1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 /// \file 9 //===----------------------------------------------------------------------===// 10 // 11 12 #include "AMDGPU.h" 13 #include "AMDGPUSubtarget.h" 14 #include "SIInstrInfo.h" 15 #include "SIMachineFunctionInfo.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/MachineFunctionPass.h" 18 #include "llvm/CodeGen/MachineInstrBuilder.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetMachine.h" 23 24 #define DEBUG_TYPE "si-fold-operands" 25 using namespace llvm; 26 27 namespace { 28 29 struct FoldCandidate { 30 MachineInstr *UseMI; 31 union { 32 MachineOperand *OpToFold; 33 uint64_t ImmToFold; 34 int FrameIndexToFold; 35 }; 36 unsigned char UseOpNo; 37 MachineOperand::MachineOperandType Kind; 38 39 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp) : 40 UseMI(MI), OpToFold(nullptr), UseOpNo(OpNo), Kind(FoldOp->getType()) { 41 if (FoldOp->isImm()) { 42 ImmToFold = FoldOp->getImm(); 43 } else if (FoldOp->isFI()) { 44 FrameIndexToFold = FoldOp->getIndex(); 45 } else { 46 assert(FoldOp->isReg()); 47 OpToFold = FoldOp; 48 } 49 } 50 51 bool isFI() const { 52 return Kind == MachineOperand::MO_FrameIndex; 53 } 54 55 bool isImm() const { 56 return Kind == MachineOperand::MO_Immediate; 57 } 58 59 bool isReg() const { 60 return Kind == MachineOperand::MO_Register; 61 } 62 }; 63 64 class SIFoldOperands : public MachineFunctionPass { 65 public: 66 static char ID; 67 MachineRegisterInfo *MRI; 68 const SIInstrInfo *TII; 69 const SIRegisterInfo *TRI; 70 const SISubtarget *ST; 71 72 void foldOperand(MachineOperand &OpToFold, 73 MachineInstr *UseMI, 74 unsigned UseOpIdx, 75 SmallVectorImpl<FoldCandidate> &FoldList, 76 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 77 78 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 79 80 const MachineOperand *isClamp(const MachineInstr &MI) const; 81 bool tryFoldClamp(MachineInstr &MI); 82 83 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 84 bool tryFoldOMod(MachineInstr &MI); 85 86 public: 87 SIFoldOperands() : MachineFunctionPass(ID) { 88 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 89 } 90 91 bool runOnMachineFunction(MachineFunction &MF) override; 92 93 StringRef getPassName() const override { return "SI Fold Operands"; } 94 95 void getAnalysisUsage(AnalysisUsage &AU) const override { 96 AU.setPreservesCFG(); 97 MachineFunctionPass::getAnalysisUsage(AU); 98 } 99 }; 100 101 } // End anonymous namespace. 102 103 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 104 "SI Fold Operands", false, false) 105 106 char SIFoldOperands::ID = 0; 107 108 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 109 110 // Wrapper around isInlineConstant that understands special cases when 111 // instruction types are replaced during operand folding. 112 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 113 const MachineInstr &UseMI, 114 unsigned OpNo, 115 const MachineOperand &OpToFold) { 116 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 117 return true; 118 119 unsigned Opc = UseMI.getOpcode(); 120 switch (Opc) { 121 case AMDGPU::V_MAC_F32_e64: 122 case AMDGPU::V_MAC_F16_e64: { 123 // Special case for mac. Since this is replaced with mad when folded into 124 // src2, we need to check the legality for the final instruction. 125 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 126 if (static_cast<int>(OpNo) == Src2Idx) { 127 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 128 const MCInstrDesc &MadDesc 129 = TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 130 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 131 } 132 } 133 default: 134 return false; 135 } 136 } 137 138 FunctionPass *llvm::createSIFoldOperandsPass() { 139 return new SIFoldOperands(); 140 } 141 142 static bool isFoldableCopy(const MachineInstr &MI) { 143 switch (MI.getOpcode()) { 144 case AMDGPU::V_MOV_B32_e32: 145 case AMDGPU::V_MOV_B32_e64: 146 case AMDGPU::V_MOV_B64_PSEUDO: { 147 // If there are additional implicit register operands, this may be used for 148 // register indexing so the source register operand isn't simply copied. 