1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "AMDGPUSubtarget.h" 13 #include "SIInstrInfo.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/CodeGen/LiveIntervals.h" 19 #include "llvm/CodeGen/MachineFunctionPass.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Target/TargetMachine.h" 25 26 #define DEBUG_TYPE "si-fold-operands" 27 using namespace llvm; 28 29 namespace { 30 31 struct FoldCandidate { 32 MachineInstr *UseMI; 33 union { 34 MachineOperand *OpToFold; 35 uint64_t ImmToFold; 36 int FrameIndexToFold; 37 }; 38 int ShrinkOpcode; 39 unsigned char UseOpNo; 40 MachineOperand::MachineOperandType Kind; 41 bool Commuted; 42 43 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 44 bool Commuted_ = false, 45 int ShrinkOp = -1) : 46 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 47 Kind(FoldOp->getType()), 48 Commuted(Commuted_) { 49 if (FoldOp->isImm()) { 50 ImmToFold = FoldOp->getImm(); 51 } else if (FoldOp->isFI()) { 52 FrameIndexToFold = FoldOp->getIndex(); 53 } else { 54 assert(FoldOp->isReg() || FoldOp->isGlobal()); 55 OpToFold = FoldOp; 56 } 57 } 58 59 bool isFI() const { 60 return Kind == MachineOperand::MO_FrameIndex; 61 } 62 63 bool isImm() const { 64 return Kind == MachineOperand::MO_Immediate; 65 } 66 67 bool isReg() const { 68 return Kind == MachineOperand::MO_Register; 69 } 70 71 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 72 73 bool isCommuted() const { 74 return Commuted; 75 } 76 77 bool needsShrink() const { 78 return ShrinkOpcode != -1; 79 } 80 81 int getShrinkOpcode() const { 82 return ShrinkOpcode; 83 } 84 }; 85 86 class SIFoldOperands : public MachineFunctionPass { 87 public: 88 static char ID; 89 MachineRegisterInfo *MRI; 90 const SIInstrInfo *TII; 91 const SIRegisterInfo *TRI; 92 const GCNSubtarget *ST; 93 const SIMachineFunctionInfo *MFI; 94 95 void foldOperand(MachineOperand &OpToFold, 96 MachineInstr *UseMI, 97 int UseOpIdx, 98 SmallVectorImpl<FoldCandidate> &FoldList, 99 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 100 101 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 102 103 const MachineOperand *isClamp(const MachineInstr &MI) const; 104 bool tryFoldClamp(MachineInstr &MI); 105 106 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 107 bool tryFoldOMod(MachineInstr &MI); 108 109 public: 110 SIFoldOperands() : MachineFunctionPass(ID) { 111 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 112 } 113 114 bool runOnMachineFunction(MachineFunction &MF) override; 115 116 StringRef getPassName() const override { return "SI Fold Operands"; } 117 118 void getAnalysisUsage(AnalysisUsage &AU) const override { 119 AU.setPreservesCFG(); 120 MachineFunctionPass::getAnalysisUsage(AU); 121 } 122 }; 123 124 } // End anonymous namespace. 125 126 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 127 "SI Fold Operands", false, false) 128 129 char SIFoldOperands::ID = 0; 130 131 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 132 133 // Wrapper around isInlineConstant that understands special cases when 134 // instruction types are replaced during operand folding. 135 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 136 const MachineInstr &UseMI, 137 unsigned OpNo, 138 const MachineOperand &OpToFold) { 139 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 140 return true; 141 142 unsigned Opc = UseMI.getOpcode(); 143 switch (Opc) { 144 case AMDGPU::V_MAC_F32_e64: 145 case AMDGPU::V_MAC_F16_e64: 146 case AMDGPU::V_FMAC_F32_e64: 147 case AMDGPU::V_FMAC_F16_e64: { 148 // Special case for mac. Since this is replaced with mad when folded into 149 // src2, we need to check the legality for the final instruction. 150 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 151 if (static_cast<int>(OpNo) == Src2Idx) { 152 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 || 153 Opc == AMDGPU::V_FMAC_F16_e64; 154 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 || 155 Opc == AMDGPU::V_FMAC_F32_e64; 156 157 unsigned Opc = IsFMA ? 158 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) : 159 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 160 const MCInstrDesc &MadDesc = TII->get(Opc); 161 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 162 } 163 return false; 164 } 165 default: 166 return false; 167 } 168 } 169 170 // TODO: Add heuristic that the frame index might not fit in the addressing mode 171 // immediate offset to avoid materializing in loops. 172 static bool frameIndexMayFold(const SIInstrInfo *TII, 173 const MachineInstr &UseMI, 174 int OpNo, 175 const MachineOperand &OpToFold) { 176 return OpToFold.isFI() && 177 (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) && 178 OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr); 179 } 180 181 FunctionPass *llvm::createSIFoldOperandsPass() { 182 return new SIFoldOperands(); 183 } 184 185 static bool updateOperand(FoldCandidate &Fold, 186 const SIInstrInfo &TII, 187 const TargetRegisterInfo &TRI, 188 const GCNSubtarget &ST) { 189 MachineInstr *MI = Fold.UseMI; 190 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 191 assert(Old.isReg()); 192 193 if (Fold.isImm()) { 194 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 195 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 196 AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold), 197 ST.hasInv2PiInlineImm())) { 198 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 199 // already set. 200 unsigned Opcode = MI->getOpcode(); 201 int OpNo = MI->getOperandNo(&Old); 202 int ModIdx = -1; 203 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 204 ModIdx = AMDGPU::OpName::src0_modifiers; 205 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 206 ModIdx = AMDGPU::OpName::src1_modifiers; 207 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 208 ModIdx = AMDGPU::OpName::src2_modifiers; 209 assert(ModIdx != -1); 210 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 211 MachineOperand &Mod = MI->getOperand(ModIdx); 212 unsigned Val = Mod.getImm(); 213 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) 214 return false; 215 // Only apply the following transformation if that operand requries 216 // a packed immediate. 