1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 /// \file 9 //===----------------------------------------------------------------------===// 10 // 11 12 #include "AMDGPU.h" 13 #include "AMDGPUSubtarget.h" 14 #include "SIInstrInfo.h" 15 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 16 #include "llvm/CodeGen/MachineFunctionPass.h" 17 #include "llvm/CodeGen/MachineInstrBuilder.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include "llvm/Target/TargetMachine.h" 22 23 #define DEBUG_TYPE "si-fold-operands" 24 using namespace llvm; 25 26 namespace { 27 28 struct FoldCandidate { 29 MachineInstr *UseMI; 30 union { 31 MachineOperand *OpToFold; 32 uint64_t ImmToFold; 33 int FrameIndexToFold; 34 }; 35 unsigned char UseOpNo; 36 MachineOperand::MachineOperandType Kind; 37 38 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp) : 39 UseMI(MI), OpToFold(nullptr), UseOpNo(OpNo), Kind(FoldOp->getType()) { 40 if (FoldOp->isImm()) { 41 ImmToFold = FoldOp->getImm(); 42 } else if (FoldOp->isFI()) { 43 FrameIndexToFold = FoldOp->getIndex(); 44 } else { 45 assert(FoldOp->isReg()); 46 OpToFold = FoldOp; 47 } 48 } 49 50 bool isFI() const { 51 return Kind == MachineOperand::MO_FrameIndex; 52 } 53 54 bool isImm() const { 55 return Kind == MachineOperand::MO_Immediate; 56 } 57 58 bool isReg() const { 59 return Kind == MachineOperand::MO_Register; 60 } 61 }; 62 63 class SIFoldOperands : public MachineFunctionPass { 64 public: 65 static char ID; 66 MachineRegisterInfo *MRI; 67 const SIInstrInfo *TII; 68 const SIRegisterInfo *TRI; 69 70 void foldOperand(MachineOperand &OpToFold, 71 MachineInstr *UseMI, 72 unsigned UseOpIdx, 73 SmallVectorImpl<FoldCandidate> &FoldList, 74 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 75 76 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 77 78 public: 79 SIFoldOperands() : MachineFunctionPass(ID) { 80 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 81 } 82 83 bool runOnMachineFunction(MachineFunction &MF) override; 84 85 StringRef getPassName() const override { return "SI Fold Operands"; } 86 87 void getAnalysisUsage(AnalysisUsage &AU) const override { 88 AU.setPreservesCFG(); 89 MachineFunctionPass::getAnalysisUsage(AU); 90 } 91 }; 92 93 } // End anonymous namespace. 94 95 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 96 "SI Fold Operands", false, false) 97 98 char SIFoldOperands::ID = 0; 99 100 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 101 102 // Wrapper around isInlineConstant that understands special cases when 103 // instruction types are replaced during operand folding. 104 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 105 const MachineInstr &UseMI, 106 unsigned OpNo, 107 const MachineOperand &OpToFold) { 108 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 109 return true; 110 111 unsigned Opc = UseMI.getOpcode(); 112 switch (Opc) { 113 case AMDGPU::V_MAC_F32_e64: 114 case AMDGPU::V_MAC_F16_e64: { 115 // Special case for mac. Since this is replaced with mad when folded into 116 // src2, we need to check the legality for the final instruction. 117 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 118 if (static_cast<int>(OpNo) == Src2Idx) { 119 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 120 const MCInstrDesc &MadDesc 121 = TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 122 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 123 } 124 } 125 default: 126 return false; 127 } 128 } 129 130 FunctionPass *llvm::createSIFoldOperandsPass() { 131 return new SIFoldOperands(); 132 } 133 134 static bool isSafeToFold(const MachineInstr &MI) { 135 switch (MI.getOpcode()) { 136 case AMDGPU::V_MOV_B32_e32: 137 case AMDGPU::V_MOV_B32_e64: 138 case AMDGPU::V_MOV_B64_PSEUDO: { 139 // If there are additional implicit register operands, this may be used for 140 // register indexing so the source register operand isn't simply copied. 141 unsigned NumOps = MI.getDesc().getNumOperands() + 142 MI.getDesc().getNumImplicitUses(); 143 144 return MI.getNumOperands() == NumOps; 145 } 146 case AMDGPU::S_MOV_B32: 147 case AMDGPU::S_MOV_B64: 148 case AMDGPU::COPY: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 static bool updateOperand(FoldCandidate &Fold, 156 const TargetRegisterInfo &TRI) { 157 MachineInstr *MI = Fold.UseMI; 158 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 159 assert(Old.isReg()); 160 161 if (Fold.isImm()) { 162 Old.ChangeToImmediate(Fold.ImmToFold); 163 return true; 164 } 165 166 if (Fold.isFI()) { 167 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 168 return true; 169 } 170 171 MachineOperand *New = Fold.OpToFold; 172 if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) && 173 TargetRegisterInfo::isVirtualRegister(New->getReg())) { 174 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 175 return true; 176 } 177 178 // FIXME: Handle physical registers. 