1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "AMDGPUSubtarget.h" 13 #include "SIInstrInfo.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/CodeGen/LiveIntervals.h" 18 #include "llvm/CodeGen/MachineFunctionPass.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "si-fold-operands" 26 using namespace llvm; 27 28 namespace { 29 30 struct FoldCandidate { 31 MachineInstr *UseMI; 32 union { 33 MachineOperand *OpToFold; 34 uint64_t ImmToFold; 35 int FrameIndexToFold; 36 }; 37 int ShrinkOpcode; 38 unsigned char UseOpNo; 39 MachineOperand::MachineOperandType Kind; 40 bool Commuted; 41 42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 43 bool Commuted_ = false, 44 int ShrinkOp = -1) : 45 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 46 Kind(FoldOp->getType()), 47 Commuted(Commuted_) { 48 if (FoldOp->isImm()) { 49 ImmToFold = FoldOp->getImm(); 50 } else if (FoldOp->isFI()) { 51 FrameIndexToFold = FoldOp->getIndex(); 52 } else { 53 assert(FoldOp->isReg() || FoldOp->isGlobal()); 54 OpToFold = FoldOp; 55 } 56 } 57 58 bool isFI() const { 59 return Kind == MachineOperand::MO_FrameIndex; 60 } 61 62 bool isImm() const { 63 return Kind == MachineOperand::MO_Immediate; 64 } 65 66 bool isReg() const { 67 return Kind == MachineOperand::MO_Register; 68 } 69 70 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 71 72 bool isCommuted() const { 73 return Commuted; 74 } 75 76 bool needsShrink() const { 77 return ShrinkOpcode != -1; 78 } 79 80 int getShrinkOpcode() const { 81 return ShrinkOpcode; 82 } 83 }; 84 85 class SIFoldOperands : public MachineFunctionPass { 86 public: 87 static char ID; 88 MachineRegisterInfo *MRI; 89 const SIInstrInfo *TII; 90 const SIRegisterInfo *TRI; 91 const GCNSubtarget *ST; 92 const SIMachineFunctionInfo *MFI; 93 94 void foldOperand(MachineOperand &OpToFold, 95 MachineInstr *UseMI, 96 int UseOpIdx, 97 SmallVectorImpl<FoldCandidate> &FoldList, 98 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 99 100 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 101 102 const MachineOperand *isClamp(const MachineInstr &MI) const; 103 bool tryFoldClamp(MachineInstr &MI); 104 105 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 106 bool tryFoldOMod(MachineInstr &MI); 107 108 public: 109 SIFoldOperands() : MachineFunctionPass(ID) { 110 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 111 } 112 113 bool runOnMachineFunction(MachineFunction &MF) override; 114 115 StringRef getPassName() const override { return "SI Fold Operands"; } 116 117 void getAnalysisUsage(AnalysisUsage &AU) const override { 118 AU.setPreservesCFG(); 119 MachineFunctionPass::getAnalysisUsage(AU); 120 } 121 }; 122 123 } // End anonymous namespace. 124 125 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 126 "SI Fold Operands", false, false) 127 128 char SIFoldOperands::ID = 0; 129 130 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 131 132 // Wrapper around isInlineConstant that understands special cases when 133 // instruction types are replaced during operand folding. 134 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 135 const MachineInstr &UseMI, 136 unsigned OpNo, 137 const MachineOperand &OpToFold) { 138 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 139 return true; 140 141 unsigned Opc = UseMI.getOpcode(); 142 switch (Opc) { 143 case AMDGPU::V_MAC_F32_e64: 144 case AMDGPU::V_MAC_F16_e64: 145 case AMDGPU::V_FMAC_F32_e64: 146 case AMDGPU::V_FMAC_F16_e64: { 147 // Special case for mac. Since this is replaced with mad when folded into 148 // src2, we need to check the legality for the final instruction. 149 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 150 if (static_cast<int>(OpNo) == Src2Idx) { 151 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 || 152 Opc == AMDGPU::V_FMAC_F16_e64; 153 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 || 154 Opc == AMDGPU::V_FMAC_F32_e64; 155 156 unsigned Opc = IsFMA ? 157 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) : 158 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 159 const MCInstrDesc &MadDesc = TII->get(Opc); 160 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 161 } 162 return false; 163 } 164 default: 165 return false; 166 } 167 } 168 169 // TODO: Add heuristic that the frame index might not fit in the addressing mode 170 // immediate offset to avoid materializing in loops. 171 static bool frameIndexMayFold(const SIInstrInfo *TII, 172 const MachineInstr &UseMI, 173 int OpNo, 174 const MachineOperand &OpToFold) { 175 return OpToFold.isFI() && 176 (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) && 177 OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr); 178 } 179 180 FunctionPass *llvm::createSIFoldOperandsPass() { 181 return new SIFoldOperands(); 182 } 183 184 static bool updateOperand(FoldCandidate &Fold, 185 const SIInstrInfo &TII, 186 const TargetRegisterInfo &TRI, 187 const GCNSubtarget &ST) { 188 MachineInstr *MI = Fold.UseMI; 189 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 190 assert(Old.isReg()); 191 192 if (Fold.isImm()) { 193 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 194 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 195 AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold), 196 ST.hasInv2PiInlineImm())) { 197 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 198 // already set. 199 unsigned Opcode = MI->getOpcode(); 200 int OpNo = MI->getOperandNo(&Old); 201 int ModIdx = -1; 202 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 203 ModIdx = AMDGPU::OpName::src0_modifiers; 204 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 205 ModIdx = AMDGPU::OpName::src1_modifiers; 206 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 207 ModIdx = AMDGPU::OpName::src2_modifiers; 208 assert(ModIdx != -1); 209 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 210 MachineOperand &Mod = MI->getOperand(ModIdx); 211 unsigned Val = Mod.getImm(); 212 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) 213 return false; 214 // Only apply the following transformation if that operand requries 215 // a packed immediate. 