149 unsigned NumOps = MI.getDesc().getNumOperands() + 150 MI.getDesc().getNumImplicitUses(); 151 152 return MI.getNumOperands() == NumOps; 153 } 154 case AMDGPU::S_MOV_B32: 155 case AMDGPU::S_MOV_B64: 156 case AMDGPU::COPY: 157 return true; 158 default: 159 return false; 160 } 161 } 162 163 static bool updateOperand(FoldCandidate &Fold, 164 const TargetRegisterInfo &TRI) { 165 MachineInstr *MI = Fold.UseMI; 166 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 167 assert(Old.isReg()); 168 169 if (Fold.isImm()) { 170 Old.ChangeToImmediate(Fold.ImmToFold); 171 return true; 172 } 173 174 if (Fold.isFI()) { 175 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 176 return true; 177 } 178 179 MachineOperand *New = Fold.OpToFold; 180 if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) && 181 TargetRegisterInfo::isVirtualRegister(New->getReg())) { 182 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 183 return true; 184 } 185 186 // FIXME: Handle physical registers. 187 188 return false; 189 } 190 191 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 192 const MachineInstr *MI) { 193 for (auto Candidate : FoldList) { 194 if (Candidate.UseMI == MI) 195 return true; 196 } 197 return false; 198 } 199 200 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 201 MachineInstr *MI, unsigned OpNo, 202 MachineOperand *OpToFold, 203 const SIInstrInfo *TII) { 204 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 205 206 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 207 unsigned Opc = MI->getOpcode(); 208 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64) && 209 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 210 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 211 212 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 213 // to fold the operand. 214 MI->setDesc(TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16)); 215 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 216 if (FoldAsMAD) { 217 MI->untieRegOperand(OpNo); 218 return true; 219 } 220 MI->setDesc(TII->get(Opc)); 221 } 222 223 // Special case for s_setreg_b32 224 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 225 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 226 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 227 return true; 228 } 229 230 // If we are already folding into another operand of MI, then 231 // we can't commute the instruction, otherwise we risk making the 232 // other fold illegal. 233 if (isUseMIInFoldList(FoldList, MI)) 234 return false; 235 236 // Operand is not legal, so try to commute the instruction to 237 // see if this makes it possible to fold. 238 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 239 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 240 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 241 242 if (CanCommute) { 243 if (CommuteIdx0 == OpNo) 244 OpNo = CommuteIdx1; 245 else if (CommuteIdx1 == OpNo) 246 OpNo = CommuteIdx0; 247 } 248 249 // One of operands might be an Imm operand, and OpNo may refer to it after 250 // the call of commuteInstruction() below. Such situations are avoided 251 // here explicitly as OpNo must be a register operand to be a candidate 252 // for memory folding. 253 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 254 !MI->getOperand(CommuteIdx1).isReg())) 255 return false; 256 257 if (!CanCommute || 258 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 259 return false; 260 261 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) 262 return false; 263 } 264 265 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 266 return true; 267 } 268 269 // If the use operand doesn't care about the value, this may be an operand only 270 // used for register indexing, in which case it is unsafe to fold. 271 static bool isUseSafeToFold(const MachineInstr &MI, 272 const MachineOperand &UseMO) { 273 return !UseMO.isUndef(); 274 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 275 } 276 277 void SIFoldOperands::foldOperand( 278 MachineOperand &OpToFold, 279 MachineInstr *UseMI, 280 unsigned UseOpIdx, 281 SmallVectorImpl<FoldCandidate> &FoldList, 282 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 283 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 284 285 if (!isUseSafeToFold(*UseMI, UseOp)) 286 return; 287 288 // FIXME: Fold operands with subregs. 