1 //===-- SIFormMemoryClauses.cpp -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This pass creates bundles of SMEM and VMEM instructions forming memory 12 /// clauses if XNACK is enabled. Def operands of clauses are marked as early 13 /// clobber to make sure we will not override any source within a clause. 14 /// 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPU.h" 18 #include "AMDGPUSubtarget.h" 19 #include "GCNRegPressure.h" 20 #include "SIInstrInfo.h" 21 #include "SIMachineFunctionInfo.h" 22 #include "SIRegisterInfo.h" 23 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "si-form-memory-clauses" 31 32 // Clauses longer then 15 instructions would overflow one of the counters 33 // and stall. They can stall even earlier if there are outstanding counters. 34 static cl::opt<unsigned> 35 MaxClause("amdgpu-max-memory-clause", cl::Hidden, cl::init(15), 36 cl::desc("Maximum length of a memory clause, instructions")); 37 38 namespace { 39 40 class SIFormMemoryClauses : public MachineFunctionPass { 41 typedef DenseMap<unsigned, std::pair<unsigned, LaneBitmask>> RegUse; 42 43 public: 44 static char ID; 45 46 public: 47 SIFormMemoryClauses() : MachineFunctionPass(ID) { 48 initializeSIFormMemoryClausesPass(*PassRegistry::getPassRegistry()); 49 } 50 51 bool runOnMachineFunction(MachineFunction &MF) override; 52 53 StringRef getPassName() const override { 54 return "SI Form memory clauses"; 55 } 56 57 void getAnalysisUsage(AnalysisUsage &AU) const override { 58 AU.addRequired<LiveIntervals>(); 59 AU.setPreservesAll(); 60 MachineFunctionPass::getAnalysisUsage(AU); 61 } 62 63 private: 64 template <typename Callable> 65 void forAllLanes(unsigned Reg, LaneBitmask LaneMask, Callable Func) const; 66 67 bool canBundle(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const; 68 bool checkPressure(const MachineInstr &MI, GCNDownwardRPTracker &RPT); 69 void collectRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const; 70 bool processRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses, 71 GCNDownwardRPTracker &RPT); 72 73 const GCNSubtarget *ST; 74 const SIRegisterInfo *TRI; 75 const MachineRegisterInfo *MRI; 76 SIMachineFunctionInfo *MFI; 77 78 unsigned LastRecordedOccupancy; 79 unsigned MaxVGPRs; 80 unsigned MaxSGPRs; 81 }; 82 83 } // End anonymous namespace. 84 85 INITIALIZE_PASS_BEGIN(SIFormMemoryClauses, DEBUG_TYPE, 86 "SI Form memory clauses", false, false) 87 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 88 INITIALIZE_PASS_END(SIFormMemoryClauses, DEBUG_TYPE, 89 "SI Form memory clauses", false, false) 90 91 92 char SIFormMemoryClauses::ID = 0; 93 94 char &llvm::SIFormMemoryClausesID = SIFormMemoryClauses::ID; 95 96 FunctionPass *llvm::createSIFormMemoryClausesPass() { 97 return new SIFormMemoryClauses(); 98 } 99 100 static bool isVMEMClauseInst(const MachineInstr &MI) { 101 return SIInstrInfo::isFLAT(MI) || SIInstrInfo::isVMEM(MI); 102 } 103 104 static bool isSMEMClauseInst(const MachineInstr &MI) { 105 return SIInstrInfo::isSMRD(MI); 106 } 107 108 // There no sense to create store clauses, they do not define anything, 109 // thus there is nothing to set early-clobber. 110 static bool isValidClauseInst(const MachineInstr &MI, bool IsVMEMClause) { 111 if (MI.isDebugValue() || MI.isBundled()) 112 return false; 113 if (!MI.mayLoad() || MI.mayStore()) 114 return false; 115 if (AMDGPU::getAtomicNoRetOp(MI.getOpcode()) != -1 || 116 AMDGPU::getAtomicRetOp(MI.getOpcode()) != -1) 117 return false; 118 if (IsVMEMClause && !isVMEMClauseInst(MI)) 119 return false; 120 if (!IsVMEMClause && !isSMEMClauseInst(MI)) 121 return false; 122 return true; 123 } 124 125 static unsigned getMopState(const MachineOperand &MO) { 126 unsigned S = 0; 127 if (MO.isImplicit()) 128 S |= RegState::Implicit; 129 if (MO.isDead()) 130 S |= RegState::Dead; 131 if (MO.isUndef()) 132 S |= RegState::Undef; 133 if (MO.isKill()) 134 S |= RegState::Kill; 135 if (MO.isEarlyClobber()) 136 S |= RegState::EarlyClobber; 137 