1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "AMDGPUSubtarget.h" 13 #include "SIInstrInfo.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/CodeGen/MachineFunctionPass.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "si-fold-operands" 26 using namespace llvm; 27 28 namespace { 29 30 struct FoldCandidate { 31 MachineInstr *UseMI; 32 union { 33 MachineOperand *OpToFold; 34 uint64_t ImmToFold; 35 int FrameIndexToFold; 36 }; 37 int ShrinkOpcode; 38 unsigned UseOpNo; 39 MachineOperand::MachineOperandType Kind; 40 bool Commuted; 41 42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 43 bool Commuted_ = false, 44 int ShrinkOp = -1) : 45 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 46 Kind(FoldOp->getType()), 47 Commuted(Commuted_) { 48 if (FoldOp->isImm()) { 49 ImmToFold = FoldOp->getImm(); 50 } else if (FoldOp->isFI()) { 51 FrameIndexToFold = FoldOp->getIndex(); 52 } else { 53 assert(FoldOp->isReg() || FoldOp->isGlobal()); 54 OpToFold = FoldOp; 55 } 56 } 57 58 bool isFI() const { 59 return Kind == MachineOperand::MO_FrameIndex; 60 } 61 62 bool isImm() const { 63 return Kind == MachineOperand::MO_Immediate; 64 } 65 66 bool isReg() const { 67 return Kind == MachineOperand::MO_Register; 68 } 69 70 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 71 72 bool isCommuted() const { 73 return Commuted; 74 } 75 76 bool needsShrink() const { 77 return ShrinkOpcode != -1; 78 } 79 80 int getShrinkOpcode() const { 81 return ShrinkOpcode; 82 } 83 }; 84 85 class SIFoldOperands : public MachineFunctionPass { 86 public: 87 static char ID; 88 MachineRegisterInfo *MRI; 89 const SIInstrInfo *TII; 90 const SIRegisterInfo *TRI; 91 const GCNSubtarget *ST; 92 const SIMachineFunctionInfo *MFI; 93 94 void foldOperand(MachineOperand &OpToFold, 95 MachineInstr *UseMI, 96 int UseOpIdx, 97 SmallVectorImpl<FoldCandidate> &FoldList, 98 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 99 100 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 101 102 const MachineOperand *isClamp(const MachineInstr &MI) const; 103 bool tryFoldClamp(MachineInstr &MI); 104 105 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 106 bool tryFoldOMod(MachineInstr &MI); 107 108 public: 109 SIFoldOperands() : MachineFunctionPass(ID) { 110 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 111 } 112 113 bool runOnMachineFunction(MachineFunction &MF) override; 114 115 StringRef getPassName() const override { return "SI Fold Operands"; } 116 117 void getAnalysisUsage(AnalysisUsage &AU) const override { 118 AU.setPreservesCFG(); 119 MachineFunctionPass::getAnalysisUsage(AU); 120 } 121 }; 122 123 } // End anonymous namespace. 124 125 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 126 "SI Fold Operands", false, false) 127 128 char SIFoldOperands::ID = 0; 129 130 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 131 132 // Wrapper around isInlineConstant that understands special cases when 133 // instruction types are replaced during operand folding. 134 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 135 const MachineInstr &UseMI, 136 unsigned OpNo, 137 const MachineOperand &OpToFold) { 138 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 139 return true; 140 141 unsigned Opc = UseMI.getOpcode(); 142 switch (Opc) { 143 case AMDGPU::V_MAC_F32_e64: 144 case AMDGPU::V_MAC_F16_e64: 145 case AMDGPU::V_FMAC_F32_e64: 146 case AMDGPU::V_FMAC_F16_e64: { 147 // Special case for mac. Since this is replaced with mad when folded into 148 // src2, we need to check the legality for the final instruction. 149 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 150 if (static_cast<int>(OpNo) == Src2Idx) { 151 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 || 152 Opc == AMDGPU::V_FMAC_F16_e64; 153 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 || 154 Opc == AMDGPU::V_FMAC_F32_e64; 155 156 unsigned Opc = IsFMA ? 157 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) : 158 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 159 const MCInstrDesc &MadDesc = TII->get(Opc); 160 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 161 } 162 return false; 163 } 164 default: 165 return false; 166 } 167 } 168 169 // TODO: Add heuristic that the frame index might not fit in the addressing mode 170 // immediate offset to avoid materializing in loops. 171 static bool frameIndexMayFold(const SIInstrInfo *TII, 172 const MachineInstr &UseMI, 173 int OpNo, 174 const MachineOperand &OpToFold) { 175 return OpToFold.isFI() && 176 (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) && 177 OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr); 178 } 179 180 FunctionPass *llvm::createSIFoldOperandsPass() { 181 return new SIFoldOperands(); 182 } 183 184 static bool updateOperand(FoldCandidate &Fold, 185 const SIInstrInfo &TII, 186 const TargetRegisterInfo &TRI, 187 const GCNSubtarget &ST) { 188 MachineInstr *MI = Fold.UseMI; 189 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 190 assert(Old.isReg()); 191 192 if (Fold.isImm()) { 193 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 194 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 195 AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold), 196 ST.hasInv2PiInlineImm())) { 197 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 198 // already set. 199 unsigned Opcode = MI->getOpcode(); 200 int OpNo = MI->getOperandNo(&Old); 201 int ModIdx = -1; 202 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 203 ModIdx = AMDGPU::OpName::src0_modifiers; 204 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 205 ModIdx = AMDGPU::OpName::src1_modifiers; 206 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 207 ModIdx = AMDGPU::OpName::src2_modifiers; 208 assert(ModIdx != -1); 209 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 210 MachineOperand &Mod = MI->getOperand(ModIdx); 211 unsigned Val = Mod.getImm(); 212 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) 213 return false; 214 // Only apply the following transformation if that operand requries 215 // a packed immediate. 216 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 217 case AMDGPU::OPERAND_REG_IMM_V2FP16: 218 case AMDGPU::OPERAND_REG_IMM_V2INT16: 219 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 220 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 221 // If upper part is all zero we do not need op_sel_hi. 222 if (!isUInt<16>(Fold.ImmToFold)) { 223 if (!