1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "AMDGPUSubtarget.h" 13 #include "SIInstrInfo.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/CodeGen/MachineFunctionPass.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "si-fold-operands" 26 using namespace llvm; 27 28 namespace { 29 30 struct FoldCandidate { 31 MachineInstr *UseMI; 32 union { 33 MachineOperand *OpToFold; 34 uint64_t ImmToFold; 35 int FrameIndexToFold; 36 }; 37 int ShrinkOpcode; 38 unsigned UseOpNo; 39 MachineOperand::MachineOperandType Kind; 40 bool Commuted; 41 42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 43 bool Commuted_ = false, 44 int ShrinkOp = -1) : 45 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 46 Kind(FoldOp->getType()), 47 Commuted(Commuted_) { 48 if (FoldOp->isImm()) { 49 ImmToFold = FoldOp->getImm(); 50 } else if (FoldOp->isFI()) { 51 FrameIndexToFold = FoldOp->getIndex(); 52 } else { 53 assert(FoldOp->isReg() || FoldOp->isGlobal()); 54 OpToFold = FoldOp; 55 } 56 } 57 58 bool isFI() const { 59 return Kind == MachineOperand::MO_FrameIndex; 60 } 61 62 bool isImm() const { 63 return Kind == MachineOperand::MO_Immediate; 64 } 65 66 bool isReg() const { 67 return Kind == MachineOperand::MO_Register; 68 } 69 70 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 71 72 bool isCommuted() const { 73 return Commuted; 74 } 75 76 bool needsShrink() const { 77 return ShrinkOpcode != -1; 78 } 79 80 int getShrinkOpcode() const { 81 return ShrinkOpcode; 82 } 83 }; 84 85 class SIFoldOperands : public MachineFunctionPass { 86 public: 87 static char ID; 88 MachineRegisterInfo *MRI; 89 const SIInstrInfo *TII; 90 const SIRegisterInfo *TRI; 91 const GCNSubtarget *ST; 92 const SIMachineFunctionInfo *MFI; 93 94 void foldOperand(MachineOperand &OpToFold, 95 MachineInstr *UseMI, 96 int UseOpIdx, 97 SmallVectorImpl<FoldCandidate> &FoldList, 98 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 99 100 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 101 102 const MachineOperand *isClamp(const MachineInstr &MI) const; 103 bool tryFoldClamp(MachineInstr &MI); 104 105 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 106 bool tryFoldOMod(MachineInstr &MI); 107 108 public: 109 SIFoldOperands() : MachineFunctionPass(ID) { 110 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 111 } 112 113 bool runOnMachineFunction(MachineFunction &MF) override; 114 115 StringRef getPassName() const override { return "SI Fold Operands"; } 116 117 void getAnalysisUsage(AnalysisUsage &AU) const override { 118 AU.setPreservesCFG(); 119 MachineFunctionPass::getAnalysisUsage(AU); 120 } 121 }; 122 123 } // End anonymous namespace. 124 125 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 126 "SI Fold Operands", false, false) 127 128 char SIFoldOperands::ID = 0; 129 130 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 131 132 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. 133 static unsigned macToMad(unsigned Opc) { 134 switch (Opc) { 135 case AMDGPU::V_MAC_F32_e64: 136 return AMDGPU::V_MAD_F32; 137 case AMDGPU::V_MAC_F16_e64: 138 return AMDGPU::V_MAD_F16; 139 case AMDGPU::V_FMAC_F32_e64: 140 return AMDGPU::V_FMA_F32; 141 case AMDGPU::V_FMAC_F16_e64: 142 return AMDGPU::V_FMA_F16_gfx9; 143 } 144 return AMDGPU::INSTRUCTION_LIST_END; 145 } 146 147 // Wrapper around isInlineConstant that understands special cases when 148 // instruction types are replaced during operand folding. 149 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 150 const MachineInstr &UseMI, 151 unsigned OpNo, 152 const MachineOperand &OpToFold) { 153 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 154 return true; 155 156 unsigned Opc = UseMI.getOpcode(); 157 unsigned NewOpc = macToMad(Opc); 158 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 159 // Special case for mac. Since this is replaced with mad when folded into 160 // src2, we need to check the legality for the final instruction. 161 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 162 if (static_cast<int>(OpNo) == Src2Idx) { 163 const MCInstrDesc &MadDesc = TII->get(NewOpc); 164 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 165 } 166 } 167 168 return false; 169 } 170 171 // TODO: Add heuristic that the frame index might not fit in the addressing mode 172 // immediate offset to avoid materializing in loops. 173 static bool frameIndexMayFold(const SIInstrInfo *TII, 174 const MachineInstr &UseMI, 175 int OpNo, 176 const MachineOperand &OpToFold) { 177 if (!OpToFold.isFI()) 178 return false; 179 180 if (TII->isMUBUF(UseMI)) 181 return OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 182 AMDGPU::OpName::vaddr); 183 if (!TII->isFLATScratch(UseMI)) 184 return false; 185 186 int SIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 187 AMDGPU::OpName::saddr); 188 if (OpNo == SIdx) 189 return true; 190 191 int VIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 192 AMDGPU::OpName::vaddr); 193 return OpNo == VIdx && SIdx == -1; 194 } 195 196 FunctionPass *llvm::createSIFoldOperandsPass() { 197 return new SIFoldOperands(); 198 } 199 200 static bool updateOperand(FoldCandidate &Fold, 201 const SIInstrInfo &TII, 202 const TargetRegisterInfo &TRI, 203 const GCNSubtarget &ST) { 204 MachineInstr *MI = Fold.UseMI; 205 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 206 assert(Old.isReg()); 207 208 if (Fold.isImm()) { 209 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 210 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 211 AMDGPU::isFoldableLiteralV216(Fold.ImmToFold, 212 ST.hasInv2PiInlineImm())) { 213 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 214 // already set. 215 unsigned Opcode = MI->getOpcode(); 216 int OpNo = MI->getOperandNo(&Old); 217 int ModIdx = -1; 218 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 219 ModIdx = AMDGPU::OpName::src0_modifiers; 220 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 221 ModIdx = AMDGPU::OpName::src1_modifiers; 222 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 223 ModIdx = AMDGPU::OpName::src2_modifiers; 224 assert(ModIdx != -1); 225 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 226 MachineOperand &Mod = MI->getOperand(ModIdx); 227 unsigned Val = Mod.getImm(); 228 if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) { 229 // Only apply the following transformation if that operand requries 230 // a packed immediate. 