1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "AMDGPUSubtarget.h" 13 #include "SIInstrInfo.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/CodeGen/LiveIntervals.h" 18 #include "llvm/CodeGen/MachineFunctionPass.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "si-fold-operands" 26 using namespace llvm; 27 28 namespace { 29 30 struct FoldCandidate { 31 MachineInstr *UseMI; 32 union { 33 MachineOperand *OpToFold; 34 uint64_t ImmToFold; 35 int FrameIndexToFold; 36 }; 37 int ShrinkOpcode; 38 unsigned char UseOpNo; 39 MachineOperand::MachineOperandType Kind; 40 bool Commuted; 41 42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 43 bool Commuted_ = false, 44 int ShrinkOp = -1) : 45 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 46 Kind(FoldOp->getType()), 47 Commuted(Commuted_) { 48 if (FoldOp->isImm()) { 49 ImmToFold = FoldOp->getImm(); 50 } else if (FoldOp->isFI()) { 51 FrameIndexToFold = FoldOp->getIndex(); 52 } else { 53 assert(FoldOp->isReg() || FoldOp->isGlobal()); 54 OpToFold = FoldOp; 55 } 56 } 57 58 bool isFI() const { 59 return Kind == MachineOperand::MO_FrameIndex; 60 } 61 62 bool isImm() const { 63 return Kind == MachineOperand::MO_Immediate; 64 } 65 66 bool isReg() const { 67 return Kind == MachineOperand::MO_Register; 68 } 69 70 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 71 72 bool isCommuted() const { 73 return Commuted; 74 } 75 76 bool needsShrink() const { 77 return ShrinkOpcode != -1; 78 } 79 80 int getShrinkOpcode() const { 81 return ShrinkOpcode; 82 } 83 }; 84 85 class SIFoldOperands : public MachineFunctionPass { 86 public: 87 static char ID; 88 MachineRegisterInfo *MRI; 89 const SIInstrInfo *TII; 90 const SIRegisterInfo *TRI; 91 const GCNSubtarget *ST; 92 const SIMachineFunctionInfo *MFI; 93 94 void foldOperand(MachineOperand &OpToFold, 95 MachineInstr *UseMI, 96 int UseOpIdx, 97 SmallVectorImpl<FoldCandidate> &FoldList, 98 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 99 100 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 101 102 const MachineOperand *isClamp(const MachineInstr &MI) const; 103 bool tryFoldClamp(MachineInstr &MI); 104 105 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 106 bool tryFoldOMod(MachineInstr &MI); 107 108 public: 109 SIFoldOperands() : MachineFunctionPass(ID) { 110 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 111 } 112 113 bool runOnMachineFunction(MachineFunction &MF) override; 114 115 StringRef getPassName() const override { return "SI Fold Operands"; } 116 117 void getAnalysisUsage(AnalysisUsage &AU) const override { 118 AU.setPreservesCFG(); 119 MachineFunctionPass::getAnalysisUsage(AU); 120 } 121 }; 122 123 } // End anonymous namespace. 124 125 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 126 "SI Fold Operands", false, false) 127 128 char SIFoldOperands::ID = 0; 129 130 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 131 132 // Wrapper around isInlineConstant that understands special cases when 133 // instruction types are replaced during operand folding. 134 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 135 const MachineInstr &UseMI, 136 unsigned OpNo, 137 const MachineOperand &OpToFold) { 138 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 139 return true; 140 141 unsigned Opc = UseMI.getOpcode(); 142 switch (Opc) { 143 case AMDGPU::V_MAC_F32_e64: 144 case AMDGPU::V_MAC_F16_e64: 145 case AMDGPU::V_FMAC_F32_e64: { 146 // Special case for mac. Since this is replaced with mad when folded into 147 // src2, we need to check the legality for the final instruction. 148 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 149 if (static_cast<int>(OpNo) == Src2Idx) { 150 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; 151 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 152 153 unsigned Opc = IsFMA ? 154 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 155 const MCInstrDesc &MadDesc = TII->get(Opc); 156 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 157 } 158 return false; 159 } 160 default: 161 return false; 162 } 163 } 164 165 // TODO: Add heuristic that the frame index might not fit in the addressing mode 166 // immediate offset to avoid materializing in loops. 167 static bool frameIndexMayFold(const SIInstrInfo *TII, 168 const MachineInstr &UseMI, 169 int OpNo, 170 const MachineOperand &OpToFold) { 171 return OpToFold.isFI() && 172 (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) && 173 OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr); 174 } 175 176 FunctionPass *llvm::createSIFoldOperandsPass() { 177 return new SIFoldOperands(); 178 } 179 180 static bool updateOperand(FoldCandidate &Fold, 181 const SIInstrInfo &TII, 182 const TargetRegisterInfo &TRI, 183 const GCNSubtarget &ST) { 184 MachineInstr *MI = Fold.UseMI; 185 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 186 assert(Old.isReg()); 187 188 if (Fold.isImm()) { 189 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 190 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 191 AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold), 192 ST.hasInv2PiInlineImm())) { 193 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 194 // already set. 195 unsigned Opcode = MI->getOpcode(); 196 int OpNo = MI->getOperandNo(&Old); 197 int ModIdx = -1; 198 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 199 ModIdx = AMDGPU::OpName::src0_modifiers; 200 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 201 ModIdx = AMDGPU::OpName::src1_modifiers; 202 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 203 ModIdx = AMDGPU::OpName::src2_modifiers; 204 assert(ModIdx != -1); 205 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 206 MachineOperand &Mod = MI->getOperand(ModIdx); 207 unsigned Val = Mod.getImm(); 208 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) 209 return false; 210 // Only apply the following transformation if that operand requries 211 // a packed immediate. 