(Fold.ImmToFold & 0xffff)) { 224 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 225 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 226 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 227 return true; 228 } 229 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 230 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 231 return true; 232 } 233 break; 234 default: 235 break; 236 } 237 } 238 } 239 240 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 241 MachineBasicBlock *MBB = MI->getParent(); 242 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16); 243 if (Liveness != MachineBasicBlock::LQR_Dead) { 244 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 245 return false; 246 } 247 248 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 249 int Op32 = Fold.getShrinkOpcode(); 250 MachineOperand &Dst0 = MI->getOperand(0); 251 MachineOperand &Dst1 = MI->getOperand(1); 252 assert(Dst0.isDef() && Dst1.isDef()); 253 254 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 255 256 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 257 Register NewReg0 = MRI.createVirtualRegister(Dst0RC); 258 259 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 260 261 if (HaveNonDbgCarryUse) { 262 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 263 .addReg(AMDGPU::VCC, RegState::Kill); 264 } 265 266 // Keep the old instruction around to avoid breaking iterators, but 267 // replace it with a dummy instruction to remove uses. 268 // 269 // FIXME: We should not invert how this pass looks at operands to avoid 270 // this. Should track set of foldable movs instead of looking for uses 271 // when looking at a use. 272 Dst0.setReg(NewReg0); 273 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 274 MI->RemoveOperand(I); 275 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 276 277 if (Fold.isCommuted()) 278 TII.commuteInstruction(*Inst32, false); 279 return true; 280 } 281 282 assert(!Fold.needsShrink() && "not handled"); 283 284 if (Fold.isImm()) { 285 // FIXME: ChangeToImmediate should probably clear the subreg flags. It's 286 // reinterpreted as TargetFlags. 287 Old.setSubReg(0); 288 Old.ChangeToImmediate(Fold.ImmToFold); 289 return true; 290 } 291 292 if (Fold.isGlobal()) { 293 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 294 Fold.OpToFold->getTargetFlags()); 295 return true; 296 } 297 298 if (Fold.isFI()) { 299 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 300 return true; 301 } 302 303 MachineOperand *New = Fold.OpToFold; 304 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 305 Old.setIsUndef(New->isUndef()); 306 return true; 307 } 308 309 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 310 const MachineInstr *MI) { 311 for (auto Candidate : FoldList) { 312 if (Candidate.UseMI == MI) 313 return true; 314 } 315 return false; 316 } 317 318 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 319 MachineInstr *MI, unsigned OpNo, 320 MachineOperand *FoldOp, bool Commuted = false, 321 int ShrinkOp = -1) { 322 // Skip additional folding on the same operand. 323 for (FoldCandidate &Fold : FoldList) 324 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 325 return; 326 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 327 << " operand " << OpNo << "\n " << *MI << '\n'); 328 FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp)); 329 } 330 331 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 332 MachineInstr *MI, unsigned OpNo, 333 MachineOperand *OpToFold, 334 const SIInstrInfo *TII) { 335 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 336 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 337 unsigned Opc = MI->getOpcode(); 338 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 339 Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) && 340 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 341 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 || 342 Opc == AMDGPU::V_FMAC_F16_e64; 343 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 || 344 Opc == AMDGPU::V_FMAC_F32_e64; 345 unsigned NewOpc = IsFMA ? 346 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) : 347 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 348 349 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 350 // to fold the operand. 351 MI->setDesc(TII->get(NewOpc)); 352 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 353 if (FoldAsMAD) { 354 MI->untieRegOperand(OpNo); 355 return true; 356 } 357 MI->setDesc(TII->get(Opc)); 358 } 359 360 // Special case for s_setreg_b32 361 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 362 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 363 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 364 return true; 365 } 366 367 // If we are already folding into another operand of MI, then 368 // we can't commute the instruction, otherwise we risk making the 369 // other fold illegal. 370 if (isUseMIInFoldList(FoldList, MI)) 371 return false; 372 373 unsigned CommuteOpNo = OpNo; 374 375 // Operand is not legal, so try to commute the instruction to 376 // see if this makes it possible to fold. 377 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 378 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 379 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 380 381 if (CanCommute) { 382 if (CommuteIdx0 == OpNo) 383 CommuteOpNo = CommuteIdx1; 384 else if (CommuteIdx1 == OpNo) 385 CommuteOpNo = CommuteIdx0; 386 } 387 388 389 // One of operands might be an Imm operand, and OpNo may refer to it after 390 // the call of commuteInstruction() below. Such situations are avoided 391 // here explicitly as OpNo must be a register operand to be a candidate 392 // for memory folding. 393 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 394 !MI->getOperand(CommuteIdx1).isReg())) 395 return false; 396 397 if (!CanCommute || 398 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 399 return false; 400 401 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 402 if ((Opc == AMDGPU::V_ADD_CO_U32_e64 || 403 Opc == AMDGPU::V_SUB_CO_U32_e64 || 404 Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME 405 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 406 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 407 408 // Verify the other operand is a VGPR, otherwise we would violate the 409 // constant bus restriction. 410 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 411 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 412 if (!OtherOp.isReg() || 413 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 414 return false; 415 416 assert(MI->getOperand(1).isDef()); 417 418 // Make sure to get the 32-bit version of the commuted opcode. 