289 if (UseOp.isReg() && OpToFold.isReg()) { 290 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 291 return; 292 293 // Don't fold subregister extracts into tied operands, only if it is a full 294 // copy since a subregister use tied to a full register def doesn't really 295 // make sense. e.g. don't fold: 296 // 297 // %vreg1 = COPY %vreg0:sub1 298 // %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg1<tied0> 299 // 300 // into 301 // %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg0:sub1<tied0> 302 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister) 303 return; 304 } 305 306 // Special case for REG_SEQUENCE: We can't fold literals into 307 // REG_SEQUENCE instructions, so we have to fold them into the 308 // uses of REG_SEQUENCE. 309 if (UseMI->isRegSequence()) { 310 unsigned RegSeqDstReg = UseMI->getOperand(0).getReg(); 311 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 312 313 for (MachineRegisterInfo::use_iterator 314 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 315 RSUse != RSE; ++RSUse) { 316 317 MachineInstr *RSUseMI = RSUse->getParent(); 318 if (RSUse->getSubReg() != RegSeqDstSubReg) 319 continue; 320 321 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 322 CopiesToReplace); 323 } 324 325 return; 326 } 327 328 329 bool FoldingImm = OpToFold.isImm(); 330 331 // In order to fold immediates into copies, we need to change the 332 // copy to a MOV. 333 if (FoldingImm && UseMI->isCopy()) { 334 unsigned DestReg = UseMI->getOperand(0).getReg(); 335 const TargetRegisterClass *DestRC 336 = TargetRegisterInfo::isVirtualRegister(DestReg) ? 337 MRI->getRegClass(DestReg) : 338 TRI->getPhysRegClass(DestReg); 339 340 unsigned MovOp = TII->getMovOpcode(DestRC); 341 if (MovOp == AMDGPU::COPY) 342 return; 343 344 UseMI->setDesc(TII->get(MovOp)); 345 CopiesToReplace.push_back(UseMI); 346 } else { 347 const MCInstrDesc &UseDesc = UseMI->getDesc(); 348 349 // Don't fold into target independent nodes. Target independent opcodes 350 // don't have defined register classes. 351 if (UseDesc.isVariadic() || 352 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 353 return; 354 } 355 356 if (!FoldingImm) { 357 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 358 359 // FIXME: We could try to change the instruction from 64-bit to 32-bit 360 // to enable more folding opportunites. The shrink operands pass 361 // already does this. 362 return; 363 } 364 365 366 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 367 const TargetRegisterClass *FoldRC = 368 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 369 370 APInt Imm(TII->operandBitWidth(FoldDesc.OpInfo[1].OperandType), 371 OpToFold.getImm()); 372 373 // Split 64-bit constants into 32-bits for folding. 374 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 375 unsigned UseReg = UseOp.getReg(); 376 const TargetRegisterClass *UseRC 377 = TargetRegisterInfo::isVirtualRegister(UseReg) ? 378 MRI->getRegClass(UseReg) : 379 TRI->getPhysRegClass(UseReg); 380 381 assert(Imm.getBitWidth() == 64); 382 383 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 384 return; 385 386 if (UseOp.getSubReg() == AMDGPU::sub0) { 387 Imm = Imm.getLoBits(32); 388 } else { 389 assert(UseOp.getSubReg() == AMDGPU::sub1); 390 Imm = Imm.getHiBits(32); 391 } 392 } 393 394 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 395 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 396 } 397 398 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 399 uint32_t LHS, uint32_t RHS) { 400 switch (Opcode) { 401 case AMDGPU::V_AND_B32_e64: 402 case AMDGPU::V_AND_B32_e32: 403 case AMDGPU::S_AND_B32: 404 Result = LHS & RHS; 405 return true; 406 case AMDGPU::V_OR_B32_e64: 407 case AMDGPU::V_OR_B32_e32: 408 case AMDGPU::S_OR_B32: 409 Result = LHS | RHS; 410 return true; 411 case AMDGPU::V_XOR_B32_e64: 412 case AMDGPU::V_XOR_B32_e32: 413 case AMDGPU::S_XOR_B32: 414 Result = LHS ^ RHS; 415 return true; 416 case AMDGPU::V_LSHL_B32_e64: 417 case AMDGPU::V_LSHL_B32_e32: 418 case AMDGPU::S_LSHL_B32: 419 // The instruction ignores the high bits for out of bounds shifts. 