1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 /// \file 9 //===----------------------------------------------------------------------===// 10 // 11 12 #include "AMDGPU.h" 13 #include "AMDGPUSubtarget.h" 14 #include "SIInstrInfo.h" 15 #include "SIMachineFunctionInfo.h" 16 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/CodeGen/LiveIntervals.h" 19 #include "llvm/CodeGen/MachineFunctionPass.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Target/TargetMachine.h" 25 26 #define DEBUG_TYPE "si-fold-operands" 27 using namespace llvm; 28 29 namespace { 30 31 struct FoldCandidate { 32 MachineInstr *UseMI; 33 union { 34 MachineOperand *OpToFold; 35 uint64_t ImmToFold; 36 int FrameIndexToFold; 37 }; 38 int ShrinkOpcode; 39 unsigned char UseOpNo; 40 MachineOperand::MachineOperandType Kind; 41 bool Commuted; 42 43 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 44 bool Commuted_ = false, 45 int ShrinkOp = -1) : 46 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 47 Kind(FoldOp->getType()), 48 Commuted(Commuted_) { 49 if (FoldOp->isImm()) { 50 ImmToFold = FoldOp->getImm(); 51 } else if (FoldOp->isFI()) { 52 FrameIndexToFold = FoldOp->getIndex(); 53 } else { 54 assert(FoldOp->isReg()); 55 OpToFold = FoldOp; 56 } 57 } 58 59 bool isFI() const { 60 return Kind == MachineOperand::MO_FrameIndex; 61 } 62 63 bool isImm() const { 64 return Kind == MachineOperand::MO_Immediate; 65 } 66 67 bool isReg() const { 68 return Kind == MachineOperand::MO_Register; 69 } 70 71 bool isCommuted() const { 72 return Commuted; 73 } 74 75 bool needsShrink() const { 76 return ShrinkOpcode != -1; 77 } 78 79 int getShrinkOpcode() const { 80 return ShrinkOpcode; 81 } 82 }; 83 84 class SIFoldOperands : public MachineFunctionPass { 85 public: 86 static char ID; 87 MachineRegisterInfo *MRI; 88 const SIInstrInfo *TII; 89 const SIRegisterInfo *TRI; 90 const GCNSubtarget *ST; 91 92 void foldOperand(MachineOperand &OpToFold, 93 MachineInstr *UseMI, 94 unsigned UseOpIdx, 95 SmallVectorImpl<FoldCandidate> &FoldList, 96 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 97 98 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 99 100 const MachineOperand *isClamp(const MachineInstr &MI) const; 101 bool tryFoldClamp(MachineInstr &MI); 102 103 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 104 bool tryFoldOMod(MachineInstr &MI); 105 106 public: 107 SIFoldOperands() : MachineFunctionPass(ID) { 108 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 109 } 110 111 bool runOnMachineFunction(MachineFunction &MF) override; 112 113 StringRef getPassName() const override { return "SI Fold Operands"; } 114 115 void getAnalysisUsage(AnalysisUsage &AU) const override { 116 AU.setPreservesCFG(); 117 MachineFunctionPass::getAnalysisUsage(AU); 118 } 119 }; 120 121 } // End anonymous namespace. 122 123 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 124 "SI Fold Operands", false, false) 125 126 char SIFoldOperands::ID = 0; 127 128 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 129 130 // Wrapper around isInlineConstant that understands special cases when 131 // instruction types are replaced during operand folding. 132 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 133 const MachineInstr &UseMI, 134 unsigned OpNo, 135 const MachineOperand &OpToFold) { 136 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 137 return true; 138 139 unsigned Opc = UseMI.getOpcode(); 140 switch (Opc) { 141 case AMDGPU::V_MAC_F32_e64: 142 case AMDGPU::V_MAC_F16_e64: 143 case AMDGPU::V_FMAC_F32_e64: { 144 // Special case for mac. Since this is replaced with mad when folded into 145 // src2, we need to check the legality for the final instruction. 146 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 147 if (static_cast<int>(OpNo) == Src2Idx) { 148 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; 149 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 150 151 unsigned Opc = IsFMA ? 