2555 Changed |= CC->insertRelease(MI, MOI.getScope(), 2556 MOI.getOrderingAddrSpace(), 2557 MOI.getIsCrossAddressSpaceOrdering(), 2558 Position::BEFORE); 2559 2560 // TODO: If both release and invalidate are happening they could be combined 2561 // to use the single "BUFFER_WBINV*" instruction. This could be done by 2562 // reorganizing this code or as part of optimizing SIInsertWaitcnt pass to 2563 // track cache invalidate and write back instructions. 2564 2565 if (MOI.getOrdering() == AtomicOrdering::Acquire || 2566 MOI.getOrdering() == AtomicOrdering::AcquireRelease || 2567 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) 2568 Changed |= CC->insertAcquire(MI, MOI.getScope(), 2569 MOI.getOrderingAddrSpace(), 2570 Position::BEFORE); 2571 2572 return Changed; 2573 } 2574 2575 return Changed; 2576 } 2577 2578 bool SIMemoryLegalizer::expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI, 2579 MachineBasicBlock::iterator &MI) { 2580 assert(MI->mayLoad() && MI->mayStore()); 2581 2582 bool Changed = false; 2583 2584 if (MOI.isAtomic()) { 2585 if (MOI.getOrdering() == AtomicOrdering::Monotonic || 2586 MOI.getOrdering() == AtomicOrdering::Acquire || 2587 MOI.getOrdering() == AtomicOrdering::Release || 2588 MOI.getOrdering() == AtomicOrdering::AcquireRelease || 2589 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent) { 2590 Changed |= CC->enableRMWCacheBypass(MI, MOI.getScope(), 2591 MOI.getInstrAddrSpace()); 2592 } 2593 2594 if (MOI.getOrdering() == AtomicOrdering::Release || 2595 MOI.getOrdering() == AtomicOrdering::AcquireRelease || 2596 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent || 2597 MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) 2598 Changed |= CC->insertRelease(MI, MOI.getScope(), 2599 MOI.getOrderingAddrSpace(), 2600 MOI.getIsCrossAddressSpaceOrdering(), 2601 Position::BEFORE); 2602 2603 if (MOI.getOrdering() == AtomicOrdering::Acquire || 2604 MOI.getOrdering() == AtomicOrdering::AcquireRelease || 2605 MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent || 2606 MOI.getFailureOrdering() == AtomicOrdering::Acquire || 2607 MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) { 2608 Changed |= CC->insertWait(MI, MOI.getScope(), 2609 MOI.getInstrAddrSpace(), 2610 isAtomicRet(*MI) ? SIMemOp::LOAD : 2611 SIMemOp::STORE, 2612 MOI.getIsCrossAddressSpaceOrdering(), 2613 Position::AFTER); 2614 Changed |= CC->insertAcquire(MI, MOI.getScope(), 2615 MOI.getOrderingAddrSpace(), 2616 Position::AFTER); 2617 } 2618 2619 return Changed; 2620 } 2621 2622 return Changed; 2623 } 2624 2625 bool SIMemoryLegalizer::runOnMachineFunction(MachineFunction &MF) { 2626 bool Changed = false; 2627 2628 SIMemOpAccess MOA(MF); 2629 CC = SICacheControl::create(MF.getSubtarget<GCNSubtarget>()); 2630 2631 for (auto &MBB : MF) { 2632 for (auto MI = MBB.begin(); MI != MBB.end(); ++MI) { 2633 2634 // Unbundle instructions after the post-RA scheduler. 2635 if (MI->isBundle() && MI->mayLoadOrStore()) { 2636 MachineBasicBlock::instr_iterator II(MI->getIterator()); 2637 for (MachineBasicBlock::instr_iterator I = ++II, E = MBB.instr_end(); 2638 I != E && I->isBundledWithPred(); ++I) { 2639 I->unbundleFromPred(); 2640 for (MachineOperand &MO : I->operands()) 2641 if (MO.isReg()) 2642 MO.setIsInternalRead(false); 2643 } 2644 2645 MI->eraseFromParent(); 2646 MI = II->getIterator(); 2647 } 2648 2649 if (!(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic)) 2650 continue; 2651 2652 if (const auto &MOI = MOA.getLoadInfo(MI)) 2653 Changed |= expandLoad(*MOI, MI); 2654 else if (const auto &MOI = MOA.getStoreInfo(MI)) { 2655 Changed |= expandStore(*MOI, MI); 2656 Changed |= CC->tryForceStoreSC0SC1(*MOI, MI); 2657 } else if (const auto &MOI = MOA.getAtomicFenceInfo(MI)) 2658 Changed |= expandAtomicFence(*MOI, MI); 2659 else if (const auto &MOI = MOA.getAtomicCmpxchgOrRmwInfo(MI)) 2660 Changed |= expandAtomicCmpxchgOrRmw(*MOI, MI); 2661 } 2662 } 2663 2664 Changed |= removeAtomicPseudoMIs(); 2665 return Changed; 2666 } 2667 2668 INITIALIZE_PASS(SIMemoryLegalizer, DEBUG_TYPE, PASS_NAME, false, false) 2669 2670 char SIMemoryLegalizer::ID = 0; 2671 char &llvm::SIMemoryLegalizerID = SIMemoryLegalizer::ID; 2672 2673 FunctionPass *llvm::createSIMemoryLegalizerPass() { 2674 return new SIMemoryLegalizer(); 2675 } 2676