420 Result = LHS << (RHS & 31); 421 return true; 422 case AMDGPU::V_LSHLREV_B32_e64: 423 case AMDGPU::V_LSHLREV_B32_e32: 424 Result = RHS << (LHS & 31); 425 return true; 426 case AMDGPU::V_LSHR_B32_e64: 427 case AMDGPU::V_LSHR_B32_e32: 428 case AMDGPU::S_LSHR_B32: 429 Result = LHS >> (RHS & 31); 430 return true; 431 case AMDGPU::V_LSHRREV_B32_e64: 432 case AMDGPU::V_LSHRREV_B32_e32: 433 Result = RHS >> (LHS & 31); 434 return true; 435 case AMDGPU::V_ASHR_I32_e64: 436 case AMDGPU::V_ASHR_I32_e32: 437 case AMDGPU::S_ASHR_I32: 438 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 439 return true; 440 case AMDGPU::V_ASHRREV_I32_e64: 441 case AMDGPU::V_ASHRREV_I32_e32: 442 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 443 return true; 444 default: 445 return false; 446 } 447 } 448 449 static unsigned getMovOpc(bool IsScalar) { 450 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 451 } 452 453 /// Remove any leftover implicit operands from mutating the instruction. e.g. 454 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 455 /// anymore. 456 static void stripExtraCopyOperands(MachineInstr &MI) { 457 const MCInstrDesc &Desc = MI.getDesc(); 458 unsigned NumOps = Desc.getNumOperands() + 459 Desc.getNumImplicitUses() + 460 Desc.getNumImplicitDefs(); 461 462 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 463 MI.RemoveOperand(I); 464 } 465 466 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 467 MI.setDesc(NewDesc); 468 stripExtraCopyOperands(MI); 469 } 470 471 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 472 MachineOperand &Op) { 473 if (Op.isReg()) { 474 // If this has a subregister, it obviously is a register source. 475 if (Op.getSubReg() != AMDGPU::NoSubRegister) 476 return &Op; 477 478 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 479 if (Def->isMoveImmediate()) { 480 MachineOperand &ImmSrc = Def->getOperand(1); 481 if (ImmSrc.isImm()) 482 return &ImmSrc; 483 } 484 } 485 486 return &Op; 487 } 488 489 // Try to simplify operations with a constant that may appear after instruction 490 // selection. 491 // TODO: See if a frame index with a fixed offset can fold. 492 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 493 const SIInstrInfo *TII, 494 MachineInstr *MI, 495 MachineOperand *ImmOp) { 496 unsigned Opc = MI->getOpcode(); 497 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 498 Opc == AMDGPU::S_NOT_B32) { 499 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 500 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 501 return true; 502 } 503 504 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 505 if (Src1Idx == -1) 506 return false; 507 508 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 509 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 510 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 511 512 if (!Src0->isImm() && !Src1->isImm()) 513 return false; 514 515 // and k0, k1 -> v_mov_b32 (k0 & k1) 516 // or k0, k1 -> v_mov_b32 (k0 | k1) 517 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 518 if (Src0->isImm() && Src1->isImm()) { 519 int32_t NewImm; 520 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 521 return false; 522 523 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 524 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 525 526 // Be careful to change the right operand, src0 may belong to a different 527 // instruction. 528 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 529 MI->RemoveOperand(Src1Idx); 530 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 531 return true; 532 } 533 534 if (!MI->isCommutable()) 535 return false; 536 537 if (Src0->isImm() && !Src1->isImm()) { 538 std::swap(Src0, Src1); 539 std::swap(Src0Idx, Src1Idx); 540 } 541 542 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 543 if (Opc == AMDGPU::V_OR_B32_e64 || 544 Opc == AMDGPU::V_OR_B32_e32 || 545 Opc == AMDGPU::S_OR_B32) { 546 if (Src1Val == 0) { 547 // y = or x, 0 => y = copy x 548 MI->RemoveOperand(Src1Idx); 549 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 550 } else if (Src1Val == -1) { 551 // y = or x, -1 => y = v_mov_b32 -1 552 MI->RemoveOperand(Src1Idx); 553 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 554 } else 555 return false; 556 557 return true; 558 } 559 560 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 561 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 