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && MO.isRenamable()) 138 S |= RegState::Renamable; 139 return S; 140 } 141 142 template <typename Callable> 143 void SIFormMemoryClauses::forAllLanes(unsigned Reg, LaneBitmask LaneMask, 144 Callable Func) const { 145 if (LaneMask.all() || TargetRegisterInfo::isPhysicalRegister(Reg) || 146 LaneMask == MRI->getMaxLaneMaskForVReg(Reg)) { 147 Func(0); 148 return; 149 } 150 151 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 152 unsigned E = TRI->getNumSubRegIndices(); 153 SmallVector<unsigned, AMDGPU::NUM_TARGET_SUBREGS> CoveringSubregs; 154 for (unsigned Idx = 1; Idx < E; ++Idx) { 155 // Is this index even compatible with the given class? 156 if (TRI->getSubClassWithSubReg(RC, Idx) != RC) 157 continue; 158 LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(Idx); 159 // Early exit if we found a perfect match. 160 if (SubRegMask == LaneMask) { 161 Func(Idx); 162 return; 163 } 164 165 if ((SubRegMask & ~LaneMask).any() || (SubRegMask & LaneMask).none()) 166 continue; 167 168 CoveringSubregs.push_back(Idx); 169 } 170 171 llvm::sort(CoveringSubregs, [this](unsigned A, unsigned B) { 172 LaneBitmask MaskA = TRI->getSubRegIndexLaneMask(A); 173 LaneBitmask MaskB = TRI->getSubRegIndexLaneMask(B); 174 unsigned NA = MaskA.getNumLanes(); 175 unsigned NB = MaskB.getNumLanes(); 176 if (NA != NB) 177 return NA > NB; 178 return MaskA.getHighestLane() > MaskB.getHighestLane(); 179 }); 180 181 for (unsigned Idx : CoveringSubregs) { 182 LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(Idx); 183 if ((SubRegMask & ~LaneMask).any() || (SubRegMask & LaneMask).none()) 184 continue; 185 186 Func(Idx); 187 LaneMask &= ~SubRegMask; 188 if (LaneMask.none()) 189 return; 190 } 191 192 llvm_unreachable("Failed to find all subregs to cover lane mask"); 193 } 194 195 // Returns false if there is a use of a def already in the map. 196 // In this case we must break the clause. 197 bool SIFormMemoryClauses::canBundle(const MachineInstr &MI, 198 RegUse &Defs, RegUse &Uses) const { 199 // Check interference with defs. 200 for (const MachineOperand &MO : MI.operands()) { 201 // TODO: Prologue/Epilogue Insertion pass does not process bundled 202 // instructions. 203 if (MO.isFI()) 204 return false; 205 206 if (!MO.isReg()) 207 continue; 208 209 unsigned Reg = MO.getReg(); 210 211 // If it is tied we will need to write same register as we read. 212 if (MO.isTied()) 213 return false; 214 215 RegUse &Map = MO.isDef() ? Uses : Defs; 216 auto Conflict = Map.find(Reg); 217 if (Conflict == Map.end()) 218 continue; 219 220 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 221 return false; 222 223 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 224 if ((Conflict->second.second & Mask).any()) 225 return false; 226 } 227 228 return true; 229 } 230 231 // Since all defs in the clause are early clobber we can run out of registers. 232 // Function returns false if pressure would hit the limit if instruction is 233 // bundled into a memory clause. 234 bool SIFormMemoryClauses::checkPressure(const MachineInstr &MI, 235 GCNDownwardRPTracker &RPT) { 236 // NB: skip advanceBeforeNext() call. Since all defs will be marked 237 // early-clobber they will all stay alive at least to the end of the 238 // clause. Therefor we should not decrease pressure even if load 239 // pointer becomes dead and could otherwise be reused for destination. 240 RPT.advanceToNext(); 241 GCNRegPressure MaxPressure = RPT.moveMaxPressure(); 242 unsigned Occupancy = MaxPressure.getOccupancy(*ST); 243 if (Occupancy >= MFI->getMinAllowedOccupancy() && 244 MaxPressure.getVGPRNum() <= MaxVGPRs && 245 MaxPressure.getSGPRNum() <= MaxSGPRs) { 246 LastRecordedOccupancy = Occupancy; 247 return true; 248 } 249 return false; 250 } 251 252 // Collect register defs and uses along with their lane masks and states. 253 void SIFormMemoryClauses::collectRegUses(const MachineInstr &MI, 254 RegUse &Defs, RegUse &Uses) const { 255 for (const MachineOperand &MO : MI.operands()) { 256 if (!MO.isReg()) 257 continue; 258 unsigned Reg = MO.getReg(); 259 if (!Reg) 260 continue; 261 262 LaneBitmask Mask = TargetRegisterInfo::isVirtualRegister(Reg) ? 