152 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 153 const MCInstrDesc &MadDesc = TII->get(Opc); 154 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 155 } 156 return false; 157 } 158 default: 159 return false; 160 } 161 } 162 163 FunctionPass *llvm::createSIFoldOperandsPass() { 164 return new SIFoldOperands(); 165 } 166 167 static bool updateOperand(FoldCandidate &Fold, 168 const SIInstrInfo &TII, 169 const TargetRegisterInfo &TRI) { 170 MachineInstr *MI = Fold.UseMI; 171 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 172 assert(Old.isReg()); 173 174 if (Fold.isImm()) { 175 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked) { 176 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 177 // already set. 178 unsigned Opcode = MI->getOpcode(); 179 int OpNo = MI->getOperandNo(&Old); 180 int ModIdx = -1; 181 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 182 ModIdx = AMDGPU::OpName::src0_modifiers; 183 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 184 ModIdx = AMDGPU::OpName::src1_modifiers; 185 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 186 ModIdx = AMDGPU::OpName::src2_modifiers; 187 assert(ModIdx != -1); 188 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 189 MachineOperand &Mod = MI->getOperand(ModIdx); 190 unsigned Val = Mod.getImm(); 191 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) 192 return false; 193 // If upper part is all zero we do not need op_sel_hi. 194 if (!isUInt<16>(Fold.ImmToFold)) { 195 if (!(Fold.ImmToFold & 0xffff)) { 196 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 197 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 198 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 199 return true; 200 } 201 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 202 } 203 } 204 205 if (Fold.needsShrink()) { 206 MachineBasicBlock *MBB = MI->getParent(); 207 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI); 208 if (Liveness != MachineBasicBlock::LQR_Dead) 209 return false; 210 211 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 212 int Op32 = Fold.getShrinkOpcode(); 213 MachineOperand &Dst0 = MI->getOperand(0); 214 MachineOperand &Dst1 = MI->getOperand(1); 215 assert(Dst0.isDef() && Dst1.isDef()); 216 217 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 218 219 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 220 unsigned NewReg0 = MRI.createVirtualRegister(Dst0RC); 221 const TargetRegisterClass *Dst1RC = MRI.getRegClass(Dst1.getReg()); 222 unsigned NewReg1 = MRI.createVirtualRegister(Dst1RC); 223 224 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 225 226 if (HaveNonDbgCarryUse) { 227 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 228 .addReg(AMDGPU::VCC, RegState::Kill); 229 } 230 231 // Keep the old instruction around to avoid breaking iterators, but 232 // replace the outputs with dummy registers. 233 Dst0.setReg(NewReg0); 234 Dst1.setReg(NewReg1); 235 236 if (Fold.isCommuted()) 237 TII.commuteInstruction(*Inst32, false); 238 return true; 239 } 240 241 Old.ChangeToImmediate(Fold.ImmToFold); 242 return true; 243 } 244 245 assert(!Fold.needsShrink() && "not handled"); 246 247 if (Fold.isFI()) { 248 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 249 return true; 250 } 251 252 MachineOperand *New = Fold.OpToFold; 253 if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) && 254 TargetRegisterInfo::isVirtualRegister(New->getReg())) { 255 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 256 257 Old.setIsUndef(New->isUndef()); 258 return true; 259 } 260 261 // FIXME: Handle physical registers. 262 263 return false; 264 } 265 266 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 267 const MachineInstr *MI) { 268 for (auto Candidate : FoldList) { 269 if (Candidate.UseMI == MI) 270 return true; 271 } 272 return false; 273 } 274 275 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 276 MachineInstr *MI, unsigned OpNo, 277 MachineOperand *OpToFold, 278 const SIInstrInfo *TII) { 279 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 280 281 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 282 unsigned Opc = MI->getOpcode(); 283 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 284 Opc == AMDGPU::V_FMAC_F32_e64) && 285 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 286 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; 287 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 288 unsigned NewOpc = IsFMA ? 289 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 290 291 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 292 // to fold the operand. 293 MI->setDesc(TII->get(NewOpc)); 294 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 295 if (FoldAsMAD) { 296 MI->untieRegOperand(OpNo); 297 return true; 298 } 299 MI->setDesc(TII->get(Opc)); 300 } 301 302 // Special case for s_setreg_b32 303 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 304 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 305 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 306 return true; 307 } 308 309 // If we are already folding into another operand of MI, then 310 // we can't commute the instruction, otherwise we risk making the 311 // other fold illegal. 