1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "AMDGPUSubtarget.h" 13 #include "SIInstrInfo.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/CodeGen/MachineFunctionPass.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "si-fold-operands" 26 using namespace llvm; 27 28 namespace { 29 30 struct FoldCandidate { 31 MachineInstr *UseMI; 32 union { 33 MachineOperand *OpToFold; 34 uint64_t ImmToFold; 35 int FrameIndexToFold; 36 }; 37 int ShrinkOpcode; 38 unsigned UseOpNo; 39 MachineOperand::MachineOperandType Kind; 40 bool Commuted; 41 42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 43 bool Commuted_ = false, 44 int ShrinkOp = -1) : 45 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 46 Kind(FoldOp->getType()), 47 Commuted(Commuted_) { 48 if (FoldOp->isImm()) { 49 ImmToFold = FoldOp->getImm(); 50 } else if (FoldOp->isFI()) { 51 FrameIndexToFold = FoldOp->getIndex(); 52 } else { 53 assert(FoldOp->isReg() || FoldOp->isGlobal()); 54 OpToFold = FoldOp; 55 } 56 } 57 58 bool isFI() const { 59 return Kind == MachineOperand::MO_FrameIndex; 60 } 61 62 bool isImm() const { 63 return Kind == MachineOperand::MO_Immediate; 64 } 65 66 bool isReg() const { 67 return Kind == MachineOperand::MO_Register; 68 } 69 70 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 71 72 bool isCommuted() const { 73 return Commuted; 74 } 75 76 bool needsShrink() const { 77 return ShrinkOpcode != -1; 78 } 79 80 int getShrinkOpcode() const { 81 return ShrinkOpcode; 82 } 83 }; 84 85 class SIFoldOperands : public MachineFunctionPass { 86 public: 87 static char ID; 88 MachineRegisterInfo *MRI; 89 const SIInstrInfo *TII; 90 const SIRegisterInfo *TRI; 91 const GCNSubtarget *ST; 92 const SIMachineFunctionInfo *MFI; 93 94 void foldOperand(MachineOperand &OpToFold, 95 MachineInstr *UseMI, 96 int UseOpIdx, 97 SmallVectorImpl<FoldCandidate> &FoldList, 98 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 99 100 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 101 102 const MachineOperand *isClamp(const MachineInstr &MI) const; 103 bool tryFoldClamp(MachineInstr &MI); 104 105 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 106 bool tryFoldOMod(MachineInstr &MI); 107 108 public: 109 SIFoldOperands() : MachineFunctionPass(ID) { 110 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 111 } 112 113 bool runOnMachineFunction(MachineFunction &MF) override; 114 115 StringRef getPassName() const override { return "SI Fold Operands"; } 116 117 void getAnalysisUsage(AnalysisUsage &AU) const override { 118 AU.setPreservesCFG(); 119 MachineFunctionPass::getAnalysisUsage(AU); 120 } 121 }; 122 123 } // End anonymous namespace. 124 125 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 126 "SI Fold Operands", false, false) 127 128 char SIFoldOperands::ID = 0; 129 130 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 131 132 // Wrapper around isInlineConstant that understands special cases when 133 // instruction types are replaced during operand folding. 134 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 135 const MachineInstr &UseMI, 136 unsigned OpNo, 137 const MachineOperand &OpToFold) { 138 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 139 return true; 140 141 unsigned Opc = UseMI.getOpcode(); 142 switch (Opc) { 143 case AMDGPU::V_MAC_F32_e64: 144 case AMDGPU::V_MAC_F16_e64: 145 case AMDGPU::V_FMAC_F32_e64: 146 case AMDGPU::V_FMAC_F16_e64: { 147 // Special case for mac. Since this is replaced with mad when folded into 148 // src2, we need to check the legality for the final instruction. 149 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 150 if (static_cast<int>(OpNo) == Src2Idx) { 151 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 || 152 Opc == AMDGPU::V_FMAC_F16_e64; 153 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 || 154 Opc == AMDGPU::V_FMAC_F32_e64; 155 156 unsigned Opc = IsFMA ? 157 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) : 158 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 159 const MCInstrDesc &MadDesc = TII->get(Opc); 160 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 161 } 162 return false; 163 } 164 default: 165 return false; 166 } 167 } 168 169 // TODO: Add heuristic that the frame index might not fit in the addressing mode 170 // immediate offset to avoid materializing in loops. 171 static bool frameIndexMayFold(const SIInstrInfo *TII, 172 const MachineInstr &UseMI, 173 int OpNo, 174 const MachineOperand &OpToFold) { 175 return OpToFold.isFI() && 176 (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) && 177 OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr); 178 } 179 180 FunctionPass *llvm::createSIFoldOperandsPass() { 181 return new SIFoldOperands(); 182 } 183 184 static bool updateOperand(FoldCandidate &Fold, 185 const SIInstrInfo &TII, 186 const TargetRegisterInfo &TRI, 187 const GCNSubtarget &ST) { 188 MachineInstr *MI = Fold.UseMI; 189 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 190 assert(Old.isReg()); 191 192 if (Fold.isImm()) { 193 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 194 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 195 AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold), 196 ST.hasInv2PiInlineImm())) { 197 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 198 // already set. 199 unsigned Opcode = MI->getOpcode(); 200 int OpNo = MI->getOperandNo(&Old); 201 int ModIdx = -1; 202 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 203 ModIdx = AMDGPU::OpName::src0_modifiers; 204 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 205 ModIdx = AMDGPU::OpName::src1_modifiers; 206 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 207 ModIdx = AMDGPU::OpName::src2_modifiers; 208 assert(ModIdx != -1); 209 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 210 MachineOperand &Mod = MI->getOperand(ModIdx); 211 unsigned Val = Mod.getImm(); 212 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) 213 return false; 214 // Only apply the following transformation if that operand requries 215 // a packed immediate. 216 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 217 case AMDGPU::OPERAND_REG_IMM_V2FP16: 218 case AMDGPU::OPERAND_REG_IMM_V2INT16: 219 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 220 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 221 // If upper part is all zero we do not need op_sel_hi. 222 if (!isUInt<16>(Fold.ImmToFold)) { 223 if (!