1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 /// \file 9 //===----------------------------------------------------------------------===// 10 // 11 12 #include "AMDGPU.h" 13 #include "AMDGPUSubtarget.h" 14 #include "SIInstrInfo.h" 15 #include "SIMachineFunctionInfo.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/MachineFunctionPass.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "si-fold-operands" 26 using namespace llvm; 27 28 namespace { 29 30 struct FoldCandidate { 31 MachineInstr *UseMI; 32 union { 33 MachineOperand *OpToFold; 34 uint64_t ImmToFold; 35 int FrameIndexToFold; 36 }; 37 unsigned char UseOpNo; 38 MachineOperand::MachineOperandType Kind; 39 bool Commuted; 40 41 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 42 bool Commuted_ = false) : 43 UseMI(MI), OpToFold(nullptr), UseOpNo(OpNo), Kind(FoldOp->getType()), 44 Commuted(Commuted_) { 45 if (FoldOp->isImm()) { 46 ImmToFold = FoldOp->getImm(); 47 } else if (FoldOp->isFI()) { 48 FrameIndexToFold = FoldOp->getIndex(); 49 } else { 50 assert(FoldOp->isReg()); 51 OpToFold = FoldOp; 52 } 53 } 54 55 bool isFI() const { 56 return Kind == MachineOperand::MO_FrameIndex; 57 } 58 59 bool isImm() const { 60 return Kind == MachineOperand::MO_Immediate; 61 } 62 63 bool isReg() const { 64 return Kind == MachineOperand::MO_Register; 65 } 66 67 bool isCommuted() const { 68 return Commuted; 69 } 70 }; 71 72 class SIFoldOperands : public MachineFunctionPass { 73 public: 74 static char ID; 75 MachineRegisterInfo *MRI; 76 const SIInstrInfo *TII; 77 const SIRegisterInfo *TRI; 78 const SISubtarget *ST; 79 80 void foldOperand(MachineOperand &OpToFold, 81 MachineInstr *UseMI, 82 unsigned UseOpIdx, 83 SmallVectorImpl<FoldCandidate> &FoldList, 84 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 85 86 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 87 88 const MachineOperand *isClamp(const MachineInstr &MI) const; 89 bool tryFoldClamp(MachineInstr &MI); 90 91 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 92 bool tryFoldOMod(MachineInstr &MI); 93 94 public: 95 SIFoldOperands() : MachineFunctionPass(ID) { 96 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 97 } 98 99 bool runOnMachineFunction(MachineFunction &MF) override; 100 101 StringRef getPassName() const override { return "SI Fold Operands"; } 102 103 void getAnalysisUsage(AnalysisUsage &AU) const override { 104 AU.setPreservesCFG(); 105 MachineFunctionPass::getAnalysisUsage(AU); 106 } 107 }; 108 109 } // End anonymous namespace. 110 111 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 112 "SI Fold Operands", false, false) 113 114 char SIFoldOperands::ID = 0; 115 116 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 117 118 // Wrapper around isInlineConstant that understands special cases when 119 // instruction types are replaced during operand folding. 120 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 121 const MachineInstr &UseMI, 122 unsigned OpNo, 123 const MachineOperand &OpToFold) { 124 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 125 return true; 126 127 unsigned Opc = UseMI.getOpcode(); 128 switch (Opc) { 129 case AMDGPU::V_MAC_F32_e64: 130 case AMDGPU::V_MAC_F16_e64: { 131 // Special case for mac. Since this is replaced with mad when folded into 132 // src2, we need to check the legality for the final instruction. 133 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 134 if (static_cast<int>(OpNo) == Src2Idx) { 135 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 136 const MCInstrDesc &MadDesc 137 = TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 138 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 139 } 140 } 141 default: 142 return false; 143 } 144 } 145 146 FunctionPass *llvm::createSIFoldOperandsPass() { 147 return new SIFoldOperands(); 148 } 149 150 static bool updateOperand(FoldCandidate &Fold, 151 const TargetRegisterInfo &TRI) { 152 MachineInstr *MI = Fold.UseMI; 153 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 154 assert(Old.isReg()); 155 156 if (Fold.isImm()) { 157 Old.ChangeToImmediate(Fold.ImmToFold); 158 return true; 159 } 160 161 if (Fold.isFI()) { 162 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 163 return true; 164 } 165 166 MachineOperand *New = Fold.OpToFold; 167 if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) && 168 TargetRegisterInfo::isVirtualRegister(New->getReg())) { 169 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 170 171 Old.setIsUndef(New->isUndef()); 172 return true; 173 } 174 175 // FIXME: Handle physical registers. 