216 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 217 case AMDGPU::OPERAND_REG_IMM_V2FP16: 218 case AMDGPU::OPERAND_REG_IMM_V2INT16: 219 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 220 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 221 // If upper part is all zero we do not need op_sel_hi. 222 if (!isUInt<16>(Fold.ImmToFold)) { 223 if (!(Fold.ImmToFold & 0xffff)) { 224 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 225 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 226 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 227 return true; 228 } 229 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 230 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 231 return true; 232 } 233 break; 234 default: 235 break; 236 } 237 } 238 } 239 240 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 241 MachineBasicBlock *MBB = MI->getParent(); 242 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16); 243 if (Liveness != MachineBasicBlock::LQR_Dead) { 244 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 245 return false; 246 } 247 248 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 249 int Op32 = Fold.getShrinkOpcode(); 250 MachineOperand &Dst0 = MI->getOperand(0); 251 MachineOperand &Dst1 = MI->getOperand(1); 252 assert(Dst0.isDef() && Dst1.isDef()); 253 254 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 255 256 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 257 Register NewReg0 = MRI.createVirtualRegister(Dst0RC); 258 259 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 260 261 if (HaveNonDbgCarryUse) { 262 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 263 .addReg(AMDGPU::VCC, RegState::Kill); 264 } 265 266 // Keep the old instruction around to avoid breaking iterators, but 267 // replace it with a dummy instruction to remove uses. 268 // 269 // FIXME: We should not invert how this pass looks at operands to avoid 270 // this. Should track set of foldable movs instead of looking for uses 271 // when looking at a use. 272 Dst0.setReg(NewReg0); 273 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 274 MI->RemoveOperand(I); 275 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 276 277 if (Fold.isCommuted()) 278 TII.commuteInstruction(*Inst32, false); 279 return true; 280 } 281 282 assert(!Fold.needsShrink() && "not handled"); 283 284 if (Fold.isImm()) { 285 Old.ChangeToImmediate(Fold.ImmToFold); 286 return true; 287 } 288 289 if (Fold.isGlobal()) { 290 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 291 Fold.OpToFold->getTargetFlags()); 292 return true; 293 } 294 295 if (Fold.isFI()) { 296 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 297 return true; 298 } 299 300 MachineOperand *New = Fold.OpToFold; 301 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 302 Old.setIsUndef(New->isUndef()); 303 return true; 304 } 305 306 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 307 const MachineInstr *MI) { 308 for (auto Candidate : FoldList) { 309 if (Candidate.UseMI == MI) 310 return true; 311 } 312 return false; 313 } 314 315 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 316 MachineInstr *MI, unsigned OpNo, 317 MachineOperand *OpToFold, 318 const SIInstrInfo *TII) { 319 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 320 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 321 unsigned Opc = MI->getOpcode(); 322 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 323 Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) && 324 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 325 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 || 326 Opc == AMDGPU::V_FMAC_F16_e64; 327 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 || 328 Opc == AMDGPU::V_FMAC_F32_e64; 329 unsigned NewOpc = IsFMA ? 330 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) : 331 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 332 333 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 334 // to fold the operand. 335 MI->setDesc(TII->get(NewOpc)); 336 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 337 if (FoldAsMAD) { 338 MI->untieRegOperand(OpNo); 339 return true; 340 } 341 MI->setDesc(TII->get(Opc)); 342 } 343 344 // Special case for s_setreg_b32 345 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 346 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 347 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 348 return true; 349 } 350 351 // If we are already folding into another operand of MI, then 352 // we can't commute the instruction, otherwise we risk making the 353 // other fold illegal. 354 if (isUseMIInFoldList(FoldList, MI)) 355 return false; 356 357 unsigned CommuteOpNo = OpNo; 358 359 // Operand is not legal, so try to commute the instruction to 360 // see if this makes it possible to fold. 361 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 362 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 363 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 364 365 if (CanCommute) { 366 if (CommuteIdx0 == OpNo) 367 CommuteOpNo = CommuteIdx1; 368 else if (CommuteIdx1 == OpNo) 369 CommuteOpNo = CommuteIdx0; 370 } 371 372 373 // One of operands might be an Imm operand, and OpNo may refer to it after 374 // the call of commuteInstruction() below. Such situations are avoided 375 // here explicitly as OpNo must be a register operand to be a candidate 376 // for memory folding. 