(Fold.ImmToFold & 0xffff)) { 224 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 225 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 226 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 227 return true; 228 } 229 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 230 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 231 return true; 232 } 233 break; 234 default: 235 break; 236 } 237 } 238 } 239 240 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 241 MachineBasicBlock *MBB = MI->getParent(); 242 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16); 243 if (Liveness != MachineBasicBlock::LQR_Dead) { 244 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 245 return false; 246 } 247 248 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 249 int Op32 = Fold.getShrinkOpcode(); 250 MachineOperand &Dst0 = MI->getOperand(0); 251 MachineOperand &Dst1 = MI->getOperand(1); 252 assert(Dst0.isDef() && Dst1.isDef()); 253 254 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 255 256 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 257 Register NewReg0 = MRI.createVirtualRegister(Dst0RC); 258 259 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 260 261 if (HaveNonDbgCarryUse) { 262 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 263 .addReg(AMDGPU::VCC, RegState::Kill); 264 } 265 266 // Keep the old instruction around to avoid breaking iterators, but 267 // replace it with a dummy instruction to remove uses. 268 // 269 // FIXME: We should not invert how this pass looks at operands to avoid 270 // this. Should track set of foldable movs instead of looking for uses 271 // when looking at a use. 272 Dst0.setReg(NewReg0); 273 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 274 MI->RemoveOperand(I); 275 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 276 277 if (Fold.isCommuted()) 278 TII.commuteInstruction(*Inst32, false); 279 return true; 280 } 281 282 assert(!Fold.needsShrink() && "not handled"); 283 284 if (Fold.isImm()) { 285 Old.ChangeToImmediate(Fold.ImmToFold); 286 return true; 287 } 288 289 if (Fold.isGlobal()) { 290 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 291 Fold.OpToFold->getTargetFlags()); 292 return true; 293 } 294 295 if (Fold.isFI()) { 296 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 297 return true; 298 } 299 300 MachineOperand *New = Fold.OpToFold; 301 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 302 Old.setIsUndef(New->isUndef()); 303 return true; 304 } 305 306 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 307 const MachineInstr *MI) { 308 for (auto Candidate : FoldList) { 309 if (Candidate.UseMI == MI) 310 return true; 311 } 312 return false; 313 } 314 315 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 316 MachineInstr *MI, unsigned OpNo, 317 MachineOperand *FoldOp, bool Commuted = false, 318 int ShrinkOp = -1) { 319 // Skip additional folding on the same operand. 320 for (FoldCandidate &Fold : FoldList) 321 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 322 return; 323 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 324 << " operand " << OpNo << "\n " << *MI << '\n'); 325 FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp)); 326 } 327 328 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 329 MachineInstr *MI, unsigned OpNo, 330 MachineOperand *OpToFold, 331 const SIInstrInfo *TII) { 332 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 333 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 334 unsigned Opc = MI->getOpcode(); 335 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 336 Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) && 337 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 338 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 || 339 Opc == AMDGPU::V_FMAC_F16_e64; 340 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 || 341 Opc == AMDGPU::V_FMAC_F32_e64; 342 unsigned NewOpc = IsFMA ? 343 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) : 344 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 345 346 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 347 // to fold the operand. 348 MI->setDesc(TII->get(NewOpc)); 349 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 350 if (FoldAsMAD) { 351 MI->untieRegOperand(OpNo); 352 return true; 353 } 354 MI->setDesc(TII->get(Opc)); 355 } 356 357 // Special case for s_setreg_b32 358 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 359 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 360 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 361 return true; 362 } 363 364 // If we are already folding into another operand of MI, then 365 // we can't commute the instruction, otherwise we risk making the 366 // other fold illegal. 367 if (isUseMIInFoldList(FoldList, MI)) 368 return false; 369 370 unsigned CommuteOpNo = OpNo; 371 372 // Operand is not legal, so try to commute the instruction to 373 // see if this makes it possible to fold. 374 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 375 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 376 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 377 378 if (CanCommute) { 379 if (CommuteIdx0 == OpNo) 380 CommuteOpNo = CommuteIdx1; 381 else if (CommuteIdx1 == OpNo) 382 CommuteOpNo = CommuteIdx0; 383 } 384 385 386 // One of operands might be an Imm operand, and OpNo may refer to it after 387 // the call of commuteInstruction() below. Such situations are avoided 388 // here explicitly as OpNo must be a register operand to be a candidate 389 // for memory folding. 390 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 391 !MI->getOperand(CommuteIdx1).isReg())) 392 return false; 393 394 if (!CanCommute || 395 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 396 return false; 397 398 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 399 if ((Opc == AMDGPU::V_ADD_CO_U32_e64 || 400 Opc == AMDGPU::V_SUB_CO_U32_e64 || 401 Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME 402 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 403 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 404 405 // Verify the other operand is a VGPR, otherwise we would violate the 406 // constant bus restriction. 407 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 408 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 409 if (!OtherOp.isReg() || 410 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 411 return false; 412 413 assert(MI->getOperand(1).isDef()); 414 415 // Make sure to get the 32-bit version of the commuted opcode. 