419 unsigned MaybeCommutedOpc = MI->getOpcode(); 420 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 421 422 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 423 return true; 424 } 425 426 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 427 return false; 428 } 429 430 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true); 431 return true; 432 } 433 434 // Check the case where we might introduce a second constant operand to a 435 // scalar instruction 436 if (TII->isSALU(MI->getOpcode())) { 437 const MCInstrDesc &InstDesc = MI->getDesc(); 438 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo]; 439 const SIRegisterInfo &SRI = TII->getRegisterInfo(); 440 441 // Fine if the operand can be encoded as an inline constant 442 if (OpToFold->isImm()) { 443 if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) || 444 !TII->isInlineConstant(*OpToFold, OpInfo)) { 445 // Otherwise check for another constant 446 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 447 auto &Op = MI->getOperand(i); 448 if (OpNo != i && 449 TII->isLiteralConstantLike(Op, OpInfo)) { 450 return false; 451 } 452 } 453 } 454 } 455 } 456 457 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 458 return true; 459 } 460 461 // If the use operand doesn't care about the value, this may be an operand only 462 // used for register indexing, in which case it is unsafe to fold. 463 static bool isUseSafeToFold(const SIInstrInfo *TII, 464 const MachineInstr &MI, 465 const MachineOperand &UseMO) { 466 return !UseMO.isUndef() && !TII->isSDWA(MI); 467 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 468 } 469 470 // Find a def of the UseReg, check if it is a reg_seqence and find initializers 471 // for each subreg, tracking it to foldable inline immediate if possible. 472 // Returns true on success. 473 static bool getRegSeqInit( 474 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs, 475 Register UseReg, uint8_t OpTy, 476 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) { 477 MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); 478 if (!Def || !Def->isRegSequence()) 479 return false; 480 481 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 482 MachineOperand *Sub = &Def->getOperand(I); 483 assert (Sub->isReg()); 484 485 for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg()); 486 SubDef && Sub->isReg() && !Sub->getSubReg() && 487 TII->isFoldableCopy(*SubDef); 488 SubDef = MRI.getUniqueVRegDef(Sub->getReg())) { 489 MachineOperand *Op = &SubDef->getOperand(1); 490 if (Op->isImm()) { 491 if (TII->isInlineConstant(*Op, OpTy)) 492 Sub = Op; 493 break; 494 } 495 if (!Op->isReg()) 496 break; 497 Sub = Op; 498 } 499 500 Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm())); 501 } 502 503 return true; 504 } 505 506 static bool tryToFoldACImm(const SIInstrInfo *TII, 507 const MachineOperand &OpToFold, 508 MachineInstr *UseMI, 509 unsigned UseOpIdx, 510 SmallVectorImpl<FoldCandidate> &FoldList) { 511 const MCInstrDesc &Desc = UseMI->getDesc(); 512 const MCOperandInfo *OpInfo = Desc.OpInfo; 513 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 514 return false; 515 516 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 517 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 518 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) 519 return false; 520 521 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 522 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 523 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 524 return true; 525 } 526 527 if (!OpToFold.isReg()) 528 return false; 529 530 Register UseReg = OpToFold.getReg(); 531 if (!Register::isVirtualRegister(UseReg)) 532 return false; 533 534 if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) { 535 return FC.UseMI == UseMI; }) != FoldList.end()) 536 return false; 537 538 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 539 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 540 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI)) 541 return false; 542 543 int32_t Imm; 544 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 545 const MachineOperand *Op = Defs[I].first; 546 if (!Op->isImm()) 547 return false; 548 549 auto SubImm = Op->getImm(); 550 if (!I) { 551 Imm = SubImm; 552 if (!TII->isInlineConstant(*Op, OpTy) || 553 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 554 return false; 555 556 continue; 557 } 558 if (Imm != SubImm) 559 return false; // Can only fold splat constants 560 } 561 562 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 563 return true; 564 } 565 566 void SIFoldOperands::foldOperand( 567 MachineOperand &OpToFold, 568 MachineInstr *UseMI, 569 int UseOpIdx, 570 SmallVectorImpl<FoldCandidate> &FoldList, 571 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 572 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 573 574 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 575 return; 576 577 // FIXME: Fold operands with subregs. 578 if (UseOp.isReg() && OpToFold.isReg()) { 579 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 580 return; 581 } 582 583 // Special case for REG_SEQUENCE: We can't fold literals into 584 // REG_SEQUENCE instructions, so we have to fold them into the 585 // uses of REG_SEQUENCE. 586 if (UseMI->isRegSequence()) { 587 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 588 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 589 590 MachineRegisterInfo::use_iterator Next; 591 for (MachineRegisterInfo::use_iterator 592 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 593 RSUse != RSE; RSUse = Next) { 594 Next = std::next(RSUse); 595 596 MachineInstr *RSUseMI = RSUse->getParent(); 597 598 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 599 RSUse.getOperandNo(), FoldList)) 600 continue; 601 602 if (RSUse->getSubReg() != RegSeqDstSubReg) 603 continue; 604 605 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 606 CopiesToReplace); 607 } 608 609 return; 610 } 611 612 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 613 return; 614 615 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 616 // Sanity check that this is a stack access. 617 // FIXME: Should probably use stack pseudos before frame lowering. 