377 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 378 !MI->getOperand(CommuteIdx1).isReg())) 379 return false; 380 381 if (!CanCommute || 382 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 383 return false; 384 385 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 386 if ((Opc == AMDGPU::V_ADD_I32_e64 || 387 Opc == AMDGPU::V_SUB_I32_e64 || 388 Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME 389 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 390 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 391 392 // Verify the other operand is a VGPR, otherwise we would violate the 393 // constant bus restriction. 394 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 395 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 396 if (!OtherOp.isReg() || 397 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 398 return false; 399 400 assert(MI->getOperand(1).isDef()); 401 402 // Make sure to get the 32-bit version of the commuted opcode. 403 unsigned MaybeCommutedOpc = MI->getOpcode(); 404 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 405 406 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true, 407 Op32)); 408 return true; 409 } 410 411 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 412 return false; 413 } 414 415 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true)); 416 return true; 417 } 418 419 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 420 return true; 421 } 422 423 // If the use operand doesn't care about the value, this may be an operand only 424 // used for register indexing, in which case it is unsafe to fold. 425 static bool isUseSafeToFold(const SIInstrInfo *TII, 426 const MachineInstr &MI, 427 const MachineOperand &UseMO) { 428 return !UseMO.isUndef() && !TII->isSDWA(MI); 429 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 430 } 431 432 static bool tryToFoldACImm(const SIInstrInfo *TII, 433 const MachineOperand &OpToFold, 434 MachineInstr *UseMI, 435 unsigned UseOpIdx, 436 SmallVectorImpl<FoldCandidate> &FoldList) { 437 const MCInstrDesc &Desc = UseMI->getDesc(); 438 const MCOperandInfo *OpInfo = Desc.OpInfo; 439 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 440 return false; 441 442 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 443 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 444 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) 445 return false; 446 447 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 448 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 449 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 450 return true; 451 } 452 453 if (!OpToFold.isReg()) 454 return false; 455 456 Register UseReg = OpToFold.getReg(); 457 if (!Register::isVirtualRegister(UseReg)) 458 return false; 459 460 if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) { 461 return FC.UseMI == UseMI; }) != FoldList.end()) 462 return false; 463 464 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 465 const MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); 466 if (!Def || !Def->isRegSequence()) 467 return false; 468 469 int64_t Imm; 470 MachineOperand *Op; 471 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 472 const MachineOperand &Sub = Def->getOperand(I); 473 if (!Sub.isReg() || Sub.getSubReg()) 474 return false; 475 MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub.getReg()); 476 while (SubDef && !SubDef->isMoveImmediate() && 477 !SubDef->getOperand(1).isImm() && TII->isFoldableCopy(*SubDef)) 478 SubDef = MRI.getUniqueVRegDef(SubDef->getOperand(1).getReg()); 479 if (!SubDef || !SubDef->isMoveImmediate() || !SubDef->getOperand(1).isImm()) 480 return false; 481 Op = &SubDef->getOperand(1); 482 auto SubImm = Op->getImm(); 483 if (I == 1) { 484 if (!TII->isInlineConstant(SubDef->getOperand(1), OpTy)) 485 return false; 486 487 Imm = SubImm; 488 continue; 489 } 490 if (Imm != SubImm) 491 return false; // Can only fold splat constants 492 } 493 494 if (!TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 495 return false; 496 497 FoldList.push_back(FoldCandidate(UseMI, UseOpIdx, Op)); 498 return true; 499 } 500 501 void SIFoldOperands::foldOperand( 502 MachineOperand &OpToFold, 503 MachineInstr *UseMI, 504 int UseOpIdx, 505 SmallVectorImpl<FoldCandidate> &FoldList, 506 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 507 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 508 509 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 510 return; 511 512 // FIXME: Fold operands with subregs. 513 if (UseOp.isReg() && OpToFold.isReg()) { 514 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 515 return; 516 } 517 518 // Special case for REG_SEQUENCE: We can't fold literals into 519 // REG_SEQUENCE instructions, so we have to fold them into the 520 // uses of REG_SEQUENCE. 521 if (UseMI->isRegSequence()) { 522 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 523 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 524 525 MachineRegisterInfo::use_iterator Next; 526 for (MachineRegisterInfo::use_iterator 527 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 528 RSUse != RSE; RSUse = Next) { 529 Next = std::next(RSUse); 530 531 MachineInstr *RSUseMI = RSUse->getParent(); 532 533 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 534 RSUse.getOperandNo(), FoldList)) 535 continue; 536 537 if (RSUse->getSubReg() != RegSeqDstSubReg) 538 continue; 539 540 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 541 CopiesToReplace); 542 } 543 544 return; 545 } 546 547 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 548 return; 549 550 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 551 // Sanity check that this is a stack access. 