416 unsigned MaybeCommutedOpc = MI->getOpcode(); 417 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 418 419 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 420 return true; 421 } 422 423 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 424 return false; 425 } 426 427 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true); 428 return true; 429 } 430 431 // Check the case where we might introduce a second constant operand to a 432 // scalar instruction 433 if (TII->isSALU(MI->getOpcode())) { 434 const MCInstrDesc &InstDesc = MI->getDesc(); 435 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo]; 436 const SIRegisterInfo &SRI = TII->getRegisterInfo(); 437 438 // Fine if the operand can be encoded as an inline constant 439 if (OpToFold->isImm()) { 440 if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) || 441 !TII->isInlineConstant(*OpToFold, OpInfo)) { 442 // Otherwise check for another constant 443 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 444 auto &Op = MI->getOperand(i); 445 if (OpNo != i && 446 TII->isLiteralConstantLike(Op, OpInfo)) { 447 return false; 448 } 449 } 450 } 451 } 452 } 453 454 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 455 return true; 456 } 457 458 // If the use operand doesn't care about the value, this may be an operand only 459 // used for register indexing, in which case it is unsafe to fold. 460 static bool isUseSafeToFold(const SIInstrInfo *TII, 461 const MachineInstr &MI, 462 const MachineOperand &UseMO) { 463 if (UseMO.isUndef() || TII->isSDWA(MI)) 464 return false; 465 466 switch (MI.getOpcode()) { 467 case AMDGPU::V_MOV_B32_e32: 468 case AMDGPU::V_MOV_B32_e64: 469 case AMDGPU::V_MOV_B64_PSEUDO: 470 // Do not fold into an indirect mov. 471 return !MI.hasRegisterImplicitUseOperand(AMDGPU::M0); 472 } 473 474 return true; 475 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 476 } 477 478 // Find a def of the UseReg, check if it is a reg_seqence and find initializers 479 // for each subreg, tracking it to foldable inline immediate if possible. 480 // Returns true on success. 481 static bool getRegSeqInit( 482 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs, 483 Register UseReg, uint8_t OpTy, 484 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) { 485 MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); 486 if (!Def || !Def->isRegSequence()) 487 return false; 488 489 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 490 MachineOperand *Sub = &Def->getOperand(I); 491 assert (Sub->isReg()); 492 493 for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg()); 494 SubDef && Sub->isReg() && !Sub->getSubReg() && 495 TII->isFoldableCopy(*SubDef); 496 SubDef = MRI.getUniqueVRegDef(Sub->getReg())) { 497 MachineOperand *Op = &SubDef->getOperand(1); 498 if (Op->isImm()) { 499 if (TII->isInlineConstant(*Op, OpTy)) 500 Sub = Op; 501 break; 502 } 503 if (!Op->isReg()) 504 break; 505 Sub = Op; 506 } 507 508 Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm())); 509 } 510 511 return true; 512 } 513 514 static bool tryToFoldACImm(const SIInstrInfo *TII, 515 const MachineOperand &OpToFold, 516 MachineInstr *UseMI, 517 unsigned UseOpIdx, 518 SmallVectorImpl<FoldCandidate> &FoldList) { 519 const MCInstrDesc &Desc = UseMI->getDesc(); 520 const MCOperandInfo *OpInfo = Desc.OpInfo; 521 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 522 return false; 523 524 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 525 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 526 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) 527 return false; 528 529 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 530 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 531 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 532 return true; 533 } 534 535 if (!OpToFold.isReg()) 536 return false; 537 538 Register UseReg = OpToFold.getReg(); 539 if (!UseReg.isVirtual()) 540 return false; 541 542 if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) { 543 return FC.UseMI == UseMI; }) != FoldList.end()) 544 return false; 545 546 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 547 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 548 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI)) 549 return false; 550 551 int32_t Imm; 552 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 553 const MachineOperand *Op = Defs[I].first; 554 if (!Op->isImm()) 555 return false; 556 557 auto SubImm = Op->getImm(); 558 if (!I) { 559 Imm = SubImm; 560 if (!TII->isInlineConstant(*Op, OpTy) || 561 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 562 return false; 563 564 continue; 565 } 566 if (Imm != SubImm) 567 return false; // Can only fold splat constants 568 } 569 570 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 571 return true; 572 } 573 574 void SIFoldOperands::foldOperand( 575 MachineOperand &OpToFold, 576 MachineInstr *UseMI, 577 int UseOpIdx, 578 SmallVectorImpl<FoldCandidate> &FoldList, 579 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 580 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 581 582 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 583 return; 584 585 // FIXME: Fold operands with subregs. 586 if (UseOp.isReg() && OpToFold.isReg()) { 587 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 588 return; 589 } 590 591 // Special case for REG_SEQUENCE: We can't fold literals into 592 // REG_SEQUENCE instructions, so we have to fold them into the 593 // uses of REG_SEQUENCE. 594 if (UseMI->isRegSequence()) { 595 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 596 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 597 598 MachineRegisterInfo::use_nodbg_iterator Next; 599 for (MachineRegisterInfo::use_nodbg_iterator 600 RSUse = MRI->use_nodbg_begin(RegSeqDstReg), RSE = MRI->use_nodbg_end(); 601 RSUse != RSE; RSUse = Next) { 602 Next = std::next(RSUse); 603 604 MachineInstr *RSUseMI = RSUse->getParent(); 605 606 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 607 RSUse.getOperandNo(), FoldList)) 608 continue; 609 610 if (RSUse->getSubReg() != RegSeqDstSubReg) 611 continue; 612 613 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 614 CopiesToReplace); 615 } 616 617 return; 618 } 619 620 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 621 return; 622 623 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 624 // Sanity check that this is a stack access. 625 // FIXME: Should probably use stack pseudos before frame lowering. 