1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "SIFoldOperands.h" 12 #include "AMDGPU.h" 13 #include "GCNSubtarget.h" 14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 15 #include "SIMachineFunctionInfo.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/CodeGen/MachineFunctionPass.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 20 #define DEBUG_TYPE "si-fold-operands" 21 using namespace llvm; 22 23 namespace { 24 25 struct FoldCandidate { 26 MachineInstr *UseMI; 27 union { 28 MachineOperand *OpToFold; 29 uint64_t ImmToFold; 30 int FrameIndexToFold; 31 }; 32 int ShrinkOpcode; 33 unsigned UseOpNo; 34 MachineOperand::MachineOperandType Kind; 35 bool Commuted; 36 37 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 38 bool Commuted_ = false, 39 int ShrinkOp = -1) : 40 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 41 Kind(FoldOp->getType()), 42 Commuted(Commuted_) { 43 if (FoldOp->isImm()) { 44 ImmToFold = FoldOp->getImm(); 45 } else if (FoldOp->isFI()) { 46 FrameIndexToFold = FoldOp->getIndex(); 47 } else { 48 assert(FoldOp->isReg() || FoldOp->isGlobal()); 49 OpToFold = FoldOp; 50 } 51 } 52 53 bool isFI() const { 54 return Kind == MachineOperand::MO_FrameIndex; 55 } 56 57 bool isImm() const { 58 return Kind == MachineOperand::MO_Immediate; 59 } 60 61 bool isReg() const { 62 return Kind == MachineOperand::MO_Register; 63 } 64 65 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 66 67 bool needsShrink() const { return ShrinkOpcode != -1; } 68 }; 69 70 class SIFoldOperandsImpl { 71 public: 72 MachineRegisterInfo *MRI; 73 const SIInstrInfo *TII; 74 const SIRegisterInfo *TRI; 75 const GCNSubtarget *ST; 76 const SIMachineFunctionInfo *MFI; 77 78 bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo, 79 const MachineOperand &OpToFold) const; 80 81 bool updateOperand(FoldCandidate &Fold) const; 82 83 bool canUseImmWithOpSel(FoldCandidate &Fold) const; 84 85 bool tryFoldImmWithOpSel(FoldCandidate &Fold) const; 86 87 bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 88 MachineInstr *MI, unsigned OpNo, 89 MachineOperand *OpToFold) const; 90 bool isUseSafeToFold(const MachineInstr &MI, 91 const MachineOperand &UseMO) const; 92 bool 93 getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, 94 Register UseReg, uint8_t OpTy) const; 95 bool tryToFoldACImm(const MachineOperand &OpToFold, MachineInstr *UseMI, 96 unsigned UseOpIdx, 97 SmallVectorImpl<FoldCandidate> &FoldList) const; 98 void foldOperand(MachineOperand &OpToFold, 99 MachineInstr *UseMI, 100 int UseOpIdx, 101 SmallVectorImpl<FoldCandidate> &FoldList, 102 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 103 104 MachineOperand *getImmOrMaterializedImm(MachineOperand &Op) const; 105 bool tryConstantFoldOp(MachineInstr *MI) const; 106 bool tryFoldCndMask(MachineInstr &MI) const; 107 bool tryFoldZeroHighBits(MachineInstr &MI) const; 108 bool foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 109 bool tryFoldFoldableCopy(MachineInstr &MI, 110 MachineOperand *&CurrentKnownM0Val) const; 111 112 const MachineOperand *isClamp(const MachineInstr &MI) const; 113 bool tryFoldClamp(MachineInstr &MI); 114 115 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 116 bool tryFoldOMod(MachineInstr &MI); 117 bool tryFoldRegSequence(MachineInstr &MI); 118 bool tryFoldPhiAGPR(MachineInstr &MI); 119 bool tryFoldLoad(MachineInstr &MI); 120 121 bool tryOptimizeAGPRPhis(MachineBasicBlock &MBB); 122 123 public: 124 SIFoldOperandsImpl() = default; 125 126 bool run(MachineFunction &MF); 127 }; 128 129 class SIFoldOperandsLegacy : public MachineFunctionPass { 130 public: 131 static char ID; 132 133 SIFoldOperandsLegacy() : MachineFunctionPass(ID) {} 134 135 bool runOnMachineFunction(MachineFunction &MF) override { 136 if (skipFunction(MF.getFunction())) 137 return false; 138 return SIFoldOperandsImpl().run(MF); 139 } 140 141 StringRef getPassName() const override { return "SI Fold Operands"; } 142 143 void getAnalysisUsage(AnalysisUsage &AU) const override { 144 AU.setPreservesCFG(); 145 MachineFunctionPass::getAnalysisUsage(AU); 146 } 147 }; 148 149 } // End anonymous namespace. 150 151 INITIALIZE_PASS(SIFoldOperandsLegacy, DEBUG_TYPE, "SI Fold Operands", false, 152 false) 153 154 char SIFoldOperandsLegacy::ID = 0; 155 156 char &llvm::SIFoldOperandsLegacyID = SIFoldOperandsLegacy::ID; 157 158 static const TargetRegisterClass *getRegOpRC(const MachineRegisterInfo &MRI, 159 const TargetRegisterInfo &TRI, 160 const MachineOperand &MO) { 161 const TargetRegisterClass *RC = MRI.getRegClass(MO.getReg()); 162 if (const TargetRegisterClass *SubRC = 163 TRI.getSubRegisterClass(RC, MO.getSubReg())) 164 RC = SubRC; 165 return RC; 166 } 167 168 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. 169 static unsigned macToMad(unsigned Opc) { 170 switch (Opc) { 171 case AMDGPU::V_MAC_F32_e64: 172 return AMDGPU::V_MAD_F32_e64; 173 case AMDGPU::V_MAC_F16_e64: 174 return AMDGPU::V_MAD_F16_e64; 175 case AMDGPU::V_FMAC_F32_e64: 176 return AMDGPU::V_FMA_F32_e64; 177 case AMDGPU::V_FMAC_F16_e64: 178 return AMDGPU::V_FMA_F16_gfx9_e64; 179 case AMDGPU::V_FMAC_F16_t16_e64: 180 return AMDGPU::V_FMA_F16_gfx9_e64; 181 case AMDGPU::V_FMAC_LEGACY_F32_e64: 182 return AMDGPU::V_FMA_LEGACY_F32_e64; 183 case AMDGPU::V_FMAC_F64_e64: 184 return AMDGPU::V_FMA_F64_e64; 185 } 186 return AMDGPU::INSTRUCTION_LIST_END; 187 } 188 189 // TODO: Add heuristic that the frame index might not fit in the addressing mode 190 // immediate offset to avoid materializing in loops. 191 bool SIFoldOperandsImpl::frameIndexMayFold( 192 const MachineInstr &UseMI, int OpNo, const MachineOperand &OpToFold) const { 193 if (!OpToFold.isFI()) 194 return false; 195 196 const unsigned Opc = UseMI.getOpcode(); 197 switch (Opc) { 198 case AMDGPU::S_ADD_I32: 199 case AMDGPU::V_ADD_U32_e32: 200 case AMDGPU::V_ADD_CO_U32_e32: 201 // TODO: Possibly relax hasOneUse. It matters more for mubuf, since we have 202 // to insert the wave size shift at every point we use the index. 203 // TODO: Fix depending on visit order to fold immediates into the operand 204 return UseMI.getOperand(OpNo == 1 ? 2 : 1).isImm() && 205 MRI->hasOneNonDBGUse(UseMI.getOperand(OpNo).getReg()); 206 case AMDGPU::V_ADD_U32_e64: 207 case AMDGPU::V_ADD_CO_U32_e64: 208 return UseMI.getOperand(OpNo == 2 ? 3 : 2).isImm() && 209 MRI->hasOneNonDBGUse(UseMI.getOperand(OpNo).getReg()); 210 default: 211 break; 212 } 213 214 if (TII->isMUBUF(UseMI)) 215 return OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 216 if (!TII->isFLATScratch(UseMI)) 217 return false; 218 219 int SIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr); 220 if (OpNo == SIdx) 221 return true; 222 223 int VIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 224 return OpNo == VIdx && SIdx == -1; 225 } 226 227 FunctionPass *llvm::createSIFoldOperandsLegacyPass() { 228 return new SIFoldOperandsLegacy(); 229 } 230 231 bool SIFoldOperandsImpl::canUseImmWithOpSel(FoldCandidate &Fold) const { 232 MachineInstr *MI = Fold.UseMI; 233 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 234 const uint64_t TSFlags = MI->getDesc().TSFlags; 235 236 assert(Old.isReg() && Fold.isImm()); 237 238 if (!(TSFlags & SIInstrFlags::IsPacked) || (TSFlags & SIInstrFlags::IsMAI) || 239 (TSFlags & SIInstrFlags::IsWMMA) || (TSFlags & SIInstrFlags::IsSWMMAC) || 240 (ST->hasDOTOpSelHazard() && (TSFlags & SIInstrFlags::IsDOT))) 241 return false; 242 243 unsigned Opcode = MI->getOpcode(); 244 int OpNo = MI->getOperandNo(&Old); 245 uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; 246 switch (OpType) { 247 default: 248 return false; 249 case AMDGPU::OPERAND_REG_IMM_V2FP16: 250 case AMDGPU::OPERAND_REG_IMM_V2BF16: 251 case AMDGPU::OPERAND_REG_IMM_V2INT16: 252 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 253 case AMDGPU::OPERAND_REG_INLINE_C_V2BF16: 254 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 255 break; 256 } 257 258 return true; 259 } 260 261 bool SIFoldOperandsImpl::tryFoldImmWithOpSel(FoldCandidate &Fold) const { 262 MachineInstr *MI = Fold.UseMI; 263 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 264 unsigned Opcode = MI->getOpcode(); 265 int OpNo = MI->getOperandNo(&Old); 266 uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; 267 268 // If the literal can be inlined as-is, apply it and short-circuit the 269 // tests below. The main motivation for this is to avoid unintuitive 270 // uses of opsel. 271 if (AMDGPU::isInlinableLiteralV216(Fold.ImmToFold, OpType)) { 272 Old.ChangeToImmediate(Fold.ImmToFold); 273 return true; 274 } 275 276 // Refer to op_sel/op_sel_hi and check if we can change the immediate and 277 // op_sel in a way that allows an inline constant. 278 int ModIdx = -1; 279 unsigned SrcIdx = ~0; 280 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) { 281 ModIdx = AMDGPU::OpName::src0_modifiers; 282 SrcIdx = 0; 283 } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) { 284 ModIdx = AMDGPU::OpName::src1_modifiers; 285 SrcIdx = 1; 286 } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) { 287 ModIdx = AMDGPU::OpName::src2_modifiers; 288 SrcIdx = 2; 289 } 290 assert(ModIdx != -1); 291 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 292 MachineOperand &Mod = MI->getOperand(ModIdx); 293 unsigned ModVal = Mod.getImm(); 294 295 uint16_t ImmLo = static_cast<uint16_t>( 296 Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_0 ? 16 : 0)); 297 uint16_t ImmHi = static_cast<uint16_t>( 298 Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_1 ? 16 : 0)); 299 uint32_t Imm = (static_cast<uint32_t>(ImmHi) << 16) | ImmLo; 300 unsigned NewModVal = ModVal & ~(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); 301 302 // Helper function that attempts to inline the given value with a newly 303 // chosen opsel pattern. 