217 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 218 case AMDGPU::OPERAND_REG_IMM_V2FP16: 219 case AMDGPU::OPERAND_REG_IMM_V2INT16: 220 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 221 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 222 // If upper part is all zero we do not need op_sel_hi. 223 if (!isUInt<16>(Fold.ImmToFold)) { 224 if (!(Fold.ImmToFold & 0xffff)) { 225 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 226 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 227 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 228 return true; 229 } 230 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 231 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 232 return true; 233 } 234 break; 235 default: 236 break; 237 } 238 } 239 } 240 241 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 242 MachineBasicBlock *MBB = MI->getParent(); 243 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16); 244 if (Liveness != MachineBasicBlock::LQR_Dead) { 245 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 246 return false; 247 } 248 249 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 250 int Op32 = Fold.getShrinkOpcode(); 251 MachineOperand &Dst0 = MI->getOperand(0); 252 MachineOperand &Dst1 = MI->getOperand(1); 253 assert(Dst0.isDef() && Dst1.isDef()); 254 255 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 256 257 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 258 Register NewReg0 = MRI.createVirtualRegister(Dst0RC); 259 260 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 261 262 if (HaveNonDbgCarryUse) { 263 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 264 .addReg(AMDGPU::VCC, RegState::Kill); 265 } 266 267 // Keep the old instruction around to avoid breaking iterators, but 268 // replace it with a dummy instruction to remove uses. 269 // 270 // FIXME: We should not invert how this pass looks at operands to avoid 271 // this. Should track set of foldable movs instead of looking for uses 272 // when looking at a use. 273 Dst0.setReg(NewReg0); 274 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 275 MI->RemoveOperand(I); 276 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 277 278 if (Fold.isCommuted()) 279 TII.commuteInstruction(*Inst32, false); 280 return true; 281 } 282 283 assert(!Fold.needsShrink() && "not handled"); 284 285 if (Fold.isImm()) { 286 Old.ChangeToImmediate(Fold.ImmToFold); 287 return true; 288 } 289 290 if (Fold.isGlobal()) { 291 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 292 Fold.OpToFold->getTargetFlags()); 293 return true; 294 } 295 296 if (Fold.isFI()) { 297 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 298 return true; 299 } 300 301 MachineOperand *New = Fold.OpToFold; 302 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 303 Old.setIsUndef(New->isUndef()); 304 return true; 305 } 306 307 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 308 const MachineInstr *MI) { 309 for (auto Candidate : FoldList) { 310 if (Candidate.UseMI == MI) 311 return true; 312 } 313 return false; 314 } 315 316 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 317 MachineInstr *MI, unsigned OpNo, 318 MachineOperand *FoldOp, bool Commuted = false, 319 int ShrinkOp = -1) { 320 // Skip additional folding on the same operand. 321 for (FoldCandidate &Fold : FoldList) 322 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 323 return; 324 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 325 << " operand " << OpNo << "\n " << *MI << '\n'); 326 FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp)); 327 } 328 329 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 330 MachineInstr *MI, unsigned OpNo, 331 MachineOperand *OpToFold, 332 const SIInstrInfo *TII) { 333 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 334 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 335 unsigned Opc = MI->getOpcode(); 336 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 337 Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) && 338 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 339 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 || 340 Opc == AMDGPU::V_FMAC_F16_e64; 341 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 || 342 Opc == AMDGPU::V_FMAC_F32_e64; 343 unsigned NewOpc = IsFMA ? 344 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) : 345 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 346 347 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 348 // to fold the operand. 349 MI->setDesc(TII->get(NewOpc)); 350 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 351 if (FoldAsMAD) { 352 MI->untieRegOperand(OpNo); 353 return true; 354 } 355 MI->setDesc(TII->get(Opc)); 356 } 357 358 // Special case for s_setreg_b32 359 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 360 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 361 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 362 return true; 363 } 364 365 // If we are already folding into another operand of MI, then 366 // we can't commute the instruction, otherwise we risk making the 367 // other fold illegal. 368 if (isUseMIInFoldList(FoldList, MI)) 369 return false; 370 371 unsigned CommuteOpNo = OpNo; 372 373 // Operand is not legal, so try to commute the instruction to 374 // see if this makes it possible to fold. 375 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 376 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 377 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 378 379 if (CanCommute) { 380 if (CommuteIdx0 == OpNo) 381 CommuteOpNo = CommuteIdx1; 382 else if (CommuteIdx1 == OpNo) 383 CommuteOpNo = CommuteIdx0; 384 } 385 386 387 // One of operands might be an Imm operand, and OpNo may refer to it after 388 // the call of commuteInstruction() below. Such situations are avoided 389 // here explicitly as OpNo must be a register operand to be a candidate 390 // for memory folding. 391 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 392 !MI->getOperand(CommuteIdx1).isReg())) 393 return false; 394 395 if (!CanCommute || 396 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 397 return false; 398 399 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 400 if ((Opc == AMDGPU::V_ADD_I32_e64 || 401 Opc == AMDGPU::V_SUB_I32_e64 || 402 Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME 403 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 404 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 405 406 // Verify the other operand is a VGPR, otherwise we would violate the 407 // constant bus restriction. 