176 177 return false; 178 } 179 180 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 181 const MachineInstr *MI) { 182 for (auto Candidate : FoldList) { 183 if (Candidate.UseMI == MI) 184 return true; 185 } 186 return false; 187 } 188 189 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 190 MachineInstr *MI, unsigned OpNo, 191 MachineOperand *OpToFold, 192 const SIInstrInfo *TII) { 193 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 194 195 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 196 unsigned Opc = MI->getOpcode(); 197 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64) && 198 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 199 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 200 201 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 202 // to fold the operand. 203 MI->setDesc(TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16)); 204 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 205 if (FoldAsMAD) { 206 MI->untieRegOperand(OpNo); 207 return true; 208 } 209 MI->setDesc(TII->get(Opc)); 210 } 211 212 // Special case for s_setreg_b32 213 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 214 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 215 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 216 return true; 217 } 218 219 // If we are already folding into another operand of MI, then 220 // we can't commute the instruction, otherwise we risk making the 221 // other fold illegal. 222 if (isUseMIInFoldList(FoldList, MI)) 223 return false; 224 225 // Operand is not legal, so try to commute the instruction to 226 // see if this makes it possible to fold. 227 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 228 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 229 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 230 231 if (CanCommute) { 232 if (CommuteIdx0 == OpNo) 233 OpNo = CommuteIdx1; 234 else if (CommuteIdx1 == OpNo) 235 OpNo = CommuteIdx0; 236 } 237 238 // One of operands might be an Imm operand, and OpNo may refer to it after 239 // the call of commuteInstruction() below. Such situations are avoided 240 // here explicitly as OpNo must be a register operand to be a candidate 241 // for memory folding. 242 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 243 !MI->getOperand(CommuteIdx1).isReg())) 244 return false; 245 246 if (!CanCommute || 247 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 248 return false; 249 250 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 251 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 252 return false; 253 } 254 255 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold, true)); 256 return true; 257 } 258 259 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 260 return true; 261 } 262 263 // If the use operand doesn't care about the value, this may be an operand only 264 // used for register indexing, in which case it is unsafe to fold. 265 static bool isUseSafeToFold(const SIInstrInfo *TII, 266 const MachineInstr &MI, 267 const MachineOperand &UseMO) { 268 return !UseMO.isUndef() && !TII->isSDWA(MI); 269 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 270 } 271 272 void SIFoldOperands::foldOperand( 273 MachineOperand &OpToFold, 274 MachineInstr *UseMI, 275 unsigned UseOpIdx, 276 SmallVectorImpl<FoldCandidate> &FoldList, 277 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 278 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 279 280 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 281 return; 282 283 // FIXME: Fold operands with subregs. 284 if (UseOp.isReg() && OpToFold.isReg()) { 285 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 286 return; 287 288 // Don't fold subregister extracts into tied operands, only if it is a full 289 // copy since a subregister use tied to a full register def doesn't really 290 // make sense. e.g. don't fold: 291 // 292 // %vreg1 = COPY %vreg0:sub1 293 // %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg1<tied0> 294 // 295 // into 296 // %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg0:sub1<tied0> 297 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister) 298 return; 299 } 300 301 // Special case for REG_SEQUENCE: We can't fold literals into 302 // REG_SEQUENCE instructions, so we have to fold them into the 303 // uses of REG_SEQUENCE. 