304 auto tryFoldToInline = [&](uint32_t Imm) -> bool { 305 if (AMDGPU::isInlinableLiteralV216(Imm, OpType)) { 306 Mod.setImm(NewModVal | SISrcMods::OP_SEL_1); 307 Old.ChangeToImmediate(Imm); 308 return true; 309 } 310 311 // Try to shuffle the halves around and leverage opsel to get an inline 312 // constant. 313 uint16_t Lo = static_cast<uint16_t>(Imm); 314 uint16_t Hi = static_cast<uint16_t>(Imm >> 16); 315 if (Lo == Hi) { 316 if (AMDGPU::isInlinableLiteralV216(Lo, OpType)) { 317 Mod.setImm(NewModVal); 318 Old.ChangeToImmediate(Lo); 319 return true; 320 } 321 322 if (static_cast<int16_t>(Lo) < 0) { 323 int32_t SExt = static_cast<int16_t>(Lo); 324 if (AMDGPU::isInlinableLiteralV216(SExt, OpType)) { 325 Mod.setImm(NewModVal); 326 Old.ChangeToImmediate(SExt); 327 return true; 328 } 329 } 330 331 // This check is only useful for integer instructions 332 if (OpType == AMDGPU::OPERAND_REG_IMM_V2INT16 || 333 OpType == AMDGPU::OPERAND_REG_INLINE_AC_V2INT16) { 334 if (AMDGPU::isInlinableLiteralV216(Lo << 16, OpType)) { 335 Mod.setImm(NewModVal | SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); 336 Old.ChangeToImmediate(static_cast<uint32_t>(Lo) << 16); 337 return true; 338 } 339 } 340 } else { 341 uint32_t Swapped = (static_cast<uint32_t>(Lo) << 16) | Hi; 342 if (AMDGPU::isInlinableLiteralV216(Swapped, OpType)) { 343 Mod.setImm(NewModVal | SISrcMods::OP_SEL_0); 344 Old.ChangeToImmediate(Swapped); 345 return true; 346 } 347 } 348 349 return false; 350 }; 351 352 if (tryFoldToInline(Imm)) 353 return true; 354 355 // Replace integer addition by subtraction and vice versa if it allows 356 // folding the immediate to an inline constant. 357 // 358 // We should only ever get here for SrcIdx == 1 due to canonicalization 359 // earlier in the pipeline, but we double-check here to be safe / fully 360 // general. 361 bool IsUAdd = Opcode == AMDGPU::V_PK_ADD_U16; 362 bool IsUSub = Opcode == AMDGPU::V_PK_SUB_U16; 363 if (SrcIdx == 1 && (IsUAdd || IsUSub)) { 364 unsigned ClampIdx = 365 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::clamp); 366 bool Clamp = MI->getOperand(ClampIdx).getImm() != 0; 367 368 if (!Clamp) { 369 uint16_t NegLo = -static_cast<uint16_t>(Imm); 370 uint16_t NegHi = -static_cast<uint16_t>(Imm >> 16); 371 uint32_t NegImm = (static_cast<uint32_t>(NegHi) << 16) | NegLo; 372 373 if (tryFoldToInline(NegImm)) { 374 unsigned NegOpcode = 375 IsUAdd ? AMDGPU::V_PK_SUB_U16 : AMDGPU::V_PK_ADD_U16; 376 MI->setDesc(TII->get(NegOpcode)); 377 return true; 378 } 379 } 380 } 381 382 return false; 383 } 384 385 bool SIFoldOperandsImpl::updateOperand(FoldCandidate &Fold) const { 386 MachineInstr *MI = Fold.UseMI; 387 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 388 assert(Old.isReg()); 389 390 if (Fold.isImm() && canUseImmWithOpSel(Fold)) { 391 if (tryFoldImmWithOpSel(Fold)) 392 return true; 393 394 // We can't represent the candidate as an inline constant. Try as a literal 395 // with the original opsel, checking constant bus limitations. 396 MachineOperand New = MachineOperand::CreateImm(Fold.ImmToFold); 397 int OpNo = MI->getOperandNo(&Old); 398 if (!TII->isOperandLegal(*MI, OpNo, &New)) 399 return false; 400 Old.ChangeToImmediate(Fold.ImmToFold); 401 return true; 402 } 403 404 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 405 MachineBasicBlock *MBB = MI->getParent(); 406 auto Liveness = MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, MI, 16); 407 if (Liveness != MachineBasicBlock::LQR_Dead) { 408 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 409 return false; 410 } 411 412 int Op32 = Fold.ShrinkOpcode; 413 MachineOperand &Dst0 = MI->getOperand(0); 414 MachineOperand &Dst1 = MI->getOperand(1); 415 assert(Dst0.isDef() && Dst1.isDef()); 416 417 bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(Dst1.getReg()); 418 419 const TargetRegisterClass *Dst0RC = MRI->getRegClass(Dst0.getReg()); 420 Register NewReg0 = MRI->createVirtualRegister(Dst0RC); 421 422 MachineInstr *Inst32 = TII->buildShrunkInst(*MI, Op32); 423 424 if (HaveNonDbgCarryUse) { 425 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(AMDGPU::COPY), 426 Dst1.getReg()) 427 .addReg(AMDGPU::VCC, RegState::Kill); 428 } 429 430 // Keep the old instruction around to avoid breaking iterators, but 431 // replace it with a dummy instruction to remove uses. 432 // 433 // FIXME: We should not invert how this pass looks at operands to avoid 434 // this. Should track set of foldable movs instead of looking for uses 435 // when looking at a use. 436 Dst0.setReg(NewReg0); 437 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 438 MI->removeOperand(I); 439 MI->setDesc(TII->get(AMDGPU::IMPLICIT_DEF)); 440 441 if (Fold.Commuted) 442 TII->commuteInstruction(*Inst32, false); 443 return true; 444 } 445 446 assert(!Fold.needsShrink() && "not handled"); 447 448 if (Fold.isImm()) { 449 if (Old.isTied()) { 450 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(MI->getOpcode()); 451 if (NewMFMAOpc == -1) 452 return false; 453 MI->setDesc(TII->get(NewMFMAOpc)); 454 MI->untieRegOperand(0); 455 } 456 Old.ChangeToImmediate(Fold.ImmToFold); 457 return true; 458 } 459 460 if (Fold.isGlobal()) { 461 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 462 Fold.OpToFold->getTargetFlags()); 463 return true; 464 } 465 466 if (Fold.isFI()) { 467 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 468 return true; 469 } 470 471 MachineOperand *New = Fold.OpToFold; 472 Old.substVirtReg(New->getReg(), New->getSubReg(), *TRI); 473 Old.setIsUndef(New->isUndef()); 474 return true; 475 } 476 477 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 478 const MachineInstr *MI) { 479 return any_of(FoldList, [&](const auto &C) { return C.UseMI == MI; }); 480 } 481 482 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 483 MachineInstr *MI, unsigned OpNo, 484 MachineOperand *FoldOp, bool Commuted = false, 485 int ShrinkOp = -1) { 486 // Skip additional folding on the same operand. 487 for (FoldCandidate &Fold : FoldList) 488 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 489 return; 490 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 491 << " operand " << OpNo << "\n " << *MI); 492 FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp); 493 } 494 495 bool SIFoldOperandsImpl::tryAddToFoldList( 496 SmallVectorImpl<FoldCandidate> &FoldList, MachineInstr *MI, unsigned OpNo, 497 MachineOperand *OpToFold) const { 498 const unsigned Opc = MI->getOpcode(); 499 500 auto tryToFoldAsFMAAKorMK = [&]() { 501 if (!OpToFold->isImm()) 502 return false; 503 504 const bool TryAK = OpNo == 3; 505 const unsigned NewOpc = TryAK ? AMDGPU::S_FMAAK_F32 : AMDGPU::S_FMAMK_F32; 506 MI->setDesc(TII->get(NewOpc)); 507 508 // We have to fold into operand which would be Imm not into OpNo. 509 bool FoldAsFMAAKorMK = 510 tryAddToFoldList(FoldList, MI, TryAK ? 3 : 2, OpToFold); 511 if (FoldAsFMAAKorMK) { 512 // Untie Src2 of fmac. 513 MI->untieRegOperand(3); 514 // For fmamk swap operands 1 and 2 if OpToFold was meant for operand 1. 515 if (OpNo == 1) { 516 MachineOperand &Op1 = MI->getOperand(1); 517 MachineOperand &Op2 = MI->getOperand(2); 518 Register OldReg = Op1.getReg(); 519 // Operand 2 might be an inlinable constant 520 if (Op2.isImm()) { 521 Op1.ChangeToImmediate(Op2.getImm()); 522 Op2.ChangeToRegister(OldReg, false); 523 } else { 524 Op1.setReg(Op2.getReg()); 525 Op2.setReg(OldReg); 526 } 527 } 528 return true; 529 } 530 MI->setDesc(TII->get(Opc)); 531 return false; 532 }; 533 534 bool IsLegal = TII->isOperandLegal(*MI, OpNo, OpToFold); 535 if (!IsLegal && OpToFold->isImm()) { 536 FoldCandidate Fold(MI, OpNo, OpToFold); 537 IsLegal = canUseImmWithOpSel(Fold); 538 } 539 540 if (!IsLegal) { 541 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 542 unsigned NewOpc = macToMad(Opc); 543 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 544 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 545 // to fold the operand. 546 MI->setDesc(TII->get(NewOpc)); 547 bool AddOpSel = !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel) && 548 AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel); 549 if (AddOpSel) 550 MI->addOperand(MachineOperand::CreateImm(0)); 551 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold); 552 if (FoldAsMAD) { 553 MI->untieRegOperand(OpNo); 554 return true; 555 } 556 if (AddOpSel) 557 MI->removeOperand(MI->getNumExplicitOperands() - 1); 558 MI->setDesc(TII->get(Opc)); 559 } 560 561 // Special case for s_fmac_f32 if we are trying to fold into Src2. 562 // By transforming into fmaak we can untie Src2 and make folding legal. 563 if (Opc == AMDGPU::S_FMAC_F32 && OpNo == 3) { 564 if (tryToFoldAsFMAAKorMK()) 565 return true; 566 } 567 568 // Special case for s_setreg_b32 569 if (OpToFold->isImm()) { 570 unsigned ImmOpc = 0; 571 if (Opc == AMDGPU::S_SETREG_B32) 572 ImmOpc = AMDGPU::S_SETREG_IMM32_B32; 573 else if (Opc == AMDGPU::S_SETREG_B32_mode) 574 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; 575 if (ImmOpc) { 576 MI->setDesc(TII->get(ImmOpc)); 577 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 578 return true; 579 } 580 } 581 582 // If we are already folding into another operand of MI, then 583 // we can't commute the instruction, otherwise we risk making the 584 // other fold illegal. 585 if (isUseMIInFoldList(FoldList, MI)) 586 return false; 587 588 // Operand is not legal, so try to commute the instruction to 589 // see if this makes it possible to fold. 590 unsigned CommuteOpNo = TargetInstrInfo::CommuteAnyOperandIndex; 591 bool CanCommute = TII->findCommutedOpIndices(*MI, OpNo, CommuteOpNo); 592 if (!CanCommute) 593 return false; 594 595 // One of operands might be an Imm operand, and OpNo may refer to it after 596 // the call of commuteInstruction() below. Such situations are avoided 597 // here explicitly as OpNo must be a register operand to be a candidate 598 // for memory folding. 