408 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 409 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 410 if (!OtherOp.isReg() || 411 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 412 return false; 413 414 assert(MI->getOperand(1).isDef()); 415 416 // Make sure to get the 32-bit version of the commuted opcode. 417 unsigned MaybeCommutedOpc = MI->getOpcode(); 418 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 419 420 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 421 return true; 422 } 423 424 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 425 return false; 426 } 427 428 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true); 429 return true; 430 } 431 432 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 433 return true; 434 } 435 436 // If the use operand doesn't care about the value, this may be an operand only 437 // used for register indexing, in which case it is unsafe to fold. 438 static bool isUseSafeToFold(const SIInstrInfo *TII, 439 const MachineInstr &MI, 440 const MachineOperand &UseMO) { 441 return !UseMO.isUndef() && !TII->isSDWA(MI); 442 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 443 } 444 445 // Find a def of the UseReg, check if it is a reg_seqence and find initializers 446 // for each subreg, tracking it to foldable inline immediate if possible. 447 // Returns true on success. 448 static bool getRegSeqInit( 449 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs, 450 Register UseReg, uint8_t OpTy, 451 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) { 452 MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); 453 if (!Def || !Def->isRegSequence()) 454 return false; 455 456 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 457 MachineOperand *Sub = &Def->getOperand(I); 458 assert (Sub->isReg()); 459 460 for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg()); 461 SubDef && Sub->isReg() && !Sub->getSubReg() && 462 TII->isFoldableCopy(*SubDef); 463 SubDef = MRI.getUniqueVRegDef(Sub->getReg())) { 464 MachineOperand *Op = &SubDef->getOperand(1); 465 if (Op->isImm()) { 466 if (TII->isInlineConstant(*Op, OpTy)) 467 Sub = Op; 468 break; 469 } 470 if (!Op->isReg()) 471 break; 472 Sub = Op; 473 } 474 475 Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm())); 476 } 477 478 return true; 479 } 480 481 static bool tryToFoldACImm(const SIInstrInfo *TII, 482 const MachineOperand &OpToFold, 483 MachineInstr *UseMI, 484 unsigned UseOpIdx, 485 SmallVectorImpl<FoldCandidate> &FoldList) { 486 const MCInstrDesc &Desc = UseMI->getDesc(); 487 const MCOperandInfo *OpInfo = Desc.OpInfo; 488 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 489 return false; 490 491 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 492 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 493 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) 494 return false; 495 496 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 497 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 498 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 499 return true; 500 } 501 502 if (!OpToFold.isReg()) 503 return false; 504 505 Register UseReg = OpToFold.getReg(); 506 if (!Register::isVirtualRegister(UseReg)) 507 return false; 508 509 if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) { 510 return FC.UseMI == UseMI; }) != FoldList.end()) 511 return false; 512 513 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 514 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 515 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI)) 516 return false; 517 518 int32_t Imm; 519 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 520 const MachineOperand *Op = Defs[I].first; 521 if (!Op->isImm()) 522 return false; 523 524 auto SubImm = Op->getImm(); 525 if (!I) { 526 Imm = SubImm; 527 if (!TII->isInlineConstant(*Op, OpTy) || 528 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 529 return false; 530 531 continue; 532 } 533 if (Imm != SubImm) 534 return false; // Can only fold splat constants 535 } 536 537 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 538 return true; 539 } 540 541 void SIFoldOperands::foldOperand( 542 MachineOperand &OpToFold, 543 MachineInstr *UseMI, 544 int UseOpIdx, 545 SmallVectorImpl<FoldCandidate> &FoldList, 546 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 547 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 548 549 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 550 return; 551 552 // FIXME: Fold operands with subregs. 553 if (UseOp.isReg() && OpToFold.isReg()) { 554 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 555 return; 556 } 557 558 // Special case for REG_SEQUENCE: We can't fold literals into 559 // REG_SEQUENCE instructions, so we have to fold them into the 560 // uses of REG_SEQUENCE. 561 if (UseMI->isRegSequence()) { 562 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 563 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 564 565 MachineRegisterInfo::use_iterator Next; 566 for (MachineRegisterInfo::use_iterator 567 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 568 RSUse != RSE; RSUse = Next) { 569 Next = std::next(RSUse); 570 571 MachineInstr *RSUseMI = RSUse->getParent(); 572 573 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 574 RSUse.getOperandNo(), FoldList)) 575 continue; 576 577 if (RSUse->getSubReg() != RegSeqDstSubReg) 578 continue; 579 580 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 581 CopiesToReplace); 582 } 583 584 return; 585 } 586 587 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 588 return; 589 590 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 591 // Sanity check that this is a stack access. 592 // FIXME: Should probably use stack pseudos before frame lowering. 593 MachineOperand *SOff = TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 594 if (!SOff->isReg() || (SOff->getReg() != MFI->getScratchWaveOffsetReg() && 595 SOff->getReg() != MFI->getStackPtrOffsetReg())) 596 return; 597 598 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 599 MFI->getScratchRSrcReg()) 600 return; 601 602 // A frame index will resolve to a positive constant, so it should always be 603 // safe to fold the addressing mode, even pre-GFX9. 