552 // FIXME: Should probably use stack pseudos before frame lowering. 553 MachineOperand *SOff = TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 554 if (!SOff->isReg() || (SOff->getReg() != MFI->getScratchWaveOffsetReg() && 555 SOff->getReg() != MFI->getStackPtrOffsetReg())) 556 return; 557 558 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 559 MFI->getScratchRSrcReg()) 560 return; 561 562 // A frame index will resolve to a positive constant, so it should always be 563 // safe to fold the addressing mode, even pre-GFX9. 564 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 565 SOff->setReg(MFI->getStackPtrOffsetReg()); 566 return; 567 } 568 569 bool FoldingImmLike = 570 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 571 572 if (FoldingImmLike && UseMI->isCopy()) { 573 Register DestReg = UseMI->getOperand(0).getReg(); 574 575 // Don't fold into a copy to a physical register. Doing so would interfere 576 // with the register coalescer's logic which would avoid redundant 577 // initalizations. 578 if (DestReg.isPhysical()) 579 return; 580 581 const TargetRegisterClass *DestRC = MRI->getRegClass(DestReg); 582 583 Register SrcReg = UseMI->getOperand(1).getReg(); 584 if (SrcReg.isVirtual()) { // XXX - This can be an assert? 585 const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg); 586 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 587 MachineRegisterInfo::use_iterator NextUse; 588 SmallVector<FoldCandidate, 4> CopyUses; 589 for (MachineRegisterInfo::use_iterator 590 Use = MRI->use_begin(DestReg), E = MRI->use_end(); 591 Use != E; Use = NextUse) { 592 NextUse = std::next(Use); 593 FoldCandidate FC = FoldCandidate(Use->getParent(), 594 Use.getOperandNo(), &UseMI->getOperand(1)); 595 CopyUses.push_back(FC); 596 } 597 for (auto & F : CopyUses) { 598 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, 599 FoldList, CopiesToReplace); 600 } 601 } 602 } 603 604 if (DestRC == &AMDGPU::AGPR_32RegClass && 605 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 606 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 607 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 608 CopiesToReplace.push_back(UseMI); 609 return; 610 } 611 612 // In order to fold immediates into copies, we need to change the 613 // copy to a MOV. 614 615 unsigned MovOp = TII->getMovOpcode(DestRC); 616 if (MovOp == AMDGPU::COPY) 617 return; 618 619 UseMI->setDesc(TII->get(MovOp)); 620 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 621 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 622 while (ImpOpI != ImpOpE) { 623 MachineInstr::mop_iterator Tmp = ImpOpI; 624 ImpOpI++; 625 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); 626 } 627 CopiesToReplace.push_back(UseMI); 628 } else { 629 if (UseMI->isCopy() && OpToFold.isReg() && 630 UseMI->getOperand(0).getReg().isVirtual() && 631 TRI->isVectorRegister(*MRI, UseMI->getOperand(0).getReg()) && 632 !UseMI->getOperand(1).getSubReg()) { 633 LLVM_DEBUG(dbgs() << "Folding " << OpToFold 634 << "\n into " << *UseMI << '\n'); 635 unsigned Size = TII->getOpSize(*UseMI, 1); 636 UseMI->getOperand(1).setReg(OpToFold.getReg()); 637 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 638 UseMI->getOperand(1).setIsKill(false); 639 CopiesToReplace.push_back(UseMI); 640 OpToFold.setIsKill(false); 641 if (Size != 4) 642 return; 643 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 644 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 645 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 646 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 647 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 648 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32)); 649 return; 650 } 651 652 unsigned UseOpc = UseMI->getOpcode(); 653 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 654 (UseOpc == AMDGPU::V_READLANE_B32 && 655 (int)UseOpIdx == 656 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 657 // %vgpr = V_MOV_B32 imm 658 // %sgpr = V_READFIRSTLANE_B32 %vgpr 659 // => 660 // %sgpr = S_MOV_B32 imm 661 if (FoldingImmLike) { 662 if (execMayBeModifiedBeforeUse(*MRI, 663 UseMI->getOperand(UseOpIdx).getReg(), 664 *OpToFold.getParent(), 665 *UseMI)) 666 return; 667 668 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 669 670 // FIXME: ChangeToImmediate should clear subreg 671 UseMI->getOperand(1).setSubReg(0); 672 if (OpToFold.isImm()) 673 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 674 else 675 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 676 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 677 return; 678 } 679 680 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 681 if (execMayBeModifiedBeforeUse(*MRI, 682 UseMI->getOperand(UseOpIdx).getReg(), 683 *OpToFold.getParent(), 684 *UseMI)) 685 return; 686 687 // %vgpr = COPY %sgpr0 688 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 689 // => 690 // %sgpr1 = COPY %sgpr0 691 UseMI->setDesc(TII->get(AMDGPU::COPY)); 692 UseMI->getOperand(1).setReg(OpToFold.getReg()); 693 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 694 UseMI->getOperand(1).setIsKill(false); 695 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 696 return; 697 } 698 } 699 700 const MCInstrDesc &UseDesc = UseMI->getDesc(); 701 702 // Don't fold into target independent nodes. Target independent opcodes 703 // don't have defined register classes. 704 if (UseDesc.isVariadic() || 705 UseOp.isImplicit() || 706 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 707 return; 708 } 709 710 if (!FoldingImmLike) { 711 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 712 713 // FIXME: We could try to change the instruction from 64-bit to 32-bit 714 // to enable more folding opportunites. The shrink operands pass 715 // already does this. 716 return; 717 } 718 719 720 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 721 const TargetRegisterClass *FoldRC = 722 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 723 724 // Split 64-bit constants into 32-bits for folding. 