626 627 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 628 MFI->getScratchRSrcReg()) 629 return; 630 631 // Ensure this is either relative to the current frame or the current wave. 632 MachineOperand &SOff = 633 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 634 if ((!SOff.isReg() || SOff.getReg() != MFI->getStackPtrOffsetReg()) && 635 (!SOff.isImm() || SOff.getImm() != 0)) 636 return; 637 638 // A frame index will resolve to a positive constant, so it should always be 639 // safe to fold the addressing mode, even pre-GFX9. 640 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 641 642 // If this is relative to the current wave, update it to be relative to the 643 // current frame. 644 if (SOff.isImm()) 645 SOff.ChangeToRegister(MFI->getStackPtrOffsetReg(), false); 646 return; 647 } 648 649 bool FoldingImmLike = 650 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 651 652 if (FoldingImmLike && UseMI->isCopy()) { 653 Register DestReg = UseMI->getOperand(0).getReg(); 654 Register SrcReg = UseMI->getOperand(1).getReg(); 655 assert(SrcReg.isVirtual()); 656 657 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); 658 659 // Don't fold into a copy to a physical register with the same class. Doing 660 // so would interfere with the register coalescer's logic which would avoid 661 // redundant initalizations. 662 if (DestReg.isPhysical() && SrcRC->contains(DestReg)) 663 return; 664 665 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); 666 if (!DestReg.isPhysical()) { 667 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 668 MachineRegisterInfo::use_nodbg_iterator NextUse; 669 SmallVector<FoldCandidate, 4> CopyUses; 670 for (MachineRegisterInfo::use_nodbg_iterator Use = MRI->use_nodbg_begin(DestReg), 671 E = MRI->use_nodbg_end(); 672 Use != E; Use = NextUse) { 673 NextUse = std::next(Use); 674 // There's no point trying to fold into an implicit operand. 675 if (Use->isImplicit()) 676 continue; 677 678 FoldCandidate FC = FoldCandidate(Use->getParent(), Use.getOperandNo(), 679 &UseMI->getOperand(1)); 680 CopyUses.push_back(FC); 681 } 682 for (auto &F : CopyUses) { 683 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList, CopiesToReplace); 684 } 685 } 686 687 if (DestRC == &AMDGPU::AGPR_32RegClass && 688 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 689 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 690 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 691 CopiesToReplace.push_back(UseMI); 692 return; 693 } 694 } 695 696 // In order to fold immediates into copies, we need to change the 697 // copy to a MOV. 698 699 unsigned MovOp = TII->getMovOpcode(DestRC); 700 if (MovOp == AMDGPU::COPY) 701 return; 702 703 UseMI->setDesc(TII->get(MovOp)); 704 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 705 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 706 while (ImpOpI != ImpOpE) { 707 MachineInstr::mop_iterator Tmp = ImpOpI; 708 ImpOpI++; 709 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); 710 } 711 CopiesToReplace.push_back(UseMI); 712 } else { 713 if (UseMI->isCopy() && OpToFold.isReg() && 714 UseMI->getOperand(0).getReg().isVirtual() && 715 !UseMI->getOperand(1).getSubReg()) { 716 LLVM_DEBUG(dbgs() << "Folding " << OpToFold 717 << "\n into " << *UseMI << '\n'); 718 unsigned Size = TII->getOpSize(*UseMI, 1); 719 Register UseReg = OpToFold.getReg(); 720 UseMI->getOperand(1).setReg(UseReg); 721 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 722 UseMI->getOperand(1).setIsKill(false); 723 CopiesToReplace.push_back(UseMI); 724 OpToFold.setIsKill(false); 725 726 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 727 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 728 // its initializers right here, so we will rematerialize immediates and 729 // avoid copies via different reg classes. 730 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 731 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 732 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII, 733 *MRI)) { 734 const DebugLoc &DL = UseMI->getDebugLoc(); 735 MachineBasicBlock &MBB = *UseMI->getParent(); 736 737 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 738 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 739 UseMI->RemoveOperand(I); 740 741 MachineInstrBuilder B(*MBB.getParent(), UseMI); 742 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 743 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 744 for (unsigned I = 0; I < Size / 4; ++I) { 745 MachineOperand *Def = Defs[I].first; 746 TargetInstrInfo::RegSubRegPair CopyToVGPR; 747 if (Def->isImm() && 748 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 749 int64_t Imm = Def->getImm(); 750 751 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 752 BuildMI(MBB, UseMI, DL, 753 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addImm(Imm); 754 B.addReg(Tmp); 755 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 756 auto Src = getRegSubRegPair(*Def); 757 Def->setIsKill(false); 758 if (!SeenAGPRs.insert(Src)) { 759 // We cannot build a reg_sequence out of the same registers, they 760 // must be copied. Better do it here before copyPhysReg() created 761 // several reads to do the AGPR->VGPR->AGPR copy. 762 CopyToVGPR = Src; 763 } else { 764 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 765 Src.SubReg); 766 } 767 } else { 768 assert(Def->isReg()); 769 Def->setIsKill(false); 770 auto Src = getRegSubRegPair(*Def); 771 772 // Direct copy from SGPR to AGPR is not possible. To avoid creation 773 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 774 // create a copy here and track if we already have such a copy. 775 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 776 CopyToVGPR = Src; 777 } else { 778 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 779 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 780 B.addReg(Tmp); 781 } 782 } 783 784 if (CopyToVGPR.Reg) { 785 Register Vgpr; 786 if (VGPRCopies.count(CopyToVGPR)) { 787 Vgpr = VGPRCopies[CopyToVGPR]; 788 } else { 789 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 790 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 791 VGPRCopies[CopyToVGPR] = Vgpr; 792 } 793 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 794 BuildMI(MBB, UseMI, DL, 795 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addReg(Vgpr); 796 B.addReg(Tmp); 797 } 798 799 B.addImm(Defs[I].second); 800 } 801 LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n'); 802 return; 803 } 804 805 if (Size != 4) 806 return; 807 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 808 