599 if (!MI->getOperand(OpNo).isReg() || !MI->getOperand(CommuteOpNo).isReg()) 600 return false; 601 602 if (!TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo)) 603 return false; 604 605 int Op32 = -1; 606 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 607 if ((Opc != AMDGPU::V_ADD_CO_U32_e64 && Opc != AMDGPU::V_SUB_CO_U32_e64 && 608 Opc != AMDGPU::V_SUBREV_CO_U32_e64) || // FIXME 609 (!OpToFold->isImm() && !OpToFold->isFI() && !OpToFold->isGlobal())) { 610 TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo); 611 return false; 612 } 613 614 // Verify the other operand is a VGPR, otherwise we would violate the 615 // constant bus restriction. 616 MachineOperand &OtherOp = MI->getOperand(OpNo); 617 if (!OtherOp.isReg() || 618 !TII->getRegisterInfo().isVGPR(*MRI, OtherOp.getReg())) 619 return false; 620 621 assert(MI->getOperand(1).isDef()); 622 623 // Make sure to get the 32-bit version of the commuted opcode. 624 unsigned MaybeCommutedOpc = MI->getOpcode(); 625 Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 626 } 627 628 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 629 return true; 630 } 631 632 // Inlineable constant might have been folded into Imm operand of fmaak or 633 // fmamk and we are trying to fold a non-inlinable constant. 634 if ((Opc == AMDGPU::S_FMAAK_F32 || Opc == AMDGPU::S_FMAMK_F32) && 635 !OpToFold->isReg() && !TII->isInlineConstant(*OpToFold)) { 636 unsigned ImmIdx = Opc == AMDGPU::S_FMAAK_F32 ? 3 : 2; 637 MachineOperand &OpImm = MI->getOperand(ImmIdx); 638 if (!OpImm.isReg() && 639 TII->isInlineConstant(*MI, MI->getOperand(OpNo), OpImm)) 640 return tryToFoldAsFMAAKorMK(); 641 } 642 643 // Special case for s_fmac_f32 if we are trying to fold into Src0 or Src1. 644 // By changing into fmamk we can untie Src2. 645 // If folding for Src0 happens first and it is identical operand to Src1 we 646 // should avoid transforming into fmamk which requires commuting as it would 647 // cause folding into Src1 to fail later on due to wrong OpNo used. 648 if (Opc == AMDGPU::S_FMAC_F32 && 649 (OpNo != 1 || !MI->getOperand(1).isIdenticalTo(MI->getOperand(2)))) { 650 if (tryToFoldAsFMAAKorMK()) 651 return true; 652 } 653 654 // Check the case where we might introduce a second constant operand to a 655 // scalar instruction 656 if (TII->isSALU(MI->getOpcode())) { 657 const MCInstrDesc &InstDesc = MI->getDesc(); 658 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; 659 660 // Fine if the operand can be encoded as an inline constant 661 if (!OpToFold->isReg() && !TII->isInlineConstant(*OpToFold, OpInfo)) { 662 // Otherwise check for another constant 663 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 664 auto &Op = MI->getOperand(i); 665 if (OpNo != i && !Op.isReg() && 666 !TII->isInlineConstant(Op, InstDesc.operands()[i])) 667 return false; 668 } 669 } 670 } 671 672 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 673 return true; 674 } 675 676 bool SIFoldOperandsImpl::isUseSafeToFold(const MachineInstr &MI, 677 const MachineOperand &UseMO) const { 678 // Operands of SDWA instructions must be registers. 679 return !TII->isSDWA(MI); 680 } 681 682 // Find a def of the UseReg, check if it is a reg_sequence and find initializers 683 // for each subreg, tracking it to foldable inline immediate if possible. 684 // Returns true on success. 685 bool SIFoldOperandsImpl::getRegSeqInit( 686 SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, 687 Register UseReg, uint8_t OpTy) const { 688 MachineInstr *Def = MRI->getVRegDef(UseReg); 689 if (!Def || !Def->isRegSequence()) 690 return false; 691 692 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 693 MachineOperand *Sub = &Def->getOperand(I); 694 assert(Sub->isReg()); 695 696 for (MachineInstr *SubDef = MRI->getVRegDef(Sub->getReg()); 697 SubDef && Sub->isReg() && Sub->getReg().isVirtual() && 698 !Sub->getSubReg() && TII->isFoldableCopy(*SubDef); 699 SubDef = MRI->getVRegDef(Sub->getReg())) { 700 MachineOperand *Op = &SubDef->getOperand(1); 701 if (Op->isImm()) { 702 if (TII->isInlineConstant(*Op, OpTy)) 703 Sub = Op; 704 break; 705 } 706 if (!Op->isReg() || Op->getReg().isPhysical()) 707 break; 708 Sub = Op; 709 } 710 711 Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm()); 712 } 713 714 return true; 715 } 716 717 bool SIFoldOperandsImpl::tryToFoldACImm( 718 const MachineOperand &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx, 719 SmallVectorImpl<FoldCandidate> &FoldList) const { 720 const MCInstrDesc &Desc = UseMI->getDesc(); 721 if (UseOpIdx >= Desc.getNumOperands()) 722 return false; 723 724 if (!AMDGPU::isSISrcInlinableOperand(Desc, UseOpIdx)) 725 return false; 726 727 uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType; 728 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 729 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 730 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 731 return true; 732 } 733 734 if (!OpToFold.isReg()) 735 return false; 736 737 Register UseReg = OpToFold.getReg(); 738 if (!UseReg.isVirtual()) 739 return false; 740 741 if (isUseMIInFoldList(FoldList, UseMI)) 742 return false; 743 744 // Maybe it is just a COPY of an immediate itself. 745 MachineInstr *Def = MRI->getVRegDef(UseReg); 746 MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 747 if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) { 748 MachineOperand &DefOp = Def->getOperand(1); 749 if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) && 750 TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) { 751 UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm()); 752 return true; 753 } 754 } 755 756 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 757 if (!getRegSeqInit(Defs, UseReg, OpTy)) 758 return false; 759 760 int32_t Imm; 761 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 762 const MachineOperand *Op = Defs[I].first; 763 if (!Op->isImm()) 764 return false; 765 766 auto SubImm = Op->getImm(); 767 if (!I) { 768 Imm = SubImm; 769 if (!TII->isInlineConstant(*Op, OpTy) || 770 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 771 return false; 772 773 continue; 774 } 775 if (Imm != SubImm) 776 return false; // Can only fold splat constants 777 } 778 779 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 780 return true; 781 } 782 783 void SIFoldOperandsImpl::foldOperand( 784 MachineOperand &OpToFold, MachineInstr *UseMI, int UseOpIdx, 785 SmallVectorImpl<FoldCandidate> &FoldList, 786 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 787 const MachineOperand *UseOp = &UseMI->getOperand(UseOpIdx); 788 789 if (!isUseSafeToFold(*UseMI, *UseOp)) 790 return; 791 792 // FIXME: Fold operands with subregs. 793 if (UseOp->isReg() && OpToFold.isReg() && 794 (UseOp->isImplicit() || UseOp->getSubReg() != AMDGPU::NoSubRegister)) 795 return; 796 797 // Special case for REG_SEQUENCE: We can't fold literals into 798 // REG_SEQUENCE instructions, so we have to fold them into the 799 // uses of REG_SEQUENCE. 800 if (UseMI->isRegSequence()) { 801 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 802 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 803 804 // Grab the use operands first 805 SmallVector<MachineOperand *, 4> UsesToProcess; 806 for (auto &Use : MRI->use_nodbg_operands(RegSeqDstReg)) 807 UsesToProcess.push_back(&Use); 808 for (auto *RSUse : UsesToProcess) { 809 MachineInstr *RSUseMI = RSUse->getParent(); 810 811 if (tryToFoldACImm(UseMI->getOperand(0), RSUseMI, 812 RSUseMI->getOperandNo(RSUse), FoldList)) 813 continue; 814 815 if (RSUse->getSubReg() != RegSeqDstSubReg) 816 continue; 817 818 foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(RSUse), FoldList, 819 CopiesToReplace); 820 } 821 return; 822 } 823 824 if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList)) 825 return; 826 827 if (frameIndexMayFold(*UseMI, UseOpIdx, OpToFold)) { 828 // Verify that this is a stack access. 829 // FIXME: Should probably use stack pseudos before frame lowering. 830 831 if (TII->isMUBUF(*UseMI)) { 832 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 833 MFI->getScratchRSrcReg()) 834 return; 835 836 // Ensure this is either relative to the current frame or the current 837 // wave. 838 MachineOperand &SOff = 839 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 840 if (!SOff.isImm() || SOff.getImm() != 0) 841 return; 842 } 843 844 // A frame index will resolve to a positive constant, so it should always be 845 // safe to fold the addressing mode, even pre-GFX9. 846 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 847 848 const unsigned Opc = UseMI->getOpcode(); 849 if (TII->isFLATScratch(*UseMI) && 850 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr) && 851 !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::saddr)) { 852 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opc); 853 UseMI->setDesc(TII->get(NewOpc)); 854 } 855 856 return; 857 } 858 859 bool FoldingImmLike = 860 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 861 862 if (FoldingImmLike && UseMI->isCopy()) { 863 Register DestReg = UseMI->getOperand(0).getReg(); 864 Register SrcReg = UseMI->getOperand(1).getReg(); 865 assert(SrcReg.isVirtual()); 866 867 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); 868 869 // Don't fold into a copy to a physical register with the same class. Doing 870 // so would interfere with the register coalescer's logic which would avoid 871 // redundant initializations. 