604 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 605 SOff->setReg(MFI->getStackPtrOffsetReg()); 606 return; 607 } 608 609 bool FoldingImmLike = 610 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 611 612 if (FoldingImmLike && UseMI->isCopy()) { 613 Register DestReg = UseMI->getOperand(0).getReg(); 614 615 // Don't fold into a copy to a physical register. Doing so would interfere 616 // with the register coalescer's logic which would avoid redundant 617 // initalizations. 618 if (DestReg.isPhysical()) 619 return; 620 621 const TargetRegisterClass *DestRC = MRI->getRegClass(DestReg); 622 623 Register SrcReg = UseMI->getOperand(1).getReg(); 624 if (SrcReg.isVirtual()) { // XXX - This can be an assert? 625 const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg); 626 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 627 MachineRegisterInfo::use_iterator NextUse; 628 SmallVector<FoldCandidate, 4> CopyUses; 629 for (MachineRegisterInfo::use_iterator 630 Use = MRI->use_begin(DestReg), E = MRI->use_end(); 631 Use != E; Use = NextUse) { 632 NextUse = std::next(Use); 633 FoldCandidate FC = FoldCandidate(Use->getParent(), 634 Use.getOperandNo(), &UseMI->getOperand(1)); 635 CopyUses.push_back(FC); 636 } 637 for (auto & F : CopyUses) { 638 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, 639 FoldList, CopiesToReplace); 640 } 641 } 642 } 643 644 if (DestRC == &AMDGPU::AGPR_32RegClass && 645 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 646 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 647 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 648 CopiesToReplace.push_back(UseMI); 649 return; 650 } 651 652 // In order to fold immediates into copies, we need to change the 653 // copy to a MOV. 654 655 unsigned MovOp = TII->getMovOpcode(DestRC); 656 if (MovOp == AMDGPU::COPY) 657 return; 658 659 UseMI->setDesc(TII->get(MovOp)); 660 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 661 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 662 while (ImpOpI != ImpOpE) { 663 MachineInstr::mop_iterator Tmp = ImpOpI; 664 ImpOpI++; 665 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); 666 } 667 CopiesToReplace.push_back(UseMI); 668 } else { 669 if (UseMI->isCopy() && OpToFold.isReg() && 670 UseMI->getOperand(0).getReg().isVirtual() && 671 TRI->isVectorRegister(*MRI, UseMI->getOperand(0).getReg()) && 672 !UseMI->getOperand(1).getSubReg()) { 673 LLVM_DEBUG(dbgs() << "Folding " << OpToFold 674 << "\n into " << *UseMI << '\n'); 675 unsigned Size = TII->getOpSize(*UseMI, 1); 676 Register UseReg = OpToFold.getReg(); 677 UseMI->getOperand(1).setReg(UseReg); 678 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 679 UseMI->getOperand(1).setIsKill(false); 680 CopiesToReplace.push_back(UseMI); 681 OpToFold.setIsKill(false); 682 683 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 684 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 685 // its initializers right here, so we will rematerialize immediates and 686 // avoid copies via different reg classes. 687 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 688 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 689 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII, 690 *MRI)) { 691 const DebugLoc &DL = UseMI->getDebugLoc(); 692 MachineBasicBlock &MBB = *UseMI->getParent(); 693 694 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 695 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 696 UseMI->RemoveOperand(I); 697 698 MachineInstrBuilder B(*MBB.getParent(), UseMI); 699 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 700 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 701 for (unsigned I = 0; I < Size / 4; ++I) { 702 MachineOperand *Def = Defs[I].first; 703 TargetInstrInfo::RegSubRegPair CopyToVGPR; 704 if (Def->isImm() && 705 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 706 int64_t Imm = Def->getImm(); 707 708 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 709 BuildMI(MBB, UseMI, DL, 710 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addImm(Imm); 711 B.addReg(Tmp); 712 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 713 auto Src = getRegSubRegPair(*Def); 714 Def->setIsKill(false); 715 if (!SeenAGPRs.insert(Src)) { 716 // We cannot build a reg_sequence out of the same registers, they 717 // must be copied. Better do it here before copyPhysReg() created 718 // several reads to do the AGPR->VGPR->AGPR copy. 719 CopyToVGPR = Src; 720 } else { 721 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 722 Src.SubReg); 723 } 724 } else { 725 assert(Def->isReg()); 726 Def->setIsKill(false); 727 auto Src = getRegSubRegPair(*Def); 728 729 // Direct copy from SGPR to AGPR is not possible. To avoid creation 730 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 731 // create a copy here and track if we already have such a copy. 732 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 733 CopyToVGPR = Src; 734 } else { 735 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 736 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 737 B.addReg(Tmp); 738 } 739 } 740 741 if (CopyToVGPR.Reg) { 742 Register Vgpr; 743 if (VGPRCopies.count(CopyToVGPR)) { 744 Vgpr = VGPRCopies[CopyToVGPR]; 745 } else { 746 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 747 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 748 VGPRCopies[CopyToVGPR] = Vgpr; 749 } 750 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 751 BuildMI(MBB, UseMI, DL, 752 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addReg(Vgpr); 753 B.addReg(Tmp); 754 } 755 756 B.addImm(Defs[I].second); 757 } 758 LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n'); 759 return; 760 } 761 762 if (Size != 4) 763 return; 764 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 765 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 766 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 767 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 768 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 769 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32)); 770 return; 771 } 772 773 unsigned