231 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 232 case AMDGPU::OPERAND_REG_IMM_V2FP16: 233 case AMDGPU::OPERAND_REG_IMM_V2INT16: 234 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 235 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 236 // If upper part is all zero we do not need op_sel_hi. 237 if (!isUInt<16>(Fold.ImmToFold)) { 238 if (!(Fold.ImmToFold & 0xffff)) { 239 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 240 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 241 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 242 return true; 243 } 244 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 245 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 246 return true; 247 } 248 break; 249 default: 250 break; 251 } 252 } 253 } 254 } 255 256 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 257 MachineBasicBlock *MBB = MI->getParent(); 258 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16); 259 if (Liveness != MachineBasicBlock::LQR_Dead) { 260 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 261 return false; 262 } 263 264 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 265 int Op32 = Fold.getShrinkOpcode(); 266 MachineOperand &Dst0 = MI->getOperand(0); 267 MachineOperand &Dst1 = MI->getOperand(1); 268 assert(Dst0.isDef() && Dst1.isDef()); 269 270 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 271 272 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 273 Register NewReg0 = MRI.createVirtualRegister(Dst0RC); 274 275 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 276 277 if (HaveNonDbgCarryUse) { 278 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 279 .addReg(AMDGPU::VCC, RegState::Kill); 280 } 281 282 // Keep the old instruction around to avoid breaking iterators, but 283 // replace it with a dummy instruction to remove uses. 284 // 285 // FIXME: We should not invert how this pass looks at operands to avoid 286 // this. Should track set of foldable movs instead of looking for uses 287 // when looking at a use. 288 Dst0.setReg(NewReg0); 289 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 290 MI->RemoveOperand(I); 291 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 292 293 if (Fold.isCommuted()) 294 TII.commuteInstruction(*Inst32, false); 295 return true; 296 } 297 298 assert(!Fold.needsShrink() && "not handled"); 299 300 if (Fold.isImm()) { 301 Old.ChangeToImmediate(Fold.ImmToFold); 302 return true; 303 } 304 305 if (Fold.isGlobal()) { 306 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 307 Fold.OpToFold->getTargetFlags()); 308 return true; 309 } 310 311 if (Fold.isFI()) { 312 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 313 return true; 314 } 315 316 MachineOperand *New = Fold.OpToFold; 317 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 318 Old.setIsUndef(New->isUndef()); 319 return true; 320 } 321 322 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 323 const MachineInstr *MI) { 324 for (auto Candidate : FoldList) { 325 if (Candidate.UseMI == MI) 326 return true; 327 } 328 return false; 329 } 330 331 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 332 MachineInstr *MI, unsigned OpNo, 333 MachineOperand *FoldOp, bool Commuted = false, 334 int ShrinkOp = -1) { 335 // Skip additional folding on the same operand. 336 for (FoldCandidate &Fold : FoldList) 337 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 338 return; 339 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 340 << " operand " << OpNo << "\n " << *MI << '\n'); 341 FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp)); 342 } 343 344 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 345 MachineInstr *MI, unsigned OpNo, 346 MachineOperand *OpToFold, 347 const SIInstrInfo *TII) { 348 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 349 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 350 unsigned Opc = MI->getOpcode(); 351 unsigned NewOpc = macToMad(Opc); 352 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 353 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 354 // to fold the operand. 355 MI->setDesc(TII->get(NewOpc)); 356 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 357 if (FoldAsMAD) { 358 MI->untieRegOperand(OpNo); 359 return true; 360 } 361 MI->setDesc(TII->get(Opc)); 362 } 363 364 // Special case for s_setreg_b32 365 if (OpToFold->isImm()) { 366 unsigned ImmOpc = 0; 367 if (Opc == AMDGPU::S_SETREG_B32) 368 ImmOpc = AMDGPU::S_SETREG_IMM32_B32; 369 else if (Opc == AMDGPU::S_SETREG_B32_mode) 370 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; 371 if (ImmOpc) { 372 MI->setDesc(TII->get(ImmOpc)); 373 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 374 return true; 375 } 376 } 377 378 // If we are already folding into another operand of MI, then 379 // we can't commute the instruction, otherwise we risk making the 380 // other fold illegal. 381 if (isUseMIInFoldList(FoldList, MI)) 382 return false; 383 384 unsigned CommuteOpNo = OpNo; 385 386 // Operand is not legal, so try to commute the instruction to 387 // see if this makes it possible to fold. 388 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 389 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 390 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 391 392 if (CanCommute) { 393 if (CommuteIdx0 == OpNo) 394 CommuteOpNo = CommuteIdx1; 395 else if (CommuteIdx1 == OpNo) 396 CommuteOpNo = CommuteIdx0; 397 } 398 399 400 // One of operands might be an Imm operand, and OpNo may refer to it after 401 // the call of commuteInstruction() below. Such situations are avoided 402 // here explicitly as OpNo must be a register operand to be a candidate 403 // for memory folding. 404 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 405 !MI->getOperand(CommuteIdx1).isReg())) 406 return false; 407 408 if (!CanCommute || 409 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 410 return false; 411 412 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 413 if ((Opc == AMDGPU::V_ADD_CO_U32_e64 || 414 Opc == AMDGPU::V_SUB_CO_U32_e64 || 415 Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME 416 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 417 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 418 419 // Verify the other operand is a VGPR, otherwise we would violate the 420 // constant bus restriction. 421 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 422 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 423 if (!OtherOp.isReg() || 424 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 425 return false; 426 427 assert(MI->getOperand(1).isDef()); 428 429 // Make sure to get the 32-bit version of the commuted opcode. 