312 if (isUseMIInFoldList(FoldList, MI)) 313 return false; 314 315 unsigned CommuteOpNo = OpNo; 316 317 // Operand is not legal, so try to commute the instruction to 318 // see if this makes it possible to fold. 319 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 320 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 321 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 322 323 if (CanCommute) { 324 if (CommuteIdx0 == OpNo) 325 CommuteOpNo = CommuteIdx1; 326 else if (CommuteIdx1 == OpNo) 327 CommuteOpNo = CommuteIdx0; 328 } 329 330 331 // One of operands might be an Imm operand, and OpNo may refer to it after 332 // the call of commuteInstruction() below. Such situations are avoided 333 // here explicitly as OpNo must be a register operand to be a candidate 334 // for memory folding. 335 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 336 !MI->getOperand(CommuteIdx1).isReg())) 337 return false; 338 339 if (!CanCommute || 340 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 341 return false; 342 343 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 344 if ((Opc == AMDGPU::V_ADD_I32_e64 || 345 Opc == AMDGPU::V_SUB_I32_e64 || 346 Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME 347 OpToFold->isImm()) { 348 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 349 350 // Verify the other operand is a VGPR, otherwise we would violate the 351 // constant bus restriction. 352 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 353 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 354 if (!OtherOp.isReg() || 355 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 356 return false; 357 358 const MachineOperand &SDst = MI->getOperand(1); 359 assert(SDst.isDef()); 360 361 int Op32 = AMDGPU::getVOPe32(Opc); 362 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true, 363 Op32)); 364 return true; 365 } 366 367 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 368 return false; 369 } 370 371 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true)); 372 return true; 373 } 374 375 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 376 return true; 377 } 378 379 // If the use operand doesn't care about the value, this may be an operand only 380 // used for register indexing, in which case it is unsafe to fold. 381 static bool isUseSafeToFold(const SIInstrInfo *TII, 382 const MachineInstr &MI, 383 const MachineOperand &UseMO) { 384 return !UseMO.isUndef() && !TII->isSDWA(MI); 385 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 386 } 387 388 void SIFoldOperands::foldOperand( 389 MachineOperand &OpToFold, 390 MachineInstr *UseMI, 391 unsigned UseOpIdx, 392 SmallVectorImpl<FoldCandidate> &FoldList, 393 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 394 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 395 396 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 397 return; 398 399 // FIXME: Fold operands with subregs. 400 if (UseOp.isReg() && OpToFold.isReg()) { 401 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 402 return; 403 404 // Don't fold subregister extracts into tied operands, only if it is a full 405 // copy since a subregister use tied to a full register def doesn't really 406 // make sense. e.g. don't fold: 407 // 408 // %1 = COPY %0:sub1 409 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0> 410 // 411 // into 412 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0> 413 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister) 414 return; 415 } 416 417 // Special case for REG_SEQUENCE: We can't fold literals into 418 // REG_SEQUENCE instructions, so we have to fold them into the 419 // uses of REG_SEQUENCE. 420 if (UseMI->isRegSequence()) { 421 unsigned RegSeqDstReg = UseMI->getOperand(0).getReg(); 422 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 423 424 for (MachineRegisterInfo::use_iterator 425 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 426 RSUse != RSE; ++RSUse) { 427 428 MachineInstr *RSUseMI = RSUse->getParent(); 429 if (RSUse->getSubReg() != RegSeqDstSubReg) 430 continue; 431 432 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 433 CopiesToReplace); 434 } 435 436 return; 437 } 438 439 440 bool FoldingImm = OpToFold.isImm(); 441 442 // In order to fold immediates into copies, we need to change the 443 // copy to a MOV. 444 if (FoldingImm && UseMI->isCopy()) { 445 unsigned DestReg = UseMI->getOperand(0).getReg(); 446 const TargetRegisterClass *DestRC 447 = TargetRegisterInfo::isVirtualRegister(DestReg) ? 