UseOpc = UseMI->getOpcode(); 774 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 775 (UseOpc == AMDGPU::V_READLANE_B32 && 776 (int)UseOpIdx == 777 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 778 // %vgpr = V_MOV_B32 imm 779 // %sgpr = V_READFIRSTLANE_B32 %vgpr 780 // => 781 // %sgpr = S_MOV_B32 imm 782 if (FoldingImmLike) { 783 if (execMayBeModifiedBeforeUse(*MRI, 784 UseMI->getOperand(UseOpIdx).getReg(), 785 *OpToFold.getParent(), 786 *UseMI)) 787 return; 788 789 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 790 791 // FIXME: ChangeToImmediate should clear subreg 792 UseMI->getOperand(1).setSubReg(0); 793 if (OpToFold.isImm()) 794 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 795 else 796 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 797 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 798 return; 799 } 800 801 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 802 if (execMayBeModifiedBeforeUse(*MRI, 803 UseMI->getOperand(UseOpIdx).getReg(), 804 *OpToFold.getParent(), 805 *UseMI)) 806 return; 807 808 // %vgpr = COPY %sgpr0 809 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 810 // => 811 // %sgpr1 = COPY %sgpr0 812 UseMI->setDesc(TII->get(AMDGPU::COPY)); 813 UseMI->getOperand(1).setReg(OpToFold.getReg()); 814 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 815 UseMI->getOperand(1).setIsKill(false); 816 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 817 return; 818 } 819 } 820 821 const MCInstrDesc &UseDesc = UseMI->getDesc(); 822 823 // Don't fold into target independent nodes. Target independent opcodes 824 // don't have defined register classes. 825 if (UseDesc.isVariadic() || 826 UseOp.isImplicit() || 827 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 828 return; 829 } 830 831 if (!FoldingImmLike) { 832 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 833 834 // FIXME: We could try to change the instruction from 64-bit to 32-bit 835 // to enable more folding opportunites. The shrink operands pass 836 // already does this. 837 return; 838 } 839 840 841 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 842 const TargetRegisterClass *FoldRC = 843 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 844 845 // Split 64-bit constants into 32-bits for folding. 846 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 847 Register UseReg = UseOp.getReg(); 848 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 849 850 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 851 return; 852 853 APInt Imm(64, OpToFold.getImm()); 854 if (UseOp.getSubReg() == AMDGPU::sub0) { 855 Imm = Imm.getLoBits(32); 856 } else { 857 assert(UseOp.getSubReg() == AMDGPU::sub1); 858 Imm = Imm.getHiBits(32); 859 } 860 861 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 862 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 863 return; 864 } 865 866 867 868 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 869 } 870 871 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 872 uint32_t LHS, uint32_t RHS) { 873 switch (Opcode) { 874 case AMDGPU::V_AND_B32_e64: 875 case AMDGPU::V_AND_B32_e32: 876 case AMDGPU::S_AND_B32: 877 Result = LHS & RHS; 878 return true; 879 case AMDGPU::V_OR_B32_e64: 880 case AMDGPU::V_OR_B32_e32: 881 case AMDGPU::S_OR_B32: 882 Result = LHS | RHS; 883 return true; 884 case AMDGPU::V_XOR_B32_e64: 885 case AMDGPU::V_XOR_B32_e32: 886 case AMDGPU::S_XOR_B32: 887 Result = LHS ^ RHS; 888 return true; 889 case AMDGPU::V_LSHL_B32_e64: 890 case AMDGPU::V_LSHL_B32_e32: 891 case AMDGPU::S_LSHL_B32: 892 // The instruction ignores the high bits for out of bounds shifts. 893 Result = LHS << (RHS & 31); 894 return true; 895 case AMDGPU::V_LSHLREV_B32_e64: 896 case AMDGPU::V_LSHLREV_B32_e32: 897 Result = RHS << (LHS & 31); 898 return true; 899 case AMDGPU::V_LSHR_B32_e64: 900 case AMDGPU::V_LSHR_B32_e32: 901 case AMDGPU::S_LSHR_B32: 902 Result = LHS >> (RHS & 31); 903 return true; 904 case AMDGPU::V_LSHRREV_B32_e64: 905 case AMDGPU::V_LSHRREV_B32_e32: 906 Result = RHS >> (LHS & 31); 907 return true; 908 case AMDGPU::V_ASHR_I32_e64: 909 case AMDGPU::V_ASHR_I32_e32: 910 case AMDGPU::S_ASHR_I32: 911 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 912 return true; 913 case AMDGPU::V_ASHRREV_I32_e64: 914 case AMDGPU::V_ASHRREV_I32_e32: 915 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 916 return true; 917 default: 918 return false; 919 } 920 } 921 922 static unsigned getMovOpc(bool IsScalar) { 923 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 924 } 925 926 /// Remove any leftover implicit operands from mutating the instruction. e.g. 927 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 928 /// anymore. 929 static void stripExtraCopyOperands(MachineInstr &MI) { 930 const MCInstrDesc &Desc = MI.getDesc(); 931 unsigned NumOps = Desc.getNumOperands() + 932 Desc.getNumImplicitUses() + 933 Desc.getNumImplicitDefs(); 934 935 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 936 MI.RemoveOperand(I); 937 } 938 939 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 940 MI.setDesc(NewDesc); 941 stripExtraCopyOperands(MI); 942 } 943 944 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 945 MachineOperand &Op) { 946 if (Op.isReg()) { 947 // If this has a subregister, it obviously is a register source. 948 if (Op.getSubReg() != AMDGPU::NoSubRegister || 949 !Register::isVirtualRegister(Op.getReg())) 950 return &Op; 951 952 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 953 if (Def && Def->isMoveImmediate()) { 954 MachineOperand &ImmSrc = Def->getOperand(1); 955 if (ImmSrc.isImm()) 956 return &ImmSrc; 957 } 958 } 959 960 return &Op; 961 } 962 963 // Try to simplify operations with a constant that may appear after instruction 964 // selection. 