430 unsigned MaybeCommutedOpc = MI->getOpcode(); 431 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 432 433 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 434 return true; 435 } 436 437 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 438 return false; 439 } 440 441 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true); 442 return true; 443 } 444 445 // Check the case where we might introduce a second constant operand to a 446 // scalar instruction 447 if (TII->isSALU(MI->getOpcode())) { 448 const MCInstrDesc &InstDesc = MI->getDesc(); 449 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo]; 450 const SIRegisterInfo &SRI = TII->getRegisterInfo(); 451 452 // Fine if the operand can be encoded as an inline constant 453 if (OpToFold->isImm()) { 454 if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) || 455 !TII->isInlineConstant(*OpToFold, OpInfo)) { 456 // Otherwise check for another constant 457 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 458 auto &Op = MI->getOperand(i); 459 if (OpNo != i && 460 TII->isLiteralConstantLike(Op, OpInfo)) { 461 return false; 462 } 463 } 464 } 465 } 466 } 467 468 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 469 return true; 470 } 471 472 // If the use operand doesn't care about the value, this may be an operand only 473 // used for register indexing, in which case it is unsafe to fold. 474 static bool isUseSafeToFold(const SIInstrInfo *TII, 475 const MachineInstr &MI, 476 const MachineOperand &UseMO) { 477 if (UseMO.isUndef() || TII->isSDWA(MI)) 478 return false; 479 480 switch (MI.getOpcode()) { 481 case AMDGPU::V_MOV_B32_e32: 482 case AMDGPU::V_MOV_B32_e64: 483 case AMDGPU::V_MOV_B64_PSEUDO: 484 // Do not fold into an indirect mov. 485 return !MI.hasRegisterImplicitUseOperand(AMDGPU::M0); 486 } 487 488 return true; 489 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 490 } 491 492 // Find a def of the UseReg, check if it is a reg_seqence and find initializers 493 // for each subreg, tracking it to foldable inline immediate if possible. 494 // Returns true on success. 495 static bool getRegSeqInit( 496 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs, 497 Register UseReg, uint8_t OpTy, 498 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) { 499 MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); 500 if (!Def || !Def->isRegSequence()) 501 return false; 502 503 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 504 MachineOperand *Sub = &Def->getOperand(I); 505 assert (Sub->isReg()); 506 507 for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg()); 508 SubDef && Sub->isReg() && !Sub->getSubReg() && 509 TII->isFoldableCopy(*SubDef); 510 SubDef = MRI.getUniqueVRegDef(Sub->getReg())) { 511 MachineOperand *Op = &SubDef->getOperand(1); 512 if (Op->isImm()) { 513 if (TII->isInlineConstant(*Op, OpTy)) 514 Sub = Op; 515 break; 516 } 517 if (!Op->isReg()) 518 break; 519 Sub = Op; 520 } 521 522 Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm())); 523 } 524 525 return true; 526 } 527 528 static bool tryToFoldACImm(const SIInstrInfo *TII, 529 const MachineOperand &OpToFold, 530 MachineInstr *UseMI, 531 unsigned UseOpIdx, 532 SmallVectorImpl<FoldCandidate> &FoldList) { 533 const MCInstrDesc &Desc = UseMI->getDesc(); 534 const MCOperandInfo *OpInfo = Desc.OpInfo; 535 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 536 return false; 537 538 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 539 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 540 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) 541 return false; 542 543 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 544 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 545 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 546 return true; 547 } 548 549 if (!OpToFold.isReg()) 550 return false; 551 552 Register UseReg = OpToFold.getReg(); 553 if (!UseReg.isVirtual()) 554 return false; 555 556 if (llvm::any_of(FoldList, [UseMI](const FoldCandidate &FC) { 557 return FC.UseMI == UseMI; 558 })) 559 return false; 560 561 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 562 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 563 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI)) 564 return false; 565 566 int32_t Imm; 567 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 568 const MachineOperand *Op = Defs[I].first; 569 if (!Op->isImm()) 570 return false; 571 572 auto SubImm = Op->getImm(); 573 if (!I) { 574 Imm = SubImm; 575 if (!TII->isInlineConstant(*Op, OpTy) || 576 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 577 return false; 578 579 continue; 580 } 581 if (Imm != SubImm) 582 return false; // Can only fold splat constants 583 } 584 585 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 586 return true; 587 } 588 589 void SIFoldOperands::foldOperand( 590 MachineOperand &OpToFold, 591 MachineInstr *UseMI, 592 int UseOpIdx, 593 SmallVectorImpl<FoldCandidate> &FoldList, 594 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 595 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 596 597 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 598 return; 599 600 // FIXME: Fold operands with subregs. 601 if (UseOp.isReg() && OpToFold.isReg()) { 602 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 603 return; 604 } 605 606 // Special case for REG_SEQUENCE: We can't fold literals into 607 // REG_SEQUENCE instructions, so we have to fold them into the 608 // uses of REG_SEQUENCE. 609 if (UseMI->isRegSequence()) { 610 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 611 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 612 613 MachineRegisterInfo::use_nodbg_iterator Next; 614 for (MachineRegisterInfo::use_nodbg_iterator 615 RSUse = MRI->use_nodbg_begin(RegSeqDstReg), RSE = MRI->use_nodbg_end(); 616 RSUse != RSE; RSUse = Next) { 617 Next = std::next(RSUse); 618 619 MachineInstr *RSUseMI = RSUse->getParent(); 620 621 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 622 RSUse.getOperandNo(), FoldList)) 623 continue; 624 625 if (RSUse->getSubReg() != RegSeqDstSubReg) 626 continue; 627 628 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 629 CopiesToReplace); 630 } 631 632 return; 633 } 634 635 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 636 return; 637 638 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 639 // Sanity check that this is a stack access. 