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 809 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 810 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 811 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 812 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32)); 813 return; 814 } 815 816 unsigned UseOpc = UseMI->getOpcode(); 817 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 818 (UseOpc == AMDGPU::V_READLANE_B32 && 819 (int)UseOpIdx == 820 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 821 // %vgpr = V_MOV_B32 imm 822 // %sgpr = V_READFIRSTLANE_B32 %vgpr 823 // => 824 // %sgpr = S_MOV_B32 imm 825 if (FoldingImmLike) { 826 if (execMayBeModifiedBeforeUse(*MRI, 827 UseMI->getOperand(UseOpIdx).getReg(), 828 *OpToFold.getParent(), 829 *UseMI)) 830 return; 831 832 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 833 834 if (OpToFold.isImm()) 835 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 836 else 837 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 838 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 839 return; 840 } 841 842 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 843 if (execMayBeModifiedBeforeUse(*MRI, 844 UseMI->getOperand(UseOpIdx).getReg(), 845 *OpToFold.getParent(), 846 *UseMI)) 847 return; 848 849 // %vgpr = COPY %sgpr0 850 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 851 // => 852 // %sgpr1 = COPY %sgpr0 853 UseMI->setDesc(TII->get(AMDGPU::COPY)); 854 UseMI->getOperand(1).setReg(OpToFold.getReg()); 855 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 856 UseMI->getOperand(1).setIsKill(false); 857 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 858 return; 859 } 860 } 861 862 const MCInstrDesc &UseDesc = UseMI->getDesc(); 863 864 // Don't fold into target independent nodes. Target independent opcodes 865 // don't have defined register classes. 866 if (UseDesc.isVariadic() || 867 UseOp.isImplicit() || 868 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 869 return; 870 } 871 872 if (!FoldingImmLike) { 873 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 874 875 // FIXME: We could try to change the instruction from 64-bit to 32-bit 876 // to enable more folding opportunites. The shrink operands pass 877 // already does this. 878 return; 879 } 880 881 882 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 883 const TargetRegisterClass *FoldRC = 884 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 885 886 // Split 64-bit constants into 32-bits for folding. 887 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 888 Register UseReg = UseOp.getReg(); 889 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 890 891 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 892 return; 893 894 APInt Imm(64, OpToFold.getImm()); 895 if (UseOp.getSubReg() == AMDGPU::sub0) { 896 Imm = Imm.getLoBits(32); 897 } else { 898 assert(UseOp.getSubReg() == AMDGPU::sub1); 899 Imm = Imm.getHiBits(32); 900 } 901 902 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 903 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 904 return; 905 } 906 907 908 909 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 910 } 911 912 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 913 uint32_t LHS, uint32_t RHS) { 914 switch (Opcode) { 915 case AMDGPU::V_AND_B32_e64: 916 case AMDGPU::V_AND_B32_e32: 917 case AMDGPU::S_AND_B32: 918 Result = LHS & RHS; 919 return true; 920 case AMDGPU::V_OR_B32_e64: 921 case AMDGPU::V_OR_B32_e32: 922 case AMDGPU::S_OR_B32: 923 Result = LHS | RHS; 924 return true; 925 case AMDGPU::V_XOR_B32_e64: 926 case AMDGPU::V_XOR_B32_e32: 927 case AMDGPU::S_XOR_B32: 928 Result = LHS ^ RHS; 929 return true; 930 case AMDGPU::S_XNOR_B32: 931 Result = ~(LHS ^ RHS); 932 return true; 933 case AMDGPU::S_NAND_B32: 934 Result = ~(LHS & RHS); 935 return true; 936 case AMDGPU::S_NOR_B32: 937 Result = ~(LHS | RHS); 938 return true; 939 case AMDGPU::S_ANDN2_B32: 940 Result = LHS & ~RHS; 941 return true; 942 case AMDGPU::S_ORN2_B32: 943 Result = LHS | ~RHS; 944 return true; 945 case AMDGPU::V_LSHL_B32_e64: 946 case AMDGPU::V_LSHL_B32_e32: 947 case AMDGPU::S_LSHL_B32: 948 // The instruction ignores the high bits for out of bounds shifts. 949 Result = LHS << (RHS & 31); 950 return true; 951 case AMDGPU::V_LSHLREV_B32_e64: 952 case AMDGPU::V_LSHLREV_B32_e32: 953 Result = RHS << (LHS & 31); 954 return true; 955 case AMDGPU::V_LSHR_B32_e64: 956 case AMDGPU::V_LSHR_B32_e32: 957 case AMDGPU::S_LSHR_B32: 958 Result = LHS >> (RHS & 31); 959 return true; 960 case AMDGPU::V_LSHRREV_B32_e64: 961 case AMDGPU::V_LSHRREV_B32_e32: 962 Result = RHS >> (LHS & 31); 963 return true; 964 case AMDGPU::V_ASHR_I32_e64: 965 case AMDGPU::V_ASHR_I32_e32: 966 case AMDGPU::S_ASHR_I32: 967 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 968 return true; 969 case AMDGPU::V_ASHRREV_I32_e64: 970 case AMDGPU::V_ASHRREV_I32_e32: 971 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 972 return true; 973 default: 974 return false; 975 } 976 } 977 978 static unsigned getMovOpc(bool IsScalar) { 979 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 980 } 981 982 /// Remove any leftover implicit operands from mutating the instruction. e.g. 983 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 984 /// anymore. 985 static void stripExtraCopyOperands(MachineInstr &MI) { 986 const MCInstrDesc &Desc = MI.getDesc(); 987 unsigned NumOps = Desc.getNumOperands() + 988 Desc.getNumImplicitUses() + 989 Desc.getNumImplicitDefs(); 990 991 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 992 MI.RemoveOperand(I); 993 } 994 995 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 996 MI.setDesc(NewDesc); 997 stripExtraCopyOperands(MI); 998 } 999 1000 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 1001 MachineOperand &Op) { 1002 if (Op.isReg()) { 1003 // If this has a subregister, it obviously is a register source. 1004 if (Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual()) 1005 return &Op; 1006 1007 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 1008 if (Def && Def->isMoveImmediate()) { 1009 MachineOperand &ImmSrc = Def->getOperand(1); 1010 if (ImmSrc.isImm()) 1011 return &ImmSrc; 1012 } 1013 } 1014 1015 return &Op; 1016 } 1017 1018 // Try to simplify operations with a constant that may appear after instruction 1019 // selection. 