965 // TODO: See if a frame index with a fixed offset can fold. 966 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 967 const SIInstrInfo *TII, 968 MachineInstr *MI, 969 MachineOperand *ImmOp) { 970 unsigned Opc = MI->getOpcode(); 971 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 972 Opc == AMDGPU::S_NOT_B32) { 973 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 974 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 975 return true; 976 } 977 978 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 979 if (Src1Idx == -1) 980 return false; 981 982 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 983 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 984 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 985 986 if (!Src0->isImm() && !Src1->isImm()) 987 return false; 988 989 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) { 990 if (Src0->isImm() && Src0->getImm() == 0) { 991 // v_lshl_or_b32 0, X, Y -> copy Y 992 // v_lshl_or_b32 0, X, K -> v_mov_b32 K 993 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg(); 994 MI->RemoveOperand(Src1Idx); 995 MI->RemoveOperand(Src0Idx); 996 997 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32)); 998 return true; 999 } 1000 } 1001 1002 // and k0, k1 -> v_mov_b32 (k0 & k1) 1003 // or k0, k1 -> v_mov_b32 (k0 | k1) 1004 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1005 if (Src0->isImm() && Src1->isImm()) { 1006 int32_t NewImm; 1007 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1008 return false; 1009 1010 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 1011 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 1012 1013 // Be careful to change the right operand, src0 may belong to a different 1014 // instruction. 1015 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1016 MI->RemoveOperand(Src1Idx); 1017 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1018 return true; 1019 } 1020 1021 if (!MI->isCommutable()) 1022 return false; 1023 1024 if (Src0->isImm() && !Src1->isImm()) { 1025 std::swap(Src0, Src1); 1026 std::swap(Src0Idx, Src1Idx); 1027 } 1028 1029 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1030 if (Opc == AMDGPU::V_OR_B32_e64 || 1031 Opc == AMDGPU::V_OR_B32_e32 || 1032 Opc == AMDGPU::S_OR_B32) { 1033 if (Src1Val == 0) { 1034 // y = or x, 0 => y = copy x 1035 MI->RemoveOperand(Src1Idx); 1036 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1037 } else if (Src1Val == -1) { 1038 // y = or x, -1 => y = v_mov_b32 -1 1039 MI->RemoveOperand(Src1Idx); 1040 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1041 } else 1042 return false; 1043 1044 return true; 1045 } 1046 1047 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 1048 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 1049 MI->getOpcode() == AMDGPU::S_AND_B32) { 1050 if (Src1Val == 0) { 1051 // y = and x, 0 => y = v_mov_b32 0 1052 MI->RemoveOperand(Src0Idx); 1053 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1054 } else if (Src1Val == -1) { 1055 // y = and x, -1 => y = copy x 1056 MI->RemoveOperand(Src1Idx); 1057 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1058 stripExtraCopyOperands(*MI); 1059 } else 1060 return false; 1061 1062 return true; 1063 } 1064 1065 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 1066 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 1067 MI->getOpcode() == AMDGPU::S_XOR_B32) { 1068 if (Src1Val == 0) { 1069 // y = xor x, 0 => y = copy x 1070 MI->RemoveOperand(Src1Idx); 1071 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1072 return true; 1073 } 1074 } 1075 1076 return false; 1077 } 1078 1079 // Try to fold an instruction into a simpler one 1080 static bool tryFoldInst(const SIInstrInfo *TII, 1081 MachineInstr *MI) { 1082 unsigned Opc = MI->getOpcode(); 1083 1084 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 1085 Opc == AMDGPU::V_CNDMASK_B32_e64 || 1086 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 1087 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1088 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 1089 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1090 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1091 if (Src1->isIdenticalTo(*Src0) && 1092 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && 1093 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { 1094 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 1095 auto &NewDesc = 1096 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1097 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1098 if (Src2Idx != -1) 1099 MI->RemoveOperand(Src2Idx); 1100 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1101 if (Src1ModIdx != -1) 1102 MI->RemoveOperand(Src1ModIdx); 1103 if (Src0ModIdx != -1) 1104 MI->RemoveOperand(Src0ModIdx); 1105 mutateCopyOp(*MI, NewDesc); 1106 LLVM_DEBUG(dbgs() << *MI << '\n'); 1107 return true; 1108 } 1109 } 1110 1111 return false; 1112 } 1113 1114 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 1115 MachineOperand &OpToFold) const { 1116 // We need mutate the operands of new mov instructions to add implicit 1117 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1118 // this. 1119 SmallVector<MachineInstr *, 4> CopiesToReplace; 1120 SmallVector<FoldCandidate, 4> FoldList; 1121 MachineOperand &Dst = MI.getOperand(0); 1122 1123 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1124 if (FoldingImm) { 1125 unsigned NumLiteralUses = 0; 1126 MachineOperand *NonInlineUse = nullptr; 1127 int NonInlineUseOpNo = -1; 1128 1129 MachineRegisterInfo::use_iterator NextUse; 1130 for (MachineRegisterInfo::use_iterator 1131 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 1132 Use != E; Use = NextUse) { 1133 NextUse = std::next(Use); 1134 MachineInstr *UseMI = Use->getParent(); 1135 unsigned OpNo = Use.getOperandNo(); 1136 1137 // Folding the immediate may reveal operations that can be constant 1138 // folded or replaced with a copy. This can happen for example after 1139 // frame indices are lowered to constants or from splitting 64-bit 1140 // constants. 1141 // 1142 // We may also encounter cases where one or both operands are 1143 // immediates materialized into a register, which would ordinarily not 1144 // be folded due to multiple uses or operand constraints. 1145 1146 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 1147 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 1148 1149 // Some constant folding cases change the same immediate's use to a new 1150 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 1151 // again. The same constant folded instruction could also have a second 1152 // use operand. 