872 if (DestReg.isPhysical() && SrcRC->contains(DestReg)) 873 return; 874 875 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); 876 if (!DestReg.isPhysical()) { 877 if (DestRC == &AMDGPU::AGPR_32RegClass && 878 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 879 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 880 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 881 CopiesToReplace.push_back(UseMI); 882 return; 883 } 884 } 885 886 // In order to fold immediates into copies, we need to change the 887 // copy to a MOV. 888 889 unsigned MovOp = TII->getMovOpcode(DestRC); 890 if (MovOp == AMDGPU::COPY) 891 return; 892 893 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 894 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 895 while (ImpOpI != ImpOpE) { 896 MachineInstr::mop_iterator Tmp = ImpOpI; 897 ImpOpI++; 898 UseMI->removeOperand(UseMI->getOperandNo(Tmp)); 899 } 900 UseMI->setDesc(TII->get(MovOp)); 901 902 if (MovOp == AMDGPU::V_MOV_B16_t16_e64) { 903 const auto &SrcOp = UseMI->getOperand(UseOpIdx); 904 MachineOperand NewSrcOp(SrcOp); 905 MachineFunction *MF = UseMI->getParent()->getParent(); 906 UseMI->removeOperand(1); 907 UseMI->addOperand(*MF, MachineOperand::CreateImm(0)); // src0_modifiers 908 UseMI->addOperand(NewSrcOp); // src0 909 UseMI->addOperand(*MF, MachineOperand::CreateImm(0)); // op_sel 910 UseOpIdx = 2; 911 UseOp = &UseMI->getOperand(UseOpIdx); 912 } 913 CopiesToReplace.push_back(UseMI); 914 } else { 915 if (UseMI->isCopy() && OpToFold.isReg() && 916 UseMI->getOperand(0).getReg().isVirtual() && 917 !UseMI->getOperand(1).getSubReg()) { 918 LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI); 919 unsigned Size = TII->getOpSize(*UseMI, 1); 920 Register UseReg = OpToFold.getReg(); 921 UseMI->getOperand(1).setReg(UseReg); 922 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 923 UseMI->getOperand(1).setIsKill(false); 924 CopiesToReplace.push_back(UseMI); 925 OpToFold.setIsKill(false); 926 927 // Remove kill flags as kills may now be out of order with uses. 928 MRI->clearKillFlags(OpToFold.getReg()); 929 930 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 931 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 932 // its initializers right here, so we will rematerialize immediates and 933 // avoid copies via different reg classes. 934 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 935 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 936 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 937 const DebugLoc &DL = UseMI->getDebugLoc(); 938 MachineBasicBlock &MBB = *UseMI->getParent(); 939 940 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 941 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 942 UseMI->removeOperand(I); 943 944 MachineInstrBuilder B(*MBB.getParent(), UseMI); 945 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 946 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 947 for (unsigned I = 0; I < Size / 4; ++I) { 948 MachineOperand *Def = Defs[I].first; 949 TargetInstrInfo::RegSubRegPair CopyToVGPR; 950 if (Def->isImm() && 951 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 952 int64_t Imm = Def->getImm(); 953 954 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 955 BuildMI(MBB, UseMI, DL, 956 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm); 957 B.addReg(Tmp); 958 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 959 auto Src = getRegSubRegPair(*Def); 960 Def->setIsKill(false); 961 if (!SeenAGPRs.insert(Src)) { 962 // We cannot build a reg_sequence out of the same registers, they 963 // must be copied. Better do it here before copyPhysReg() created 964 // several reads to do the AGPR->VGPR->AGPR copy. 965 CopyToVGPR = Src; 966 } else { 967 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 968 Src.SubReg); 969 } 970 } else { 971 assert(Def->isReg()); 972 Def->setIsKill(false); 973 auto Src = getRegSubRegPair(*Def); 974 975 // Direct copy from SGPR to AGPR is not possible. To avoid creation 976 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 977 // create a copy here and track if we already have such a copy. 978 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 979 CopyToVGPR = Src; 980 } else { 981 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 982 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 983 B.addReg(Tmp); 984 } 985 } 986 987 if (CopyToVGPR.Reg) { 988 Register Vgpr; 989 if (VGPRCopies.count(CopyToVGPR)) { 990 Vgpr = VGPRCopies[CopyToVGPR]; 991 } else { 992 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 993 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 994 VGPRCopies[CopyToVGPR] = Vgpr; 995 } 996 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 997 BuildMI(MBB, UseMI, DL, 998 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr); 999 B.addReg(Tmp); 1000 } 1001 1002 B.addImm(Defs[I].second); 1003 } 1004 LLVM_DEBUG(dbgs() << "Folded " << *UseMI); 1005 return; 1006 } 1007 1008 if (Size != 4) 1009 return; 1010 1011 Register Reg0 = UseMI->getOperand(0).getReg(); 1012 Register Reg1 = UseMI->getOperand(1).getReg(); 1013 if (TRI->isAGPR(*MRI, Reg0) && TRI->isVGPR(*MRI, Reg1)) 1014 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 1015 else if (TRI->isVGPR(*MRI, Reg0) && TRI->isAGPR(*MRI, Reg1)) 1016 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64)); 1017 else if (ST->hasGFX90AInsts() && TRI->isAGPR(*MRI, Reg0) && 1018 TRI->isAGPR(*MRI, Reg1)) 1019 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32)); 1020 return; 1021 } 1022 1023 unsigned UseOpc = UseMI->getOpcode(); 1024 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 1025 (UseOpc == AMDGPU::V_READLANE_B32 && 1026 (int)UseOpIdx == 1027 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 1028 // %vgpr = V_MOV_B32 imm 1029 // %sgpr = V_READFIRSTLANE_B32 %vgpr 1030 // => 1031 // %sgpr = S_MOV_B32 imm 1032 if (FoldingImmLike) { 1033 if (execMayBeModifiedBeforeUse(*MRI, 1034 UseMI->getOperand(UseOpIdx).getReg(), 1035 *OpToFold.getParent(), 1036 *UseMI)) 1037 return; 1038 1039 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 1040 1041 if (OpToFold.isImm()) 1042 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 1043 else 1044 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 1045 UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) 1046 return; 1047 } 1048 1049 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 1050 if (execMayBeModifiedBeforeUse(*MRI, 1051 UseMI->getOperand(UseOpIdx).getReg(), 1052 *OpToFold.getParent(), 1053 *UseMI)) 1054 return; 1055 1056 // %vgpr = COPY %sgpr0 1057 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 1058 // => 1059 // %sgpr1 = COPY %sgpr0 1060 UseMI->setDesc(TII->get(AMDGPU::COPY)); 1061 UseMI->getOperand(1).setReg(OpToFold.getReg()); 1062 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 1063 UseMI->getOperand(1).setIsKill(false); 1064 UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) 1065 return; 1066 } 1067 } 1068 1069 const MCInstrDesc &UseDesc = UseMI->getDesc(); 1070 1071 // Don't fold into target independent nodes. Target independent opcodes 1072 // don't have defined register classes. 1073 if (UseDesc.isVariadic() || UseOp->isImplicit() || 1074 UseDesc.operands()[UseOpIdx].RegClass == -1) 1075 return; 1076 } 1077 1078 if (!FoldingImmLike) { 1079 if (OpToFold.isReg() && ST->needsAlignedVGPRs()) { 1080 // Don't fold if OpToFold doesn't hold an aligned register. 1081 const TargetRegisterClass *RC = 1082 TRI->getRegClassForReg(*MRI, OpToFold.getReg()); 1083 assert(RC); 1084 if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) { 1085 unsigned SubReg = OpToFold.getSubReg(); 1086 if (const TargetRegisterClass *SubRC = 1087 TRI->getSubRegisterClass(RC, SubReg)) 1088 RC = SubRC; 1089 } 1090 1091 if (!RC || !TRI->isProperlyAlignedRC(*RC)) 1092 return; 1093 } 1094 1095 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold); 1096 1097 // FIXME: We could try to change the instruction from 64-bit to 32-bit 1098 // to enable more folding opportunities. The shrink operands pass 1099 // already does this. 1100 return; 1101 } 1102 1103 1104 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 1105 const TargetRegisterClass *FoldRC = 1106 TRI->getRegClass(FoldDesc.operands()[0].RegClass); 1107 1108 // Split 64-bit constants into 32-bits for folding. 1109 if (UseOp->getSubReg() && AMDGPU::getRegBitWidth(*FoldRC) == 64) { 1110 Register UseReg = UseOp->getReg(); 1111 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 1112 if (AMDGPU::getRegBitWidth(*UseRC) != 64) 1113 return; 1114 1115 APInt Imm(64, OpToFold.getImm()); 1116 if (UseOp->getSubReg() == AMDGPU::sub0) { 1117 Imm = Imm.getLoBits(32); 1118 } else { 1119 assert(UseOp->getSubReg() == AMDGPU::sub1); 1120 Imm = Imm.getHiBits(32); 1121 } 1122 1123 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 1124 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp); 1125 return; 1126 } 1127 1128 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold); 1129 } 1130 1131 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 1132 uint32_t LHS, uint32_t RHS) { 1133 switch (Opcode) { 1134 case AMDGPU::V_AND_B32_e64: 1135 case AMDGPU::V_AND_B32_e32: 1136 case AMDGPU::S_AND_B32: 1137 Result = LHS & RHS; 1138 return true; 1139 case AMDGPU::V_OR_B32_e64: 1140 case AMDGPU::V_OR_B32_e32: 1141 case AMDGPU::S_OR_B32: 1142 Result = LHS | RHS; 1143 return true; 1144 case AMDGPU::V_XOR_B32_e64: 1145 case AMDGPU::V_XOR_B32_e32: 1146 case AMDGPU::S_XOR_B32: 1147 Result = LHS ^ RHS; 1148 return true; 1149 case AMDGPU::S_XNOR_B32: 1150 Result = ~(LHS ^ RHS); 1151 return true; 1152 case AMDGPU::S_NAND_B32: 1153 Result = ~(LHS & RHS); 1154 return true; 1155 case AMDGPU::S_NOR_B32: 1156 Result = ~(LHS | RHS); 1157 return true; 1158 case AMDGPU::S_ANDN2_B32: 1159 Result = LHS & ~RHS; 1160 return true; 1161 case AMDGPU::S_ORN2_B32: 1162 Result = LHS | ~RHS; 1163 return true; 1164 case AMDGPU::V_LSHL_B32_e64: 1165 case AMDGPU::V_LSHL_B32_e32: 1166 case AMDGPU::S_LSHL_B32: 1167 // The instruction ignores the high bits for out of bounds shifts. 