1020 // TODO: See if a frame index with a fixed offset can fold. 1021 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 1022 const SIInstrInfo *TII, 1023 MachineInstr *MI, 1024 MachineOperand *ImmOp) { 1025 unsigned Opc = MI->getOpcode(); 1026 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1027 Opc == AMDGPU::S_NOT_B32) { 1028 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 1029 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1030 return true; 1031 } 1032 1033 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1034 if (Src1Idx == -1) 1035 return false; 1036 1037 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1038 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 1039 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 1040 1041 if (!Src0->isImm() && !Src1->isImm()) 1042 return false; 1043 1044 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32 || 1045 MI->getOpcode() == AMDGPU::V_LSHL_ADD_U32 || 1046 MI->getOpcode() == AMDGPU::V_AND_OR_B32) { 1047 if (Src0->isImm() && Src0->getImm() == 0) { 1048 // v_lshl_or_b32 0, X, Y -> copy Y 1049 // v_lshl_or_b32 0, X, K -> v_mov_b32 K 1050 // v_lshl_add_b32 0, X, Y -> copy Y 1051 // v_lshl_add_b32 0, X, K -> v_mov_b32 K 1052 // v_and_or_b32 0, X, Y -> copy Y 1053 // v_and_or_b32 0, X, K -> v_mov_b32 K 1054 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg(); 1055 MI->RemoveOperand(Src1Idx); 1056 MI->RemoveOperand(Src0Idx); 1057 1058 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32)); 1059 return true; 1060 } 1061 } 1062 1063 // and k0, k1 -> v_mov_b32 (k0 & k1) 1064 // or k0, k1 -> v_mov_b32 (k0 | k1) 1065 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1066 if (Src0->isImm() && Src1->isImm()) { 1067 int32_t NewImm; 1068 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1069 return false; 1070 1071 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 1072 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 1073 1074 // Be careful to change the right operand, src0 may belong to a different 1075 // instruction. 1076 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1077 MI->RemoveOperand(Src1Idx); 1078 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1079 return true; 1080 } 1081 1082 if (!MI->isCommutable()) 1083 return false; 1084 1085 if (Src0->isImm() && !Src1->isImm()) { 1086 std::swap(Src0, Src1); 1087 std::swap(Src0Idx, Src1Idx); 1088 } 1089 1090 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1091 if (Opc == AMDGPU::V_OR_B32_e64 || 1092 Opc == AMDGPU::V_OR_B32_e32 || 1093 Opc == AMDGPU::S_OR_B32) { 1094 if (Src1Val == 0) { 1095 // y = or x, 0 => y = copy x 1096 MI->RemoveOperand(Src1Idx); 1097 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1098 } else if (Src1Val == -1) { 1099 // y = or x, -1 => y = v_mov_b32 -1 1100 MI->RemoveOperand(Src1Idx); 1101 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1102 } else 1103 return false; 1104 1105 return true; 1106 } 1107 1108 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 1109 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 1110 MI->getOpcode() == AMDGPU::S_AND_B32) { 1111 if (Src1Val == 0) { 1112 // y = and x, 0 => y = v_mov_b32 0 1113 MI->RemoveOperand(Src0Idx); 1114 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1115 } else if (Src1Val == -1) { 1116 // y = and x, -1 => y = copy x 1117 MI->RemoveOperand(Src1Idx); 1118 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1119 stripExtraCopyOperands(*MI); 1120 } else 1121 return false; 1122 1123 return true; 1124 } 1125 1126 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 1127 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 1128 MI->getOpcode() == AMDGPU::S_XOR_B32) { 1129 if (Src1Val == 0) { 1130 // y = xor x, 0 => y = copy x 1131 MI->RemoveOperand(Src1Idx); 1132 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1133 return true; 1134 } 1135 } 1136 1137 return false; 1138 } 1139 1140 // Try to fold an instruction into a simpler one 1141 static bool tryFoldInst(const SIInstrInfo *TII, 1142 MachineInstr *MI) { 1143 unsigned Opc = MI->getOpcode(); 1144 1145 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 1146 Opc == AMDGPU::V_CNDMASK_B32_e64 || 1147 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 1148 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1149 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 1150 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1151 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1152 if (Src1->isIdenticalTo(*Src0) && 1153 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && 1154 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { 1155 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 1156 auto &NewDesc = 1157 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1158 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1159 if (Src2Idx != -1) 1160 MI->RemoveOperand(Src2Idx); 1161 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1162 if (Src1ModIdx != -1) 1163 MI->RemoveOperand(Src1ModIdx); 1164 if (Src0ModIdx != -1) 1165 MI->RemoveOperand(Src0ModIdx); 1166 mutateCopyOp(*MI, NewDesc); 1167 LLVM_DEBUG(dbgs() << *MI << '\n'); 1168 return true; 1169 } 1170 } 1171 1172 return false; 1173 } 1174 1175 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 1176 MachineOperand &OpToFold) const { 1177 // We need mutate the operands of new mov instructions to add implicit 1178 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1179 // this. 1180 SmallVector<MachineInstr *, 4> CopiesToReplace; 1181 SmallVector<FoldCandidate, 4> FoldList; 1182 MachineOperand &Dst = MI.getOperand(0); 1183 1184 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1185 if (FoldingImm) { 1186 unsigned NumLiteralUses = 0; 1187 MachineOperand *NonInlineUse = nullptr; 1188 int NonInlineUseOpNo = -1; 1189 1190 MachineRegisterInfo::use_nodbg_iterator NextUse; 1191 for (MachineRegisterInfo::use_nodbg_iterator 1192 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end(); 1193 Use != E; Use = NextUse) { 1194 NextUse = std::next(Use); 1195 MachineInstr *UseMI = Use->getParent(); 1196 unsigned OpNo = Use.getOperandNo(); 1197 1198 // Folding the immediate may reveal operations that can be constant 1199 // folded or replaced with a copy. This can happen for example after 1200 // frame indices are lowered to constants or from splitting 64-bit 1201 // constants. 1202 // 1203 // We may also encounter cases where one or both operands are 1204 // immediates materialized into a register, which would ordinarily not 1205 // be folded due to multiple uses or operand constraints. 