179 180 return false; 181 } 182 183 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 184 const MachineInstr *MI) { 185 for (auto Candidate : FoldList) { 186 if (Candidate.UseMI == MI) 187 return true; 188 } 189 return false; 190 } 191 192 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 193 MachineInstr *MI, unsigned OpNo, 194 MachineOperand *OpToFold, 195 const SIInstrInfo *TII) { 196 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 197 198 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 199 unsigned Opc = MI->getOpcode(); 200 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64) && 201 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 202 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 203 204 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 205 // to fold the operand. 206 MI->setDesc(TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16)); 207 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 208 if (FoldAsMAD) { 209 MI->untieRegOperand(OpNo); 210 return true; 211 } 212 MI->setDesc(TII->get(Opc)); 213 } 214 215 // Special case for s_setreg_b32 216 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 217 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 218 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 219 return true; 220 } 221 222 // If we are already folding into another operand of MI, then 223 // we can't commute the instruction, otherwise we risk making the 224 // other fold illegal. 225 if (isUseMIInFoldList(FoldList, MI)) 226 return false; 227 228 // Operand is not legal, so try to commute the instruction to 229 // see if this makes it possible to fold. 230 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 231 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 232 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 233 234 if (CanCommute) { 235 if (CommuteIdx0 == OpNo) 236 OpNo = CommuteIdx1; 237 else if (CommuteIdx1 == OpNo) 238 OpNo = CommuteIdx0; 239 } 240 241 // One of operands might be an Imm operand, and OpNo may refer to it after 242 // the call of commuteInstruction() below. Such situations are avoided 243 // here explicitly as OpNo must be a register operand to be a candidate 244 // for memory folding. 245 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 246 !MI->getOperand(CommuteIdx1).isReg())) 247 return false; 248 249 if (!CanCommute || 250 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 251 return false; 252 253 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) 254 return false; 255 } 256 257 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 258 return true; 259 } 260 261 // If the use operand doesn't care about the value, this may be an operand only 262 // used for register indexing, in which case it is unsafe to fold. 263 static bool isUseSafeToFold(const MachineInstr &MI, 264 const MachineOperand &UseMO) { 265 return !UseMO.isUndef(); 266 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 267 } 268 269 void SIFoldOperands::foldOperand( 270 MachineOperand &OpToFold, 271 MachineInstr *UseMI, 272 unsigned UseOpIdx, 273 SmallVectorImpl<FoldCandidate> &FoldList, 274 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 275 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 276 277 if (!isUseSafeToFold(*UseMI, UseOp)) 278 return; 279 280 // FIXME: Fold operands with subregs. 281 if (UseOp.isReg() && OpToFold.isReg()) { 282 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 283 return; 284 285 // Don't fold subregister extracts into tied operands, only if it is a full 286 // copy since a subregister use tied to a full register def doesn't really 287 // make sense. e.g. don't fold: 288 // 289 // %vreg1 = COPY %vreg0:sub1 290 // %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg1<tied0> 291 // 292 // into 293 // %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg0:sub1<tied0> 294 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister) 295 return; 296 } 297 298 // Special case for REG_SEQUENCE: We can't fold literals into 299 // REG_SEQUENCE instructions, so we have to fold them into the 300 // uses of REG_SEQUENCE. 