448 MRI->getRegClass(DestReg) : 449 TRI->getPhysRegClass(DestReg); 450 451 unsigned MovOp = TII->getMovOpcode(DestRC); 452 if (MovOp == AMDGPU::COPY) 453 return; 454 455 UseMI->setDesc(TII->get(MovOp)); 456 CopiesToReplace.push_back(UseMI); 457 } else { 458 const MCInstrDesc &UseDesc = UseMI->getDesc(); 459 460 // Don't fold into target independent nodes. Target independent opcodes 461 // don't have defined register classes. 462 if (UseDesc.isVariadic() || 463 UseOp.isImplicit() || 464 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 465 return; 466 } 467 468 if (!FoldingImm) { 469 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 470 471 // FIXME: We could try to change the instruction from 64-bit to 32-bit 472 // to enable more folding opportunites. The shrink operands pass 473 // already does this. 474 return; 475 } 476 477 478 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 479 const TargetRegisterClass *FoldRC = 480 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 481 482 483 // Split 64-bit constants into 32-bits for folding. 484 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 485 unsigned UseReg = UseOp.getReg(); 486 const TargetRegisterClass *UseRC 487 = TargetRegisterInfo::isVirtualRegister(UseReg) ? 488 MRI->getRegClass(UseReg) : 489 TRI->getPhysRegClass(UseReg); 490 491 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 492 return; 493 494 APInt Imm(64, OpToFold.getImm()); 495 if (UseOp.getSubReg() == AMDGPU::sub0) { 496 Imm = Imm.getLoBits(32); 497 } else { 498 assert(UseOp.getSubReg() == AMDGPU::sub1); 499 Imm = Imm.getHiBits(32); 500 } 501 502 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 503 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 504 return; 505 } 506 507 508 509 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 510 } 511 512 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 513 uint32_t LHS, uint32_t RHS) { 514 switch (Opcode) { 515 case AMDGPU::V_AND_B32_e64: 516 case AMDGPU::V_AND_B32_e32: 517 case AMDGPU::S_AND_B32: 518 Result = LHS & RHS; 519 return true; 520 case AMDGPU::V_OR_B32_e64: 521 case AMDGPU::V_OR_B32_e32: 522 case AMDGPU::S_OR_B32: 523 Result = LHS | RHS; 524 return true; 525 case AMDGPU::V_XOR_B32_e64: 526 case AMDGPU::V_XOR_B32_e32: 527 case AMDGPU::S_XOR_B32: 528 Result = LHS ^ RHS; 529 return true; 530 case AMDGPU::V_LSHL_B32_e64: 531 case AMDGPU::V_LSHL_B32_e32: 532 case AMDGPU::S_LSHL_B32: 533 // The instruction ignores the high bits for out of bounds shifts. 534 Result = LHS << (RHS & 31); 535 return true; 536 case AMDGPU::V_LSHLREV_B32_e64: 537 case AMDGPU::V_LSHLREV_B32_e32: 538 Result = RHS << (LHS & 31); 539 return true; 540 case AMDGPU::V_LSHR_B32_e64: 541 case AMDGPU::V_LSHR_B32_e32: 542 case AMDGPU::S_LSHR_B32: 543 Result = LHS >> (RHS & 31); 544 return true; 545 case AMDGPU::V_LSHRREV_B32_e64: 546 case AMDGPU::V_LSHRREV_B32_e32: 547 Result = RHS >> (LHS & 31); 548 return true; 549 case AMDGPU::V_ASHR_I32_e64: 550 case AMDGPU::V_ASHR_I32_e32: 551 case AMDGPU::S_ASHR_I32: 552 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 553 return true; 554 case AMDGPU::V_ASHRREV_I32_e64: 555 case AMDGPU::V_ASHRREV_I32_e32: 556 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 557 return true; 558 default: 559 return false; 560 } 561 } 562 563 static unsigned getMovOpc(bool IsScalar) { 564 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 565 } 566 567 /// Remove any leftover implicit operands from mutating the instruction. e.g. 568 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 569 /// anymore. 570 static void stripExtraCopyOperands(MachineInstr &MI) { 571 const MCInstrDesc &Desc = MI.getDesc(); 572 unsigned NumOps = Desc.getNumOperands() + 573 Desc.getNumImplicitUses() + 574 Desc.getNumImplicitDefs(); 575 576 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 577 MI.RemoveOperand(I); 578 } 579 580 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 581 MI.setDesc(NewDesc); 582 stripExtraCopyOperands(MI); 583 } 584 585 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 586 MachineOperand &Op) { 587 if (Op.isReg()) { 588 // If this has a subregister, it obviously is a register source. 