304 if (UseMI->isRegSequence()) { 305 unsigned RegSeqDstReg = UseMI->getOperand(0).getReg(); 306 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 307 308 for (MachineRegisterInfo::use_iterator 309 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 310 RSUse != RSE; ++RSUse) { 311 312 MachineInstr *RSUseMI = RSUse->getParent(); 313 if (RSUse->getSubReg() != RegSeqDstSubReg) 314 continue; 315 316 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 317 CopiesToReplace); 318 } 319 320 return; 321 } 322 323 324 bool FoldingImm = OpToFold.isImm(); 325 326 // In order to fold immediates into copies, we need to change the 327 // copy to a MOV. 328 if (FoldingImm && UseMI->isCopy()) { 329 unsigned DestReg = UseMI->getOperand(0).getReg(); 330 const TargetRegisterClass *DestRC 331 = TargetRegisterInfo::isVirtualRegister(DestReg) ? 332 MRI->getRegClass(DestReg) : 333 TRI->getPhysRegClass(DestReg); 334 335 unsigned MovOp = TII->getMovOpcode(DestRC); 336 if (MovOp == AMDGPU::COPY) 337 return; 338 339 UseMI->setDesc(TII->get(MovOp)); 340 CopiesToReplace.push_back(UseMI); 341 } else { 342 const MCInstrDesc &UseDesc = UseMI->getDesc(); 343 344 // Don't fold into target independent nodes. Target independent opcodes 345 // don't have defined register classes. 346 if (UseDesc.isVariadic() || 347 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 348 return; 349 } 350 351 if (!FoldingImm) { 352 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 353 354 // FIXME: We could try to change the instruction from 64-bit to 32-bit 355 // to enable more folding opportunites. The shrink operands pass 356 // already does this. 357 return; 358 } 359 360 361 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 362 const TargetRegisterClass *FoldRC = 363 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 364 365 366 // Split 64-bit constants into 32-bits for folding. 367 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 368 unsigned UseReg = UseOp.getReg(); 369 const TargetRegisterClass *UseRC 370 = TargetRegisterInfo::isVirtualRegister(UseReg) ? 371 MRI->getRegClass(UseReg) : 372 TRI->getPhysRegClass(UseReg); 373 374 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 375 return; 376 377 APInt Imm(64, OpToFold.getImm()); 378 if (UseOp.getSubReg() == AMDGPU::sub0) { 379 Imm = Imm.getLoBits(32); 380 } else { 381 assert(UseOp.getSubReg() == AMDGPU::sub1); 382 Imm = Imm.getHiBits(32); 383 } 384 385 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 386 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 387 return; 388 } 389 390 391 392 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 393 } 394 395 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 396 uint32_t LHS, uint32_t RHS) { 397 switch (Opcode) { 398 case AMDGPU::V_AND_B32_e64: 399 case AMDGPU::V_AND_B32_e32: 400 case AMDGPU::S_AND_B32: 401 Result = LHS & RHS; 402 return true; 403 case AMDGPU::V_OR_B32_e64: 404 case AMDGPU::V_OR_B32_e32: 405 case AMDGPU::S_OR_B32: 406 Result = LHS | RHS; 407 return true; 408 case AMDGPU::V_XOR_B32_e64: 409 case AMDGPU::V_XOR_B32_e32: 410 case AMDGPU::S_XOR_B32: 411 Result = LHS ^ RHS; 412 return true; 413 case AMDGPU::V_LSHL_B32_e64: 414 case AMDGPU::V_LSHL_B32_e32: 415 case AMDGPU::S_LSHL_B32: 416 // The instruction ignores the high bits for out of bounds shifts. 417 Result = LHS << (RHS & 31); 418 return true; 419 case AMDGPU::V_LSHLREV_B32_e64: 420 case AMDGPU::V_LSHLREV_B32_e32: 421 Result = RHS << (LHS & 31); 422 return true; 423 case AMDGPU::V_LSHR_B32_e64: 424 case AMDGPU::V_LSHR_B32_e32: 425 case AMDGPU::S_LSHR_B32: 426 Result = LHS >> (RHS & 31); 427 return true; 428 case AMDGPU::V_LSHRREV_B32_e64: 429 case AMDGPU::V_LSHRREV_B32_e32: 430 Result = RHS >> (LHS & 31); 431 return true; 432 case AMDGPU::V_ASHR_I32_e64: 433 case AMDGPU::V_ASHR_I32_e32: 434 case AMDGPU::S_ASHR_I32: 435 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 436 return true; 437 case AMDGPU::V_ASHRREV_I32_e64: 438 case AMDGPU::V_ASHRREV_I32_e32: 439 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 440 return true; 441 default: 442 return false; 443 } 444 } 445 446 static unsigned getMovOpc(bool IsScalar) { 447 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 448 } 449 450 /// Remove any leftover implicit operands from mutating the instruction. e.g. 451 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 452 /// anymore. 