263 TRI->getSubRegIndexLaneMask(MO.getSubReg()) : 264 LaneBitmask::getAll(); 265 RegUse &Map = MO.isDef() ? Defs : Uses; 266 267 auto Loc = Map.find(Reg); 268 unsigned State = getMopState(MO); 269 if (Loc == Map.end()) { 270 Map[Reg] = std::make_pair(State, Mask); 271 } else { 272 Loc->second.first |= State; 273 Loc->second.second |= Mask; 274 } 275 } 276 } 277 278 // Check register def/use conflicts, occupancy limits and collect def/use maps. 279 // Return true if instruction can be bundled with previous. It it cannot 280 // def/use maps are not updated. 281 bool SIFormMemoryClauses::processRegUses(const MachineInstr &MI, 282 RegUse &Defs, RegUse &Uses, 283 GCNDownwardRPTracker &RPT) { 284 if (!canBundle(MI, Defs, Uses)) 285 return false; 286 287 if (!checkPressure(MI, RPT)) 288 return false; 289 290 collectRegUses(MI, Defs, Uses); 291 return true; 292 } 293 294 bool SIFormMemoryClauses::runOnMachineFunction(MachineFunction &MF) { 295 if (skipFunction(MF.getFunction())) 296 return false; 297 298 ST = &MF.getSubtarget<GCNSubtarget>(); 299 if (!ST->isXNACKEnabled()) 300 return false; 301 302 const SIInstrInfo *TII = ST->getInstrInfo(); 303 TRI = ST->getRegisterInfo(); 304 MRI = &MF.getRegInfo(); 305 MFI = MF.getInfo<SIMachineFunctionInfo>(); 306 LiveIntervals *LIS = &getAnalysis<LiveIntervals>(); 307 SlotIndexes *Ind = LIS->getSlotIndexes(); 308 bool Changed = false; 309 310 MaxVGPRs = TRI->getAllocatableSet(MF, &AMDGPU::VGPR_32RegClass).count(); 311 MaxSGPRs = TRI->getAllocatableSet(MF, &AMDGPU::SGPR_32RegClass).count(); 312 313 for (MachineBasicBlock &MBB : MF) { 314 MachineBasicBlock::instr_iterator Next; 315 for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; I = Next) { 316 MachineInstr &MI = *I; 317 Next = std::next(I); 318 319 bool IsVMEM = isVMEMClauseInst(MI); 320 321 if (!isValidClauseInst(MI, IsVMEM)) 322 continue; 323 324 RegUse Defs, Uses; 325 GCNDownwardRPTracker RPT(*LIS); 326 RPT.reset(MI); 327 328 if (!processRegUses(MI, Defs, Uses, RPT)) 329 continue; 330 331 unsigned Length = 1; 332 for ( ; Next != E && Length < MaxClause; ++Next) { 333 if (!isValidClauseInst(*Next, IsVMEM)) 334 break; 335 336 // A load from pointer which was loaded inside the same bundle is an 337 // impossible clause because we will need to write and read the same 338 // register inside. In this case processRegUses will return false. 339 if (!processRegUses(*Next, Defs, Uses, RPT)) 340 break; 341 342 ++Length; 343 } 344 if (Length < 2) 345 continue; 346 347 Changed = true; 348 MFI->limitOccupancy(LastRecordedOccupancy); 349 350 auto B = BuildMI(MBB, I, DebugLoc(), TII->get(TargetOpcode::BUNDLE)); 351 Ind->insertMachineInstrInMaps(*B); 352 353 for (auto BI = I; BI != Next; ++BI) { 354 BI->bundleWithPred(); 355 Ind->removeSingleMachineInstrFromMaps(*BI); 356 357 for (MachineOperand &MO : BI->defs()) 358 if (MO.readsReg()) 359 MO.setIsInternalRead(true); 360 } 361 362 for (auto &&R : Defs) { 363 forAllLanes(R.first, R.second.second, [&R, &B](unsigned SubReg) { 364 unsigned S = R.second.first | RegState::EarlyClobber; 365 if (!SubReg) 366 S &= ~(RegState::Undef | RegState::Dead); 367 B.addDef(R.first, S, SubReg); 368 }); 369 } 370 371 for (auto &&R : Uses) { 372 forAllLanes(R.first, R.second.second, [&R, &B](unsigned SubReg) { 373 B.addUse(R.first, R.second.first & ~RegState::Kill, SubReg); 374 }); 375 } 376 377 for (auto &&R : Defs) { 378 unsigned Reg = R.first; 379 Uses.erase(Reg); 380 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 381 continue; 382 LIS->removeInterval(Reg); 383 LIS->createAndComputeVirtRegInterval(Reg); 384 } 385 386 for (auto &&R : Uses) { 387 unsigned Reg = R.first; 388 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 389 continue; 390 LIS->removeInterval(Reg); 391 LIS->createAndComputeVirtRegInterval(Reg); 392 } 393 } 394 } 395 396 return Changed; 397 } 398