562 MI->getOpcode() == AMDGPU::S_AND_B32) { 563 if (Src1Val == 0) { 564 // y = and x, 0 => y = v_mov_b32 0 565 MI->RemoveOperand(Src0Idx); 566 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 567 } else if (Src1Val == -1) { 568 // y = and x, -1 => y = copy x 569 MI->RemoveOperand(Src1Idx); 570 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 571 stripExtraCopyOperands(*MI); 572 } else 573 return false; 574 575 return true; 576 } 577 578 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 579 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 580 MI->getOpcode() == AMDGPU::S_XOR_B32) { 581 if (Src1Val == 0) { 582 // y = xor x, 0 => y = copy x 583 MI->RemoveOperand(Src1Idx); 584 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 585 return true; 586 } 587 } 588 589 return false; 590 } 591 592 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 593 MachineOperand &OpToFold) const { 594 // We need mutate the operands of new mov instructions to add implicit 595 // uses of EXEC, but adding them invalidates the use_iterator, so defer 596 // this. 597 SmallVector<MachineInstr *, 4> CopiesToReplace; 598 SmallVector<FoldCandidate, 4> FoldList; 599 MachineOperand &Dst = MI.getOperand(0); 600 601 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 602 if (FoldingImm) { 603 unsigned NumLiteralUses = 0; 604 MachineOperand *NonInlineUse = nullptr; 605 int NonInlineUseOpNo = -1; 606 607 MachineRegisterInfo::use_iterator NextUse, NextInstUse; 608 for (MachineRegisterInfo::use_iterator 609 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 610 Use != E; Use = NextUse) { 611 NextUse = std::next(Use); 612 MachineInstr *UseMI = Use->getParent(); 613 unsigned OpNo = Use.getOperandNo(); 614 615 // Folding the immediate may reveal operations that can be constant 616 // folded or replaced with a copy. This can happen for example after 617 // frame indices are lowered to constants or from splitting 64-bit 618 // constants. 619 // 620 // We may also encounter cases where one or both operands are 621 // immediates materialized into a register, which would ordinarily not 622 // be folded due to multiple uses or operand constraints. 623 624 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 625 DEBUG(dbgs() << "Constant folded " << *UseMI <<'\n'); 626 627 // Some constant folding cases change the same immediate's use to a new 628 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 629 // again. The same constant folded instruction could also have a second 630 // use operand. 631 NextUse = MRI->use_begin(Dst.getReg()); 632 continue; 633 } 634 635 // Try to fold any inline immediate uses, and then only fold other 636 // constants if they have one use. 637 // 638 // The legality of the inline immediate must be checked based on the use 639 // operand, not the defining instruction, because 32-bit instructions 640 // with 32-bit inline immediate sources may be used to materialize 641 // constants used in 16-bit operands. 642 // 643 // e.g. it is unsafe to fold: 644 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 645 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 646 647 // Folding immediates with more than one use will increase program size. 648 // FIXME: This will also reduce register usage, which may be better 649 // in some cases. A better heuristic is needed. 650 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 651 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 652 } else { 653 if (++NumLiteralUses == 1) { 654 NonInlineUse = &*Use; 655 NonInlineUseOpNo = OpNo; 656 } 657 } 658 } 659 660 if (NumLiteralUses == 1) { 661 MachineInstr *UseMI = NonInlineUse->getParent(); 662 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 663 } 664 } else { 665 // Folding register. 666 for (MachineRegisterInfo::use_iterator 667 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 668 Use != E; ++Use) { 669 MachineInstr *UseMI = Use->getParent(); 670 671 foldOperand(OpToFold, UseMI, Use.getOperandNo(), 672 FoldList, CopiesToReplace); 673 } 674 } 675 676 MachineFunction *MF = MI.getParent()->getParent(); 677 // Make sure we add EXEC uses to any new v_mov instructions created. 