725 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 726 Register UseReg = UseOp.getReg(); 727 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 728 729 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 730 return; 731 732 APInt Imm(64, OpToFold.getImm()); 733 if (UseOp.getSubReg() == AMDGPU::sub0) { 734 Imm = Imm.getLoBits(32); 735 } else { 736 assert(UseOp.getSubReg() == AMDGPU::sub1); 737 Imm = Imm.getHiBits(32); 738 } 739 740 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 741 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 742 return; 743 } 744 745 746 747 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 748 } 749 750 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 751 uint32_t LHS, uint32_t RHS) { 752 switch (Opcode) { 753 case AMDGPU::V_AND_B32_e64: 754 case AMDGPU::V_AND_B32_e32: 755 case AMDGPU::S_AND_B32: 756 Result = LHS & RHS; 757 return true; 758 case AMDGPU::V_OR_B32_e64: 759 case AMDGPU::V_OR_B32_e32: 760 case AMDGPU::S_OR_B32: 761 Result = LHS | RHS; 762 return true; 763 case AMDGPU::V_XOR_B32_e64: 764 case AMDGPU::V_XOR_B32_e32: 765 case AMDGPU::S_XOR_B32: 766 Result = LHS ^ RHS; 767 return true; 768 case AMDGPU::V_LSHL_B32_e64: 769 case AMDGPU::V_LSHL_B32_e32: 770 case AMDGPU::S_LSHL_B32: 771 // The instruction ignores the high bits for out of bounds shifts. 772 Result = LHS << (RHS & 31); 773 return true; 774 case AMDGPU::V_LSHLREV_B32_e64: 775 case AMDGPU::V_LSHLREV_B32_e32: 776 Result = RHS << (LHS & 31); 777 return true; 778 case AMDGPU::V_LSHR_B32_e64: 779 case AMDGPU::V_LSHR_B32_e32: 780 case AMDGPU::S_LSHR_B32: 781 Result = LHS >> (RHS & 31); 782 return true; 783 case AMDGPU::V_LSHRREV_B32_e64: 784 case AMDGPU::V_LSHRREV_B32_e32: 785 Result = RHS >> (LHS & 31); 786 return true; 787 case AMDGPU::V_ASHR_I32_e64: 788 case AMDGPU::V_ASHR_I32_e32: 789 case AMDGPU::S_ASHR_I32: 790 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 791 return true; 792 case AMDGPU::V_ASHRREV_I32_e64: 793 case AMDGPU::V_ASHRREV_I32_e32: 794 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 795 return true; 796 default: 797 return false; 798 } 799 } 800 801 static unsigned getMovOpc(bool IsScalar) { 802 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 803 } 804 805 /// Remove any leftover implicit operands from mutating the instruction. e.g. 806 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 807 /// anymore. 808 static void stripExtraCopyOperands(MachineInstr &MI) { 809 const MCInstrDesc &Desc = MI.getDesc(); 810 unsigned NumOps = Desc.getNumOperands() + 811 Desc.getNumImplicitUses() + 812 Desc.getNumImplicitDefs(); 813 814 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 815 MI.RemoveOperand(I); 816 } 817 818 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 819 MI.setDesc(NewDesc); 820 stripExtraCopyOperands(MI); 821 } 822 823 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 824 MachineOperand &Op) { 825 if (Op.isReg()) { 826 // If this has a subregister, it obviously is a register source. 827 if (Op.getSubReg() != AMDGPU::NoSubRegister || 828 !Register::isVirtualRegister(Op.getReg())) 829 return &Op; 830 831 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 832 if (Def && Def->isMoveImmediate()) { 833 MachineOperand &ImmSrc = Def->getOperand(1); 834 if (ImmSrc.isImm()) 835 return &ImmSrc; 836 } 837 } 838 839 return &Op; 840 } 841 842 // Try to simplify operations with a constant that may appear after instruction 843 // selection. 844 // TODO: See if a frame index with a fixed offset can fold. 845 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 846 const SIInstrInfo *TII, 847 MachineInstr *MI, 848 MachineOperand *ImmOp) { 849 unsigned Opc = MI->getOpcode(); 850 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 851 Opc == AMDGPU::S_NOT_B32) { 852 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 853 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 854 return true; 855 } 856 857 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 858 if (Src1Idx == -1) 859 return false; 860 861 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 862 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 863 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 864 865 if (!Src0->isImm() && !Src1->isImm()) 866 return false; 867 868 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) { 869 if (Src0->isImm() && Src0->getImm() == 0) { 870 // v_lshl_or_b32 0, X, Y -> copy Y 871 // v_lshl_or_b32 0, X, K -> v_mov_b32 K 872 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg(); 873 MI->RemoveOperand(Src1Idx); 874 MI->RemoveOperand(Src0Idx); 875 876 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32)); 877 return true; 878 } 879 } 880 881 // and k0, k1 -> v_mov_b32 (k0 & k1) 882 // or k0, k1 -> v_mov_b32 (k0 | k1) 883 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 884 if (Src0->isImm() && Src1->isImm()) { 885 int32_t NewImm; 886 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 887 return false; 888 889 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 890 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 891 892 // Be careful to change the right operand, src0 may belong to a different 893 // instruction. 