1168 Result = LHS << (RHS & 31); 1169 return true; 1170 case AMDGPU::V_LSHLREV_B32_e64: 1171 case AMDGPU::V_LSHLREV_B32_e32: 1172 Result = RHS << (LHS & 31); 1173 return true; 1174 case AMDGPU::V_LSHR_B32_e64: 1175 case AMDGPU::V_LSHR_B32_e32: 1176 case AMDGPU::S_LSHR_B32: 1177 Result = LHS >> (RHS & 31); 1178 return true; 1179 case AMDGPU::V_LSHRREV_B32_e64: 1180 case AMDGPU::V_LSHRREV_B32_e32: 1181 Result = RHS >> (LHS & 31); 1182 return true; 1183 case AMDGPU::V_ASHR_I32_e64: 1184 case AMDGPU::V_ASHR_I32_e32: 1185 case AMDGPU::S_ASHR_I32: 1186 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 1187 return true; 1188 case AMDGPU::V_ASHRREV_I32_e64: 1189 case AMDGPU::V_ASHRREV_I32_e32: 1190 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 1191 return true; 1192 default: 1193 return false; 1194 } 1195 } 1196 1197 static unsigned getMovOpc(bool IsScalar) { 1198 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1199 } 1200 1201 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 1202 MI.setDesc(NewDesc); 1203 1204 // Remove any leftover implicit operands from mutating the instruction. e.g. 1205 // if we replace an s_and_b32 with a copy, we don't need the implicit scc def 1206 // anymore. 1207 const MCInstrDesc &Desc = MI.getDesc(); 1208 unsigned NumOps = Desc.getNumOperands() + Desc.implicit_uses().size() + 1209 Desc.implicit_defs().size(); 1210 1211 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 1212 MI.removeOperand(I); 1213 } 1214 1215 MachineOperand * 1216 SIFoldOperandsImpl::getImmOrMaterializedImm(MachineOperand &Op) const { 1217 // If this has a subregister, it obviously is a register source. 1218 if (!Op.isReg() || Op.getSubReg() != AMDGPU::NoSubRegister || 1219 !Op.getReg().isVirtual()) 1220 return &Op; 1221 1222 MachineInstr *Def = MRI->getVRegDef(Op.getReg()); 1223 if (Def && Def->isMoveImmediate()) { 1224 MachineOperand &ImmSrc = Def->getOperand(1); 1225 if (ImmSrc.isImm()) 1226 return &ImmSrc; 1227 } 1228 1229 return &Op; 1230 } 1231 1232 // Try to simplify operations with a constant that may appear after instruction 1233 // selection. 1234 // TODO: See if a frame index with a fixed offset can fold. 1235 bool SIFoldOperandsImpl::tryConstantFoldOp(MachineInstr *MI) const { 1236 if (!MI->allImplicitDefsAreDead()) 1237 return false; 1238 1239 unsigned Opc = MI->getOpcode(); 1240 1241 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1242 if (Src0Idx == -1) 1243 return false; 1244 MachineOperand *Src0 = getImmOrMaterializedImm(MI->getOperand(Src0Idx)); 1245 1246 if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1247 Opc == AMDGPU::S_NOT_B32) && 1248 Src0->isImm()) { 1249 MI->getOperand(1).ChangeToImmediate(~Src0->getImm()); 1250 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1251 return true; 1252 } 1253 1254 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1255 if (Src1Idx == -1) 1256 return false; 1257 MachineOperand *Src1 = getImmOrMaterializedImm(MI->getOperand(Src1Idx)); 1258 1259 if (!Src0->isImm() && !Src1->isImm()) 1260 return false; 1261 1262 // and k0, k1 -> v_mov_b32 (k0 & k1) 1263 // or k0, k1 -> v_mov_b32 (k0 | k1) 1264 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1265 if (Src0->isImm() && Src1->isImm()) { 1266 int32_t NewImm; 1267 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1268 return false; 1269 1270 bool IsSGPR = TRI->isSGPRReg(*MRI, MI->getOperand(0).getReg()); 1271 1272 // Be careful to change the right operand, src0 may belong to a different 1273 // instruction. 1274 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1275 MI->removeOperand(Src1Idx); 1276 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1277 return true; 1278 } 1279 1280 if (!MI->isCommutable()) 1281 return false; 1282 1283 if (Src0->isImm() && !Src1->isImm()) { 1284 std::swap(Src0, Src1); 1285 std::swap(Src0Idx, Src1Idx); 1286 } 1287 1288 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1289 if (Opc == AMDGPU::V_OR_B32_e64 || 1290 Opc == AMDGPU::V_OR_B32_e32 || 1291 Opc == AMDGPU::S_OR_B32) { 1292 if (Src1Val == 0) { 1293 // y = or x, 0 => y = copy x 1294 MI->removeOperand(Src1Idx); 1295 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1296 } else if (Src1Val == -1) { 1297 // y = or x, -1 => y = v_mov_b32 -1 1298 MI->removeOperand(Src1Idx); 1299 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1300 } else 1301 return false; 1302 1303 return true; 1304 } 1305 1306 if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 || 1307 Opc == AMDGPU::S_AND_B32) { 1308 if (Src1Val == 0) { 1309 // y = and x, 0 => y = v_mov_b32 0 1310 MI->removeOperand(Src0Idx); 1311 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1312 } else if (Src1Val == -1) { 1313 // y = and x, -1 => y = copy x 1314 MI->removeOperand(Src1Idx); 1315 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1316 } else 1317 return false; 1318 1319 return true; 1320 } 1321 1322 if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 || 1323 Opc == AMDGPU::S_XOR_B32) { 1324 if (Src1Val == 0) { 1325 // y = xor x, 0 => y = copy x 1326 MI->removeOperand(Src1Idx); 1327 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1328 return true; 1329 } 1330 } 1331 1332 return false; 1333 } 1334 1335 // Try to fold an instruction into a simpler one 1336 bool SIFoldOperandsImpl::tryFoldCndMask(MachineInstr &MI) const { 1337 unsigned Opc = MI.getOpcode(); 1338 if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 && 1339 Opc != AMDGPU::V_CNDMASK_B64_PSEUDO) 1340 return false; 1341 1342 MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1343 MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1344 if (!Src1->isIdenticalTo(*Src0)) { 1345 auto *Src0Imm = getImmOrMaterializedImm(*Src0); 1346 auto *Src1Imm = getImmOrMaterializedImm(*Src1); 1347 if (!Src1Imm->isIdenticalTo(*Src0Imm)) 1348 return false; 1349 } 1350 1351 int Src1ModIdx = 1352 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1353 int Src0ModIdx = 1354 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1355 if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) || 1356 (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0)) 1357 return false; 1358 1359 LLVM_DEBUG(dbgs() << "Folded " << MI << " into "); 1360 auto &NewDesc = 1361 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1362 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1363 if (Src2Idx != -1) 1364 MI.removeOperand(Src2Idx); 1365 MI.removeOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1366 if (Src1ModIdx != -1) 1367 MI.removeOperand(Src1ModIdx); 1368 if (Src0ModIdx != -1) 1369 MI.removeOperand(Src0ModIdx); 1370 mutateCopyOp(MI, NewDesc); 1371 LLVM_DEBUG(dbgs() << MI); 1372 return true; 1373 } 1374 1375 bool SIFoldOperandsImpl::tryFoldZeroHighBits(MachineInstr &MI) const { 1376 if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 && 1377 MI.getOpcode() != AMDGPU::V_AND_B32_e32) 1378 return false; 1379 1380 MachineOperand *Src0 = getImmOrMaterializedImm(MI.getOperand(1)); 1381 if (!Src0->isImm() || Src0->getImm() != 0xffff) 1382 return false; 1383 1384 Register Src1 = MI.getOperand(2).getReg(); 1385 MachineInstr *SrcDef = MRI->getVRegDef(Src1); 1386 if (!ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode())) 1387 return false; 1388 1389 Register Dst = MI.getOperand(0).getReg(); 1390 MRI->replaceRegWith(Dst, Src1); 1391 if (!MI.getOperand(2).isKill()) 1392 MRI->clearKillFlags(Src1); 1393 MI.eraseFromParent(); 1394 return true; 1395 } 1396 1397 bool SIFoldOperandsImpl::foldInstOperand(MachineInstr &MI, 1398 MachineOperand &OpToFold) const { 1399 // We need mutate the operands of new mov instructions to add implicit 1400 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1401 // this. 1402 SmallVector<MachineInstr *, 4> CopiesToReplace; 1403 SmallVector<FoldCandidate, 4> FoldList; 1404 MachineOperand &Dst = MI.getOperand(0); 1405 bool Changed = false; 1406 1407 if (OpToFold.isImm()) { 1408 for (auto &UseMI : 1409 make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) { 1410 // Folding the immediate may reveal operations that can be constant 1411 // folded or replaced with a copy. This can happen for example after 1412 // frame indices are lowered to constants or from splitting 64-bit 1413 // constants. 1414 // 1415 // We may also encounter cases where one or both operands are 1416 // immediates materialized into a register, which would ordinarily not 1417 // be folded due to multiple uses or operand constraints. 1418 if (tryConstantFoldOp(&UseMI)) { 1419 LLVM_DEBUG(dbgs() << "Constant folded " << UseMI); 1420 Changed = true; 1421 } 1422 } 1423 } 1424 1425 SmallVector<MachineOperand *, 4> UsesToProcess; 1426 for (auto &Use : MRI->use_nodbg_operands(Dst.getReg())) 1427 UsesToProcess.push_back(&Use); 1428 for (auto *U : UsesToProcess) { 1429 MachineInstr *UseMI = U->getParent(); 1430 foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U), FoldList, 1431 CopiesToReplace); 1432 } 1433 1434 if (CopiesToReplace.empty() && FoldList.empty()) 1435 return Changed; 1436 1437 MachineFunction *MF = MI.getParent()->getParent(); 1438 // Make sure we add EXEC uses to any new v_mov instructions created. 