1206 1207 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 1208 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 1209 1210 // Some constant folding cases change the same immediate's use to a new 1211 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 1212 // again. The same constant folded instruction could also have a second 1213 // use operand. 1214 NextUse = MRI->use_nodbg_begin(Dst.getReg()); 1215 FoldList.clear(); 1216 continue; 1217 } 1218 1219 // Try to fold any inline immediate uses, and then only fold other 1220 // constants if they have one use. 1221 // 1222 // The legality of the inline immediate must be checked based on the use 1223 // operand, not the defining instruction, because 32-bit instructions 1224 // with 32-bit inline immediate sources may be used to materialize 1225 // constants used in 16-bit operands. 1226 // 1227 // e.g. it is unsafe to fold: 1228 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1229 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1230 1231 // Folding immediates with more than one use will increase program size. 1232 // FIXME: This will also reduce register usage, which may be better 1233 // in some cases. A better heuristic is needed. 1234 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1235 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1236 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1237 foldOperand(OpToFold, UseMI, OpNo, FoldList, 1238 CopiesToReplace); 1239 } else { 1240 if (++NumLiteralUses == 1) { 1241 NonInlineUse = &*Use; 1242 NonInlineUseOpNo = OpNo; 1243 } 1244 } 1245 } 1246 1247 if (NumLiteralUses == 1) { 1248 MachineInstr *UseMI = NonInlineUse->getParent(); 1249 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1250 } 1251 } else { 1252 // Folding register. 1253 SmallVector <MachineRegisterInfo::use_nodbg_iterator, 4> UsesToProcess; 1254 for (MachineRegisterInfo::use_nodbg_iterator 1255 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end(); 1256 Use != E; ++Use) { 1257 UsesToProcess.push_back(Use); 1258 } 1259 for (auto U : UsesToProcess) { 1260 MachineInstr *UseMI = U->getParent(); 1261 1262 foldOperand(OpToFold, UseMI, U.getOperandNo(), 1263 FoldList, CopiesToReplace); 1264 } 1265 } 1266 1267 MachineFunction *MF = MI.getParent()->getParent(); 1268 // Make sure we add EXEC uses to any new v_mov instructions created. 1269 for (MachineInstr *Copy : CopiesToReplace) 1270 Copy->addImplicitDefUseOperands(*MF); 1271 1272 for (FoldCandidate &Fold : FoldList) { 1273 assert(!Fold.isReg() || Fold.OpToFold); 1274 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { 1275 Register Reg = Fold.OpToFold->getReg(); 1276 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1277 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1278 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1279 continue; 1280 } 1281 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1282 // Clear kill flags. 1283 if (Fold.isReg()) { 1284 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1285 // FIXME: Probably shouldn't bother trying to fold if not an 1286 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1287 // copies. 1288 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1289 } 1290 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1291 << static_cast<int>(Fold.UseOpNo) << " of " 1292 << *Fold.UseMI << '\n'); 1293 tryFoldInst(TII, Fold.UseMI); 1294 } else if (Fold.isCommuted()) { 1295 // Restoring instruction's original operand order if fold has failed. 1296 TII->commuteInstruction(*Fold.UseMI, false); 1297 } 1298 } 1299 } 1300 1301 // Clamp patterns are canonically selected to v_max_* instructions, so only 1302 // handle them. 1303 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1304 unsigned Op = MI.getOpcode(); 1305 switch (Op) { 1306 case AMDGPU::V_MAX_F32_e64: 1307 case AMDGPU::V_MAX_F16_e64: 1308 case AMDGPU::V_MAX_F64: 1309 case AMDGPU::V_PK_MAX_F16: { 1310 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1311 return nullptr; 1312 1313 // Make sure sources are identical. 1314 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1315 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1316 if (!Src0->isReg() || !Src1->isReg() || 1317 Src0->getReg() != Src1->getReg() || 1318 Src0->getSubReg() != Src1->getSubReg() || 1319 Src0->getSubReg() != AMDGPU::NoSubRegister) 1320 return nullptr; 1321 1322 // Can't fold up if we have modifiers. 1323 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1324 return nullptr; 1325 1326 unsigned Src0Mods 1327 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1328 unsigned Src1Mods 1329 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1330 1331 // Having a 0 op_sel_hi would require swizzling the output in the source 1332 // instruction, which we can't do. 1333 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1334 : 0u; 1335 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1336 return nullptr; 1337 return Src0; 1338 } 1339 default: 1340 return nullptr; 1341 } 1342 } 1343 1344 // We obviously have multiple uses in a clamp since the register is used twice 1345 // in the same instruction. 1346 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 1347 int Count = 0; 1348 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 1349 I != E; ++I) { 1350 if (++Count > 1) 1351 return false; 1352 } 1353 1354 return true; 1355 } 1356 1357 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1358 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1359 const MachineOperand *ClampSrc = isClamp(MI); 1360 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 1361 return false; 1362 1363 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1364 1365 // The type of clamp must be compatible. 1366 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1367 return false; 1368 1369 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1370 if (!DefClamp) 1371 return false; 1372 1373 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 1374 << '\n'); 1375 1376 // Clamp is applied after omod, so it is OK if omod is set. 1377 DefClamp->setImm(1); 1378 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1379 MI.eraseFromParent(); 1380 return true; 1381 } 1382 1383 static int getOModValue(unsigned Opc, int64_t Val) { 1384 switch (Opc) { 1385 case AMDGPU::V_MUL_F32_e64: { 1386 switch (static_cast<uint32_t>(Val)) { 1387 case 0x3f000000: // 0.5 1388 return SIOutMods::DIV2; 1389 case 0x40000000: // 2.0 1390 return SIOutMods::MUL2; 1391 case 0x40800000: // 4.0 1392 return SIOutMods::MUL4; 1393 default: 1394 return SIOutMods::NONE; 1395 } 1396 } 1397 case AMDGPU::V_MUL_F16_e64: { 1398 switch (static_cast<uint16_t>(Val)) { 1399 case 0x3800: // 0.5 1400 return SIOutMods::DIV2; 1401 case 0x4000: // 2.0 1402 return SIOutMods::MUL2; 1403 case 0x4400: // 4.0 1404 return SIOutMods::MUL4; 1405 default: 1406 return SIOutMods::NONE; 1407 } 1408 } 1409 default: 1410 llvm_unreachable("invalid mul opcode"); 1411 } 1412 } 1413 1414 // FIXME: Does this really not support denormals with f16? 