894 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 895 MI->RemoveOperand(Src1Idx); 896 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 897 return true; 898 } 899 900 if (!MI->isCommutable()) 901 return false; 902 903 if (Src0->isImm() && !Src1->isImm()) { 904 std::swap(Src0, Src1); 905 std::swap(Src0Idx, Src1Idx); 906 } 907 908 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 909 if (Opc == AMDGPU::V_OR_B32_e64 || 910 Opc == AMDGPU::V_OR_B32_e32 || 911 Opc == AMDGPU::S_OR_B32) { 912 if (Src1Val == 0) { 913 // y = or x, 0 => y = copy x 914 MI->RemoveOperand(Src1Idx); 915 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 916 } else if (Src1Val == -1) { 917 // y = or x, -1 => y = v_mov_b32 -1 918 MI->RemoveOperand(Src1Idx); 919 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 920 } else 921 return false; 922 923 return true; 924 } 925 926 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 927 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 928 MI->getOpcode() == AMDGPU::S_AND_B32) { 929 if (Src1Val == 0) { 930 // y = and x, 0 => y = v_mov_b32 0 931 MI->RemoveOperand(Src0Idx); 932 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 933 } else if (Src1Val == -1) { 934 // y = and x, -1 => y = copy x 935 MI->RemoveOperand(Src1Idx); 936 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 937 stripExtraCopyOperands(*MI); 938 } else 939 return false; 940 941 return true; 942 } 943 944 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 945 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 946 MI->getOpcode() == AMDGPU::S_XOR_B32) { 947 if (Src1Val == 0) { 948 // y = xor x, 0 => y = copy x 949 MI->RemoveOperand(Src1Idx); 950 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 951 return true; 952 } 953 } 954 955 return false; 956 } 957 958 // Try to fold an instruction into a simpler one 959 static bool tryFoldInst(const SIInstrInfo *TII, 960 MachineInstr *MI) { 961 unsigned Opc = MI->getOpcode(); 962 963 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 964 Opc == AMDGPU::V_CNDMASK_B32_e64 || 965 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 966 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 967 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 968 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 969 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 970 if (Src1->isIdenticalTo(*Src0) && 971 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && 972 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { 973 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 974 auto &NewDesc = 975 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 976 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 977 if (Src2Idx != -1) 978 MI->RemoveOperand(Src2Idx); 979 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 980 if (Src1ModIdx != -1) 981 MI->RemoveOperand(Src1ModIdx); 982 if (Src0ModIdx != -1) 983 MI->RemoveOperand(Src0ModIdx); 984 mutateCopyOp(*MI, NewDesc); 985 LLVM_DEBUG(dbgs() << *MI << '\n'); 986 return true; 987 } 988 } 989 990 return false; 991 } 992 993 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 994 MachineOperand &OpToFold) const { 995 // We need mutate the operands of new mov instructions to add implicit 996 // uses of EXEC, but adding them invalidates the use_iterator, so defer 997 // this. 998 SmallVector<MachineInstr *, 4> CopiesToReplace; 999 SmallVector<FoldCandidate, 4> FoldList; 1000 MachineOperand &Dst = MI.getOperand(0); 1001 1002 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1003 if (FoldingImm) { 1004 unsigned NumLiteralUses = 0; 1005 MachineOperand *NonInlineUse = nullptr; 1006 int NonInlineUseOpNo = -1; 1007 1008 MachineRegisterInfo::use_iterator NextUse; 1009 for (MachineRegisterInfo::use_iterator 1010 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 1011 Use != E; Use = NextUse) { 1012 NextUse = std::next(Use); 1013 MachineInstr *UseMI = Use->getParent(); 1014 unsigned OpNo = Use.getOperandNo(); 1015 1016 // Folding the immediate may reveal operations that can be constant 1017 // folded or replaced with a copy. This can happen for example after 1018 // frame indices are lowered to constants or from splitting 64-bit 1019 // constants. 1020 // 1021 // We may also encounter cases where one or both operands are 1022 // immediates materialized into a register, which would ordinarily not 1023 // be folded due to multiple uses or operand constraints. 1024 1025 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 1026 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 1027 1028 // Some constant folding cases change the same immediate's use to a new 1029 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 1030 // again. The same constant folded instruction could also have a second 1031 // use operand. 1032 NextUse = MRI->use_begin(Dst.getReg()); 1033 FoldList.clear(); 1034 continue; 1035 } 1036 1037 // Try to fold any inline immediate uses, and then only fold other 1038 // constants if they have one use. 1039 // 1040 // The legality of the inline immediate must be checked based on the use 1041 // operand, not the defining instruction, because 32-bit instructions 1042 // with 32-bit inline immediate sources may be used to materialize 1043 // constants used in 16-bit operands. 1044 // 1045 // e.g. it is unsafe to fold: 1046 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1047 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1048 1049 // Folding immediates with more than one use will increase program size. 1050 // FIXME: This will also reduce register usage, which may be better 1051 // in some cases. A better heuristic is needed. 1052 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1053 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1054 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1055 foldOperand(OpToFold, UseMI, OpNo, FoldList, 1056 CopiesToReplace); 1057 } else { 1058 if (++NumLiteralUses == 1) { 1059 NonInlineUse = &*Use; 1060 NonInlineUseOpNo = OpNo; 1061 } 1062 } 1063 } 1064 1065 if (NumLiteralUses == 1) { 1066 MachineInstr *UseMI = NonInlineUse->getParent(); 1067 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1068 } 1069 } else { 1070 // Folding register. 