589 if (Op.getSubReg() != AMDGPU::NoSubRegister || 590 !TargetRegisterInfo::isVirtualRegister(Op.getReg())) 591 return &Op; 592 593 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 594 if (Def && Def->isMoveImmediate()) { 595 MachineOperand &ImmSrc = Def->getOperand(1); 596 if (ImmSrc.isImm()) 597 return &ImmSrc; 598 } 599 } 600 601 return &Op; 602 } 603 604 // Try to simplify operations with a constant that may appear after instruction 605 // selection. 606 // TODO: See if a frame index with a fixed offset can fold. 607 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 608 const SIInstrInfo *TII, 609 MachineInstr *MI, 610 MachineOperand *ImmOp) { 611 unsigned Opc = MI->getOpcode(); 612 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 613 Opc == AMDGPU::S_NOT_B32) { 614 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 615 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 616 return true; 617 } 618 619 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 620 if (Src1Idx == -1) 621 return false; 622 623 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 624 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 625 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 626 627 if (!Src0->isImm() && !Src1->isImm()) 628 return false; 629 630 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) { 631 if (Src0->isImm() && Src0->getImm() == 0) { 632 // v_lshl_or_b32 0, X, Y -> copy Y 633 // v_lshl_or_b32 0, X, K -> v_mov_b32 K 634 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg(); 635 MI->RemoveOperand(Src1Idx); 636 MI->RemoveOperand(Src0Idx); 637 638 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32)); 639 return true; 640 } 641 } 642 643 // and k0, k1 -> v_mov_b32 (k0 & k1) 644 // or k0, k1 -> v_mov_b32 (k0 | k1) 645 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 646 if (Src0->isImm() && Src1->isImm()) { 647 int32_t NewImm; 648 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 649 return false; 650 651 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 652 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 653 654 // Be careful to change the right operand, src0 may belong to a different 655 // instruction. 656 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 657 MI->RemoveOperand(Src1Idx); 658 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 659 return true; 660 } 661 662 if (!MI->isCommutable()) 663 return false; 664 665 if (Src0->isImm() && !Src1->isImm()) { 666 std::swap(Src0, Src1); 667 std::swap(Src0Idx, Src1Idx); 668 } 669 670 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 671 if (Opc == AMDGPU::V_OR_B32_e64 || 672 Opc == AMDGPU::V_OR_B32_e32 || 673 Opc == AMDGPU::S_OR_B32) { 674 if (Src1Val == 0) { 675 // y = or x, 0 => y = copy x 676 MI->RemoveOperand(Src1Idx); 677 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 678 } else if (Src1Val == -1) { 679 // y = or x, -1 => y = v_mov_b32 -1 680 MI->RemoveOperand(Src1Idx); 681 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 682 } else 683 return false; 684 685 return true; 686 } 687 688 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 689 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 690 MI->getOpcode() == AMDGPU::S_AND_B32) { 691 if (Src1Val == 0) { 692 // y = and x, 0 => y = v_mov_b32 0 693 MI->RemoveOperand(Src0Idx); 694 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 695 } else if (Src1Val == -1) { 696 // y = and x, -1 => y = copy x 697 MI->RemoveOperand(Src1Idx); 698 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 699 stripExtraCopyOperands(*MI); 700 } else 701 return false; 702 703 return true; 704 } 705 706 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 707 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 708 MI->getOpcode() == AMDGPU::S_XOR_B32) { 709 if (Src1Val == 0) { 710 // y = xor x, 0 => y = copy x 711 MI->RemoveOperand(Src1Idx); 712 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 713 return true; 714 } 715 } 716 717 return false; 718 } 719 720 // Try to fold an instruction into a simpler one 721 static bool tryFoldInst(const SIInstrInfo *TII, 722 MachineInstr *MI) { 723 unsigned Opc = MI->getOpcode(); 724 725 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 726 Opc == AMDGPU::V_CNDMASK_B32_e64 || 727 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 728 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 729 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 