453 static void stripExtraCopyOperands(MachineInstr &MI) { 454 const MCInstrDesc &Desc = MI.getDesc(); 455 unsigned NumOps = Desc.getNumOperands() + 456 Desc.getNumImplicitUses() + 457 Desc.getNumImplicitDefs(); 458 459 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 460 MI.RemoveOperand(I); 461 } 462 463 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 464 MI.setDesc(NewDesc); 465 stripExtraCopyOperands(MI); 466 } 467 468 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 469 MachineOperand &Op) { 470 if (Op.isReg()) { 471 // If this has a subregister, it obviously is a register source. 472 if (Op.getSubReg() != AMDGPU::NoSubRegister) 473 return &Op; 474 475 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 476 if (Def && Def->isMoveImmediate()) { 477 MachineOperand &ImmSrc = Def->getOperand(1); 478 if (ImmSrc.isImm()) 479 return &ImmSrc; 480 } 481 } 482 483 return &Op; 484 } 485 486 // Try to simplify operations with a constant that may appear after instruction 487 // selection. 488 // TODO: See if a frame index with a fixed offset can fold. 489 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 490 const SIInstrInfo *TII, 491 MachineInstr *MI, 492 MachineOperand *ImmOp) { 493 unsigned Opc = MI->getOpcode(); 494 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 495 Opc == AMDGPU::S_NOT_B32) { 496 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 497 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 498 return true; 499 } 500 501 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 502 if (Src1Idx == -1) 503 return false; 504 505 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 506 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 507 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 508 509 if (!Src0->isImm() && !Src1->isImm()) 510 return false; 511 512 // and k0, k1 -> v_mov_b32 (k0 & k1) 513 // or k0, k1 -> v_mov_b32 (k0 | k1) 514 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 515 if (Src0->isImm() && Src1->isImm()) { 516 int32_t NewImm; 517 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 518 return false; 519 520 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 521 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 522 523 // Be careful to change the right operand, src0 may belong to a different 524 // instruction. 525 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 526 MI->RemoveOperand(Src1Idx); 527 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 528 return true; 529 } 530 531 if (!MI->isCommutable()) 532 return false; 533 534 if (Src0->isImm() && !Src1->isImm()) { 535 std::swap(Src0, Src1); 536 std::swap(Src0Idx, Src1Idx); 537 } 538 539 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 540 if (Opc == AMDGPU::V_OR_B32_e64 || 541 Opc == AMDGPU::V_OR_B32_e32 || 542 Opc == AMDGPU::S_OR_B32) { 543 if (Src1Val == 0) { 544 // y = or x, 0 => y = copy x 545 MI->RemoveOperand(Src1Idx); 546 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 547 } else if (Src1Val == -1) { 548 // y = or x, -1 => y = v_mov_b32 -1 549 MI->RemoveOperand(Src1Idx); 550 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 551 } else 552 return false; 553 554 return true; 555 } 556 557 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 558 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 559 MI->getOpcode() == AMDGPU::S_AND_B32) { 560 if (Src1Val == 0) { 561 // y = and x, 0 => y = v_mov_b32 0 562 MI->RemoveOperand(Src0Idx); 563 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 564 } else if (Src1Val == -1) { 565 // y = and x, -1 => y = copy x 566 MI->RemoveOperand(Src1Idx); 567 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 568 stripExtraCopyOperands(*MI); 569 } else 570 return false; 571 572 return true; 573 } 574 575 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 576 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 577 MI->getOpcode() == AMDGPU::S_XOR_B32) { 578 if (Src1Val == 0) { 579 // y = xor x, 0 => y = copy x 580 MI->RemoveOperand(Src1Idx); 581 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 