1071 SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess; 1072 for (MachineRegisterInfo::use_iterator 1073 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 1074 Use != E; ++Use) { 1075 UsesToProcess.push_back(Use); 1076 } 1077 for (auto U : UsesToProcess) { 1078 MachineInstr *UseMI = U->getParent(); 1079 1080 foldOperand(OpToFold, UseMI, U.getOperandNo(), 1081 FoldList, CopiesToReplace); 1082 } 1083 } 1084 1085 MachineFunction *MF = MI.getParent()->getParent(); 1086 // Make sure we add EXEC uses to any new v_mov instructions created. 1087 for (MachineInstr *Copy : CopiesToReplace) 1088 Copy->addImplicitDefUseOperands(*MF); 1089 1090 for (FoldCandidate &Fold : FoldList) { 1091 if (Fold.isReg() && Register::isVirtualRegister(Fold.OpToFold->getReg())) { 1092 Register Reg = Fold.OpToFold->getReg(); 1093 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1094 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1095 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1096 continue; 1097 } 1098 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1099 // Clear kill flags. 1100 if (Fold.isReg()) { 1101 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1102 // FIXME: Probably shouldn't bother trying to fold if not an 1103 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1104 // copies. 1105 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1106 } 1107 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1108 << static_cast<int>(Fold.UseOpNo) << " of " 1109 << *Fold.UseMI << '\n'); 1110 tryFoldInst(TII, Fold.UseMI); 1111 } else if (Fold.isCommuted()) { 1112 // Restoring instruction's original operand order if fold has failed. 1113 TII->commuteInstruction(*Fold.UseMI, false); 1114 } 1115 } 1116 } 1117 1118 // Clamp patterns are canonically selected to v_max_* instructions, so only 1119 // handle them. 1120 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1121 unsigned Op = MI.getOpcode(); 1122 switch (Op) { 1123 case AMDGPU::V_MAX_F32_e64: 1124 case AMDGPU::V_MAX_F16_e64: 1125 case AMDGPU::V_MAX_F64: 1126 case AMDGPU::V_PK_MAX_F16: { 1127 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1128 return nullptr; 1129 1130 // Make sure sources are identical. 1131 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1132 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1133 if (!Src0->isReg() || !Src1->isReg() || 1134 Src0->getReg() != Src1->getReg() || 1135 Src0->getSubReg() != Src1->getSubReg() || 1136 Src0->getSubReg() != AMDGPU::NoSubRegister) 1137 return nullptr; 1138 1139 // Can't fold up if we have modifiers. 1140 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1141 return nullptr; 1142 1143 unsigned Src0Mods 1144 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1145 unsigned Src1Mods 1146 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1147 1148 // Having a 0 op_sel_hi would require swizzling the output in the source 1149 // instruction, which we can't do. 1150 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1151 : 0u; 1152 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1153 return nullptr; 1154 return Src0; 1155 } 1156 default: 1157 return nullptr; 1158 } 1159 } 1160 1161 // We obviously have multiple uses in a clamp since the register is used twice 1162 // in the same instruction. 1163 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 1164 int Count = 0; 1165 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 1166 I != E; ++I) { 1167 if (++Count > 1) 1168 return false; 1169 } 1170 1171 return true; 1172 } 1173 1174 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1175 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1176 const MachineOperand *ClampSrc = isClamp(MI); 1177 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 1178 return false; 1179 1180 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1181 1182 // The type of clamp must be compatible. 1183 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1184 return false; 1185 1186 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1187 if (!DefClamp) 1188 return false; 1189 1190 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 1191 << '\n'); 1192 1193 // Clamp is applied after omod, so it is OK if omod is set. 1194 DefClamp->setImm(1); 1195 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1196 MI.eraseFromParent(); 1197 return true; 1198 } 1199 1200 static int getOModValue(unsigned Opc, int64_t Val) { 1201 switch (Opc) { 1202 case AMDGPU::V_MUL_F32_e64: { 1203 switch (static_cast<uint32_t>(Val)) { 1204 case 0x3f000000: // 0.5 1205 return SIOutMods::DIV2; 1206 case 0x40000000: // 2.0 1207 return SIOutMods::MUL2; 1208 case 0x40800000: // 4.0 1209 return SIOutMods::MUL4; 1210 default: 1211 return SIOutMods::NONE; 1212 } 1213 } 1214 case AMDGPU::V_MUL_F16_e64: { 1215 switch (static_cast<uint16_t>(Val)) { 1216 case 0x3800: // 0.5 1217 return SIOutMods::DIV2; 1218 case 0x4000: // 2.0 1219 return SIOutMods::MUL2; 1220 case 0x4400: // 4.0 1221 return SIOutMods::MUL4; 1222 default: 1223 return SIOutMods::NONE; 1224 } 1225 } 1226 default: 1227 llvm_unreachable("invalid mul opcode"); 1228 } 1229 } 1230 1231 // FIXME: Does this really not support denormals with f16? 1232 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1233 // handled, so will anything other than that break? 1234 std::pair<const MachineOperand *, int> 1235 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1236 unsigned Op = MI.getOpcode(); 1237 switch (Op) { 1238 case AMDGPU::V_MUL_F32_e64: 1239 case AMDGPU::V_MUL_F16_e64: { 1240 // If output denormals are enabled, omod is ignored. 