730 if (Src1->isIdenticalTo(*Src0)) { 731 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 732 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 733 if (Src2Idx != -1) 734 MI->RemoveOperand(Src2Idx); 735 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 736 mutateCopyOp(*MI, TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY 737 : getMovOpc(false))); 738 LLVM_DEBUG(dbgs() << *MI << '\n'); 739 return true; 740 } 741 } 742 743 return false; 744 } 745 746 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 747 MachineOperand &OpToFold) const { 748 // We need mutate the operands of new mov instructions to add implicit 749 // uses of EXEC, but adding them invalidates the use_iterator, so defer 750 // this. 751 SmallVector<MachineInstr *, 4> CopiesToReplace; 752 SmallVector<FoldCandidate, 4> FoldList; 753 MachineOperand &Dst = MI.getOperand(0); 754 755 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 756 if (FoldingImm) { 757 unsigned NumLiteralUses = 0; 758 MachineOperand *NonInlineUse = nullptr; 759 int NonInlineUseOpNo = -1; 760 761 MachineRegisterInfo::use_iterator NextUse; 762 for (MachineRegisterInfo::use_iterator 763 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 764 Use != E; Use = NextUse) { 765 NextUse = std::next(Use); 766 MachineInstr *UseMI = Use->getParent(); 767 unsigned OpNo = Use.getOperandNo(); 768 769 // Folding the immediate may reveal operations that can be constant 770 // folded or replaced with a copy. This can happen for example after 771 // frame indices are lowered to constants or from splitting 64-bit 772 // constants. 773 // 774 // We may also encounter cases where one or both operands are 775 // immediates materialized into a register, which would ordinarily not 776 // be folded due to multiple uses or operand constraints. 777 778 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 779 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 780 781 // Some constant folding cases change the same immediate's use to a new 782 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 783 // again. The same constant folded instruction could also have a second 784 // use operand. 785 NextUse = MRI->use_begin(Dst.getReg()); 786 FoldList.clear(); 787 continue; 788 } 789 790 // Try to fold any inline immediate uses, and then only fold other 791 // constants if they have one use. 792 // 793 // The legality of the inline immediate must be checked based on the use 794 // operand, not the defining instruction, because 32-bit instructions 795 // with 32-bit inline immediate sources may be used to materialize 796 // constants used in 16-bit operands. 797 // 798 // e.g. it is unsafe to fold: 799 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 800 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 801 802 // Folding immediates with more than one use will increase program size. 803 // FIXME: This will also reduce register usage, which may be better 804 // in some cases. A better heuristic is needed. 805 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 806 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 807 } else { 808 if (++NumLiteralUses == 1) { 809 NonInlineUse = &*Use; 810 NonInlineUseOpNo = OpNo; 811 } 812 } 813 } 814 815 if (NumLiteralUses == 1) { 816 MachineInstr *UseMI = NonInlineUse->getParent(); 817 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 818 } 819 } else { 820 // Folding register. 821 for (MachineRegisterInfo::use_iterator 822 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 823 Use != E; ++Use) { 824 MachineInstr *UseMI = Use->getParent(); 825 826 foldOperand(OpToFold, UseMI, Use.getOperandNo(), 827 FoldList, CopiesToReplace); 828 } 829 } 830 831 MachineFunction *MF = MI.getParent()->getParent(); 832 // Make sure we add EXEC uses to any new v_mov instructions created. 833 for (MachineInstr *Copy : CopiesToReplace) 834 Copy->addImplicitDefUseOperands(*MF); 835 836 for (FoldCandidate &Fold : FoldList) { 837 if (updateOperand(Fold, *TII, *TRI)) { 838 // Clear kill flags. 839 if (Fold.isReg()) { 840 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 841 // FIXME: Probably shouldn't bother trying to fold if not an 842 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 843 // copies. 844 MRI->clearKillFlags(Fold.OpToFold->getReg()); 845 } 846 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 847 << static_cast<int>(Fold.UseOpNo) << " of " 848 << *Fold.UseMI << '\n'); 849 tryFoldInst(TII, Fold.UseMI); 850 } else if (Fold.isCommuted()) { 851 // Restoring instruction's original operand order if fold has failed. 