618 619 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 620 MFI->getScratchRSrcReg()) 621 return; 622 623 // Ensure this is either relative to the current frame or the current wave. 624 MachineOperand &SOff = 625 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 626 if ((!SOff.isReg() || SOff.getReg() != MFI->getStackPtrOffsetReg()) && 627 (!SOff.isImm() || SOff.getImm() != 0)) 628 return; 629 630 // A frame index will resolve to a positive constant, so it should always be 631 // safe to fold the addressing mode, even pre-GFX9. 632 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 633 634 // If this is relative to the current wave, update it to be relative to the 635 // current frame. 636 if (SOff.isImm()) 637 SOff.ChangeToRegister(MFI->getStackPtrOffsetReg(), false); 638 return; 639 } 640 641 bool FoldingImmLike = 642 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 643 644 if (FoldingImmLike && UseMI->isCopy()) { 645 Register DestReg = UseMI->getOperand(0).getReg(); 646 647 // Don't fold into a copy to a physical register. Doing so would interfere 648 // with the register coalescer's logic which would avoid redundant 649 // initalizations. 650 if (DestReg.isPhysical()) 651 return; 652 653 const TargetRegisterClass *DestRC = MRI->getRegClass(DestReg); 654 655 Register SrcReg = UseMI->getOperand(1).getReg(); 656 if (SrcReg.isVirtual()) { // XXX - This can be an assert? 657 const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg); 658 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 659 MachineRegisterInfo::use_iterator NextUse; 660 SmallVector<FoldCandidate, 4> CopyUses; 661 for (MachineRegisterInfo::use_iterator 662 Use = MRI->use_begin(DestReg), E = MRI->use_end(); 663 Use != E; Use = NextUse) { 664 NextUse = std::next(Use); 665 666 // There's no point trying to fold into an implicit operand. 667 if (Use->isImplicit()) 668 continue; 669 670 FoldCandidate FC = FoldCandidate(Use->getParent(), 671 Use.getOperandNo(), &UseMI->getOperand(1)); 672 CopyUses.push_back(FC); 673 } 674 for (auto & F : CopyUses) { 675 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, 676 FoldList, CopiesToReplace); 677 } 678 } 679 } 680 681 if (DestRC == &AMDGPU::AGPR_32RegClass && 682 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 683 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 684 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 685 CopiesToReplace.push_back(UseMI); 686 return; 687 } 688 689 // In order to fold immediates into copies, we need to change the 690 // copy to a MOV. 691 692 unsigned MovOp = TII->getMovOpcode(DestRC); 693 if (MovOp == AMDGPU::COPY) 694 return; 695 696 UseMI->setDesc(TII->get(MovOp)); 697 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 698 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 699 while (ImpOpI != ImpOpE) { 700 MachineInstr::mop_iterator Tmp = ImpOpI; 701 ImpOpI++; 702 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); 703 } 704 CopiesToReplace.push_back(UseMI); 705 } else { 706 if (UseMI->isCopy() && OpToFold.isReg() && 707 UseMI->getOperand(0).getReg().isVirtual() && 708 !UseMI->getOperand(1).getSubReg()) { 709 LLVM_DEBUG(dbgs() << "Folding " << OpToFold 710 << "\n into " << *UseMI << '\n'); 711 unsigned Size = TII->getOpSize(*UseMI, 1); 712 Register UseReg = OpToFold.getReg(); 713 UseMI->getOperand(1).setReg(UseReg); 714 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 715 UseMI->getOperand(1).setIsKill(false); 716 CopiesToReplace.push_back(UseMI); 717 OpToFold.setIsKill(false); 718 719 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 720 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 721 // its initializers right here, so we will rematerialize immediates and 722 // avoid copies via different reg classes. 723 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 724 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 725 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII, 726 *MRI)) { 727 const DebugLoc &DL = UseMI->getDebugLoc(); 728 MachineBasicBlock &MBB = *UseMI->getParent(); 729 730 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 731 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 732 UseMI->RemoveOperand(I); 733 734 MachineInstrBuilder B(*MBB.getParent(), UseMI); 735 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 736 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 737 for (unsigned I = 0; I < Size / 4; ++I) { 738 MachineOperand *Def = Defs[I].first; 739 TargetInstrInfo::RegSubRegPair CopyToVGPR; 740 if (Def->isImm() && 741 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 742 int64_t Imm = Def->getImm(); 743 744 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 745 BuildMI(MBB, UseMI, DL, 746 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addImm(Imm); 747 B.addReg(Tmp); 748 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 749 auto Src = getRegSubRegPair(*Def); 750 Def->setIsKill(false); 751 if (!SeenAGPRs.insert(Src)) { 752 // We cannot build a reg_sequence out of the same registers, they 753 // must be copied. Better do it here before copyPhysReg() created 754 // several reads to do the AGPR->VGPR->AGPR copy. 755 CopyToVGPR = Src; 756 } else { 757 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 758 Src.SubReg); 759 } 760 } else { 761 assert(Def->isReg()); 762 Def->setIsKill(false); 763 auto Src = getRegSubRegPair(*Def); 764 765 // Direct copy from SGPR to AGPR is not possible. To avoid creation 766 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 767 // create a copy here and track if we already have such a copy. 768 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 769 CopyToVGPR = Src; 770 } else { 771 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 772 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 773 B.addReg(Tmp); 774 } 775 } 776 777 if (CopyToVGPR.Reg) { 778 Register Vgpr; 779 if (VGPRCopies.count(CopyToVGPR)) { 780 Vgpr = VGPRCopies[CopyToVGPR]; 781 } else { 782 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 783 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 784 VGPRCopies[CopyToVGPR] = Vgpr; 785 } 786 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 787 BuildMI(MBB, UseMI, DL, 788 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addReg(Vgpr); 789 B.addReg(Tmp); 790 } 791 792 B.addImm(Defs[I].second); 793 } 794 LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n'); 795 return; 796 } 797 798 if (Size != 4) 799 return; 800 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 801 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 802 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 803 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 