212 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 213 case AMDGPU::OPERAND_REG_IMM_V2FP16: 214 case AMDGPU::OPERAND_REG_IMM_V2INT16: 215 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 216 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 217 // If upper part is all zero we do not need op_sel_hi. 218 if (!isUInt<16>(Fold.ImmToFold)) { 219 if (!(Fold.ImmToFold & 0xffff)) { 220 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 221 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 222 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 223 return true; 224 } 225 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 226 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 227 return true; 228 } 229 break; 230 default: 231 break; 232 } 233 } 234 } 235 236 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 237 MachineBasicBlock *MBB = MI->getParent(); 238 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI); 239 if (Liveness != MachineBasicBlock::LQR_Dead) 240 return false; 241 242 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 243 int Op32 = Fold.getShrinkOpcode(); 244 MachineOperand &Dst0 = MI->getOperand(0); 245 MachineOperand &Dst1 = MI->getOperand(1); 246 assert(Dst0.isDef() && Dst1.isDef()); 247 248 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 249 250 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 251 Register NewReg0 = MRI.createVirtualRegister(Dst0RC); 252 253 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 254 255 if (HaveNonDbgCarryUse) { 256 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 257 .addReg(AMDGPU::VCC, RegState::Kill); 258 } 259 260 // Keep the old instruction around to avoid breaking iterators, but 261 // replace it with a dummy instruction to remove uses. 262 // 263 // FIXME: We should not invert how this pass looks at operands to avoid 264 // this. Should track set of foldable movs instead of looking for uses 265 // when looking at a use. 266 Dst0.setReg(NewReg0); 267 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 268 MI->RemoveOperand(I); 269 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 270 271 if (Fold.isCommuted()) 272 TII.commuteInstruction(*Inst32, false); 273 return true; 274 } 275 276 assert(!Fold.needsShrink() && "not handled"); 277 278 if (Fold.isImm()) { 279 Old.ChangeToImmediate(Fold.ImmToFold); 280 return true; 281 } 282 283 if (Fold.isGlobal()) { 284 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 285 Fold.OpToFold->getTargetFlags()); 286 return true; 287 } 288 289 if (Fold.isFI()) { 290 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 291 return true; 292 } 293 294 MachineOperand *New = Fold.OpToFold; 295 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 296 Old.setIsUndef(New->isUndef()); 297 return true; 298 } 299 300 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 301 const MachineInstr *MI) { 302 for (auto Candidate : FoldList) { 303 if (Candidate.UseMI == MI) 304 return true; 305 } 306 return false; 307 } 308 309 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 310 MachineInstr *MI, unsigned OpNo, 311 MachineOperand *OpToFold, 312 const SIInstrInfo *TII) { 313 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 314 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 315 unsigned Opc = MI->getOpcode(); 316 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 317 Opc == AMDGPU::V_FMAC_F32_e64) && 318 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 319 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; 320 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 321 unsigned NewOpc = IsFMA ? 322 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 323 324 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 325 // to fold the operand. 326 MI->setDesc(TII->get(NewOpc)); 327 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 328 if (FoldAsMAD) { 329 MI->untieRegOperand(OpNo); 330 return true; 331 } 332 MI->setDesc(TII->get(Opc)); 333 } 334 335 // Special case for s_setreg_b32 336 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 337 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 338 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 339 return true; 340 } 341 342 // If we are already folding into another operand of MI, then 343 // we can't commute the instruction, otherwise we risk making the 344 // other fold illegal. 345 if (isUseMIInFoldList(FoldList, MI)) 346 return false; 347 348 unsigned CommuteOpNo = OpNo; 349 350 // Operand is not legal, so try to commute the instruction to 351 // see if this makes it possible to fold. 352 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 353 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 354 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 355 356 if (CanCommute) { 357 if (CommuteIdx0 == OpNo) 358 CommuteOpNo = CommuteIdx1; 359 else if (CommuteIdx1 == OpNo) 360 CommuteOpNo = CommuteIdx0; 361 } 362 363 364 // One of operands might be an Imm operand, and OpNo may refer to it after 365 // the call of commuteInstruction() below. Such situations are avoided 366 // here explicitly as OpNo must be a register operand to be a candidate 367 // for memory folding. 