678 for (MachineInstr *Copy : CopiesToReplace) 679 Copy->addImplicitDefUseOperands(*MF); 680 681 for (FoldCandidate &Fold : FoldList) { 682 if (updateOperand(Fold, *TRI)) { 683 // Clear kill flags. 684 if (Fold.isReg()) { 685 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 686 // FIXME: Probably shouldn't bother trying to fold if not an 687 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 688 // copies. 689 MRI->clearKillFlags(Fold.OpToFold->getReg()); 690 } 691 DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " << 692 static_cast<int>(Fold.UseOpNo) << " of " << *Fold.UseMI << '\n'); 693 } 694 } 695 } 696 697 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 698 unsigned Op = MI.getOpcode(); 699 switch (Op) { 700 case AMDGPU::V_MAX_F32_e64: 701 case AMDGPU::V_MAX_F16_e64: 702 case AMDGPU::V_MAX_F64: { 703 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 704 return nullptr; 705 706 // Make sure sources are identical. 707 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 708 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 709 if (!Src0->isReg() || Src0->getSubReg() != Src1->getSubReg() || 710 Src0->getSubReg() != AMDGPU::NoSubRegister) 711 return nullptr; 712 713 // Can't fold up if we have modifiers. 714 if (TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 715 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 716 TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 717 return nullptr; 718 return Src0; 719 } 720 default: 721 return nullptr; 722 } 723 } 724 725 // We obviously have multiple uses in a clamp since the register is used twice 726 // in the same instruction. 727 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 728 int Count = 0; 729 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 730 I != E; ++I) { 731 if (++Count > 1) 732 return false; 733 } 734 735 return true; 736 } 737 738 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 739 const MachineOperand *ClampSrc = isClamp(MI); 740 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 741 return false; 742 743 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 744 if (!TII->hasFPClamp(*Def)) 745 return false; 746 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 747 if (!DefClamp) 748 return false; 749 750 DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def << '\n'); 751 752 // Clamp is applied after omod, so it is OK if omod is set. 753 DefClamp->setImm(1); 754 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 755 MI.eraseFromParent(); 756 return true; 757 } 758 759 static int getOModValue(unsigned Opc, int64_t Val) { 760 switch (Opc) { 761 case AMDGPU::V_MUL_F32_e64: { 762 switch (static_cast<uint32_t>(Val)) { 763 case 0x3f000000: // 0.5 764 return SIOutMods::DIV2; 765 case 0x40000000: // 2.0 766 return SIOutMods::MUL2; 767 case 0x40800000: // 4.0 768 return SIOutMods::MUL4; 769 default: 770 return SIOutMods::NONE; 771 } 772 } 773 case AMDGPU::V_MUL_F16_e64: { 774 switch (static_cast<uint16_t>(Val)) { 775 case 0x3800: // 0.5 776 return SIOutMods::DIV2; 777 case 0x4000: // 2.0 778 return SIOutMods::MUL2; 779 case 0x4400: // 4.0 780 return SIOutMods::MUL4; 781 default: 782 return SIOutMods::NONE; 783 } 784 } 785 default: 786 llvm_unreachable("invalid mul opcode"); 787 } 788 } 789 790 // FIXME: Does this really not support denormals with f16? 791 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 792 // handled, so will anything other than that break? 793 std::pair<const MachineOperand *, int> 794 SIFoldOperands::isOMod(const MachineInstr &MI) const { 795 unsigned Op = MI.getOpcode(); 796 switch (Op) { 797 case AMDGPU::V_MUL_F32_e64: 798 case AMDGPU::V_MUL_F16_e64: { 799 // If output denormals are enabled, omod is ignored. 