804 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 805 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32)); 806 return; 807 } 808 809 unsigned UseOpc = UseMI->getOpcode(); 810 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 811 (UseOpc == AMDGPU::V_READLANE_B32 && 812 (int)UseOpIdx == 813 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 814 // %vgpr = V_MOV_B32 imm 815 // %sgpr = V_READFIRSTLANE_B32 %vgpr 816 // => 817 // %sgpr = S_MOV_B32 imm 818 if (FoldingImmLike) { 819 if (execMayBeModifiedBeforeUse(*MRI, 820 UseMI->getOperand(UseOpIdx).getReg(), 821 *OpToFold.getParent(), 822 *UseMI)) 823 return; 824 825 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 826 827 // FIXME: ChangeToImmediate should clear subreg 828 UseMI->getOperand(1).setSubReg(0); 829 if (OpToFold.isImm()) 830 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 831 else 832 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 833 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 834 return; 835 } 836 837 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 838 if (execMayBeModifiedBeforeUse(*MRI, 839 UseMI->getOperand(UseOpIdx).getReg(), 840 *OpToFold.getParent(), 841 *UseMI)) 842 return; 843 844 // %vgpr = COPY %sgpr0 845 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 846 // => 847 // %sgpr1 = COPY %sgpr0 848 UseMI->setDesc(TII->get(AMDGPU::COPY)); 849 UseMI->getOperand(1).setReg(OpToFold.getReg()); 850 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 851 UseMI->getOperand(1).setIsKill(false); 852 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 853 return; 854 } 855 } 856 857 const MCInstrDesc &UseDesc = UseMI->getDesc(); 858 859 // Don't fold into target independent nodes. Target independent opcodes 860 // don't have defined register classes. 861 if (UseDesc.isVariadic() || 862 UseOp.isImplicit() || 863 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 864 return; 865 } 866 867 if (!FoldingImmLike) { 868 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 869 870 // FIXME: We could try to change the instruction from 64-bit to 32-bit 871 // to enable more folding opportunites. The shrink operands pass 872 // already does this. 873 return; 874 } 875 876 877 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 878 const TargetRegisterClass *FoldRC = 879 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 880 881 // Split 64-bit constants into 32-bits for folding. 882 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 883 Register UseReg = UseOp.getReg(); 884 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 885 886 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 887 return; 888 889 APInt Imm(64, OpToFold.getImm()); 890 if (UseOp.getSubReg() == AMDGPU::sub0) { 891 Imm = Imm.getLoBits(32); 892 } else { 893 assert(UseOp.getSubReg() == AMDGPU::sub1); 894 Imm = Imm.getHiBits(32); 895 } 896 897 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 898 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 899 return; 900 } 901 902 903 904 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 905 } 906 907 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 908 uint32_t LHS, uint32_t RHS) { 909 switch (Opcode) { 910 case AMDGPU::V_AND_B32_e64: 911 case AMDGPU::V_AND_B32_e32: 912 case AMDGPU::S_AND_B32: 913 Result = LHS & RHS; 914 return true; 915 case AMDGPU::V_OR_B32_e64: 916 case AMDGPU::V_OR_B32_e32: 917 case AMDGPU::S_OR_B32: 918 Result = LHS | RHS; 919 return true; 920 case AMDGPU::V_XOR_B32_e64: 921 case AMDGPU::V_XOR_B32_e32: 922 case AMDGPU::S_XOR_B32: 923 Result = LHS ^ RHS; 924 return true; 925 case AMDGPU::S_XNOR_B32: 926 Result = ~(LHS ^ RHS); 927 return true; 928 case AMDGPU::S_NAND_B32: 929 Result = ~(LHS & RHS); 930 return true; 931 case AMDGPU::S_NOR_B32: 932 Result = ~(LHS | RHS); 933 return true; 934 case AMDGPU::S_ANDN2_B32: 935 Result = LHS & ~RHS; 936 return true; 937 case AMDGPU::S_ORN2_B32: 938 Result = LHS | ~RHS; 939 return true; 940 case AMDGPU::V_LSHL_B32_e64: 941 case AMDGPU::V_LSHL_B32_e32: 942 case AMDGPU::S_LSHL_B32: 943 // The instruction ignores the high bits for out of bounds shifts. 944 Result = LHS << (RHS & 31); 945 return true; 946 case AMDGPU::V_LSHLREV_B32_e64: 947 case AMDGPU::V_LSHLREV_B32_e32: 948 Result = RHS << (LHS & 31); 949 return true; 950 case AMDGPU::V_LSHR_B32_e64: 951 case AMDGPU::V_LSHR_B32_e32: 952 case AMDGPU::S_LSHR_B32: 953 Result = LHS >> (RHS & 31); 954 return true; 955 case AMDGPU::V_LSHRREV_B32_e64: 956 case AMDGPU::V_LSHRREV_B32_e32: 957 Result = RHS >> (LHS & 31); 958 return true; 959 case AMDGPU::V_ASHR_I32_e64: 960 case AMDGPU::V_ASHR_I32_e32: 961 case AMDGPU::S_ASHR_I32: 962 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 963 return true; 964 case AMDGPU::V_ASHRREV_I32_e64: 965 case AMDGPU::V_ASHRREV_I32_e32: 966 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 967 return true; 968 default: 969 return false; 970 } 971 } 972 973 static unsigned getMovOpc(bool IsScalar) { 974 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 975 } 976 977 /// Remove any leftover implicit operands from mutating the instruction. e.g. 978 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 979 /// anymore. 980 static void stripExtraCopyOperands(MachineInstr &MI) { 981 const MCInstrDesc &Desc = MI.getDesc(); 982 unsigned NumOps = Desc.getNumOperands() + 983 Desc.getNumImplicitUses() + 984 Desc.getNumImplicitDefs(); 985 986 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 987 MI.RemoveOperand(I); 988 } 989 990 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 991 MI.setDesc(NewDesc); 992 stripExtraCopyOperands(MI); 993 } 994 995 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 996 MachineOperand &Op) { 997 if (Op.isReg()) { 998 // If this has a subregister, it obviously is a register source. 999 if (Op.getSubReg() != AMDGPU::NoSubRegister || 1000 !Register::isVirtualRegister(Op.getReg())) 1001 return &Op; 1002 1003 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 1004 if (Def && Def->isMoveImmediate()) { 1005 MachineOperand &ImmSrc = Def->getOperand(1); 1006 if (ImmSrc.isImm()) 1007 return &ImmSrc; 1008 } 1009 } 1010 1011 return &Op; 1012 } 1013 1014 // Try to simplify operations with a constant that may appear after instruction 1015 // selection. 