852 TII->commuteInstruction(*Fold.UseMI, false); 853 } 854 } 855 } 856 857 // Clamp patterns are canonically selected to v_max_* instructions, so only 858 // handle them. 859 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 860 unsigned Op = MI.getOpcode(); 861 switch (Op) { 862 case AMDGPU::V_MAX_F32_e64: 863 case AMDGPU::V_MAX_F16_e64: 864 case AMDGPU::V_MAX_F64: 865 case AMDGPU::V_PK_MAX_F16: { 866 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 867 return nullptr; 868 869 // Make sure sources are identical. 870 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 871 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 872 if (!Src0->isReg() || !Src1->isReg() || 873 Src0->getReg() != Src1->getReg() || 874 Src0->getSubReg() != Src1->getSubReg() || 875 Src0->getSubReg() != AMDGPU::NoSubRegister) 876 return nullptr; 877 878 // Can't fold up if we have modifiers. 879 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 880 return nullptr; 881 882 unsigned Src0Mods 883 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 884 unsigned Src1Mods 885 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 886 887 // Having a 0 op_sel_hi would require swizzling the output in the source 888 // instruction, which we can't do. 889 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 : 0; 890 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 891 return nullptr; 892 return Src0; 893 } 894 default: 895 return nullptr; 896 } 897 } 898 899 // We obviously have multiple uses in a clamp since the register is used twice 900 // in the same instruction. 901 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 902 int Count = 0; 903 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 904 I != E; ++I) { 905 if (++Count > 1) 906 return false; 907 } 908 909 return true; 910 } 911 912 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 913 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 914 const MachineOperand *ClampSrc = isClamp(MI); 915 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 916 return false; 917 918 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 919 920 // The type of clamp must be compatible. 921 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 922 return false; 923 924 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 925 if (!DefClamp) 926 return false; 927 928 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 929 << '\n'); 930 931 // Clamp is applied after omod, so it is OK if omod is set. 932 DefClamp->setImm(1); 933 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 934 MI.eraseFromParent(); 935 return true; 936 } 937 938 static int getOModValue(unsigned Opc, int64_t Val) { 939 switch (Opc) { 940 case AMDGPU::V_MUL_F32_e64: { 941 switch (static_cast<uint32_t>(Val)) { 942 case 0x3f000000: // 0.5 943 return SIOutMods::DIV2; 944 case 0x40000000: // 2.0 945 return SIOutMods::MUL2; 946 case 0x40800000: // 4.0 947 return SIOutMods::MUL4; 948 default: 949 return SIOutMods::NONE; 950 } 951 } 952 case AMDGPU::V_MUL_F16_e64: { 953 switch (static_cast<uint16_t>(Val)) { 954 case 0x3800: // 0.5 955 return SIOutMods::DIV2; 956 case 0x4000: // 2.0 957 return SIOutMods::MUL2; 958 case 0x4400: // 4.0 959 return SIOutMods::MUL4; 960 default: 961 return SIOutMods::NONE; 962 } 963 } 964 default: 965 llvm_unreachable("invalid mul opcode"); 966 } 967 } 968 969 // FIXME: Does this really not support denormals with f16? 970 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 971 // handled, so will anything other than that break? 972 std::pair<const MachineOperand *, int> 973 SIFoldOperands::isOMod(const MachineInstr &MI) const { 974 unsigned Op = MI.getOpcode(); 975 switch (Op) { 976 case AMDGPU::V_MUL_F32_e64: 977 case AMDGPU::V_MUL_F16_e64: { 978 // If output denormals are enabled, omod is ignored. 