582 return true; 583 } 584 } 585 586 return false; 587 } 588 589 // Try to fold an instruction into a simpler one 590 static bool tryFoldInst(const SIInstrInfo *TII, 591 MachineInstr *MI) { 592 unsigned Opc = MI->getOpcode(); 593 594 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 595 Opc == AMDGPU::V_CNDMASK_B32_e64 || 596 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 597 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 598 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 599 if (Src1->isIdenticalTo(*Src0)) { 600 DEBUG(dbgs() << "Folded " << *MI << " into "); 601 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 602 if (Src2Idx != -1) 603 MI->RemoveOperand(Src2Idx); 604 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 605 mutateCopyOp(*MI, TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY 606 : getMovOpc(false))); 607 DEBUG(dbgs() << *MI << '\n'); 608 return true; 609 } 610 } 611 612 return false; 613 } 614 615 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 616 MachineOperand &OpToFold) const { 617 // We need mutate the operands of new mov instructions to add implicit 618 // uses of EXEC, but adding them invalidates the use_iterator, so defer 619 // this. 620 SmallVector<MachineInstr *, 4> CopiesToReplace; 621 SmallVector<FoldCandidate, 4> FoldList; 622 MachineOperand &Dst = MI.getOperand(0); 623 624 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 625 if (FoldingImm) { 626 unsigned NumLiteralUses = 0; 627 MachineOperand *NonInlineUse = nullptr; 628 int NonInlineUseOpNo = -1; 629 630 MachineRegisterInfo::use_iterator NextUse, NextInstUse; 631 for (MachineRegisterInfo::use_iterator 632 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 633 Use != E; Use = NextUse) { 634 NextUse = std::next(Use); 635 MachineInstr *UseMI = Use->getParent(); 636 unsigned OpNo = Use.getOperandNo(); 637 638 // Folding the immediate may reveal operations that can be constant 639 // folded or replaced with a copy. This can happen for example after 640 // frame indices are lowered to constants or from splitting 64-bit 641 // constants. 642 // 643 // We may also encounter cases where one or both operands are 644 // immediates materialized into a register, which would ordinarily not 645 // be folded due to multiple uses or operand constraints. 646 647 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 648 DEBUG(dbgs() << "Constant folded " << *UseMI <<'\n'); 649 650 // Some constant folding cases change the same immediate's use to a new 651 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 652 // again. The same constant folded instruction could also have a second 653 // use operand. 654 NextUse = MRI->use_begin(Dst.getReg()); 655 continue; 656 } 657 658 // Try to fold any inline immediate uses, and then only fold other 659 // constants if they have one use. 660 // 661 // The legality of the inline immediate must be checked based on the use 662 // operand, not the defining instruction, because 32-bit instructions 663 // with 32-bit inline immediate sources may be used to materialize 664 // constants used in 16-bit operands. 665 // 666 // e.g. it is unsafe to fold: 667 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 668 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 669 670 // Folding immediates with more than one use will increase program size. 671 // FIXME: This will also reduce register usage, which may be better 672 // in some cases. A better heuristic is needed. 673 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 674 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 675 } else { 676 if (++NumLiteralUses == 1) { 677 NonInlineUse = &*Use; 678 NonInlineUseOpNo = OpNo; 679 } 680 } 681 } 682 683 if (NumLiteralUses == 1) { 684 MachineInstr *UseMI = NonInlineUse->getParent(); 685 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 686 } 687 } else { 688 // Folding register. 689 for (MachineRegisterInfo::use_iterator 690 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 691 Use != E; ++Use) { 692 MachineInstr *UseMI = Use->getParent(); 693 694 foldOperand(OpToFold, UseMI, Use.getOperandNo(), 695 FoldList, CopiesToReplace); 696 } 697 } 698 699 MachineFunction *MF = MI.getParent()->getParent(); 700 // Make sure we add EXEC uses to any new v_mov instructions created. 