368 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 369 !MI->getOperand(CommuteIdx1).isReg())) 370 return false; 371 372 if (!CanCommute || 373 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 374 return false; 375 376 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 377 if ((Opc == AMDGPU::V_ADD_I32_e64 || 378 Opc == AMDGPU::V_SUB_I32_e64 || 379 Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME 380 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 381 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 382 383 // Verify the other operand is a VGPR, otherwise we would violate the 384 // constant bus restriction. 385 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 386 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 387 if (!OtherOp.isReg() || 388 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 389 return false; 390 391 assert(MI->getOperand(1).isDef()); 392 393 // Make sure to get the 32-bit version of the commuted opcode. 394 unsigned MaybeCommutedOpc = MI->getOpcode(); 395 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 396 397 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true, 398 Op32)); 399 return true; 400 } 401 402 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 403 return false; 404 } 405 406 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true)); 407 return true; 408 } 409 410 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 411 return true; 412 } 413 414 // If the use operand doesn't care about the value, this may be an operand only 415 // used for register indexing, in which case it is unsafe to fold. 416 static bool isUseSafeToFold(const SIInstrInfo *TII, 417 const MachineInstr &MI, 418 const MachineOperand &UseMO) { 419 return !UseMO.isUndef() && !TII->isSDWA(MI); 420 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 421 } 422 423 static bool tryToFoldACImm(const SIInstrInfo *TII, 424 const MachineOperand &OpToFold, 425 MachineInstr *UseMI, 426 unsigned UseOpIdx, 427 SmallVectorImpl<FoldCandidate> &FoldList) { 428 const MCInstrDesc &Desc = UseMI->getDesc(); 429 const MCOperandInfo *OpInfo = Desc.OpInfo; 430 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 431 return false; 432 433 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 434 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 435 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) 436 return false; 437 438 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 439 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 440 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 441 return true; 442 } 443 444 if (!OpToFold.isReg()) 445 return false; 446 447 Register UseReg = OpToFold.getReg(); 448 if (!Register::isVirtualRegister(UseReg)) 449 return false; 450 451 if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) { 452 return FC.UseMI == UseMI; }) != FoldList.end()) 453 return false; 454 455 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 456 const MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); 457 if (!Def || !Def->isRegSequence()) 458 return false; 459 460 int64_t Imm; 461 MachineOperand *Op; 462 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 463 const MachineOperand &Sub = Def->getOperand(I); 464 if (!Sub.isReg() || Sub.getSubReg()) 465 return false; 466 MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub.getReg()); 467 while (SubDef && !SubDef->isMoveImmediate() && 468 !SubDef->getOperand(1).isImm() && TII->isFoldableCopy(*SubDef)) 469 SubDef = MRI.getUniqueVRegDef(SubDef->getOperand(1).getReg()); 470 if (!SubDef || !SubDef->isMoveImmediate() || !SubDef->getOperand(1).isImm()) 471 return false; 472 Op = &SubDef->getOperand(1); 473 auto SubImm = Op->getImm(); 474 if (I == 1) { 475 if (!TII->isInlineConstant(SubDef->getOperand(1), OpTy)) 476 return false; 477 478 Imm = SubImm; 479 continue; 480 } 481 if (Imm != SubImm) 482 return false; // Can only fold splat constants 483 } 484 485 if (!TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 486 return false; 487 488 FoldList.push_back(FoldCandidate(UseMI, UseOpIdx, Op)); 489 return true; 490 } 491 492 void SIFoldOperands::foldOperand( 493 MachineOperand &OpToFold, 494 MachineInstr *UseMI, 495 int UseOpIdx, 496 SmallVectorImpl<FoldCandidate> &FoldList, 497 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 498 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 499 500 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 501 return; 502 503 // FIXME: Fold operands with subregs. 504 if (UseOp.isReg() && OpToFold.isReg()) { 505 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 506 return; 507 508 // Don't fold subregister extracts into tied operands, only if it is a full 509 // copy since a subregister use tied to a full register def doesn't really 510 // make sense. e.g. don't fold: 511 // 512 // %1 = COPY %0:sub1 513 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0> 514 // 515 // into 516 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0> 517 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister) 518 return; 519 } 520 521 // Special case for REG_SEQUENCE: We can't fold literals into 522 // REG_SEQUENCE instructions, so we have to fold them into the 523 // uses of REG_SEQUENCE. 