800 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || 801 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) 802 return std::make_pair(nullptr, SIOutMods::NONE); 803 804 const MachineOperand *RegOp = nullptr; 805 const MachineOperand *ImmOp = nullptr; 806 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 807 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 808 if (Src0->isImm()) { 809 ImmOp = Src0; 810 RegOp = Src1; 811 } else if (Src1->isImm()) { 812 ImmOp = Src1; 813 RegOp = Src0; 814 } else 815 return std::make_pair(nullptr, SIOutMods::NONE); 816 817 int OMod = getOModValue(Op, ImmOp->getImm()); 818 if (OMod == SIOutMods::NONE || 819 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 820 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 821 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 822 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 823 return std::make_pair(nullptr, SIOutMods::NONE); 824 825 return std::make_pair(RegOp, OMod); 826 } 827 case AMDGPU::V_ADD_F32_e64: 828 case AMDGPU::V_ADD_F16_e64: { 829 // If output denormals are enabled, omod is ignored. 830 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || 831 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) 832 return std::make_pair(nullptr, SIOutMods::NONE); 833 834 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 835 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 836 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 837 838 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 839 Src0->getSubReg() == Src1->getSubReg() && 840 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 841 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 842 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 843 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 844 return std::make_pair(Src0, SIOutMods::MUL2); 845 846 return std::make_pair(nullptr, SIOutMods::NONE); 847 } 848 default: 849 return std::make_pair(nullptr, SIOutMods::NONE); 850 } 851 } 852 853 // FIXME: Does this need to check IEEE bit on function? 854 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 855 const MachineOperand *RegOp; 856 int OMod; 857 std::tie(RegOp, OMod) = isOMod(MI); 858 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 859 RegOp->getSubReg() != AMDGPU::NoSubRegister || 860 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 861 return false; 862 863 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 864 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 865 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 866 return false; 867 868 // Clamp is applied after omod. If the source already has clamp set, don't 869 // fold it. 870 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 871 return false; 872 873 DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 874 875 DefOMod->setImm(OMod); 876 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 877 MI.eraseFromParent(); 878 return true; 879 } 880 881 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 882 if (skipFunction(*MF.getFunction())) 883 return false; 884 885 MRI = &MF.getRegInfo(); 886 ST = &MF.getSubtarget<SISubtarget>(); 887 TII = ST->getInstrInfo(); 888 TRI = &TII->getRegisterInfo(); 889 890 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 891 892 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 893 // correctly handle signed zeros. 894 // 895 // TODO: Check nsz on instructions when fast math flags are preserved to MI 896 // level. 897 bool IsIEEEMode = ST->enableIEEEBit(MF) || !MFI->hasNoSignedZerosFPMath(); 898 899 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); 900 BI != BE; ++BI) { 901 902 MachineBasicBlock &MBB = *BI; 903 MachineBasicBlock::iterator I, Next; 904 for (I = MBB.begin(); I != MBB.end(); I = Next) { 905 Next = std::next(I); 906 MachineInstr &MI = *I; 907 908 if (!isFoldableCopy(MI)) { 909 if (IsIEEEMode || !tryFoldOMod(MI)) 910 tryFoldClamp(MI); 911 continue; 912 } 913 914 MachineOperand &OpToFold = MI.getOperand(1); 915 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 916 917 // FIXME: We could also be folding things like TargetIndexes. 918 if (!FoldingImm && !OpToFold.isReg()) 919 continue; 920 921 if (OpToFold.isReg() && 922 !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg())) 923 continue; 924 925 // Prevent folding operands backwards in the function. For example, 926 // the COPY opcode must not be replaced by 1 in this example: 927 // 928 // %vreg3<def> = COPY %VGPR0; VGPR_32:%vreg3 929 // ... 930 // %VGPR0<def> = V_MOV_B32_e32 1, %EXEC<imp-use> 931 MachineOperand &Dst = MI.getOperand(0); 932 if (Dst.isReg() && 933 !TargetRegisterInfo::isVirtualRegister(Dst.getReg())) 934 continue; 935 936 foldInstOperand(MI, OpToFold); 937 } 938 } 939 return false; 940 } 941