701 for (MachineInstr *Copy : CopiesToReplace) 702 Copy->addImplicitDefUseOperands(*MF); 703 704 for (FoldCandidate &Fold : FoldList) { 705 if (updateOperand(Fold, *TRI)) { 706 // Clear kill flags. 707 if (Fold.isReg()) { 708 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 709 // FIXME: Probably shouldn't bother trying to fold if not an 710 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 711 // copies. 712 MRI->clearKillFlags(Fold.OpToFold->getReg()); 713 } 714 DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " << 715 static_cast<int>(Fold.UseOpNo) << " of " << *Fold.UseMI << '\n'); 716 tryFoldInst(TII, Fold.UseMI); 717 } else if (Fold.isCommuted()) { 718 // Restoring instruction's original operand order if fold has failed. 719 TII->commuteInstruction(*Fold.UseMI, false); 720 } 721 } 722 } 723 724 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 725 unsigned Op = MI.getOpcode(); 726 switch (Op) { 727 case AMDGPU::V_MAX_F32_e64: 728 case AMDGPU::V_MAX_F16_e64: 729 case AMDGPU::V_MAX_F64: { 730 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 731 return nullptr; 732 733 // Make sure sources are identical. 734 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 735 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 736 if (!Src0->isReg() || !Src1->isReg() || 737 Src0->getSubReg() != Src1->getSubReg() || 738 Src0->getSubReg() != AMDGPU::NoSubRegister) 739 return nullptr; 740 741 // Can't fold up if we have modifiers. 742 if (TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 743 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 744 TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 745 return nullptr; 746 return Src0; 747 } 748 default: 749 return nullptr; 750 } 751 } 752 753 // We obviously have multiple uses in a clamp since the register is used twice 754 // in the same instruction. 755 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 756 int Count = 0; 757 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 758 I != E; ++I) { 759 if (++Count > 1) 760 return false; 761 } 762 763 return true; 764 } 765 766 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 767 const MachineOperand *ClampSrc = isClamp(MI); 768 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 769 return false; 770 771 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 772 if (!TII->hasFPClamp(*Def)) 773 return false; 774 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 775 if (!DefClamp) 776 return false; 777 778 DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def << '\n'); 779 780 // Clamp is applied after omod, so it is OK if omod is set. 781 DefClamp->setImm(1); 782 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 783 MI.eraseFromParent(); 784 return true; 785 } 786 787 static int getOModValue(unsigned Opc, int64_t Val) { 788 switch (Opc) { 789 case AMDGPU::V_MUL_F32_e64: { 790 switch (static_cast<uint32_t>(Val)) { 791 case 0x3f000000: // 0.5 792 return SIOutMods::DIV2; 793 case 0x40000000: // 2.0 794 return SIOutMods::MUL2; 795 case 0x40800000: // 4.0 796 return SIOutMods::MUL4; 797 default: 798 return SIOutMods::NONE; 799 } 800 } 801 case AMDGPU::V_MUL_F16_e64: { 802 switch (static_cast<uint16_t>(Val)) { 803 case 0x3800: // 0.5 804 return SIOutMods::DIV2; 805 case 0x4000: // 2.0 806 return SIOutMods::MUL2; 807 case 0x4400: // 4.0 808 return SIOutMods::MUL4; 809 default: 810 return SIOutMods::NONE; 811 } 812 } 813 default: 814 llvm_unreachable("invalid mul opcode"); 815 } 816 } 817 818 // FIXME: Does this really not support denormals with f16? 819 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 820 // handled, so will anything other than that break? 821 std::pair<const MachineOperand *, int> 822 SIFoldOperands::isOMod(const MachineInstr &MI) const { 823 unsigned Op = MI.getOpcode(); 824 switch (Op) { 825 case AMDGPU::V_MUL_F32_e64: 826 case AMDGPU::V_MUL_F16_e64: { 827 // If output denormals are enabled, omod is ignored. 