524 if (UseMI->isRegSequence()) { 525 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 526 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 527 528 MachineRegisterInfo::use_iterator Next; 529 for (MachineRegisterInfo::use_iterator 530 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 531 RSUse != RSE; RSUse = Next) { 532 Next = std::next(RSUse); 533 534 MachineInstr *RSUseMI = RSUse->getParent(); 535 536 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 537 RSUse.getOperandNo(), FoldList)) 538 continue; 539 540 if (RSUse->getSubReg() != RegSeqDstSubReg) 541 continue; 542 543 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 544 CopiesToReplace); 545 } 546 547 return; 548 } 549 550 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 551 return; 552 553 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 554 // Sanity check that this is a stack access. 555 // FIXME: Should probably use stack pseudos before frame lowering. 556 MachineOperand *SOff = TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 557 if (!SOff->isReg() || (SOff->getReg() != MFI->getScratchWaveOffsetReg() && 558 SOff->getReg() != MFI->getStackPtrOffsetReg())) 559 return; 560 561 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 562 MFI->getScratchRSrcReg()) 563 return; 564 565 // A frame index will resolve to a positive constant, so it should always be 566 // safe to fold the addressing mode, even pre-GFX9. 567 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 568 SOff->setReg(MFI->getStackPtrOffsetReg()); 569 return; 570 } 571 572 bool FoldingImmLike = 573 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 574 575 if (FoldingImmLike && UseMI->isCopy()) { 576 Register DestReg = UseMI->getOperand(0).getReg(); 577 const TargetRegisterClass *DestRC = Register::isVirtualRegister(DestReg) 578 ? MRI->getRegClass(DestReg) 579 : TRI->getPhysRegClass(DestReg); 580 581 Register SrcReg = UseMI->getOperand(1).getReg(); 582 if (Register::isVirtualRegister(DestReg) && 583 Register::isVirtualRegister(SrcReg)) { 584 const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg); 585 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 586 MachineRegisterInfo::use_iterator NextUse; 587 SmallVector<FoldCandidate, 4> CopyUses; 588 for (MachineRegisterInfo::use_iterator 589 Use = MRI->use_begin(DestReg), E = MRI->use_end(); 590 Use != E; Use = NextUse) { 591 NextUse = std::next(Use); 592 FoldCandidate FC = FoldCandidate(Use->getParent(), 593 Use.getOperandNo(), &UseMI->getOperand(1)); 594 CopyUses.push_back(FC); 595 } 596 for (auto & F : CopyUses) { 597 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, 598 FoldList, CopiesToReplace); 599 } 600 } 601 } 602 603 if (DestRC == &AMDGPU::AGPR_32RegClass && 604 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 605 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 606 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 607 CopiesToReplace.push_back(UseMI); 608 return; 609 } 610 611 // In order to fold immediates into copies, we need to change the 612 // copy to a MOV. 613 614 unsigned MovOp = TII->getMovOpcode(DestRC); 615 if (MovOp == AMDGPU::COPY) 616 return; 617 618 UseMI->setDesc(TII->get(MovOp)); 619 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 620 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 621 while (ImpOpI != ImpOpE) { 622 MachineInstr::mop_iterator Tmp = ImpOpI; 623 ImpOpI++; 624 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); 625 } 626 CopiesToReplace.push_back(UseMI); 627 } else { 628 if (UseMI->isCopy() && OpToFold.isReg() && 629 Register::isVirtualRegister(UseMI->getOperand(0).getReg()) && 630 TRI->isVectorRegister(*MRI, UseMI->getOperand(0).getReg()) && 631 TRI->isVectorRegister(*MRI, UseMI->getOperand(1).getReg()) && 632 !UseMI->getOperand(1).getSubReg()) { 633 unsigned Size = TII->getOpSize(*UseMI, 1); 634 UseMI->getOperand(1).setReg(OpToFold.getReg()); 635 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 636 UseMI->getOperand(1).setIsKill(false); 637 CopiesToReplace.push_back(UseMI); 638 OpToFold.setIsKill(false); 639 if (Size != 4) 640 return; 641 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 642 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 643 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 644 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 645 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 646 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32)); 647 return; 648 } 649 650 unsigned UseOpc = UseMI->getOpcode(); 651 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 652 (UseOpc == AMDGPU::V_READLANE_B32 && 653 (int)UseOpIdx == 654 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 655 // %vgpr = V_MOV_B32 imm 656 // %sgpr = V_READFIRSTLANE_B32 %vgpr 657 // => 658 // %sgpr = S_MOV_B32 imm 659 if (FoldingImmLike) { 660 if (execMayBeModifiedBeforeUse(*MRI, 661 UseMI->getOperand(UseOpIdx).getReg(), 662 *OpToFold.getParent(), 663 *UseMI)) 664 return; 665 666 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 667 668 // FIXME: ChangeToImmediate should clear subreg 669 UseMI->getOperand(1).setSubReg(0); 670 if (OpToFold.isImm()) 671 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 672 else 673 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 674 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 675 return; 676 } 677 678 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 679 if (execMayBeModifiedBeforeUse(*MRI, 680 UseMI->getOperand(UseOpIdx).getReg(), 681 *OpToFold.getParent(), 682 *UseMI)) 683 return; 684 685 // %vgpr = COPY %sgpr0 686 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 687 // => 688 // %sgpr1 = COPY %sgpr0 689 UseMI->setDesc(TII->get(AMDGPU::COPY)); 690 UseMI->getOperand(1).setReg(OpToFold.getReg()); 691 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 692 UseMI->getOperand(1).setIsKill(false); 693 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 694 return; 695 } 696 } 697 698 const MCInstrDesc &UseDesc = UseMI->getDesc(); 699 700 // Don't fold into target independent nodes. Target independent opcodes 701 // don't have defined register classes. 