1439 for (MachineInstr *Copy : CopiesToReplace) 1440 Copy->addImplicitDefUseOperands(*MF); 1441 1442 for (FoldCandidate &Fold : FoldList) { 1443 assert(!Fold.isReg() || Fold.OpToFold); 1444 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { 1445 Register Reg = Fold.OpToFold->getReg(); 1446 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1447 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1448 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1449 continue; 1450 } 1451 if (updateOperand(Fold)) { 1452 // Clear kill flags. 1453 if (Fold.isReg()) { 1454 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1455 // FIXME: Probably shouldn't bother trying to fold if not an 1456 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1457 // copies. 1458 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1459 } 1460 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1461 << static_cast<int>(Fold.UseOpNo) << " of " 1462 << *Fold.UseMI); 1463 } else if (Fold.Commuted) { 1464 // Restoring instruction's original operand order if fold has failed. 1465 TII->commuteInstruction(*Fold.UseMI, false); 1466 } 1467 } 1468 return true; 1469 } 1470 1471 bool SIFoldOperandsImpl::tryFoldFoldableCopy( 1472 MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const { 1473 // Specially track simple redefs of m0 to the same value in a block, so we 1474 // can erase the later ones. 1475 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1476 MachineOperand &NewM0Val = MI.getOperand(1); 1477 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1478 MI.eraseFromParent(); 1479 return true; 1480 } 1481 1482 // We aren't tracking other physical registers 1483 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) 1484 ? nullptr 1485 : &NewM0Val; 1486 return false; 1487 } 1488 1489 MachineOperand *OpToFoldPtr; 1490 if (MI.getOpcode() == AMDGPU::V_MOV_B16_t16_e64) { 1491 // Folding when any src_modifiers are non-zero is unsupported 1492 if (TII->hasAnyModifiersSet(MI)) 1493 return false; 1494 OpToFoldPtr = &MI.getOperand(2); 1495 } else 1496 OpToFoldPtr = &MI.getOperand(1); 1497 MachineOperand &OpToFold = *OpToFoldPtr; 1498 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1499 1500 // FIXME: We could also be folding things like TargetIndexes. 1501 if (!FoldingImm && !OpToFold.isReg()) 1502 return false; 1503 1504 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) 1505 return false; 1506 1507 // Prevent folding operands backwards in the function. For example, 1508 // the COPY opcode must not be replaced by 1 in this example: 1509 // 1510 // %3 = COPY %vgpr0; VGPR_32:%3 1511 // ... 1512 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1513 if (!MI.getOperand(0).getReg().isVirtual()) 1514 return false; 1515 1516 bool Changed = foldInstOperand(MI, OpToFold); 1517 1518 // If we managed to fold all uses of this copy then we might as well 1519 // delete it now. 1520 // The only reason we need to follow chains of copies here is that 1521 // tryFoldRegSequence looks forward through copies before folding a 1522 // REG_SEQUENCE into its eventual users. 1523 auto *InstToErase = &MI; 1524 while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { 1525 auto &SrcOp = InstToErase->getOperand(1); 1526 auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register(); 1527 InstToErase->eraseFromParent(); 1528 Changed = true; 1529 InstToErase = nullptr; 1530 if (!SrcReg || SrcReg.isPhysical()) 1531 break; 1532 InstToErase = MRI->getVRegDef(SrcReg); 1533 if (!InstToErase || !TII->isFoldableCopy(*InstToErase)) 1534 break; 1535 } 1536 1537 if (InstToErase && InstToErase->isRegSequence() && 1538 MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { 1539 InstToErase->eraseFromParent(); 1540 Changed = true; 1541 } 1542 1543 return Changed; 1544 } 1545 1546 // Clamp patterns are canonically selected to v_max_* instructions, so only 1547 // handle them. 1548 const MachineOperand * 1549 SIFoldOperandsImpl::isClamp(const MachineInstr &MI) const { 1550 unsigned Op = MI.getOpcode(); 1551 switch (Op) { 1552 case AMDGPU::V_MAX_F32_e64: 1553 case AMDGPU::V_MAX_F16_e64: 1554 case AMDGPU::V_MAX_F16_t16_e64: 1555 case AMDGPU::V_MAX_F16_fake16_e64: 1556 case AMDGPU::V_MAX_F64_e64: 1557 case AMDGPU::V_MAX_NUM_F64_e64: 1558 case AMDGPU::V_PK_MAX_F16: { 1559 if (MI.mayRaiseFPException()) 1560 return nullptr; 1561 1562 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1563 return nullptr; 1564 1565 // Make sure sources are identical. 1566 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1567 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1568 if (!Src0->isReg() || !Src1->isReg() || 1569 Src0->getReg() != Src1->getReg() || 1570 Src0->getSubReg() != Src1->getSubReg() || 1571 Src0->getSubReg() != AMDGPU::NoSubRegister) 1572 return nullptr; 1573 1574 // Can't fold up if we have modifiers. 1575 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1576 return nullptr; 1577 1578 unsigned Src0Mods 1579 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1580 unsigned Src1Mods 1581 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1582 1583 // Having a 0 op_sel_hi would require swizzling the output in the source 1584 // instruction, which we can't do. 1585 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1586 : 0u; 1587 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1588 return nullptr; 1589 return Src0; 1590 } 1591 default: 1592 return nullptr; 1593 } 1594 } 1595 1596 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1597 bool SIFoldOperandsImpl::tryFoldClamp(MachineInstr &MI) { 1598 const MachineOperand *ClampSrc = isClamp(MI); 1599 if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg())) 1600 return false; 1601 1602 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1603 1604 // The type of clamp must be compatible. 1605 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1606 return false; 1607 1608 if (Def->mayRaiseFPException()) 1609 return false; 1610 1611 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1612 if (!DefClamp) 1613 return false; 1614 1615 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def); 1616 1617 // Clamp is applied after omod, so it is OK if omod is set. 1618 DefClamp->setImm(1); 1619 1620 Register DefReg = Def->getOperand(0).getReg(); 1621 Register MIDstReg = MI.getOperand(0).getReg(); 1622 if (TRI->isSGPRReg(*MRI, DefReg)) { 1623 // Pseudo scalar instructions have a SGPR for dst and clamp is a v_max* 1624 // instruction with a VGPR dst. 1625 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(AMDGPU::COPY), 1626 MIDstReg) 1627 .addReg(DefReg); 1628 } else { 1629 MRI->replaceRegWith(MIDstReg, DefReg); 1630 } 1631 MI.eraseFromParent(); 1632 1633 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac 1634 // instruction, so we might as well convert it to the more flexible VOP3-only 1635 // mad/fma form. 1636 if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) 1637 Def->eraseFromParent(); 1638 1639 return true; 1640 } 1641 1642 static int getOModValue(unsigned Opc, int64_t Val) { 1643 switch (Opc) { 1644 case AMDGPU::V_MUL_F64_e64: 1645 case AMDGPU::V_MUL_F64_pseudo_e64: { 1646 switch (Val) { 1647 case 0x3fe0000000000000: // 0.5 1648 return SIOutMods::DIV2; 1649 case 0x4000000000000000: // 2.0 1650 return SIOutMods::MUL2; 1651 case 0x4010000000000000: // 4.0 1652 return SIOutMods::MUL4; 1653 default: 1654 return SIOutMods::NONE; 1655 } 1656 } 1657 case AMDGPU::V_MUL_F32_e64: { 1658 switch (static_cast<uint32_t>(Val)) { 1659 case 0x3f000000: // 0.5 1660 return SIOutMods::DIV2; 1661 case 0x40000000: // 2.0 1662 return SIOutMods::MUL2; 1663 case 0x40800000: // 4.0 1664 return SIOutMods::MUL4; 1665 default: 1666 return SIOutMods::NONE; 1667 } 1668 } 1669 case AMDGPU::V_MUL_F16_e64: 1670 case AMDGPU::V_MUL_F16_t16_e64: 1671 case AMDGPU::V_MUL_F16_fake16_e64: { 1672 switch (static_cast<uint16_t>(Val)) { 1673 case 0x3800: // 0.5 1674 return SIOutMods::DIV2; 1675 case 0x4000: // 2.0 1676 return SIOutMods::MUL2; 1677 case 0x4400: // 4.0 1678 return SIOutMods::MUL4; 1679 default: 1680 return SIOutMods::NONE; 1681 } 1682 } 1683 default: 1684 llvm_unreachable("invalid mul opcode"); 1685 } 1686 } 1687 1688 // FIXME: Does this really not support denormals with f16? 1689 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1690 // handled, so will anything other than that break? 1691 std::pair<const MachineOperand *, int> 1692 SIFoldOperandsImpl::isOMod(const MachineInstr &MI) const { 1693 unsigned Op = MI.getOpcode(); 1694 switch (Op) { 1695 case AMDGPU::V_MUL_F64_e64: 1696 case AMDGPU::V_MUL_F64_pseudo_e64: 1697 case AMDGPU::V_MUL_F32_e64: 1698 case AMDGPU::V_MUL_F16_t16_e64: 1699 case AMDGPU::V_MUL_F16_fake16_e64: 1700 case AMDGPU::V_MUL_F16_e64: { 1701 // If output denormals are enabled, omod is ignored. 1702 if ((Op == AMDGPU::V_MUL_F32_e64 && 1703 MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || 1704 ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F64_pseudo_e64 || 1705 Op == AMDGPU::V_MUL_F16_e64 || Op == AMDGPU::V_MUL_F16_t16_e64 || 1706 Op == AMDGPU::V_MUL_F16_fake16_e64) && 1707 MFI->getMode().FP64FP16Denormals.Output != 1708 DenormalMode::PreserveSign) || 1709 MI.mayRaiseFPException()) 1710 return std::pair(nullptr, SIOutMods::NONE); 1711 1712 const MachineOperand *RegOp = nullptr; 1713 const MachineOperand *ImmOp = nullptr; 1714 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1715 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1716 if (Src0->isImm()) { 1717 ImmOp = Src0; 1718 RegOp = Src1; 1719 } else if (Src1->isImm()) { 1720 ImmOp = Src1; 1721 RegOp = Src0; 1722 } else 1723 return std::pair(nullptr, SIOutMods::NONE); 1724 1725 int OMod = getOModValue(Op, ImmOp->getImm()); 1726 if (OMod == SIOutMods::NONE || 1727 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1728 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1729 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1730 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1731 return std::pair(nullptr, SIOutMods::NONE); 1732 1733 return std::pair(RegOp, OMod); 1734 } 1735 case AMDGPU::V_ADD_F64_e64: 1736 case AMDGPU::V_ADD_F64_pseudo_e64: 1737 case AMDGPU::V_ADD_F32_e64: 1738 case AMDGPU::V_ADD_F16_e64: 1739 case AMDGPU::V_ADD_F16_t16_e64: 1740 case AMDGPU::V_ADD_F16_fake16_e64: { 1741 // If output denormals are enabled, omod is ignored. 