828 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || 829 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) 830 return std::make_pair(nullptr, SIOutMods::NONE); 831 832 const MachineOperand *RegOp = nullptr; 833 const MachineOperand *ImmOp = nullptr; 834 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 835 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 836 if (Src0->isImm()) { 837 ImmOp = Src0; 838 RegOp = Src1; 839 } else if (Src1->isImm()) { 840 ImmOp = Src1; 841 RegOp = Src0; 842 } else 843 return std::make_pair(nullptr, SIOutMods::NONE); 844 845 int OMod = getOModValue(Op, ImmOp->getImm()); 846 if (OMod == SIOutMods::NONE || 847 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 848 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 849 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 850 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 851 return std::make_pair(nullptr, SIOutMods::NONE); 852 853 return std::make_pair(RegOp, OMod); 854 } 855 case AMDGPU::V_ADD_F32_e64: 856 case AMDGPU::V_ADD_F16_e64: { 857 // If output denormals are enabled, omod is ignored. 858 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || 859 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) 860 return std::make_pair(nullptr, SIOutMods::NONE); 861 862 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 863 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 864 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 865 866 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 867 Src0->getSubReg() == Src1->getSubReg() && 868 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 869 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 870 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 871 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 872 return std::make_pair(Src0, SIOutMods::MUL2); 873 874 return std::make_pair(nullptr, SIOutMods::NONE); 875 } 876 default: 877 return std::make_pair(nullptr, SIOutMods::NONE); 878 } 879 } 880 881 // FIXME: Does this need to check IEEE bit on function? 882 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 883 const MachineOperand *RegOp; 884 int OMod; 885 std::tie(RegOp, OMod) = isOMod(MI); 886 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 887 RegOp->getSubReg() != AMDGPU::NoSubRegister || 888 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 889 return false; 890 891 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 892 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 893 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 894 return false; 895 896 // Clamp is applied after omod. If the source already has clamp set, don't 897 // fold it. 898 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 899 return false; 900 901 DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 902 903 DefOMod->setImm(OMod); 904 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 905 MI.eraseFromParent(); 906 return true; 907 } 908 909 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 910 if (skipFunction(*MF.getFunction())) 911 return false; 912 913 MRI = &MF.getRegInfo(); 914 ST = &MF.getSubtarget<SISubtarget>(); 915 TII = ST->getInstrInfo(); 916 TRI = &TII->getRegisterInfo(); 917 918 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 919 920 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 921 // correctly handle signed zeros. 922 // 923 // TODO: Check nsz on instructions when fast math flags are preserved to MI 924 // level. 925 bool IsIEEEMode = ST->enableIEEEBit(MF) || !MFI->hasNoSignedZerosFPMath(); 926 927 for (MachineBasicBlock *MBB : depth_first(&MF)) { 928 MachineBasicBlock::iterator I, Next; 929 for (I = MBB->begin(); I != MBB->end(); I = Next) { 930 Next = std::next(I); 931 MachineInstr &MI = *I; 932 933 tryFoldInst(TII, &MI); 934 935 if (!TII->isFoldableCopy(MI)) { 936 if (IsIEEEMode || !tryFoldOMod(MI)) 937 tryFoldClamp(MI); 938 continue; 939 } 940 941 MachineOperand &OpToFold = MI.getOperand(1); 942 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 943 944 // FIXME: We could also be folding things like TargetIndexes. 945 if (!FoldingImm && !OpToFold.isReg()) 946 continue; 947 948 if (OpToFold.isReg() && 949 !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg())) 950 continue; 951 952 // Prevent folding operands backwards in the function. For example, 953 // the COPY opcode must not be replaced by 1 in this example: 954 // 955 // %vreg3<def> = COPY %VGPR0; VGPR_32:%vreg3 956 // ... 957 // %VGPR0<def> = V_MOV_B32_e32 1, %EXEC<imp-use> 958 MachineOperand &Dst = MI.getOperand(0); 959 if (Dst.isReg() && 960 !TargetRegisterInfo::isVirtualRegister(Dst.getReg())) 961 continue; 962 963 foldInstOperand(MI, OpToFold); 964 } 965 } 966 return false; 967 } 968