301 if (UseMI->isRegSequence()) { 302 unsigned RegSeqDstReg = UseMI->getOperand(0).getReg(); 303 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 304 305 for (MachineRegisterInfo::use_iterator 306 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 307 RSUse != RSE; ++RSUse) { 308 309 MachineInstr *RSUseMI = RSUse->getParent(); 310 if (RSUse->getSubReg() != RegSeqDstSubReg) 311 continue; 312 313 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 314 CopiesToReplace); 315 } 316 317 return; 318 } 319 320 321 bool FoldingImm = OpToFold.isImm(); 322 323 // In order to fold immediates into copies, we need to change the 324 // copy to a MOV. 325 if (FoldingImm && UseMI->isCopy()) { 326 unsigned DestReg = UseMI->getOperand(0).getReg(); 327 const TargetRegisterClass *DestRC 328 = TargetRegisterInfo::isVirtualRegister(DestReg) ? 329 MRI->getRegClass(DestReg) : 330 TRI->getPhysRegClass(DestReg); 331 332 unsigned MovOp = TII->getMovOpcode(DestRC); 333 if (MovOp == AMDGPU::COPY) 334 return; 335 336 UseMI->setDesc(TII->get(MovOp)); 337 CopiesToReplace.push_back(UseMI); 338 } else { 339 const MCInstrDesc &UseDesc = UseMI->getDesc(); 340 341 // Don't fold into target independent nodes. Target independent opcodes 342 // don't have defined register classes. 343 if (UseDesc.isVariadic() || 344 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 345 return; 346 } 347 348 if (!FoldingImm) { 349 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 350 351 // FIXME: We could try to change the instruction from 64-bit to 32-bit 352 // to enable more folding opportunites. The shrink operands pass 353 // already does this. 354 return; 355 } 356 357 358 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 359 const TargetRegisterClass *FoldRC = 360 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 361 362 APInt Imm(TII->operandBitWidth(FoldDesc.OpInfo[1].OperandType), 363 OpToFold.getImm()); 364 365 // Split 64-bit constants into 32-bits for folding. 366 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 367 unsigned UseReg = UseOp.getReg(); 368 const TargetRegisterClass *UseRC 369 = TargetRegisterInfo::isVirtualRegister(UseReg) ? 370 MRI->getRegClass(UseReg) : 371 TRI->getPhysRegClass(UseReg); 372 373 assert(Imm.getBitWidth() == 64); 374 375 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 376 return; 377 378 if (UseOp.getSubReg() == AMDGPU::sub0) { 379 Imm = Imm.getLoBits(32); 380 } else { 381 assert(UseOp.getSubReg() == AMDGPU::sub1); 382 Imm = Imm.getHiBits(32); 383 } 384 } 385 386 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 387 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 388 } 389 390 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 391 uint32_t LHS, uint32_t RHS) { 392 switch (Opcode) { 393 case AMDGPU::V_AND_B32_e64: 394 case AMDGPU::V_AND_B32_e32: 395 case AMDGPU::S_AND_B32: 396 Result = LHS & RHS; 397 return true; 398 case AMDGPU::V_OR_B32_e64: 399 case AMDGPU::V_OR_B32_e32: 400 case AMDGPU::S_OR_B32: 401 Result = LHS | RHS; 402 return true; 403 case AMDGPU::V_XOR_B32_e64: 404 case AMDGPU::V_XOR_B32_e32: 405 case AMDGPU::S_XOR_B32: 406 Result = LHS ^ RHS; 407 return true; 408 case AMDGPU::V_LSHL_B32_e64: 409 case AMDGPU::V_LSHL_B32_e32: 410 case AMDGPU::S_LSHL_B32: 411 // The instruction ignores the high bits for out of bounds shifts. 412 Result = LHS << (RHS & 31); 413 return true; 414 case AMDGPU::V_LSHLREV_B32_e64: 415 case AMDGPU::V_LSHLREV_B32_e32: 416 Result = RHS << (LHS & 31); 417 return true; 418 case AMDGPU::V_LSHR_B32_e64: 419 case AMDGPU::V_LSHR_B32_e32: 420 case AMDGPU::S_LSHR_B32: 421 Result = LHS >> (RHS & 31); 422 return true; 423 case AMDGPU::V_LSHRREV_B32_e64: 424 case AMDGPU::V_LSHRREV_B32_e32: 425 Result = RHS >> (LHS & 31); 426 return true; 427 case AMDGPU::V_ASHR_I32_e64: 428 case AMDGPU::V_ASHR_I32_e32: 429 case AMDGPU::S_ASHR_I32: 430 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 431 return true; 432 case AMDGPU::V_ASHRREV_I32_e64: 433 case AMDGPU::V_ASHRREV_I32_e32: 434 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 435 return true; 436 default: 437 return false; 438 } 439 } 440 441 static unsigned getMovOpc(bool IsScalar) { 442 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 443 } 444 445 /// Remove any leftover implicit operands from mutating the instruction. e.g. 446 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 447 /// anymore. 448 static void stripExtraCopyOperands(MachineInstr &MI) { 449 const MCInstrDesc &Desc = MI.getDesc(); 450 unsigned NumOps = Desc.getNumOperands() + 451 Desc.getNumImplicitUses() + 452 Desc.getNumImplicitDefs(); 453 454 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 455 MI.RemoveOperand(I); 456 } 457 458 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 459 MI.setDesc(NewDesc); 460 stripExtraCopyOperands(MI); 461 } 462 463 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 464 MachineOperand &Op) { 465 if (Op.isReg()) { 466 // If this has a subregister, it obviously is a register source. 