1153 NextUse = MRI->use_begin(Dst.getReg()); 1154 FoldList.clear(); 1155 continue; 1156 } 1157 1158 // Try to fold any inline immediate uses, and then only fold other 1159 // constants if they have one use. 1160 // 1161 // The legality of the inline immediate must be checked based on the use 1162 // operand, not the defining instruction, because 32-bit instructions 1163 // with 32-bit inline immediate sources may be used to materialize 1164 // constants used in 16-bit operands. 1165 // 1166 // e.g. it is unsafe to fold: 1167 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1168 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1169 1170 // Folding immediates with more than one use will increase program size. 1171 // FIXME: This will also reduce register usage, which may be better 1172 // in some cases. A better heuristic is needed. 1173 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1174 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1175 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1176 foldOperand(OpToFold, UseMI, OpNo, FoldList, 1177 CopiesToReplace); 1178 } else { 1179 if (++NumLiteralUses == 1) { 1180 NonInlineUse = &*Use; 1181 NonInlineUseOpNo = OpNo; 1182 } 1183 } 1184 } 1185 1186 if (NumLiteralUses == 1) { 1187 MachineInstr *UseMI = NonInlineUse->getParent(); 1188 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1189 } 1190 } else { 1191 // Folding register. 1192 SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess; 1193 for (MachineRegisterInfo::use_iterator 1194 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 1195 Use != E; ++Use) { 1196 UsesToProcess.push_back(Use); 1197 } 1198 for (auto U : UsesToProcess) { 1199 MachineInstr *UseMI = U->getParent(); 1200 1201 foldOperand(OpToFold, UseMI, U.getOperandNo(), 1202 FoldList, CopiesToReplace); 1203 } 1204 } 1205 1206 MachineFunction *MF = MI.getParent()->getParent(); 1207 // Make sure we add EXEC uses to any new v_mov instructions created. 1208 for (MachineInstr *Copy : CopiesToReplace) 1209 Copy->addImplicitDefUseOperands(*MF); 1210 1211 for (FoldCandidate &Fold : FoldList) { 1212 if (Fold.isReg() && Register::isVirtualRegister(Fold.OpToFold->getReg())) { 1213 Register Reg = Fold.OpToFold->getReg(); 1214 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1215 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1216 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1217 continue; 1218 } 1219 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1220 // Clear kill flags. 1221 if (Fold.isReg()) { 1222 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1223 // FIXME: Probably shouldn't bother trying to fold if not an 1224 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1225 // copies. 1226 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1227 } 1228 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1229 << static_cast<int>(Fold.UseOpNo) << " of " 1230 << *Fold.UseMI << '\n'); 1231 tryFoldInst(TII, Fold.UseMI); 1232 } else if (Fold.isCommuted()) { 1233 // Restoring instruction's original operand order if fold has failed. 1234 TII->commuteInstruction(*Fold.UseMI, false); 1235 } 1236 } 1237 } 1238 1239 // Clamp patterns are canonically selected to v_max_* instructions, so only 1240 // handle them. 1241 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1242 unsigned Op = MI.getOpcode(); 1243 switch (Op) { 1244 case AMDGPU::V_MAX_F32_e64: 1245 case AMDGPU::V_MAX_F16_e64: 1246 case AMDGPU::V_MAX_F64: 1247 case AMDGPU::V_PK_MAX_F16: { 1248 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1249 return nullptr; 1250 1251 // Make sure sources are identical. 1252 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1253 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1254 if (!Src0->isReg() || !Src1->isReg() || 1255 Src0->getReg() != Src1->getReg() || 1256 Src0->getSubReg() != Src1->getSubReg() || 1257 Src0->getSubReg() != AMDGPU::NoSubRegister) 1258 return nullptr; 1259 1260 // Can't fold up if we have modifiers. 1261 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1262 return nullptr; 1263 1264 unsigned Src0Mods 1265 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1266 unsigned Src1Mods 1267 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1268 1269 // Having a 0 op_sel_hi would require swizzling the output in the source 1270 // instruction, which we can't do. 1271 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1272 : 0u; 1273 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1274 return nullptr; 1275 return Src0; 1276 } 1277 default: 1278 return nullptr; 1279 } 1280 } 1281 1282 // We obviously have multiple uses in a clamp since the register is used twice 1283 // in the same instruction. 1284 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 1285 int Count = 0; 1286 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 1287 I != E; ++I) { 1288 if (++Count > 1) 1289 return false; 1290 } 1291 1292 return true; 1293 } 1294 1295 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1296 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1297 const MachineOperand *ClampSrc = isClamp(MI); 1298 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 1299 return false; 1300 1301 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1302 1303 // The type of clamp must be compatible. 1304 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1305 return false; 1306 1307 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1308 if (!DefClamp) 1309 return false; 1310 1311 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 1312 << '\n'); 1313 1314 // Clamp is applied after omod, so it is OK if omod is set. 1315 DefClamp->setImm(1); 1316 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1317 MI.eraseFromParent(); 1318 return true; 1319 } 1320 1321 static int getOModValue(unsigned Opc, int64_t Val) { 1322 switch (Opc) { 1323 case AMDGPU::V_MUL_F32_e64: { 1324 switch (static_cast<uint32_t>(Val)) { 1325 case 0x3f000000: // 0.5 1326 return SIOutMods::DIV2; 1327 case 0x40000000: // 2.0 1328 return SIOutMods::MUL2; 1329 case 0x40800000: // 4.0 1330 return SIOutMods::MUL4; 1331 default: 1332 return SIOutMods::NONE; 1333 } 1334 } 1335 case AMDGPU::V_MUL_F16_e64: { 1336 switch (static_cast<uint16_t>(Val)) { 1337 case 0x3800: // 0.5 1338 return SIOutMods::DIV2; 1339 case 0x4000: // 2.0 1340 return SIOutMods::MUL2; 1341 case 0x4400: // 4.0 1342 return SIOutMods::MUL4; 1343 default: 1344 return SIOutMods::NONE; 1345 } 1346 } 1347 default: 1348 llvm_unreachable("invalid mul opcode"); 1349 } 1350 } 1351 1352 // FIXME: Does this really not support denormals with f16? 