1016 // TODO: See if a frame index with a fixed offset can fold. 1017 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 1018 const SIInstrInfo *TII, 1019 MachineInstr *MI, 1020 MachineOperand *ImmOp) { 1021 unsigned Opc = MI->getOpcode(); 1022 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1023 Opc == AMDGPU::S_NOT_B32) { 1024 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 1025 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1026 return true; 1027 } 1028 1029 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1030 if (Src1Idx == -1) 1031 return false; 1032 1033 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1034 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 1035 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 1036 1037 if (!Src0->isImm() && !Src1->isImm()) 1038 return false; 1039 1040 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32 || 1041 MI->getOpcode() == AMDGPU::V_LSHL_ADD_U32 || 1042 MI->getOpcode() == AMDGPU::V_AND_OR_B32) { 1043 if (Src0->isImm() && Src0->getImm() == 0) { 1044 // v_lshl_or_b32 0, X, Y -> copy Y 1045 // v_lshl_or_b32 0, X, K -> v_mov_b32 K 1046 // v_lshl_add_b32 0, X, Y -> copy Y 1047 // v_lshl_add_b32 0, X, K -> v_mov_b32 K 1048 // v_and_or_b32 0, X, Y -> copy Y 1049 // v_and_or_b32 0, X, K -> v_mov_b32 K 1050 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg(); 1051 MI->RemoveOperand(Src1Idx); 1052 MI->RemoveOperand(Src0Idx); 1053 1054 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32)); 1055 return true; 1056 } 1057 } 1058 1059 // and k0, k1 -> v_mov_b32 (k0 & k1) 1060 // or k0, k1 -> v_mov_b32 (k0 | k1) 1061 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1062 if (Src0->isImm() && Src1->isImm()) { 1063 int32_t NewImm; 1064 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1065 return false; 1066 1067 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 1068 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 1069 1070 // Be careful to change the right operand, src0 may belong to a different 1071 // instruction. 1072 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1073 MI->RemoveOperand(Src1Idx); 1074 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1075 return true; 1076 } 1077 1078 if (!MI->isCommutable()) 1079 return false; 1080 1081 if (Src0->isImm() && !Src1->isImm()) { 1082 std::swap(Src0, Src1); 1083 std::swap(Src0Idx, Src1Idx); 1084 } 1085 1086 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1087 if (Opc == AMDGPU::V_OR_B32_e64 || 1088 Opc == AMDGPU::V_OR_B32_e32 || 1089 Opc == AMDGPU::S_OR_B32) { 1090 if (Src1Val == 0) { 1091 // y = or x, 0 => y = copy x 1092 MI->RemoveOperand(Src1Idx); 1093 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1094 } else if (Src1Val == -1) { 1095 // y = or x, -1 => y = v_mov_b32 -1 1096 MI->RemoveOperand(Src1Idx); 1097 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1098 } else 1099 return false; 1100 1101 return true; 1102 } 1103 1104 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 1105 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 1106 MI->getOpcode() == AMDGPU::S_AND_B32) { 1107 if (Src1Val == 0) { 1108 // y = and x, 0 => y = v_mov_b32 0 1109 MI->RemoveOperand(Src0Idx); 1110 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1111 } else if (Src1Val == -1) { 1112 // y = and x, -1 => y = copy x 1113 MI->RemoveOperand(Src1Idx); 1114 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1115 stripExtraCopyOperands(*MI); 1116 } else 1117 return false; 1118 1119 return true; 1120 } 1121 1122 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 1123 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 1124 MI->getOpcode() == AMDGPU::S_XOR_B32) { 1125 if (Src1Val == 0) { 1126 // y = xor x, 0 => y = copy x 1127 MI->RemoveOperand(Src1Idx); 1128 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1129 return true; 1130 } 1131 } 1132 1133 return false; 1134 } 1135 1136 // Try to fold an instruction into a simpler one 1137 static bool tryFoldInst(const SIInstrInfo *TII, 1138 MachineInstr *MI) { 1139 unsigned Opc = MI->getOpcode(); 1140 1141 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 1142 Opc == AMDGPU::V_CNDMASK_B32_e64 || 1143 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 1144 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1145 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 1146 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1147 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1148 if (Src1->isIdenticalTo(*Src0) && 1149 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && 1150 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { 1151 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 1152 auto &NewDesc = 1153 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1154 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1155 if (Src2Idx != -1) 1156 MI->RemoveOperand(Src2Idx); 1157 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1158 if (Src1ModIdx != -1) 1159 MI->RemoveOperand(Src1ModIdx); 1160 if (Src0ModIdx != -1) 1161 MI->RemoveOperand(Src0ModIdx); 1162 mutateCopyOp(*MI, NewDesc); 1163 LLVM_DEBUG(dbgs() << *MI << '\n'); 1164 return true; 1165 } 1166 } 1167 1168 return false; 1169 } 1170 1171 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 1172 MachineOperand &OpToFold) const { 1173 // We need mutate the operands of new mov instructions to add implicit 1174 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1175 // this. 1176 SmallVector<MachineInstr *, 4> CopiesToReplace; 1177 SmallVector<FoldCandidate, 4> FoldList; 1178 MachineOperand &Dst = MI.getOperand(0); 1179 1180 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1181 if (FoldingImm) { 1182 unsigned NumLiteralUses = 0; 1183 MachineOperand *NonInlineUse = nullptr; 1184 int NonInlineUseOpNo = -1; 1185 1186 MachineRegisterInfo::use_iterator NextUse; 1187 for (MachineRegisterInfo::use_iterator 1188 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 1189 Use != E; Use = NextUse) { 1190 NextUse = std::next(Use); 1191 MachineInstr *UseMI = Use->getParent(); 1192 unsigned OpNo = Use.getOperandNo(); 1193 1194 // Folding the immediate may reveal operations that can be constant 1195 // folded or replaced with a copy. This can happen for example after 1196 // frame indices are lowered to constants or from splitting 64-bit 1197 // constants. 1198 // 1199 // We may also encounter cases where one or both operands are 1200 // immediates materialized into a register, which would ordinarily not 1201 // be folded due to multiple uses or operand constraints. 