640 // FIXME: Should probably use stack pseudos before frame lowering. 641 642 if (TII->isMUBUF(*UseMI)) { 643 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 644 MFI->getScratchRSrcReg()) 645 return; 646 647 // Ensure this is either relative to the current frame or the current 648 // wave. 649 MachineOperand &SOff = 650 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 651 if ((!SOff.isReg() || SOff.getReg() != MFI->getStackPtrOffsetReg()) && 652 (!SOff.isImm() || SOff.getImm() != 0)) 653 return; 654 655 // If this is relative to the current wave, update it to be relative to 656 // the current frame. 657 if (SOff.isImm()) 658 SOff.ChangeToRegister(MFI->getStackPtrOffsetReg(), false); 659 } 660 661 // A frame index will resolve to a positive constant, so it should always be 662 // safe to fold the addressing mode, even pre-GFX9. 663 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 664 665 if (TII->isFLATScratch(*UseMI) && 666 AMDGPU::getNamedOperandIdx(UseMI->getOpcode(), 667 AMDGPU::OpName::vaddr) != -1) { 668 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(UseMI->getOpcode()); 669 UseMI->setDesc(TII->get(NewOpc)); 670 } 671 672 return; 673 } 674 675 bool FoldingImmLike = 676 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 677 678 if (FoldingImmLike && UseMI->isCopy()) { 679 Register DestReg = UseMI->getOperand(0).getReg(); 680 Register SrcReg = UseMI->getOperand(1).getReg(); 681 assert(SrcReg.isVirtual()); 682 683 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); 684 685 // Don't fold into a copy to a physical register with the same class. Doing 686 // so would interfere with the register coalescer's logic which would avoid 687 // redundant initalizations. 688 if (DestReg.isPhysical() && SrcRC->contains(DestReg)) 689 return; 690 691 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); 692 if (!DestReg.isPhysical()) { 693 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 694 MachineRegisterInfo::use_nodbg_iterator NextUse; 695 SmallVector<FoldCandidate, 4> CopyUses; 696 for (MachineRegisterInfo::use_nodbg_iterator Use = MRI->use_nodbg_begin(DestReg), 697 E = MRI->use_nodbg_end(); 698 Use != E; Use = NextUse) { 699 NextUse = std::next(Use); 700 // There's no point trying to fold into an implicit operand. 701 if (Use->isImplicit()) 702 continue; 703 704 FoldCandidate FC = FoldCandidate(Use->getParent(), Use.getOperandNo(), 705 &UseMI->getOperand(1)); 706 CopyUses.push_back(FC); 707 } 708 for (auto &F : CopyUses) { 709 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList, CopiesToReplace); 710 } 711 } 712 713 if (DestRC == &AMDGPU::AGPR_32RegClass && 714 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 715 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 716 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 717 CopiesToReplace.push_back(UseMI); 718 return; 719 } 720 } 721 722 // In order to fold immediates into copies, we need to change the 723 // copy to a MOV. 724 725 unsigned MovOp = TII->getMovOpcode(DestRC); 726 if (MovOp == AMDGPU::COPY) 727 return; 728 729 UseMI->setDesc(TII->get(MovOp)); 730 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 731 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 732 while (ImpOpI != ImpOpE) { 733 MachineInstr::mop_iterator Tmp = ImpOpI; 734 ImpOpI++; 735 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); 736 } 737 CopiesToReplace.push_back(UseMI); 738 } else { 739 if (UseMI->isCopy() && OpToFold.isReg() && 740 UseMI->getOperand(0).getReg().isVirtual() && 741 !UseMI->getOperand(1).getSubReg()) { 742 LLVM_DEBUG(dbgs() << "Folding " << OpToFold 743 << "\n into " << *UseMI << '\n'); 744 unsigned Size = TII->getOpSize(*UseMI, 1); 745 Register UseReg = OpToFold.getReg(); 746 UseMI->getOperand(1).setReg(UseReg); 747 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 748 UseMI->getOperand(1).setIsKill(false); 749 CopiesToReplace.push_back(UseMI); 750 OpToFold.setIsKill(false); 751 752 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 753 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 754 // its initializers right here, so we will rematerialize immediates and 755 // avoid copies via different reg classes. 756 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 757 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 758 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII, 759 *MRI)) { 760 const DebugLoc &DL = UseMI->getDebugLoc(); 761 MachineBasicBlock &MBB = *UseMI->getParent(); 762 763 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 764 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 765 UseMI->RemoveOperand(I); 766 767 MachineInstrBuilder B(*MBB.getParent(), UseMI); 768 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 769 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 770 for (unsigned I = 0; I < Size / 4; ++I) { 771 MachineOperand *Def = Defs[I].first; 772 TargetInstrInfo::RegSubRegPair CopyToVGPR; 773 if (Def->isImm() && 774 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 775 int64_t Imm = Def->getImm(); 776 777 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 778 BuildMI(MBB, UseMI, DL, 779 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addImm(Imm); 780 B.addReg(Tmp); 781 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 782 auto Src = getRegSubRegPair(*Def); 783 Def->setIsKill(false); 784 if (!SeenAGPRs.insert(Src)) { 785 // We cannot build a reg_sequence out of the same registers, they 786 // must be copied. Better do it here before copyPhysReg() created 787 // several reads to do the AGPR->VGPR->AGPR copy. 788 CopyToVGPR = Src; 789 } else { 790 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 791 Src.SubReg); 792 } 793 } else { 794 assert(Def->isReg()); 795 Def->setIsKill(false); 796 auto Src = getRegSubRegPair(*Def); 797 798 // Direct copy from SGPR to AGPR is not possible. To avoid creation 799 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 800 // create a copy here and track if we already have such a copy. 801 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 802 CopyToVGPR = Src; 803 } else { 804 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 805 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 806 B.addReg(Tmp); 807 } 808 } 809 810 if (CopyToVGPR.Reg) { 811 Register Vgpr; 812 if (VGPRCopies.count(CopyToVGPR)) { 813 Vgpr = VGPRCopies[CopyToVGPR]; 814 } else { 815 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 816 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 