702 if (UseDesc.isVariadic() || 703 UseOp.isImplicit() || 704 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 705 return; 706 } 707 708 if (!FoldingImmLike) { 709 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 710 711 // FIXME: We could try to change the instruction from 64-bit to 32-bit 712 // to enable more folding opportunites. The shrink operands pass 713 // already does this. 714 return; 715 } 716 717 718 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 719 const TargetRegisterClass *FoldRC = 720 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 721 722 // Split 64-bit constants into 32-bits for folding. 723 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 724 Register UseReg = UseOp.getReg(); 725 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 726 727 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 728 return; 729 730 APInt Imm(64, OpToFold.getImm()); 731 if (UseOp.getSubReg() == AMDGPU::sub0) { 732 Imm = Imm.getLoBits(32); 733 } else { 734 assert(UseOp.getSubReg() == AMDGPU::sub1); 735 Imm = Imm.getHiBits(32); 736 } 737 738 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 739 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 740 return; 741 } 742 743 744 745 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 746 } 747 748 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 749 uint32_t LHS, uint32_t RHS) { 750 switch (Opcode) { 751 case AMDGPU::V_AND_B32_e64: 752 case AMDGPU::V_AND_B32_e32: 753 case AMDGPU::S_AND_B32: 754 Result = LHS & RHS; 755 return true; 756 case AMDGPU::V_OR_B32_e64: 757 case AMDGPU::V_OR_B32_e32: 758 case AMDGPU::S_OR_B32: 759 Result = LHS | RHS; 760 return true; 761 case AMDGPU::V_XOR_B32_e64: 762 case AMDGPU::V_XOR_B32_e32: 763 case AMDGPU::S_XOR_B32: 764 Result = LHS ^ RHS; 765 return true; 766 case AMDGPU::V_LSHL_B32_e64: 767 case AMDGPU::V_LSHL_B32_e32: 768 case AMDGPU::S_LSHL_B32: 769 // The instruction ignores the high bits for out of bounds shifts. 770 Result = LHS << (RHS & 31); 771 return true; 772 case AMDGPU::V_LSHLREV_B32_e64: 773 case AMDGPU::V_LSHLREV_B32_e32: 774 Result = RHS << (LHS & 31); 775 return true; 776 case AMDGPU::V_LSHR_B32_e64: 777 case AMDGPU::V_LSHR_B32_e32: 778 case AMDGPU::S_LSHR_B32: 779 Result = LHS >> (RHS & 31); 780 return true; 781 case AMDGPU::V_LSHRREV_B32_e64: 782 case AMDGPU::V_LSHRREV_B32_e32: 783 Result = RHS >> (LHS & 31); 784 return true; 785 case AMDGPU::V_ASHR_I32_e64: 786 case AMDGPU::V_ASHR_I32_e32: 787 case AMDGPU::S_ASHR_I32: 788 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 789 return true; 790 case AMDGPU::V_ASHRREV_I32_e64: 791 case AMDGPU::V_ASHRREV_I32_e32: 792 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 793 return true; 794 default: 795 return false; 796 } 797 } 798 799 static unsigned getMovOpc(bool IsScalar) { 800 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 801 } 802 803 /// Remove any leftover implicit operands from mutating the instruction. e.g. 804 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 805 /// anymore. 806 static void stripExtraCopyOperands(MachineInstr &MI) { 807 const MCInstrDesc &Desc = MI.getDesc(); 808 unsigned NumOps = Desc.getNumOperands() + 809 Desc.getNumImplicitUses() + 810 Desc.getNumImplicitDefs(); 811 812 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 813 MI.RemoveOperand(I); 814 } 815 816 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 817 MI.setDesc(NewDesc); 818 stripExtraCopyOperands(MI); 819 } 820 821 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 822 MachineOperand &Op) { 823 if (Op.isReg()) { 824 // If this has a subregister, it obviously is a register source. 825 if (Op.getSubReg() != AMDGPU::NoSubRegister || 826 !Register::isVirtualRegister(Op.getReg())) 827 return &Op; 828 829 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 830 if (Def && Def->isMoveImmediate()) { 831 MachineOperand &ImmSrc = Def->getOperand(1); 832 if (ImmSrc.isImm()) 833 return &ImmSrc; 834 } 835 } 836 837 return &Op; 838 } 839 840 // Try to simplify operations with a constant that may appear after instruction 841 // selection. 842 // TODO: See if a frame index with a fixed offset can fold. 843 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 844 const SIInstrInfo *TII, 845 MachineInstr *MI, 846 MachineOperand *ImmOp) { 847 unsigned Opc = MI->getOpcode(); 848 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 849 Opc == AMDGPU::S_NOT_B32) { 850 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 851 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 852 return true; 853 } 854 855 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 856 if (Src1Idx == -1) 857 return false; 858 859 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 860 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 861 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 862 863 if (!Src0->isImm() && !Src1->isImm()) 864 return false; 865 866 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) { 867 if (Src0->isImm() && Src0->getImm() == 0) { 868 // v_lshl_or_b32 0, X, Y -> copy Y 869 // v_lshl_or_b32 0, X, K -> v_mov_b32 K 870 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg(); 871 MI->RemoveOperand(Src1Idx); 872 MI->RemoveOperand(Src0Idx); 873 874 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32)); 875 return true; 876 } 877 } 878 879 // and k0, k1 -> v_mov_b32 (k0 & k1) 880 // or k0, k1 -> v_mov_b32 (k0 | k1) 881 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 882 if (Src0->isImm() && Src1->isImm()) { 883 int32_t NewImm; 884 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 885 return false; 886 887 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 888 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 889 890 // Be careful to change the right operand, src0 may belong to a different 891 // instruction. 