1202 1203 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 1204 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 1205 1206 // Some constant folding cases change the same immediate's use to a new 1207 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 1208 // again. The same constant folded instruction could also have a second 1209 // use operand. 1210 NextUse = MRI->use_begin(Dst.getReg()); 1211 FoldList.clear(); 1212 continue; 1213 } 1214 1215 // Try to fold any inline immediate uses, and then only fold other 1216 // constants if they have one use. 1217 // 1218 // The legality of the inline immediate must be checked based on the use 1219 // operand, not the defining instruction, because 32-bit instructions 1220 // with 32-bit inline immediate sources may be used to materialize 1221 // constants used in 16-bit operands. 1222 // 1223 // e.g. it is unsafe to fold: 1224 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1225 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1226 1227 // Folding immediates with more than one use will increase program size. 1228 // FIXME: This will also reduce register usage, which may be better 1229 // in some cases. A better heuristic is needed. 1230 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1231 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1232 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1233 foldOperand(OpToFold, UseMI, OpNo, FoldList, 1234 CopiesToReplace); 1235 } else { 1236 if (++NumLiteralUses == 1) { 1237 NonInlineUse = &*Use; 1238 NonInlineUseOpNo = OpNo; 1239 } 1240 } 1241 } 1242 1243 if (NumLiteralUses == 1) { 1244 MachineInstr *UseMI = NonInlineUse->getParent(); 1245 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1246 } 1247 } else { 1248 // Folding register. 1249 SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess; 1250 for (MachineRegisterInfo::use_iterator 1251 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 1252 Use != E; ++Use) { 1253 UsesToProcess.push_back(Use); 1254 } 1255 for (auto U : UsesToProcess) { 1256 MachineInstr *UseMI = U->getParent(); 1257 1258 foldOperand(OpToFold, UseMI, U.getOperandNo(), 1259 FoldList, CopiesToReplace); 1260 } 1261 } 1262 1263 MachineFunction *MF = MI.getParent()->getParent(); 1264 // Make sure we add EXEC uses to any new v_mov instructions created. 1265 for (MachineInstr *Copy : CopiesToReplace) 1266 Copy->addImplicitDefUseOperands(*MF); 1267 1268 for (FoldCandidate &Fold : FoldList) { 1269 assert(!Fold.isReg() || Fold.OpToFold); 1270 if (Fold.isReg() && Register::isVirtualRegister(Fold.OpToFold->getReg())) { 1271 Register Reg = Fold.OpToFold->getReg(); 1272 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1273 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1274 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1275 continue; 1276 } 1277 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1278 // Clear kill flags. 1279 if (Fold.isReg()) { 1280 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1281 // FIXME: Probably shouldn't bother trying to fold if not an 1282 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1283 // copies. 1284 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1285 } 1286 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1287 << static_cast<int>(Fold.UseOpNo) << " of " 1288 << *Fold.UseMI << '\n'); 1289 tryFoldInst(TII, Fold.UseMI); 1290 } else if (Fold.isCommuted()) { 1291 // Restoring instruction's original operand order if fold has failed. 1292 TII->commuteInstruction(*Fold.UseMI, false); 1293 } 1294 } 1295 } 1296 1297 // Clamp patterns are canonically selected to v_max_* instructions, so only 1298 // handle them. 1299 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1300 unsigned Op = MI.getOpcode(); 1301 switch (Op) { 1302 case AMDGPU::V_MAX_F32_e64: 1303 case AMDGPU::V_MAX_F16_e64: 1304 case AMDGPU::V_MAX_F64: 1305 case AMDGPU::V_PK_MAX_F16: { 1306 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1307 return nullptr; 1308 1309 // Make sure sources are identical. 1310 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1311 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1312 if (!Src0->isReg() || !Src1->isReg() || 1313 Src0->getReg() != Src1->getReg() || 1314 Src0->getSubReg() != Src1->getSubReg() || 1315 Src0->getSubReg() != AMDGPU::NoSubRegister) 1316 return nullptr; 1317 1318 // Can't fold up if we have modifiers. 1319 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1320 return nullptr; 1321 1322 unsigned Src0Mods 1323 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1324 unsigned Src1Mods 1325 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1326 1327 // Having a 0 op_sel_hi would require swizzling the output in the source 1328 // instruction, which we can't do. 1329 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1330 : 0u; 1331 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1332 return nullptr; 1333 return Src0; 1334 } 1335 default: 1336 return nullptr; 1337 } 1338 } 1339 1340 // We obviously have multiple uses in a clamp since the register is used twice 1341 // in the same instruction. 1342 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 1343 int Count = 0; 1344 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 1345 I != E; ++I) { 1346 if (++Count > 1) 1347 return false; 1348 } 1349 1350 return true; 1351 } 1352 1353 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1354 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1355 const MachineOperand *ClampSrc = isClamp(MI); 1356 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 1357 return false; 1358 1359 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1360 1361 // The type of clamp must be compatible. 1362 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1363 return false; 1364 1365 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1366 if (!DefClamp) 1367 return false; 1368 1369 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 1370 << '\n'); 1371 1372 // Clamp is applied after omod, so it is OK if omod is set. 1373 DefClamp->setImm(1); 1374 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1375 MI.eraseFromParent(); 1376 return true; 1377 } 1378 1379 static int getOModValue(unsigned Opc, int64_t Val) { 1380 switch (Opc) { 1381 case AMDGPU::V_MUL_F32_e64: { 1382 switch (static_cast<uint32_t>(Val)) { 1383 case 0x3f000000: // 0.5 1384 return SIOutMods::DIV2; 1385 case 0x40000000: // 2.0 1386 return SIOutMods::MUL2; 1387 case 0x40800000: // 4.0 1388 return SIOutMods::MUL4; 1389 default: 1390 return SIOutMods::NONE; 1391 } 1392 } 1393 case AMDGPU::V_MUL_F16_e64: { 1394 switch (static_cast<uint16_t>(Val)) { 1395 case 0x3800: // 0.5 1396 return SIOutMods::DIV2; 1397 case 0x4000: // 2.0 1398 return SIOutMods::MUL2; 1399 case 0x4400: // 4.0 1400 return SIOutMods::MUL4; 1401 default: 1402 return SIOutMods::NONE; 1403 } 1404 } 1405 default: 1406 llvm_unreachable("invalid mul opcode"); 1407 } 1408 } 1409 1410 // FIXME: Does this really not support denormals with f16? 