817 VGPRCopies[CopyToVGPR] = Vgpr; 818 } 819 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 820 BuildMI(MBB, UseMI, DL, 821 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addReg(Vgpr); 822 B.addReg(Tmp); 823 } 824 825 B.addImm(Defs[I].second); 826 } 827 LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n'); 828 return; 829 } 830 831 if (Size != 4) 832 return; 833 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 834 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 835 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 836 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 837 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 838 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32)); 839 return; 840 } 841 842 unsigned UseOpc = UseMI->getOpcode(); 843 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 844 (UseOpc == AMDGPU::V_READLANE_B32 && 845 (int)UseOpIdx == 846 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 847 // %vgpr = V_MOV_B32 imm 848 // %sgpr = V_READFIRSTLANE_B32 %vgpr 849 // => 850 // %sgpr = S_MOV_B32 imm 851 if (FoldingImmLike) { 852 if (execMayBeModifiedBeforeUse(*MRI, 853 UseMI->getOperand(UseOpIdx).getReg(), 854 *OpToFold.getParent(), 855 *UseMI)) 856 return; 857 858 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 859 860 if (OpToFold.isImm()) 861 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 862 else 863 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 864 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 865 return; 866 } 867 868 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 869 if (execMayBeModifiedBeforeUse(*MRI, 870 UseMI->getOperand(UseOpIdx).getReg(), 871 *OpToFold.getParent(), 872 *UseMI)) 873 return; 874 875 // %vgpr = COPY %sgpr0 876 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 877 // => 878 // %sgpr1 = COPY %sgpr0 879 UseMI->setDesc(TII->get(AMDGPU::COPY)); 880 UseMI->getOperand(1).setReg(OpToFold.getReg()); 881 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 882 UseMI->getOperand(1).setIsKill(false); 883 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 884 return; 885 } 886 } 887 888 const MCInstrDesc &UseDesc = UseMI->getDesc(); 889 890 // Don't fold into target independent nodes. Target independent opcodes 891 // don't have defined register classes. 892 if (UseDesc.isVariadic() || 893 UseOp.isImplicit() || 894 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 895 return; 896 } 897 898 if (!FoldingImmLike) { 899 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 900 901 // FIXME: We could try to change the instruction from 64-bit to 32-bit 902 // to enable more folding opportunites. The shrink operands pass 903 // already does this. 904 return; 905 } 906 907 908 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 909 const TargetRegisterClass *FoldRC = 910 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 911 912 // Split 64-bit constants into 32-bits for folding. 913 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 914 Register UseReg = UseOp.getReg(); 915 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 916 917 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 918 return; 919 920 APInt Imm(64, OpToFold.getImm()); 921 if (UseOp.getSubReg() == AMDGPU::sub0) { 922 Imm = Imm.getLoBits(32); 923 } else { 924 assert(UseOp.getSubReg() == AMDGPU::sub1); 925 Imm = Imm.getHiBits(32); 926 } 927 928 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 929 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 930 return; 931 } 932 933 934 935 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 936 } 937 938 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 939 uint32_t LHS, uint32_t RHS) { 940 switch (Opcode) { 941 case AMDGPU::V_AND_B32_e64: 942 case AMDGPU::V_AND_B32_e32: 943 case AMDGPU::S_AND_B32: 944 Result = LHS & RHS; 945 return true; 946 case AMDGPU::V_OR_B32_e64: 947 case AMDGPU::V_OR_B32_e32: 948 case AMDGPU::S_OR_B32: 949 Result = LHS | RHS; 950 return true; 951 case AMDGPU::V_XOR_B32_e64: 952 case AMDGPU::V_XOR_B32_e32: 953 case AMDGPU::S_XOR_B32: 954 Result = LHS ^ RHS; 955 return true; 956 case AMDGPU::S_XNOR_B32: 957 Result = ~(LHS ^ RHS); 958 return true; 959 case AMDGPU::S_NAND_B32: 960 Result = ~(LHS & RHS); 961 return true; 962 case AMDGPU::S_NOR_B32: 963 Result = ~(LHS | RHS); 964 return true; 965 case AMDGPU::S_ANDN2_B32: 966 Result = LHS & ~RHS; 967 return true; 968 case AMDGPU::S_ORN2_B32: 969 Result = LHS | ~RHS; 970 return true; 971 case AMDGPU::V_LSHL_B32_e64: 972 case AMDGPU::V_LSHL_B32_e32: 973 case AMDGPU::S_LSHL_B32: 974 // The instruction ignores the high bits for out of bounds shifts. 975 Result = LHS << (RHS & 31); 976 return true; 977 case AMDGPU::V_LSHLREV_B32_e64: 978 case AMDGPU::V_LSHLREV_B32_e32: 979 Result = RHS << (LHS & 31); 980 return true; 981 case AMDGPU::V_LSHR_B32_e64: 982 case AMDGPU::V_LSHR_B32_e32: 983 case AMDGPU::S_LSHR_B32: 984 Result = LHS >> (RHS & 31); 985 return true; 986 case AMDGPU::V_LSHRREV_B32_e64: 987 case AMDGPU::V_LSHRREV_B32_e32: 988 Result = RHS >> (LHS & 31); 989 return true; 990 case AMDGPU::V_ASHR_I32_e64: 991 case AMDGPU::V_ASHR_I32_e32: 992 case AMDGPU::S_ASHR_I32: 993 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 994 return true; 995 case AMDGPU::V_ASHRREV_I32_e64: 996 case AMDGPU::V_ASHRREV_I32_e32: 997 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 998 return true; 999 default: 1000 return false; 1001 } 1002 } 1003 1004 static unsigned getMovOpc(bool IsScalar) { 1005 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1006 } 1007 1008 /// Remove any leftover implicit operands from mutating the instruction. e.g. 1009 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 1010 /// anymore. 1011 static void stripExtraCopyOperands(MachineInstr &MI) { 1012 const MCInstrDesc &Desc = MI.getDesc(); 1013 unsigned NumOps = Desc.getNumOperands() + 1014 Desc.getNumImplicitUses() + 1015 Desc.getNumImplicitDefs(); 1016 1017 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 1018 MI.RemoveOperand(I); 1019 } 1020 1021 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 1022 MI.setDesc(NewDesc); 1023 stripExtraCopyOperands(MI); 1024 } 1025 1026 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 1027 MachineOperand &Op) { 1028 if (Op.isReg()) { 1029 // If this has a subregister, it obviously is a register source. 