467 if (Op.getSubReg() != AMDGPU::NoSubRegister) 468 return &Op; 469 470 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 471 if (Def->isMoveImmediate()) { 472 MachineOperand &ImmSrc = Def->getOperand(1); 473 if (ImmSrc.isImm()) 474 return &ImmSrc; 475 } 476 } 477 478 return &Op; 479 } 480 481 // Try to simplify operations with a constant that may appear after instruction 482 // selection. 483 // TODO: See if a frame index with a fixed offset can fold. 484 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 485 const SIInstrInfo *TII, 486 MachineInstr *MI, 487 MachineOperand *ImmOp) { 488 unsigned Opc = MI->getOpcode(); 489 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 490 Opc == AMDGPU::S_NOT_B32) { 491 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 492 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 493 return true; 494 } 495 496 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 497 if (Src1Idx == -1) 498 return false; 499 500 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 501 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 502 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 503 504 if (!Src0->isImm() && !Src1->isImm()) 505 return false; 506 507 // and k0, k1 -> v_mov_b32 (k0 & k1) 508 // or k0, k1 -> v_mov_b32 (k0 | k1) 509 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 510 if (Src0->isImm() && Src1->isImm()) { 511 int32_t NewImm; 512 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 513 return false; 514 515 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 516 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 517 518 // Be careful to change the right operand, src0 may belong to a different 519 // instruction. 520 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 521 MI->RemoveOperand(Src1Idx); 522 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 523 return true; 524 } 525 526 if (!MI->isCommutable()) 527 return false; 528 529 if (Src0->isImm() && !Src1->isImm()) { 530 std::swap(Src0, Src1); 531 std::swap(Src0Idx, Src1Idx); 532 } 533 534 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 535 if (Opc == AMDGPU::V_OR_B32_e64 || 536 Opc == AMDGPU::V_OR_B32_e32 || 537 Opc == AMDGPU::S_OR_B32) { 538 if (Src1Val == 0) { 539 // y = or x, 0 => y = copy x 540 MI->RemoveOperand(Src1Idx); 541 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 542 } else if (Src1Val == -1) { 543 // y = or x, -1 => y = v_mov_b32 -1 544 MI->RemoveOperand(Src1Idx); 545 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 546 } else 547 return false; 548 549 return true; 550 } 551 552 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 553 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 554 MI->getOpcode() == AMDGPU::S_AND_B32) { 555 if (Src1Val == 0) { 556 // y = and x, 0 => y = v_mov_b32 0 557 MI->RemoveOperand(Src0Idx); 558 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 559 } else if (Src1Val == -1) { 560 // y = and x, -1 => y = copy x 561 MI->RemoveOperand(Src1Idx); 562 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 563 stripExtraCopyOperands(*MI); 564 } else 565 return false; 566 567 return true; 568 } 569 570 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 571 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 572 MI->getOpcode() == AMDGPU::S_XOR_B32) { 573 if (Src1Val == 0) { 574 // y = xor x, 0 => y = copy x 575 MI->RemoveOperand(Src1Idx); 576 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 577 return true; 578 } 579 } 580 581 return false; 582 } 583 584 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 585 MachineOperand &OpToFold) const { 586 // We need mutate the operands of new mov instructions to add implicit 587 // uses of EXEC, but adding them invalidates the use_iterator, so defer 588 // this. 589 SmallVector<MachineInstr *, 4> CopiesToReplace; 590 SmallVector<FoldCandidate, 4> FoldList; 591 MachineOperand &Dst = MI.getOperand(0); 592 593 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 594 if (FoldingImm) { 595 unsigned NumLiteralUses = 0; 596 MachineOperand *NonInlineUse = nullptr; 597 int NonInlineUseOpNo = -1; 598 599 MachineRegisterInfo::use_iterator NextUse, NextInstUse; 600 for (MachineRegisterInfo::use_iterator 601 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 602 Use != E; Use = NextUse) { 603 NextUse = std::next(Use); 604 MachineInstr *UseMI = Use->getParent(); 605 unsigned OpNo = Use.getOperandNo(); 606 607 // Folding the immediate may reveal operations that can be constant 608 // folded or replaced with a copy. This can happen for example after 609 // frame indices are lowered to constants or from splitting 64-bit 610 // constants. 