1241 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || 1242 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) 1243 return std::make_pair(nullptr, SIOutMods::NONE); 1244 1245 const MachineOperand *RegOp = nullptr; 1246 const MachineOperand *ImmOp = nullptr; 1247 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1248 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1249 if (Src0->isImm()) { 1250 ImmOp = Src0; 1251 RegOp = Src1; 1252 } else if (Src1->isImm()) { 1253 ImmOp = Src1; 1254 RegOp = Src0; 1255 } else 1256 return std::make_pair(nullptr, SIOutMods::NONE); 1257 1258 int OMod = getOModValue(Op, ImmOp->getImm()); 1259 if (OMod == SIOutMods::NONE || 1260 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1261 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1262 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1263 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1264 return std::make_pair(nullptr, SIOutMods::NONE); 1265 1266 return std::make_pair(RegOp, OMod); 1267 } 1268 case AMDGPU::V_ADD_F32_e64: 1269 case AMDGPU::V_ADD_F16_e64: { 1270 // If output denormals are enabled, omod is ignored. 1271 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || 1272 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) 1273 return std::make_pair(nullptr, SIOutMods::NONE); 1274 1275 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1276 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1277 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1278 1279 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1280 Src0->getSubReg() == Src1->getSubReg() && 1281 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1282 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1283 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1284 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1285 return std::make_pair(Src0, SIOutMods::MUL2); 1286 1287 return std::make_pair(nullptr, SIOutMods::NONE); 1288 } 1289 default: 1290 return std::make_pair(nullptr, SIOutMods::NONE); 1291 } 1292 } 1293 1294 // FIXME: Does this need to check IEEE bit on function? 1295 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1296 const MachineOperand *RegOp; 1297 int OMod; 1298 std::tie(RegOp, OMod) = isOMod(MI); 1299 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1300 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1301 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1302 return false; 1303 1304 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1305 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1306 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1307 return false; 1308 1309 // Clamp is applied after omod. If the source already has clamp set, don't 1310 // fold it. 1311 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1312 return false; 1313 1314 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1315 1316 DefOMod->setImm(OMod); 1317 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1318 MI.eraseFromParent(); 1319 return true; 1320 } 1321 1322 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1323 if (skipFunction(MF.getFunction())) 1324 return false; 1325 1326 MRI = &MF.getRegInfo(); 1327 ST = &MF.getSubtarget<GCNSubtarget>(); 1328 TII = ST->getInstrInfo(); 1329 TRI = &TII->getRegisterInfo(); 1330 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1331 1332 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1333 // correctly handle signed zeros. 1334 // 1335 // FIXME: Also need to check strictfp 1336 bool IsIEEEMode = MFI->getMode().IEEE; 1337 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1338 1339 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1340 MachineBasicBlock::iterator I, Next; 1341 1342 MachineOperand *CurrentKnownM0Val = nullptr; 1343 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1344 Next = std::next(I); 1345 MachineInstr &MI = *I; 1346 1347 tryFoldInst(TII, &MI); 1348 1349 if (!TII->isFoldableCopy(MI)) { 1350 // TODO: Omod might be OK if there is NSZ only on the source 1351 // instruction, and not the omod multiply. 1352 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1353 !tryFoldOMod(MI)) 1354 tryFoldClamp(MI); 1355 1356 // Saw an unknown clobber of m0, so we no longer know what it is. 1357 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 1358 CurrentKnownM0Val = nullptr; 1359 continue; 1360 } 1361 1362 // Specially track simple redefs of m0 to the same value in a block, so we 1363 // can erase the later ones. 1364 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1365 MachineOperand &NewM0Val = MI.getOperand(1); 1366 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1367 MI.eraseFromParent(); 1368 continue; 1369 } 1370 1371 // We aren't tracking other physical registers 1372 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? 1373 nullptr : &NewM0Val; 1374 continue; 1375 } 1376 1377 MachineOperand &OpToFold = MI.getOperand(1); 1378 bool FoldingImm = 1379 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1380 1381 // FIXME: We could also be folding things like TargetIndexes. 1382 if (!FoldingImm && !OpToFold.isReg()) 1383 continue; 1384 1385 if (OpToFold.isReg() && !Register::isVirtualRegister(OpToFold.getReg())) 1386 continue; 1387 1388 // Prevent folding operands backwards in the function. For example, 1389 // the COPY opcode must not be replaced by 1 in this example: 1390 // 1391 // %3 = COPY %vgpr0; VGPR_32:%3 1392 // ... 1393 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1394 MachineOperand &Dst = MI.getOperand(0); 1395 if (Dst.isReg() && !Register::isVirtualRegister(Dst.getReg())) 1396 continue; 1397 1398 foldInstOperand(MI, OpToFold); 1399 } 1400 } 1401 return false; 1402 } 1403