1411 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1412 // handled, so will anything other than that break? 1413 std::pair<const MachineOperand *, int> 1414 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1415 unsigned Op = MI.getOpcode(); 1416 switch (Op) { 1417 case AMDGPU::V_MUL_F32_e64: 1418 case AMDGPU::V_MUL_F16_e64: { 1419 // If output denormals are enabled, omod is ignored. 1420 if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1421 (Op == AMDGPU::V_MUL_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1422 return std::make_pair(nullptr, SIOutMods::NONE); 1423 1424 const MachineOperand *RegOp = nullptr; 1425 const MachineOperand *ImmOp = nullptr; 1426 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1427 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1428 if (Src0->isImm()) { 1429 ImmOp = Src0; 1430 RegOp = Src1; 1431 } else if (Src1->isImm()) { 1432 ImmOp = Src1; 1433 RegOp = Src0; 1434 } else 1435 return std::make_pair(nullptr, SIOutMods::NONE); 1436 1437 int OMod = getOModValue(Op, ImmOp->getImm()); 1438 if (OMod == SIOutMods::NONE || 1439 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1440 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1441 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1442 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1443 return std::make_pair(nullptr, SIOutMods::NONE); 1444 1445 return std::make_pair(RegOp, OMod); 1446 } 1447 case AMDGPU::V_ADD_F32_e64: 1448 case AMDGPU::V_ADD_F16_e64: { 1449 // If output denormals are enabled, omod is ignored. 1450 if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1451 (Op == AMDGPU::V_ADD_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1452 return std::make_pair(nullptr, SIOutMods::NONE); 1453 1454 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1455 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1456 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1457 1458 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1459 Src0->getSubReg() == Src1->getSubReg() && 1460 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1461 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1462 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1463 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1464 return std::make_pair(Src0, SIOutMods::MUL2); 1465 1466 return std::make_pair(nullptr, SIOutMods::NONE); 1467 } 1468 default: 1469 return std::make_pair(nullptr, SIOutMods::NONE); 1470 } 1471 } 1472 1473 // FIXME: Does this need to check IEEE bit on function? 1474 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1475 const MachineOperand *RegOp; 1476 int OMod; 1477 std::tie(RegOp, OMod) = isOMod(MI); 1478 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1479 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1480 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1481 return false; 1482 1483 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1484 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1485 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1486 return false; 1487 1488 // Clamp is applied after omod. If the source already has clamp set, don't 1489 // fold it. 1490 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1491 return false; 1492 1493 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1494 1495 DefOMod->setImm(OMod); 1496 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1497 MI.eraseFromParent(); 1498 return true; 1499 } 1500 1501 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1502 if (skipFunction(MF.getFunction())) 1503 return false; 1504 1505 MRI = &MF.getRegInfo(); 1506 ST = &MF.getSubtarget<GCNSubtarget>(); 1507 TII = ST->getInstrInfo(); 1508 TRI = &TII->getRegisterInfo(); 1509 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1510 1511 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1512 // correctly handle signed zeros. 1513 // 1514 // FIXME: Also need to check strictfp 1515 bool IsIEEEMode = MFI->getMode().IEEE; 1516 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1517 1518 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1519 MachineBasicBlock::iterator I, Next; 1520 1521 MachineOperand *CurrentKnownM0Val = nullptr; 1522 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1523 Next = std::next(I); 1524 MachineInstr &MI = *I; 1525 1526 tryFoldInst(TII, &MI); 1527 1528 if (!TII->isFoldableCopy(MI)) { 1529 // Saw an unknown clobber of m0, so we no longer know what it is. 1530 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 1531 CurrentKnownM0Val = nullptr; 1532 1533 // TODO: Omod might be OK if there is NSZ only on the source 1534 // instruction, and not the omod multiply. 1535 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1536 !tryFoldOMod(MI)) 1537 tryFoldClamp(MI); 1538 1539 continue; 1540 } 1541 1542 // Specially track simple redefs of m0 to the same value in a block, so we 1543 // can erase the later ones. 1544 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1545 MachineOperand &NewM0Val = MI.getOperand(1); 1546 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1547 MI.eraseFromParent(); 1548 continue; 1549 } 1550 1551 // We aren't tracking other physical registers 1552 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? 1553 nullptr : &NewM0Val; 1554 continue; 1555 } 1556 1557 MachineOperand &OpToFold = MI.getOperand(1); 1558 bool FoldingImm = 1559 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1560 1561 // FIXME: We could also be folding things like TargetIndexes. 1562 if (!FoldingImm && !OpToFold.isReg()) 1563 continue; 1564 1565 if (OpToFold.isReg() && !Register::isVirtualRegister(OpToFold.getReg())) 1566 continue; 1567 1568 // Prevent folding operands backwards in the function. For example, 1569 // the COPY opcode must not be replaced by 1 in this example: 1570 // 1571 // %3 = COPY %vgpr0; VGPR_32:%3 1572 // ... 1573 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1574 MachineOperand &Dst = MI.getOperand(0); 1575 if (Dst.isReg() && !Register::isVirtualRegister(Dst.getReg())) 1576 continue; 1577 1578 foldInstOperand(MI, OpToFold); 1579 } 1580 } 1581 return true; 1582 } 1583