1415 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1416 // handled, so will anything other than that break? 1417 std::pair<const MachineOperand *, int> 1418 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1419 unsigned Op = MI.getOpcode(); 1420 switch (Op) { 1421 case AMDGPU::V_MUL_F32_e64: 1422 case AMDGPU::V_MUL_F16_e64: { 1423 // If output denormals are enabled, omod is ignored. 1424 if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1425 (Op == AMDGPU::V_MUL_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1426 return std::make_pair(nullptr, SIOutMods::NONE); 1427 1428 const MachineOperand *RegOp = nullptr; 1429 const MachineOperand *ImmOp = nullptr; 1430 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1431 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1432 if (Src0->isImm()) { 1433 ImmOp = Src0; 1434 RegOp = Src1; 1435 } else if (Src1->isImm()) { 1436 ImmOp = Src1; 1437 RegOp = Src0; 1438 } else 1439 return std::make_pair(nullptr, SIOutMods::NONE); 1440 1441 int OMod = getOModValue(Op, ImmOp->getImm()); 1442 if (OMod == SIOutMods::NONE || 1443 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1444 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1445 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1446 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1447 return std::make_pair(nullptr, SIOutMods::NONE); 1448 1449 return std::make_pair(RegOp, OMod); 1450 } 1451 case AMDGPU::V_ADD_F32_e64: 1452 case AMDGPU::V_ADD_F16_e64: { 1453 // If output denormals are enabled, omod is ignored. 1454 if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1455 (Op == AMDGPU::V_ADD_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1456 return std::make_pair(nullptr, SIOutMods::NONE); 1457 1458 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1459 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1460 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1461 1462 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1463 Src0->getSubReg() == Src1->getSubReg() && 1464 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1465 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1466 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1467 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1468 return std::make_pair(Src0, SIOutMods::MUL2); 1469 1470 return std::make_pair(nullptr, SIOutMods::NONE); 1471 } 1472 default: 1473 return std::make_pair(nullptr, SIOutMods::NONE); 1474 } 1475 } 1476 1477 // FIXME: Does this need to check IEEE bit on function? 1478 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1479 const MachineOperand *RegOp; 1480 int OMod; 1481 std::tie(RegOp, OMod) = isOMod(MI); 1482 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1483 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1484 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1485 return false; 1486 1487 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1488 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1489 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1490 return false; 1491 1492 // Clamp is applied after omod. If the source already has clamp set, don't 1493 // fold it. 1494 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1495 return false; 1496 1497 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1498 1499 DefOMod->setImm(OMod); 1500 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1501 MI.eraseFromParent(); 1502 return true; 1503 } 1504 1505 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1506 if (skipFunction(MF.getFunction())) 1507 return false; 1508 1509 MRI = &MF.getRegInfo(); 1510 ST = &MF.getSubtarget<GCNSubtarget>(); 1511 TII = ST->getInstrInfo(); 1512 TRI = &TII->getRegisterInfo(); 1513 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1514 1515 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1516 // correctly handle signed zeros. 1517 // 1518 // FIXME: Also need to check strictfp 1519 bool IsIEEEMode = MFI->getMode().IEEE; 1520 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1521 1522 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1523 MachineBasicBlock::iterator I, Next; 1524 1525 MachineOperand *CurrentKnownM0Val = nullptr; 1526 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1527 Next = std::next(I); 1528 MachineInstr &MI = *I; 1529 1530 tryFoldInst(TII, &MI); 1531 1532 if (!TII->isFoldableCopy(MI)) { 1533 // Saw an unknown clobber of m0, so we no longer know what it is. 1534 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 1535 CurrentKnownM0Val = nullptr; 1536 1537 // TODO: Omod might be OK if there is NSZ only on the source 1538 // instruction, and not the omod multiply. 1539 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1540 !tryFoldOMod(MI)) 1541 tryFoldClamp(MI); 1542 1543 continue; 1544 } 1545 1546 // Specially track simple redefs of m0 to the same value in a block, so we 1547 // can erase the later ones. 1548 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1549 MachineOperand &NewM0Val = MI.getOperand(1); 1550 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1551 MI.eraseFromParent(); 1552 continue; 1553 } 1554 1555 // We aren't tracking other physical registers 1556 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? 1557 nullptr : &NewM0Val; 1558 continue; 1559 } 1560 1561 MachineOperand &OpToFold = MI.getOperand(1); 1562 bool FoldingImm = 1563 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1564 1565 // FIXME: We could also be folding things like TargetIndexes. 1566 if (!FoldingImm && !OpToFold.isReg()) 1567 continue; 1568 1569 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) 1570 continue; 1571 1572 // Prevent folding operands backwards in the function. For example, 1573 // the COPY opcode must not be replaced by 1 in this example: 1574 // 1575 // %3 = COPY %vgpr0; VGPR_32:%3 1576 // ... 1577 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1578 MachineOperand &Dst = MI.getOperand(0); 1579 if (Dst.isReg() && !Dst.getReg().isVirtual()) 1580 continue; 1581 1582 foldInstOperand(MI, OpToFold); 1583 } 1584 } 1585 return true; 1586 } 1587