1030 if (Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual()) 1031 return &Op; 1032 1033 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 1034 if (Def && Def->isMoveImmediate()) { 1035 MachineOperand &ImmSrc = Def->getOperand(1); 1036 if (ImmSrc.isImm()) 1037 return &ImmSrc; 1038 } 1039 } 1040 1041 return &Op; 1042 } 1043 1044 // Try to simplify operations with a constant that may appear after instruction 1045 // selection. 1046 // TODO: See if a frame index with a fixed offset can fold. 1047 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 1048 const SIInstrInfo *TII, 1049 MachineInstr *MI, 1050 MachineOperand *ImmOp) { 1051 unsigned Opc = MI->getOpcode(); 1052 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1053 Opc == AMDGPU::S_NOT_B32) { 1054 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 1055 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1056 return true; 1057 } 1058 1059 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1060 if (Src1Idx == -1) 1061 return false; 1062 1063 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1064 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 1065 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 1066 1067 if (!Src0->isImm() && !Src1->isImm()) 1068 return false; 1069 1070 // and k0, k1 -> v_mov_b32 (k0 & k1) 1071 // or k0, k1 -> v_mov_b32 (k0 | k1) 1072 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1073 if (Src0->isImm() && Src1->isImm()) { 1074 int32_t NewImm; 1075 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1076 return false; 1077 1078 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 1079 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 1080 1081 // Be careful to change the right operand, src0 may belong to a different 1082 // instruction. 1083 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1084 MI->RemoveOperand(Src1Idx); 1085 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1086 return true; 1087 } 1088 1089 if (!MI->isCommutable()) 1090 return false; 1091 1092 if (Src0->isImm() && !Src1->isImm()) { 1093 std::swap(Src0, Src1); 1094 std::swap(Src0Idx, Src1Idx); 1095 } 1096 1097 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1098 if (Opc == AMDGPU::V_OR_B32_e64 || 1099 Opc == AMDGPU::V_OR_B32_e32 || 1100 Opc == AMDGPU::S_OR_B32) { 1101 if (Src1Val == 0) { 1102 // y = or x, 0 => y = copy x 1103 MI->RemoveOperand(Src1Idx); 1104 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1105 } else if (Src1Val == -1) { 1106 // y = or x, -1 => y = v_mov_b32 -1 1107 MI->RemoveOperand(Src1Idx); 1108 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1109 } else 1110 return false; 1111 1112 return true; 1113 } 1114 1115 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 1116 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 1117 MI->getOpcode() == AMDGPU::S_AND_B32) { 1118 if (Src1Val == 0) { 1119 // y = and x, 0 => y = v_mov_b32 0 1120 MI->RemoveOperand(Src0Idx); 1121 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1122 } else if (Src1Val == -1) { 1123 // y = and x, -1 => y = copy x 1124 MI->RemoveOperand(Src1Idx); 1125 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1126 stripExtraCopyOperands(*MI); 1127 } else 1128 return false; 1129 1130 return true; 1131 } 1132 1133 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 1134 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 1135 MI->getOpcode() == AMDGPU::S_XOR_B32) { 1136 if (Src1Val == 0) { 1137 // y = xor x, 0 => y = copy x 1138 MI->RemoveOperand(Src1Idx); 1139 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1140 return true; 1141 } 1142 } 1143 1144 return false; 1145 } 1146 1147 // Try to fold an instruction into a simpler one 1148 static bool tryFoldInst(const SIInstrInfo *TII, 1149 MachineInstr *MI) { 1150 unsigned Opc = MI->getOpcode(); 1151 1152 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 1153 Opc == AMDGPU::V_CNDMASK_B32_e64 || 1154 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 1155 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1156 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 1157 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1158 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1159 if (Src1->isIdenticalTo(*Src0) && 1160 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && 1161 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { 1162 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 1163 auto &NewDesc = 1164 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1165 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1166 if (Src2Idx != -1) 1167 MI->RemoveOperand(Src2Idx); 1168 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1169 if (Src1ModIdx != -1) 1170 MI->RemoveOperand(Src1ModIdx); 1171 if (Src0ModIdx != -1) 1172 MI->RemoveOperand(Src0ModIdx); 1173 mutateCopyOp(*MI, NewDesc); 1174 LLVM_DEBUG(dbgs() << *MI << '\n'); 1175 return true; 1176 } 1177 } 1178 1179 return false; 1180 } 1181 1182 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 1183 MachineOperand &OpToFold) const { 1184 // We need mutate the operands of new mov instructions to add implicit 1185 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1186 // this. 1187 SmallVector<MachineInstr *, 4> CopiesToReplace; 1188 SmallVector<FoldCandidate, 4> FoldList; 1189 MachineOperand &Dst = MI.getOperand(0); 1190 1191 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1192 if (FoldingImm) { 1193 unsigned NumLiteralUses = 0; 1194 MachineOperand *NonInlineUse = nullptr; 1195 int NonInlineUseOpNo = -1; 1196 1197 MachineRegisterInfo::use_nodbg_iterator NextUse; 1198 for (MachineRegisterInfo::use_nodbg_iterator 1199 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end(); 1200 Use != E; Use = NextUse) { 1201 NextUse = std::next(Use); 1202 MachineInstr *UseMI = Use->getParent(); 1203 unsigned OpNo = Use.getOperandNo(); 1204 1205 // Folding the immediate may reveal operations that can be constant 1206 // folded or replaced with a copy. This can happen for example after 1207 // frame indices are lowered to constants or from splitting 64-bit 1208 // constants. 1209 // 1210 // We may also encounter cases where one or both operands are 1211 // immediates materialized into a register, which would ordinarily not 1212 // be folded due to multiple uses or operand constraints. 1213 1214 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 1215 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 1216 1217 // Some constant folding cases change the same immediate's use to a new 1218 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 1219 // again. The same constant folded instruction could also have a second 1220 // use operand. 