892 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 893 MI->RemoveOperand(Src1Idx); 894 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 895 return true; 896 } 897 898 if (!MI->isCommutable()) 899 return false; 900 901 if (Src0->isImm() && !Src1->isImm()) { 902 std::swap(Src0, Src1); 903 std::swap(Src0Idx, Src1Idx); 904 } 905 906 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 907 if (Opc == AMDGPU::V_OR_B32_e64 || 908 Opc == AMDGPU::V_OR_B32_e32 || 909 Opc == AMDGPU::S_OR_B32) { 910 if (Src1Val == 0) { 911 // y = or x, 0 => y = copy x 912 MI->RemoveOperand(Src1Idx); 913 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 914 } else if (Src1Val == -1) { 915 // y = or x, -1 => y = v_mov_b32 -1 916 MI->RemoveOperand(Src1Idx); 917 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 918 } else 919 return false; 920 921 return true; 922 } 923 924 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 925 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 926 MI->getOpcode() == AMDGPU::S_AND_B32) { 927 if (Src1Val == 0) { 928 // y = and x, 0 => y = v_mov_b32 0 929 MI->RemoveOperand(Src0Idx); 930 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 931 } else if (Src1Val == -1) { 932 // y = and x, -1 => y = copy x 933 MI->RemoveOperand(Src1Idx); 934 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 935 stripExtraCopyOperands(*MI); 936 } else 937 return false; 938 939 return true; 940 } 941 942 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 943 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 944 MI->getOpcode() == AMDGPU::S_XOR_B32) { 945 if (Src1Val == 0) { 946 // y = xor x, 0 => y = copy x 947 MI->RemoveOperand(Src1Idx); 948 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 949 return true; 950 } 951 } 952 953 return false; 954 } 955 956 // Try to fold an instruction into a simpler one 957 static bool tryFoldInst(const SIInstrInfo *TII, 958 MachineInstr *MI) { 959 unsigned Opc = MI->getOpcode(); 960 961 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 962 Opc == AMDGPU::V_CNDMASK_B32_e64 || 963 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 964 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 965 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 966 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 967 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 968 if (Src1->isIdenticalTo(*Src0) && 969 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && 970 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { 971 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 972 auto &NewDesc = 973 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 974 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 975 if (Src2Idx != -1) 976 MI->RemoveOperand(Src2Idx); 977 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 978 if (Src1ModIdx != -1) 979 MI->RemoveOperand(Src1ModIdx); 980 if (Src0ModIdx != -1) 981 MI->RemoveOperand(Src0ModIdx); 982 mutateCopyOp(*MI, NewDesc); 983 LLVM_DEBUG(dbgs() << *MI << '\n'); 984 return true; 985 } 986 } 987 988 return false; 989 } 990 991 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 992 MachineOperand &OpToFold) const { 993 // We need mutate the operands of new mov instructions to add implicit 994 // uses of EXEC, but adding them invalidates the use_iterator, so defer 995 // this. 996 SmallVector<MachineInstr *, 4> CopiesToReplace; 997 SmallVector<FoldCandidate, 4> FoldList; 998 MachineOperand &Dst = MI.getOperand(0); 999 1000 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1001 if (FoldingImm) { 1002 unsigned NumLiteralUses = 0; 1003 MachineOperand *NonInlineUse = nullptr; 1004 int NonInlineUseOpNo = -1; 1005 1006 MachineRegisterInfo::use_iterator NextUse; 1007 for (MachineRegisterInfo::use_iterator 1008 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 1009 Use != E; Use = NextUse) { 1010 NextUse = std::next(Use); 1011 MachineInstr *UseMI = Use->getParent(); 1012 unsigned OpNo = Use.getOperandNo(); 1013 1014 // Folding the immediate may reveal operations that can be constant 1015 // folded or replaced with a copy. This can happen for example after 1016 // frame indices are lowered to constants or from splitting 64-bit 1017 // constants. 1018 // 1019 // We may also encounter cases where one or both operands are 1020 // immediates materialized into a register, which would ordinarily not 1021 // be folded due to multiple uses or operand constraints. 1022 1023 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 1024 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 1025 1026 // Some constant folding cases change the same immediate's use to a new 1027 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 1028 // again. The same constant folded instruction could also have a second 1029 // use operand. 1030 NextUse = MRI->use_begin(Dst.getReg()); 1031 FoldList.clear(); 1032 continue; 1033 } 1034 1035 // Try to fold any inline immediate uses, and then only fold other 1036 // constants if they have one use. 1037 // 1038 // The legality of the inline immediate must be checked based on the use 1039 // operand, not the defining instruction, because 32-bit instructions 1040 // with 32-bit inline immediate sources may be used to materialize 1041 // constants used in 16-bit operands. 