611 // 612 // We may also encounter cases where one or both operands are 613 // immediates materialized into a register, which would ordinarily not 614 // be folded due to multiple uses or operand constraints. 615 616 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 617 DEBUG(dbgs() << "Constant folded " << *UseMI <<'\n'); 618 619 // Some constant folding cases change the same immediate's use to a new 620 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 621 // again. The same constant folded instruction could also have a second 622 // use operand. 623 NextUse = MRI->use_begin(Dst.getReg()); 624 continue; 625 } 626 627 // Try to fold any inline immediate uses, and then only fold other 628 // constants if they have one use. 629 // 630 // The legality of the inline immediate must be checked based on the use 631 // operand, not the defining instruction, because 32-bit instructions 632 // with 32-bit inline immediate sources may be used to materialize 633 // constants used in 16-bit operands. 634 // 635 // e.g. it is unsafe to fold: 636 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 637 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 638 639 // Folding immediates with more than one use will increase program size. 640 // FIXME: This will also reduce register usage, which may be better 641 // in some cases. A better heuristic is needed. 642 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 643 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 644 } else { 645 if (++NumLiteralUses == 1) { 646 NonInlineUse = &*Use; 647 NonInlineUseOpNo = OpNo; 648 } 649 } 650 } 651 652 if (NumLiteralUses == 1) { 653 MachineInstr *UseMI = NonInlineUse->getParent(); 654 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 655 } 656 } else { 657 // Folding register. 658 for (MachineRegisterInfo::use_iterator 659 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 660 Use != E; ++Use) { 661 MachineInstr *UseMI = Use->getParent(); 662 663 foldOperand(OpToFold, UseMI, Use.getOperandNo(), 664 FoldList, CopiesToReplace); 665 } 666 } 667 668 MachineFunction *MF = MI.getParent()->getParent(); 669 // Make sure we add EXEC uses to any new v_mov instructions created. 670 for (MachineInstr *Copy : CopiesToReplace) 671 Copy->addImplicitDefUseOperands(*MF); 672 673 for (FoldCandidate &Fold : FoldList) { 674 if (updateOperand(Fold, *TRI)) { 675 // Clear kill flags. 676 if (Fold.isReg()) { 677 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 678 // FIXME: Probably shouldn't bother trying to fold if not an 679 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 680 // copies. 681 MRI->clearKillFlags(Fold.OpToFold->getReg()); 682 } 683 DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " << 684 static_cast<int>(Fold.UseOpNo) << " of " << *Fold.UseMI << '\n'); 685 } 686 } 687 } 688 689 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 690 if (skipFunction(*MF.getFunction())) 691 return false; 692 693 const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); 694 695 MRI = &MF.getRegInfo(); 696 TII = ST.getInstrInfo(); 697 TRI = &TII->getRegisterInfo(); 698 699 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); 700 BI != BE; ++BI) { 701 702 MachineBasicBlock &MBB = *BI; 703 MachineBasicBlock::iterator I, Next; 704 for (I = MBB.begin(); I != MBB.end(); I = Next) { 705 Next = std::next(I); 706 MachineInstr &MI = *I; 707 708 if (!isSafeToFold(MI)) 709 continue; 710 711 MachineOperand &OpToFold = MI.getOperand(1); 712 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 713 714 // FIXME: We could also be folding things like TargetIndexes. 715 if (!FoldingImm && !OpToFold.isReg()) 716 continue; 717 718 if (OpToFold.isReg() && 719 !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg())) 720 continue; 721 722 // Prevent folding operands backwards in the function. For example, 723 // the COPY opcode must not be replaced by 1 in this example: 724 // 725 // %vreg3<def> = COPY %VGPR0; VGPR_32:%vreg3 726 // ... 727 // %VGPR0<def> = V_MOV_B32_e32 1, %EXEC<imp-use> 728 MachineOperand &Dst = MI.getOperand(0); 729 if (Dst.isReg() && 730 !TargetRegisterInfo::isVirtualRegister(Dst.getReg())) 731 continue; 732 733 foldInstOperand(MI, OpToFold); 734 } 735 } 736 return false; 737 } 738