1221 NextUse = MRI->use_nodbg_begin(Dst.getReg()); 1222 FoldList.clear(); 1223 continue; 1224 } 1225 1226 // Try to fold any inline immediate uses, and then only fold other 1227 // constants if they have one use. 1228 // 1229 // The legality of the inline immediate must be checked based on the use 1230 // operand, not the defining instruction, because 32-bit instructions 1231 // with 32-bit inline immediate sources may be used to materialize 1232 // constants used in 16-bit operands. 1233 // 1234 // e.g. it is unsafe to fold: 1235 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1236 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1237 1238 // Folding immediates with more than one use will increase program size. 1239 // FIXME: This will also reduce register usage, which may be better 1240 // in some cases. A better heuristic is needed. 1241 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1242 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1243 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1244 foldOperand(OpToFold, UseMI, OpNo, FoldList, 1245 CopiesToReplace); 1246 } else { 1247 if (++NumLiteralUses == 1) { 1248 NonInlineUse = &*Use; 1249 NonInlineUseOpNo = OpNo; 1250 } 1251 } 1252 } 1253 1254 if (NumLiteralUses == 1) { 1255 MachineInstr *UseMI = NonInlineUse->getParent(); 1256 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1257 } 1258 } else { 1259 // Folding register. 1260 SmallVector <MachineRegisterInfo::use_nodbg_iterator, 4> UsesToProcess; 1261 for (MachineRegisterInfo::use_nodbg_iterator 1262 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end(); 1263 Use != E; ++Use) { 1264 UsesToProcess.push_back(Use); 1265 } 1266 for (auto U : UsesToProcess) { 1267 MachineInstr *UseMI = U->getParent(); 1268 1269 foldOperand(OpToFold, UseMI, U.getOperandNo(), 1270 FoldList, CopiesToReplace); 1271 } 1272 } 1273 1274 MachineFunction *MF = MI.getParent()->getParent(); 1275 // Make sure we add EXEC uses to any new v_mov instructions created. 1276 for (MachineInstr *Copy : CopiesToReplace) 1277 Copy->addImplicitDefUseOperands(*MF); 1278 1279 SmallPtrSet<MachineInstr *, 16> Folded; 1280 for (FoldCandidate &Fold : FoldList) { 1281 assert(!Fold.isReg() || Fold.OpToFold); 1282 if (Folded.count(Fold.UseMI)) 1283 continue; 1284 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { 1285 Register Reg = Fold.OpToFold->getReg(); 1286 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1287 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1288 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1289 continue; 1290 } 1291 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1292 // Clear kill flags. 1293 if (Fold.isReg()) { 1294 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1295 // FIXME: Probably shouldn't bother trying to fold if not an 1296 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1297 // copies. 1298 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1299 } 1300 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1301 << static_cast<int>(Fold.UseOpNo) << " of " 1302 << *Fold.UseMI << '\n'); 1303 if (tryFoldInst(TII, Fold.UseMI)) 1304 Folded.insert(Fold.UseMI); 1305 } else if (Fold.isCommuted()) { 1306 // Restoring instruction's original operand order if fold has failed. 1307 TII->commuteInstruction(*Fold.UseMI, false); 1308 } 1309 } 1310 } 1311 1312 // Clamp patterns are canonically selected to v_max_* instructions, so only 1313 // handle them. 1314 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1315 unsigned Op = MI.getOpcode(); 1316 switch (Op) { 1317 case AMDGPU::V_MAX_F32_e64: 1318 case AMDGPU::V_MAX_F16_e64: 1319 case AMDGPU::V_MAX_F64: 1320 case AMDGPU::V_PK_MAX_F16: { 1321 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1322 return nullptr; 1323 1324 // Make sure sources are identical. 1325 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1326 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1327 if (!Src0->isReg() || !Src1->isReg() || 1328 Src0->getReg() != Src1->getReg() || 1329 Src0->getSubReg() != Src1->getSubReg() || 1330 Src0->getSubReg() != AMDGPU::NoSubRegister) 1331 return nullptr; 1332 1333 // Can't fold up if we have modifiers. 1334 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1335 return nullptr; 1336 1337 unsigned Src0Mods 1338 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1339 unsigned Src1Mods 1340 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1341 1342 // Having a 0 op_sel_hi would require swizzling the output in the source 1343 // instruction, which we can't do. 1344 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1345 : 0u; 1346 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1347 return nullptr; 1348 return Src0; 1349 } 1350 default: 1351 return nullptr; 1352 } 1353 } 1354 1355 // We obviously have multiple uses in a clamp since the register is used twice 1356 // in the same instruction. 1357 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 1358 int Count = 0; 1359 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 1360 I != E; ++I) { 1361 if (++Count > 1) 1362 return false; 1363 } 1364 1365 return true; 1366 } 1367 1368 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1369 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1370 const MachineOperand *ClampSrc = isClamp(MI); 1371 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 1372 return false; 1373 1374 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1375 1376 // The type of clamp must be compatible. 1377 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1378 return false; 1379 1380 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1381 if (!DefClamp) 1382 return false; 1383 1384 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 1385 << '\n'); 1386 1387 // Clamp is applied after omod, so it is OK if omod is set. 1388 DefClamp->setImm(1); 1389 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1390 MI.eraseFromParent(); 1391 return true; 1392 } 1393 1394 static int getOModValue(unsigned Opc, int64_t Val) { 1395 switch (Opc) { 1396 case AMDGPU::V_MUL_F32_e64: { 1397 switch (static_cast<uint32_t>(Val)) { 1398 case 0x3f000000: // 0.5 1399 return SIOutMods::DIV2; 1400 case 0x40000000: // 2.0 1401 return SIOutMods::MUL2; 1402 case 0x40800000: // 4.0 1403 return SIOutMods::MUL4; 1404 default: 1405 return SIOutMods::NONE; 1406 } 1407 } 1408 case AMDGPU::V_MUL_F16_e64: { 1409 switch (static_cast<uint16_t>(Val)) { 1410 case 0x3800: // 0.5 1411 return SIOutMods::DIV2; 1412 case 0x4000: // 2.0 1413 return SIOutMods::MUL2; 1414 case 0x4400: // 4.0 1415 return SIOutMods::MUL4; 1416 default: 1417 return SIOutMods::NONE; 1418 } 1419 } 1420 default: 1421 llvm_unreachable("invalid mul opcode"); 1422 } 1423 } 1424 1425 // FIXME: Does this really not support denormals with f16? 