1042 // 1043 // e.g. it is unsafe to fold: 1044 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1045 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1046 1047 // Folding immediates with more than one use will increase program size. 1048 // FIXME: This will also reduce register usage, which may be better 1049 // in some cases. A better heuristic is needed. 1050 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1051 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1052 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1053 foldOperand(OpToFold, UseMI, OpNo, FoldList, 1054 CopiesToReplace); 1055 } else { 1056 if (++NumLiteralUses == 1) { 1057 NonInlineUse = &*Use; 1058 NonInlineUseOpNo = OpNo; 1059 } 1060 } 1061 } 1062 1063 if (NumLiteralUses == 1) { 1064 MachineInstr *UseMI = NonInlineUse->getParent(); 1065 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1066 } 1067 } else { 1068 // Folding register. 1069 SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess; 1070 for (MachineRegisterInfo::use_iterator 1071 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 1072 Use != E; ++Use) { 1073 UsesToProcess.push_back(Use); 1074 } 1075 for (auto U : UsesToProcess) { 1076 MachineInstr *UseMI = U->getParent(); 1077 1078 foldOperand(OpToFold, UseMI, U.getOperandNo(), 1079 FoldList, CopiesToReplace); 1080 } 1081 } 1082 1083 MachineFunction *MF = MI.getParent()->getParent(); 1084 // Make sure we add EXEC uses to any new v_mov instructions created. 1085 for (MachineInstr *Copy : CopiesToReplace) 1086 Copy->addImplicitDefUseOperands(*MF); 1087 1088 for (FoldCandidate &Fold : FoldList) { 1089 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1090 // Clear kill flags. 1091 if (Fold.isReg()) { 1092 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1093 // FIXME: Probably shouldn't bother trying to fold if not an 1094 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1095 // copies. 1096 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1097 } 1098 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1099 << static_cast<int>(Fold.UseOpNo) << " of " 1100 << *Fold.UseMI << '\n'); 1101 tryFoldInst(TII, Fold.UseMI); 1102 } else if (Fold.isCommuted()) { 1103 // Restoring instruction's original operand order if fold has failed. 1104 TII->commuteInstruction(*Fold.UseMI, false); 1105 } 1106 } 1107 } 1108 1109 // Clamp patterns are canonically selected to v_max_* instructions, so only 1110 // handle them. 1111 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1112 unsigned Op = MI.getOpcode(); 1113 switch (Op) { 1114 case AMDGPU::V_MAX_F32_e64: 1115 case AMDGPU::V_MAX_F16_e64: 1116 case AMDGPU::V_MAX_F64: 1117 case AMDGPU::V_PK_MAX_F16: { 1118 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1119 return nullptr; 1120 1121 // Make sure sources are identical. 1122 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1123 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1124 if (!Src0->isReg() || !Src1->isReg() || 1125 Src0->getReg() != Src1->getReg() || 1126 Src0->getSubReg() != Src1->getSubReg() || 1127 Src0->getSubReg() != AMDGPU::NoSubRegister) 1128 return nullptr; 1129 1130 // Can't fold up if we have modifiers. 1131 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1132 return nullptr; 1133 1134 unsigned Src0Mods 1135 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1136 unsigned Src1Mods 1137 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1138 1139 // Having a 0 op_sel_hi would require swizzling the output in the source 1140 // instruction, which we can't do. 1141 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1142 : 0u; 1143 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1144 return nullptr; 1145 return Src0; 1146 } 1147 default: 1148 return nullptr; 1149 } 1150 } 1151 1152 // We obviously have multiple uses in a clamp since the register is used twice 1153 // in the same instruction. 1154 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 1155 int Count = 0; 1156 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 1157 I != E; ++I) { 1158 if (++Count > 1) 1159 return false; 1160 } 1161 1162 return true; 1163 } 1164 1165 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1166 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1167 const MachineOperand *ClampSrc = isClamp(MI); 1168 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 1169 return false; 1170 1171 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1172 1173 // The type of clamp must be compatible. 1174 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1175 return false; 1176 1177 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1178 if (!DefClamp) 1179 return false; 1180 1181 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 1182 << '\n'); 1183 1184 // Clamp is applied after omod, so it is OK if omod is set. 1185 DefClamp->setImm(1); 1186 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1187 MI.eraseFromParent(); 1188 return true; 1189 } 1190 1191 static int getOModValue(unsigned Opc, int64_t Val) { 1192 switch (Opc) { 1193 case AMDGPU::V_MUL_F32_e64: { 1194 switch (static_cast<uint32_t>(Val)) { 1195 case 0x3f000000: // 0.5 1196 return SIOutMods::DIV2; 1197 case 0x40000000: // 2.0 1198 return SIOutMods::MUL2; 1199 case 0x40800000: // 4.0 1200 return SIOutMods::MUL4; 1201 default: 1202 return SIOutMods::NONE; 1203 } 1204 } 1205 case AMDGPU::V_MUL_F16_e64: { 1206 switch (static_cast<uint16_t>(Val)) { 1207 case 0x3800: // 0.5 1208 return SIOutMods::DIV2; 1209 case 0x4000: // 2.0 1210 return SIOutMods::MUL2; 1211 case 0x4400: // 4.0 1212 return SIOutMods::MUL4; 1213 default: 1214 return SIOutMods::NONE; 1215 } 1216 } 1217 default: 1218 llvm_unreachable("invalid mul opcode"); 1219 } 1220 } 1221 1222 // FIXME: Does this really not support denormals with f16? 