1742 if ((Op == AMDGPU::V_ADD_F32_e64 && 1743 MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || 1744 ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F64_pseudo_e64 || 1745 Op == AMDGPU::V_ADD_F16_e64 || Op == AMDGPU::V_ADD_F16_t16_e64 || 1746 Op == AMDGPU::V_ADD_F16_fake16_e64) && 1747 MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign)) 1748 return std::pair(nullptr, SIOutMods::NONE); 1749 1750 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1751 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1752 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1753 1754 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1755 Src0->getSubReg() == Src1->getSubReg() && 1756 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1757 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1758 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1759 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1760 return std::pair(Src0, SIOutMods::MUL2); 1761 1762 return std::pair(nullptr, SIOutMods::NONE); 1763 } 1764 default: 1765 return std::pair(nullptr, SIOutMods::NONE); 1766 } 1767 } 1768 1769 // FIXME: Does this need to check IEEE bit on function? 1770 bool SIFoldOperandsImpl::tryFoldOMod(MachineInstr &MI) { 1771 const MachineOperand *RegOp; 1772 int OMod; 1773 std::tie(RegOp, OMod) = isOMod(MI); 1774 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1775 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1776 !MRI->hasOneNonDBGUser(RegOp->getReg())) 1777 return false; 1778 1779 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1780 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1781 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1782 return false; 1783 1784 if (Def->mayRaiseFPException()) 1785 return false; 1786 1787 // Clamp is applied after omod. If the source already has clamp set, don't 1788 // fold it. 1789 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1790 return false; 1791 1792 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def); 1793 1794 DefOMod->setImm(OMod); 1795 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1796 // Kill flags can be wrong if we replaced a def inside a loop with a def 1797 // outside the loop. 1798 MRI->clearKillFlags(Def->getOperand(0).getReg()); 1799 MI.eraseFromParent(); 1800 1801 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac 1802 // instruction, so we might as well convert it to the more flexible VOP3-only 1803 // mad/fma form. 1804 if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) 1805 Def->eraseFromParent(); 1806 1807 return true; 1808 } 1809 1810 // Try to fold a reg_sequence with vgpr output and agpr inputs into an 1811 // instruction which can take an agpr. So far that means a store. 1812 bool SIFoldOperandsImpl::tryFoldRegSequence(MachineInstr &MI) { 1813 assert(MI.isRegSequence()); 1814 auto Reg = MI.getOperand(0).getReg(); 1815 1816 if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) || 1817 !MRI->hasOneNonDBGUse(Reg)) 1818 return false; 1819 1820 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 1821 if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER)) 1822 return false; 1823 1824 for (auto &[Op, SubIdx] : Defs) { 1825 if (!Op->isReg()) 1826 return false; 1827 if (TRI->isAGPR(*MRI, Op->getReg())) 1828 continue; 1829 // Maybe this is a COPY from AREG 1830 const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg()); 1831 if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg()) 1832 return false; 1833 if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg())) 1834 return false; 1835 } 1836 1837 MachineOperand *Op = &*MRI->use_nodbg_begin(Reg); 1838 MachineInstr *UseMI = Op->getParent(); 1839 while (UseMI->isCopy() && !Op->getSubReg()) { 1840 Reg = UseMI->getOperand(0).getReg(); 1841 if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg)) 1842 return false; 1843 Op = &*MRI->use_nodbg_begin(Reg); 1844 UseMI = Op->getParent(); 1845 } 1846 1847 if (Op->getSubReg()) 1848 return false; 1849 1850 unsigned OpIdx = Op - &UseMI->getOperand(0); 1851 const MCInstrDesc &InstDesc = UseMI->getDesc(); 1852 const TargetRegisterClass *OpRC = 1853 TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF()); 1854 if (!OpRC || !TRI->isVectorSuperClass(OpRC)) 1855 return false; 1856 1857 const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)); 1858 auto Dst = MRI->createVirtualRegister(NewDstRC); 1859 auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1860 TII->get(AMDGPU::REG_SEQUENCE), Dst); 1861 1862 for (auto &[Def, SubIdx] : Defs) { 1863 Def->setIsKill(false); 1864 if (TRI->isAGPR(*MRI, Def->getReg())) { 1865 RS.add(*Def); 1866 } else { // This is a copy 1867 MachineInstr *SubDef = MRI->getVRegDef(Def->getReg()); 1868 SubDef->getOperand(1).setIsKill(false); 1869 RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg()); 1870 } 1871 RS.addImm(SubIdx); 1872 } 1873 1874 Op->setReg(Dst); 1875 if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) { 1876 Op->setReg(Reg); 1877 RS->eraseFromParent(); 1878 return false; 1879 } 1880 1881 LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI); 1882 1883 // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users, 1884 // in which case we can erase them all later in runOnMachineFunction. 1885 if (MRI->use_nodbg_empty(MI.getOperand(0).getReg())) 1886 MI.eraseFromParent(); 1887 return true; 1888 } 1889 1890 /// Checks whether \p Copy is a AGPR -> VGPR copy. Returns `true` on success and 1891 /// stores the AGPR register in \p OutReg and the subreg in \p OutSubReg 1892 static bool isAGPRCopy(const SIRegisterInfo &TRI, 1893 const MachineRegisterInfo &MRI, const MachineInstr &Copy, 1894 Register &OutReg, unsigned &OutSubReg) { 1895 assert(Copy.isCopy()); 1896 1897 const MachineOperand &CopySrc = Copy.getOperand(1); 1898 Register CopySrcReg = CopySrc.getReg(); 1899 if (!CopySrcReg.isVirtual()) 1900 return false; 1901 1902 // Common case: copy from AGPR directly, e.g. 1903 // %1:vgpr_32 = COPY %0:agpr_32 1904 if (TRI.isAGPR(MRI, CopySrcReg)) { 1905 OutReg = CopySrcReg; 1906 OutSubReg = CopySrc.getSubReg(); 1907 return true; 1908 } 1909 1910 // Sometimes it can also involve two copies, e.g. 1911 // %1:vgpr_256 = COPY %0:agpr_256 1912 // %2:vgpr_32 = COPY %1:vgpr_256.sub0 1913 const MachineInstr *CopySrcDef = MRI.getVRegDef(CopySrcReg); 1914 if (!CopySrcDef || !CopySrcDef->isCopy()) 1915 return false; 1916 1917 const MachineOperand &OtherCopySrc = CopySrcDef->getOperand(1); 1918 Register OtherCopySrcReg = OtherCopySrc.getReg(); 1919 if (!OtherCopySrcReg.isVirtual() || 1920 CopySrcDef->getOperand(0).getSubReg() != AMDGPU::NoSubRegister || 1921 OtherCopySrc.getSubReg() != AMDGPU::NoSubRegister || 1922 !TRI.isAGPR(MRI, OtherCopySrcReg)) 1923 return false; 1924 1925 OutReg = OtherCopySrcReg; 1926 OutSubReg = CopySrc.getSubReg(); 1927 return true; 1928 } 1929 1930 // Try to hoist an AGPR to VGPR copy across a PHI. 1931 // This should allow folding of an AGPR into a consumer which may support it. 1932 // 1933 // Example 1: LCSSA PHI 1934 // loop: 1935 // %1:vreg = COPY %0:areg 1936 // exit: 1937 // %2:vreg = PHI %1:vreg, %loop 1938 // => 1939 // loop: 1940 // exit: 1941 // %1:areg = PHI %0:areg, %loop 1942 // %2:vreg = COPY %1:areg 1943 // 1944 // Example 2: PHI with multiple incoming values: 1945 // entry: 1946 // %1:vreg = GLOBAL_LOAD(..) 1947 // loop: 1948 // %2:vreg = PHI %1:vreg, %entry, %5:vreg, %loop 1949 // %3:areg = COPY %2:vreg 1950 // %4:areg = (instr using %3:areg) 1951 // %5:vreg = COPY %4:areg 1952 // => 1953 // entry: 1954 // %1:vreg = GLOBAL_LOAD(..) 1955 // %2:areg = COPY %1:vreg 1956 // loop: 1957 // %3:areg = PHI %2:areg, %entry, %X:areg, 1958 // %4:areg = (instr using %3:areg) 1959 bool SIFoldOperandsImpl::tryFoldPhiAGPR(MachineInstr &PHI) { 1960 assert(PHI.isPHI()); 1961 1962 Register PhiOut = PHI.getOperand(0).getReg(); 1963 if (!TRI->isVGPR(*MRI, PhiOut)) 1964 return false; 1965 1966 // Iterate once over all incoming values of the PHI to check if this PHI is 1967 // eligible, and determine the exact AGPR RC we'll target. 1968 const TargetRegisterClass *ARC = nullptr; 1969 for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { 1970 MachineOperand &MO = PHI.getOperand(K); 1971 MachineInstr *Copy = MRI->getVRegDef(MO.getReg()); 1972 if (!Copy || !Copy->isCopy()) 1973 continue; 1974 1975 Register AGPRSrc; 1976 unsigned AGPRRegMask = AMDGPU::NoSubRegister; 1977 if (!isAGPRCopy(*TRI, *MRI, *Copy, AGPRSrc, AGPRRegMask)) 1978 continue; 1979 1980 const TargetRegisterClass *CopyInRC = MRI->getRegClass(AGPRSrc); 1981 if (const auto *SubRC = TRI->getSubRegisterClass(CopyInRC, AGPRRegMask)) 1982 CopyInRC = SubRC; 1983 1984 if (ARC && !ARC->hasSubClassEq(CopyInRC)) 1985 return false; 1986 ARC = CopyInRC; 1987 } 1988 1989 if (!ARC) 1990 return false; 1991 1992 bool IsAGPR32 = (ARC == &AMDGPU::AGPR_32RegClass); 1993 1994 // Rewrite the PHI's incoming values to ARC. 1995 LLVM_DEBUG(dbgs() << "Folding AGPR copies into: " << PHI); 1996 for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { 1997 MachineOperand &MO = PHI.getOperand(K); 1998 Register Reg = MO.getReg(); 1999 2000 MachineBasicBlock::iterator InsertPt; 2001 MachineBasicBlock *InsertMBB = nullptr; 2002 2003 // Look at the def of Reg, ignoring all copies. 