1426 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1427 // handled, so will anything other than that break? 1428 std::pair<const MachineOperand *, int> 1429 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1430 unsigned Op = MI.getOpcode(); 1431 switch (Op) { 1432 case AMDGPU::V_MUL_F32_e64: 1433 case AMDGPU::V_MUL_F16_e64: { 1434 // If output denormals are enabled, omod is ignored. 1435 if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1436 (Op == AMDGPU::V_MUL_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1437 return std::make_pair(nullptr, SIOutMods::NONE); 1438 1439 const MachineOperand *RegOp = nullptr; 1440 const MachineOperand *ImmOp = nullptr; 1441 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1442 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1443 if (Src0->isImm()) { 1444 ImmOp = Src0; 1445 RegOp = Src1; 1446 } else if (Src1->isImm()) { 1447 ImmOp = Src1; 1448 RegOp = Src0; 1449 } else 1450 return std::make_pair(nullptr, SIOutMods::NONE); 1451 1452 int OMod = getOModValue(Op, ImmOp->getImm()); 1453 if (OMod == SIOutMods::NONE || 1454 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1455 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1456 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1457 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1458 return std::make_pair(nullptr, SIOutMods::NONE); 1459 1460 return std::make_pair(RegOp, OMod); 1461 } 1462 case AMDGPU::V_ADD_F32_e64: 1463 case AMDGPU::V_ADD_F16_e64: { 1464 // If output denormals are enabled, omod is ignored. 1465 if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1466 (Op == AMDGPU::V_ADD_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1467 return std::make_pair(nullptr, SIOutMods::NONE); 1468 1469 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1470 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1471 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1472 1473 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1474 Src0->getSubReg() == Src1->getSubReg() && 1475 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1476 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1477 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1478 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1479 return std::make_pair(Src0, SIOutMods::MUL2); 1480 1481 return std::make_pair(nullptr, SIOutMods::NONE); 1482 } 1483 default: 1484 return std::make_pair(nullptr, SIOutMods::NONE); 1485 } 1486 } 1487 1488 // FIXME: Does this need to check IEEE bit on function? 1489 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1490 const MachineOperand *RegOp; 1491 int OMod; 1492 std::tie(RegOp, OMod) = isOMod(MI); 1493 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1494 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1495 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1496 return false; 1497 1498 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1499 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1500 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1501 return false; 1502 1503 // Clamp is applied after omod. If the source already has clamp set, don't 1504 // fold it. 1505 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1506 return false; 1507 1508 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1509 1510 DefOMod->setImm(OMod); 1511 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1512 MI.eraseFromParent(); 1513 return true; 1514 } 1515 1516 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1517 if (skipFunction(MF.getFunction())) 1518 return false; 1519 1520 MRI = &MF.getRegInfo(); 1521 ST = &MF.getSubtarget<GCNSubtarget>(); 1522 TII = ST->getInstrInfo(); 1523 TRI = &TII->getRegisterInfo(); 1524 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1525 1526 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1527 // correctly handle signed zeros. 1528 // 1529 // FIXME: Also need to check strictfp 1530 bool IsIEEEMode = MFI->getMode().IEEE; 1531 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1532 1533 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1534 MachineBasicBlock::iterator I, Next; 1535 1536 MachineOperand *CurrentKnownM0Val = nullptr; 1537 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1538 Next = std::next(I); 1539 MachineInstr &MI = *I; 1540 1541 tryFoldInst(TII, &MI); 1542 1543 if (!TII->isFoldableCopy(MI)) { 1544 // Saw an unknown clobber of m0, so we no longer know what it is. 1545 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 1546 CurrentKnownM0Val = nullptr; 1547 1548 // TODO: Omod might be OK if there is NSZ only on the source 1549 // instruction, and not the omod multiply. 1550 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1551 !tryFoldOMod(MI)) 1552 tryFoldClamp(MI); 1553 1554 continue; 1555 } 1556 1557 // Specially track simple redefs of m0 to the same value in a block, so we 1558 // can erase the later ones. 1559 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1560 MachineOperand &NewM0Val = MI.getOperand(1); 1561 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1562 MI.eraseFromParent(); 1563 continue; 1564 } 1565 1566 // We aren't tracking other physical registers 1567 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? 1568 nullptr : &NewM0Val; 1569 continue; 1570 } 1571 1572 MachineOperand &OpToFold = MI.getOperand(1); 1573 bool FoldingImm = 1574 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1575 1576 // FIXME: We could also be folding things like TargetIndexes. 1577 if (!FoldingImm && !OpToFold.isReg()) 1578 continue; 1579 1580 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) 1581 continue; 1582 1583 // Prevent folding operands backwards in the function. For example, 1584 // the COPY opcode must not be replaced by 1 in this example: 1585 // 1586 // %3 = COPY %vgpr0; VGPR_32:%3 1587 // ... 1588 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1589 MachineOperand &Dst = MI.getOperand(0); 1590 if (Dst.isReg() && !Dst.getReg().isVirtual()) 1591 continue; 1592 1593 foldInstOperand(MI, OpToFold); 1594 } 1595 } 1596 return true; 1597 } 1598