1223 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1224 // handled, so will anything other than that break? 1225 std::pair<const MachineOperand *, int> 1226 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1227 unsigned Op = MI.getOpcode(); 1228 switch (Op) { 1229 case AMDGPU::V_MUL_F32_e64: 1230 case AMDGPU::V_MUL_F16_e64: { 1231 // If output denormals are enabled, omod is ignored. 1232 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || 1233 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) 1234 return std::make_pair(nullptr, SIOutMods::NONE); 1235 1236 const MachineOperand *RegOp = nullptr; 1237 const MachineOperand *ImmOp = nullptr; 1238 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1239 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1240 if (Src0->isImm()) { 1241 ImmOp = Src0; 1242 RegOp = Src1; 1243 } else if (Src1->isImm()) { 1244 ImmOp = Src1; 1245 RegOp = Src0; 1246 } else 1247 return std::make_pair(nullptr, SIOutMods::NONE); 1248 1249 int OMod = getOModValue(Op, ImmOp->getImm()); 1250 if (OMod == SIOutMods::NONE || 1251 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1252 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1253 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1254 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1255 return std::make_pair(nullptr, SIOutMods::NONE); 1256 1257 return std::make_pair(RegOp, OMod); 1258 } 1259 case AMDGPU::V_ADD_F32_e64: 1260 case AMDGPU::V_ADD_F16_e64: { 1261 // If output denormals are enabled, omod is ignored. 1262 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || 1263 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) 1264 return std::make_pair(nullptr, SIOutMods::NONE); 1265 1266 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1267 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1268 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1269 1270 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1271 Src0->getSubReg() == Src1->getSubReg() && 1272 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1273 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1274 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1275 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1276 return std::make_pair(Src0, SIOutMods::MUL2); 1277 1278 return std::make_pair(nullptr, SIOutMods::NONE); 1279 } 1280 default: 1281 return std::make_pair(nullptr, SIOutMods::NONE); 1282 } 1283 } 1284 1285 // FIXME: Does this need to check IEEE bit on function? 1286 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1287 const MachineOperand *RegOp; 1288 int OMod; 1289 std::tie(RegOp, OMod) = isOMod(MI); 1290 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1291 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1292 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1293 return false; 1294 1295 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1296 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1297 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1298 return false; 1299 1300 // Clamp is applied after omod. If the source already has clamp set, don't 1301 // fold it. 1302 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1303 return false; 1304 1305 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1306 1307 DefOMod->setImm(OMod); 1308 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1309 MI.eraseFromParent(); 1310 return true; 1311 } 1312 1313 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1314 if (skipFunction(MF.getFunction())) 1315 return false; 1316 1317 MRI = &MF.getRegInfo(); 1318 ST = &MF.getSubtarget<GCNSubtarget>(); 1319 TII = ST->getInstrInfo(); 1320 TRI = &TII->getRegisterInfo(); 1321 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1322 1323 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1324 // correctly handle signed zeros. 1325 // 1326 // FIXME: Also need to check strictfp 1327 bool IsIEEEMode = MFI->getMode().IEEE; 1328 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1329 1330 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1331 MachineBasicBlock::iterator I, Next; 1332 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1333 Next = std::next(I); 1334 MachineInstr &MI = *I; 1335 1336 tryFoldInst(TII, &MI); 1337 1338 if (!TII->isFoldableCopy(MI)) { 1339 // TODO: Omod might be OK if there is NSZ only on the source 1340 // instruction, and not the omod multiply. 1341 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1342 !tryFoldOMod(MI)) 1343 tryFoldClamp(MI); 1344 continue; 1345 } 1346 1347 MachineOperand &OpToFold = MI.getOperand(1); 1348 bool FoldingImm = 1349 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1350 1351 // FIXME: We could also be folding things like TargetIndexes. 1352 if (!FoldingImm && !OpToFold.isReg()) 1353 continue; 1354 1355 if (OpToFold.isReg() && !Register::isVirtualRegister(OpToFold.getReg())) 1356 continue; 1357 1358 // Prevent folding operands backwards in the function. For example, 1359 // the COPY opcode must not be replaced by 1 in this example: 1360 // 1361 // %3 = COPY %vgpr0; VGPR_32:%3 1362 // ... 1363 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1364 MachineOperand &Dst = MI.getOperand(0); 1365 if (Dst.isReg() && !Register::isVirtualRegister(Dst.getReg())) 1366 continue; 1367 1368 foldInstOperand(MI, OpToFold); 1369 } 1370 } 1371 return false; 1372 } 1373