2004 unsigned CopyOpc = AMDGPU::COPY; 2005 if (MachineInstr *Def = MRI->getVRegDef(Reg)) { 2006 2007 // Look at pre-existing COPY instructions from ARC: Steal the operand. If 2008 // the copy was single-use, it will be removed by DCE later. 2009 if (Def->isCopy()) { 2010 Register AGPRSrc; 2011 unsigned AGPRSubReg = AMDGPU::NoSubRegister; 2012 if (isAGPRCopy(*TRI, *MRI, *Def, AGPRSrc, AGPRSubReg)) { 2013 MO.setReg(AGPRSrc); 2014 MO.setSubReg(AGPRSubReg); 2015 continue; 2016 } 2017 2018 // If this is a multi-use SGPR -> VGPR copy, use V_ACCVGPR_WRITE on 2019 // GFX908 directly instead of a COPY. Otherwise, SIFoldOperand may try 2020 // to fold the sgpr -> vgpr -> agpr copy into a sgpr -> agpr copy which 2021 // is unlikely to be profitable. 2022 // 2023 // Note that V_ACCVGPR_WRITE is only used for AGPR_32. 2024 MachineOperand &CopyIn = Def->getOperand(1); 2025 if (IsAGPR32 && !ST->hasGFX90AInsts() && !MRI->hasOneNonDBGUse(Reg) && 2026 TRI->isSGPRReg(*MRI, CopyIn.getReg())) 2027 CopyOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; 2028 } 2029 2030 InsertMBB = Def->getParent(); 2031 InsertPt = InsertMBB->SkipPHIsLabelsAndDebug(++Def->getIterator()); 2032 } else { 2033 InsertMBB = PHI.getOperand(MO.getOperandNo() + 1).getMBB(); 2034 InsertPt = InsertMBB->getFirstTerminator(); 2035 } 2036 2037 Register NewReg = MRI->createVirtualRegister(ARC); 2038 MachineInstr *MI = BuildMI(*InsertMBB, InsertPt, PHI.getDebugLoc(), 2039 TII->get(CopyOpc), NewReg) 2040 .addReg(Reg); 2041 MO.setReg(NewReg); 2042 2043 (void)MI; 2044 LLVM_DEBUG(dbgs() << " Created COPY: " << *MI); 2045 } 2046 2047 // Replace the PHI's result with a new register. 2048 Register NewReg = MRI->createVirtualRegister(ARC); 2049 PHI.getOperand(0).setReg(NewReg); 2050 2051 // COPY that new register back to the original PhiOut register. This COPY will 2052 // usually be folded out later. 2053 MachineBasicBlock *MBB = PHI.getParent(); 2054 BuildMI(*MBB, MBB->getFirstNonPHI(), PHI.getDebugLoc(), 2055 TII->get(AMDGPU::COPY), PhiOut) 2056 .addReg(NewReg); 2057 2058 LLVM_DEBUG(dbgs() << " Done: Folded " << PHI); 2059 return true; 2060 } 2061 2062 // Attempt to convert VGPR load to an AGPR load. 2063 bool SIFoldOperandsImpl::tryFoldLoad(MachineInstr &MI) { 2064 assert(MI.mayLoad()); 2065 if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1) 2066 return false; 2067 2068 MachineOperand &Def = MI.getOperand(0); 2069 if (!Def.isDef()) 2070 return false; 2071 2072 Register DefReg = Def.getReg(); 2073 2074 if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg)) 2075 return false; 2076 2077 SmallVector<const MachineInstr*, 8> Users; 2078 SmallVector<Register, 8> MoveRegs; 2079 for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg)) 2080 Users.push_back(&I); 2081 2082 if (Users.empty()) 2083 return false; 2084 2085 // Check that all uses a copy to an agpr or a reg_sequence producing an agpr. 2086 while (!Users.empty()) { 2087 const MachineInstr *I = Users.pop_back_val(); 2088 if (!I->isCopy() && !I->isRegSequence()) 2089 return false; 2090 Register DstReg = I->getOperand(0).getReg(); 2091 // Physical registers may have more than one instruction definitions 2092 if (DstReg.isPhysical()) 2093 return false; 2094 if (TRI->isAGPR(*MRI, DstReg)) 2095 continue; 2096 MoveRegs.push_back(DstReg); 2097 for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg)) 2098 Users.push_back(&U); 2099 } 2100 2101 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 2102 MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC)); 2103 if (!TII->isOperandLegal(MI, 0, &Def)) { 2104 MRI->setRegClass(DefReg, RC); 2105 return false; 2106 } 2107 2108 while (!MoveRegs.empty()) { 2109 Register Reg = MoveRegs.pop_back_val(); 2110 MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg))); 2111 } 2112 2113 LLVM_DEBUG(dbgs() << "Folded " << MI); 2114 2115 return true; 2116 } 2117 2118 // tryFoldPhiAGPR will aggressively try to create AGPR PHIs. 2119 // For GFX90A and later, this is pretty much always a good thing, but for GFX908 2120 // there's cases where it can create a lot more AGPR-AGPR copies, which are 2121 // expensive on this architecture due to the lack of V_ACCVGPR_MOV. 2122 // 2123 // This function looks at all AGPR PHIs in a basic block and collects their 2124 // operands. Then, it checks for register that are used more than once across 2125 // all PHIs and caches them in a VGPR. This prevents ExpandPostRAPseudo from 2126 // having to create one VGPR temporary per use, which can get very messy if 2127 // these PHIs come from a broken-up large PHI (e.g. 32 AGPR phis, one per vector 2128 // element). 2129 // 2130 // Example 2131 // a: 2132 // %in:agpr_256 = COPY %foo:vgpr_256 2133 // c: 2134 // %x:agpr_32 = .. 2135 // b: 2136 // %0:areg = PHI %in.sub0:agpr_32, %a, %x, %c 2137 // %1:areg = PHI %in.sub0:agpr_32, %a, %y, %c 2138 // %2:areg = PHI %in.sub0:agpr_32, %a, %z, %c 2139 // => 2140 // a: 2141 // %in:agpr_256 = COPY %foo:vgpr_256 2142 // %tmp:vgpr_32 = V_ACCVGPR_READ_B32_e64 %in.sub0:agpr_32 2143 // %tmp_agpr:agpr_32 = COPY %tmp 2144 // c: 2145 // %x:agpr_32 = .. 2146 // b: 2147 // %0:areg = PHI %tmp_agpr, %a, %x, %c 2148 // %1:areg = PHI %tmp_agpr, %a, %y, %c 2149 // %2:areg = PHI %tmp_agpr, %a, %z, %c 2150 bool SIFoldOperandsImpl::tryOptimizeAGPRPhis(MachineBasicBlock &MBB) { 2151 // This is only really needed on GFX908 where AGPR-AGPR copies are 2152 // unreasonably difficult. 2153 if (ST->hasGFX90AInsts()) 2154 return false; 2155 2156 // Look at all AGPR Phis and collect the register + subregister used. 2157 DenseMap<std::pair<Register, unsigned>, std::vector<MachineOperand *>> 2158 RegToMO; 2159 2160 for (auto &MI : MBB) { 2161 if (!MI.isPHI()) 2162 break; 2163 2164 if (!TRI->isAGPR(*MRI, MI.getOperand(0).getReg())) 2165 continue; 2166 2167 for (unsigned K = 1; K < MI.getNumOperands(); K += 2) { 2168 MachineOperand &PhiMO = MI.getOperand(K); 2169 if (!PhiMO.getSubReg()) 2170 continue; 2171 RegToMO[{PhiMO.getReg(), PhiMO.getSubReg()}].push_back(&PhiMO); 2172 } 2173 } 2174 2175 // For all (Reg, SubReg) pair that are used more than once, cache the value in 2176 // a VGPR. 2177 bool Changed = false; 2178 for (const auto &[Entry, MOs] : RegToMO) { 2179 if (MOs.size() == 1) 2180 continue; 2181 2182 const auto [Reg, SubReg] = Entry; 2183 MachineInstr *Def = MRI->getVRegDef(Reg); 2184 MachineBasicBlock *DefMBB = Def->getParent(); 2185 2186 // Create a copy in a VGPR using V_ACCVGPR_READ_B32_e64 so it's not folded 2187 // out. 2188 const TargetRegisterClass *ARC = getRegOpRC(*MRI, *TRI, *MOs.front()); 2189 Register TempVGPR = 2190 MRI->createVirtualRegister(TRI->getEquivalentVGPRClass(ARC)); 2191 MachineInstr *VGPRCopy = 2192 BuildMI(*DefMBB, ++Def->getIterator(), Def->getDebugLoc(), 2193 TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64), TempVGPR) 2194 .addReg(Reg, /* flags */ 0, SubReg); 2195 2196 // Copy back to an AGPR and use that instead of the AGPR subreg in all MOs. 2197 Register TempAGPR = MRI->createVirtualRegister(ARC); 2198 BuildMI(*DefMBB, ++VGPRCopy->getIterator(), Def->getDebugLoc(), 2199 TII->get(AMDGPU::COPY), TempAGPR) 2200 .addReg(TempVGPR); 2201 2202 LLVM_DEBUG(dbgs() << "Caching AGPR into VGPR: " << *VGPRCopy); 2203 for (MachineOperand *MO : MOs) { 2204 MO->setReg(TempAGPR); 2205 MO->setSubReg(AMDGPU::NoSubRegister); 2206 LLVM_DEBUG(dbgs() << " Changed PHI Operand: " << *MO << "\n"); 2207 } 2208 2209 Changed = true; 2210 } 2211 2212 return Changed; 2213 } 2214 2215 bool SIFoldOperandsImpl::run(MachineFunction &MF) { 2216 MRI = &MF.getRegInfo(); 2217 ST = &MF.getSubtarget<GCNSubtarget>(); 2218 TII = ST->getInstrInfo(); 2219 TRI = &TII->getRegisterInfo(); 2220 MFI = MF.getInfo<SIMachineFunctionInfo>(); 2221 2222 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 2223 // correctly handle signed zeros. 2224 // 2225 // FIXME: Also need to check strictfp 2226 bool IsIEEEMode = MFI->getMode().IEEE; 2227 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 2228 2229 bool Changed = false; 2230 for (MachineBasicBlock *MBB : depth_first(&MF)) { 2231 MachineOperand *CurrentKnownM0Val = nullptr; 2232 for (auto &MI : make_early_inc_range(*MBB)) { 2233 Changed |= tryFoldCndMask(MI); 2234 2235 if (tryFoldZeroHighBits(MI)) { 2236 Changed = true; 2237 continue; 2238 } 2239 2240 if (MI.isRegSequence() && tryFoldRegSequence(MI)) { 2241 Changed = true; 2242 continue; 2243 } 2244 2245 if (MI.isPHI() && tryFoldPhiAGPR(MI)) { 2246 Changed = true; 2247 continue; 2248 } 2249 2250 if (MI.mayLoad() && tryFoldLoad(MI)) { 2251 Changed = true; 2252 continue; 2253 } 2254 2255 if (TII->isFoldableCopy(MI)) { 2256 Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val); 2257 continue; 2258 } 2259 2260 // Saw an unknown clobber of m0, so we no longer know what it is. 2261 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 2262 CurrentKnownM0Val = nullptr; 2263 2264 // TODO: Omod might be OK if there is NSZ only on the source 2265 // instruction, and not the omod multiply. 2266 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 2267 !tryFoldOMod(MI)) 2268 Changed |= tryFoldClamp(MI); 2269 } 2270 2271 Changed |= tryOptimizeAGPRPhis(*MBB); 2272 } 2273 2274 return Changed; 2275 } 2276 2277 PreservedAnalyses SIFoldOperandsPass::run(MachineFunction &MF, 2278 MachineFunctionAnalysisManager &) { 2279 bool Changed = SIFoldOperandsImpl().run(MF); 2280 if (!Changed) { 2281 return PreservedAnalyses::all(); 2282 } 2283 auto PA = getMachineFunctionPassPreservedAnalyses(); 2284 PA.preserveSet<CFGAnalyses>(); 2285 return PA; 2286 } 2287