979 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || 980 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) 981 return std::make_pair(nullptr, SIOutMods::NONE); 982 983 const MachineOperand *RegOp = nullptr; 984 const MachineOperand *ImmOp = nullptr; 985 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 986 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 987 if (Src0->isImm()) { 988 ImmOp = Src0; 989 RegOp = Src1; 990 } else if (Src1->isImm()) { 991 ImmOp = Src1; 992 RegOp = Src0; 993 } else 994 return std::make_pair(nullptr, SIOutMods::NONE); 995 996 int OMod = getOModValue(Op, ImmOp->getImm()); 997 if (OMod == SIOutMods::NONE || 998 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 999 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1000 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1001 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1002 return std::make_pair(nullptr, SIOutMods::NONE); 1003 1004 return std::make_pair(RegOp, OMod); 1005 } 1006 case AMDGPU::V_ADD_F32_e64: 1007 case AMDGPU::V_ADD_F16_e64: { 1008 // If output denormals are enabled, omod is ignored. 1009 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || 1010 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) 1011 return std::make_pair(nullptr, SIOutMods::NONE); 1012 1013 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1014 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1015 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1016 1017 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1018 Src0->getSubReg() == Src1->getSubReg() && 1019 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1020 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1021 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1022 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1023 return std::make_pair(Src0, SIOutMods::MUL2); 1024 1025 return std::make_pair(nullptr, SIOutMods::NONE); 1026 } 1027 default: 1028 return std::make_pair(nullptr, SIOutMods::NONE); 1029 } 1030 } 1031 1032 // FIXME: Does this need to check IEEE bit on function? 1033 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1034 const MachineOperand *RegOp; 1035 int OMod; 1036 std::tie(RegOp, OMod) = isOMod(MI); 1037 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1038 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1039 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1040 return false; 1041 1042 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1043 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1044 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1045 return false; 1046 1047 // Clamp is applied after omod. If the source already has clamp set, don't 1048 // fold it. 1049 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1050 return false; 1051 1052 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1053 1054 DefOMod->setImm(OMod); 1055 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1056 MI.eraseFromParent(); 1057 return true; 1058 } 1059 1060 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1061 if (skipFunction(MF.getFunction())) 1062 return false; 1063 1064 MRI = &MF.getRegInfo(); 1065 ST = &MF.getSubtarget<GCNSubtarget>(); 1066 TII = ST->getInstrInfo(); 1067 TRI = &TII->getRegisterInfo(); 1068 1069 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1070 1071 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1072 // correctly handle signed zeros. 1073 // 1074 bool IsIEEEMode = ST->enableIEEEBit(MF); 1075 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1076 1077 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1078 MachineBasicBlock::iterator I, Next; 1079 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1080 Next = std::next(I); 1081 MachineInstr &MI = *I; 1082 1083 tryFoldInst(TII, &MI); 1084 1085 if (!TII->isFoldableCopy(MI)) { 1086 // TODO: Omod might be OK if there is NSZ only on the source 1087 // instruction, and not the omod multiply. 1088 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1089 !tryFoldOMod(MI)) 1090 tryFoldClamp(MI); 1091 continue; 1092 } 1093 1094 MachineOperand &OpToFold = MI.getOperand(1); 1095 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 1096 1097 // FIXME: We could also be folding things like TargetIndexes. 1098 if (!FoldingImm && !OpToFold.isReg()) 1099 continue; 1100 1101 if (OpToFold.isReg() && 1102 !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg())) 1103 continue; 1104 1105 // Prevent folding operands backwards in the function. For example, 1106 // the COPY opcode must not be replaced by 1 in this example: 1107 // 1108 // %3 = COPY %vgpr0; VGPR_32:%3 1109 // ... 1110 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1111 MachineOperand &Dst = MI.getOperand(0); 1112 if (Dst.isReg() && 1113 !TargetRegisterInfo::isVirtualRegister(Dst.getReg())) 1114 continue; 1115 1116 foldInstOperand(MI, OpToFold); 1117 } 1118 } 1119 return false; 1120 } 1121