1353 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1354 // handled, so will anything other than that break? 1355 std::pair<const MachineOperand *, int> 1356 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1357 unsigned Op = MI.getOpcode(); 1358 switch (Op) { 1359 case AMDGPU::V_MUL_F32_e64: 1360 case AMDGPU::V_MUL_F16_e64: { 1361 // If output denormals are enabled, omod is ignored. 1362 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || 1363 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) 1364 return std::make_pair(nullptr, SIOutMods::NONE); 1365 1366 const MachineOperand *RegOp = nullptr; 1367 const MachineOperand *ImmOp = nullptr; 1368 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1369 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1370 if (Src0->isImm()) { 1371 ImmOp = Src0; 1372 RegOp = Src1; 1373 } else if (Src1->isImm()) { 1374 ImmOp = Src1; 1375 RegOp = Src0; 1376 } else 1377 return std::make_pair(nullptr, SIOutMods::NONE); 1378 1379 int OMod = getOModValue(Op, ImmOp->getImm()); 1380 if (OMod == SIOutMods::NONE || 1381 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1382 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1383 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1384 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1385 return std::make_pair(nullptr, SIOutMods::NONE); 1386 1387 return std::make_pair(RegOp, OMod); 1388 } 1389 case AMDGPU::V_ADD_F32_e64: 1390 case AMDGPU::V_ADD_F16_e64: { 1391 // If output denormals are enabled, omod is ignored. 1392 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || 1393 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) 1394 return std::make_pair(nullptr, SIOutMods::NONE); 1395 1396 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1397 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1398 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1399 1400 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1401 Src0->getSubReg() == Src1->getSubReg() && 1402 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1403 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1404 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1405 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1406 return std::make_pair(Src0, SIOutMods::MUL2); 1407 1408 return std::make_pair(nullptr, SIOutMods::NONE); 1409 } 1410 default: 1411 return std::make_pair(nullptr, SIOutMods::NONE); 1412 } 1413 } 1414 1415 // FIXME: Does this need to check IEEE bit on function? 1416 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1417 const MachineOperand *RegOp; 1418 int OMod; 1419 std::tie(RegOp, OMod) = isOMod(MI); 1420 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1421 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1422 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1423 return false; 1424 1425 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1426 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1427 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1428 return false; 1429 1430 // Clamp is applied after omod. If the source already has clamp set, don't 1431 // fold it. 1432 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1433 return false; 1434 1435 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1436 1437 DefOMod->setImm(OMod); 1438 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1439 MI.eraseFromParent(); 1440 return true; 1441 } 1442 1443 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1444 if (skipFunction(MF.getFunction())) 1445 return false; 1446 1447 MRI = &MF.getRegInfo(); 1448 ST = &MF.getSubtarget<GCNSubtarget>(); 1449 TII = ST->getInstrInfo(); 1450 TRI = &TII->getRegisterInfo(); 1451 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1452 1453 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1454 // correctly handle signed zeros. 1455 // 1456 // FIXME: Also need to check strictfp 1457 bool IsIEEEMode = MFI->getMode().IEEE; 1458 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1459 1460 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1461 MachineBasicBlock::iterator I, Next; 1462 1463 MachineOperand *CurrentKnownM0Val = nullptr; 1464 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1465 Next = std::next(I); 1466 MachineInstr &MI = *I; 1467 1468 tryFoldInst(TII, &MI); 1469 1470 if (!TII->isFoldableCopy(MI)) { 1471 // Saw an unknown clobber of m0, so we no longer know what it is. 1472 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 1473 CurrentKnownM0Val = nullptr; 1474 1475 // TODO: Omod might be OK if there is NSZ only on the source 1476 // instruction, and not the omod multiply. 1477 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1478 !tryFoldOMod(MI)) 1479 tryFoldClamp(MI); 1480 1481 continue; 1482 } 1483 1484 // Specially track simple redefs of m0 to the same value in a block, so we 1485 // can erase the later ones. 1486 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1487 MachineOperand &NewM0Val = MI.getOperand(1); 1488 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1489 MI.eraseFromParent(); 1490 continue; 1491 } 1492 1493 // We aren't tracking other physical registers 1494 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? 1495 nullptr : &NewM0Val; 1496 continue; 1497 } 1498 1499 MachineOperand &OpToFold = MI.getOperand(1); 1500 bool FoldingImm = 1501 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1502 1503 // FIXME: We could also be folding things like TargetIndexes. 1504 if (!FoldingImm && !OpToFold.isReg()) 1505 continue; 1506 1507 if (OpToFold.isReg() && !Register::isVirtualRegister(OpToFold.getReg())) 1508 continue; 1509 1510 // Prevent folding operands backwards in the function. For example, 1511 // the COPY opcode must not be replaced by 1 in this example: 1512 // 1513 // %3 = COPY %vgpr0; VGPR_32:%3 1514 // ... 1515 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1516 MachineOperand &Dst = MI.getOperand(0); 1517 if (Dst.isReg() && !Register::isVirtualRegister(Dst.getReg())) 1518 continue; 1519 1520 foldInstOperand(MI, OpToFold); 1521 } 1522 } 1523 return true; 1524 } 1525