1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "AMDGPUSubtarget.h" 13 #include "SIInstrInfo.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/CodeGen/LiveIntervals.h" 18 #include "llvm/CodeGen/MachineFunctionPass.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "si-fold-operands" 26 using namespace llvm; 27 28 namespace { 29 30 struct FoldCandidate { 31 MachineInstr *UseMI; 32 union { 33 MachineOperand *OpToFold; 34 uint64_t ImmToFold; 35 int FrameIndexToFold; 36 }; 37 int ShrinkOpcode; 38 unsigned char UseOpNo; 39 MachineOperand::MachineOperandType Kind; 40 bool Commuted; 41 42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 43 bool Commuted_ = false, 44 int ShrinkOp = -1) : 45 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 46 Kind(FoldOp->getType()), 47 Commuted(Commuted_) { 48 if (FoldOp->isImm()) { 49 ImmToFold = FoldOp->getImm(); 50 } else if (FoldOp->isFI()) { 51 FrameIndexToFold = FoldOp->getIndex(); 52 } else { 53 assert(FoldOp->isReg()); 54 OpToFold = FoldOp; 55 } 56 } 57 58 bool isFI() const { 59 return Kind == MachineOperand::MO_FrameIndex; 60 } 61 62 bool isImm() const { 63 return Kind == MachineOperand::MO_Immediate; 64 } 65 66 bool isReg() const { 67 return Kind == MachineOperand::MO_Register; 68 } 69 70 bool isCommuted() const { 71 return Commuted; 72 } 73 74 bool needsShrink() const { 75 return ShrinkOpcode != -1; 76 } 77 78 int getShrinkOpcode() const { 79 return ShrinkOpcode; 80 } 81 }; 82 83 class SIFoldOperands : public MachineFunctionPass { 84 public: 85 static char ID; 86 MachineRegisterInfo *MRI; 87 const SIInstrInfo *TII; 88 const SIRegisterInfo *TRI; 89 const GCNSubtarget *ST; 90 91 void foldOperand(MachineOperand &OpToFold, 92 MachineInstr *UseMI, 93 unsigned UseOpIdx, 94 SmallVectorImpl<FoldCandidate> &FoldList, 95 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 96 97 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 98 99 const MachineOperand *isClamp(const MachineInstr &MI) const; 100 bool tryFoldClamp(MachineInstr &MI); 101 102 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 103 bool tryFoldOMod(MachineInstr &MI); 104 105 public: 106 SIFoldOperands() : MachineFunctionPass(ID) { 107 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 108 } 109 110 bool runOnMachineFunction(MachineFunction &MF) override; 111 112 StringRef getPassName() const override { return "SI Fold Operands"; } 113 114 void getAnalysisUsage(AnalysisUsage &AU) const override { 115 AU.setPreservesCFG(); 116 MachineFunctionPass::getAnalysisUsage(AU); 117 } 118 }; 119 120 } // End anonymous namespace. 121 122 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 123 "SI Fold Operands", false, false) 124 125 char SIFoldOperands::ID = 0; 126 127 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 128 129 // Wrapper around isInlineConstant that understands special cases when 130 // instruction types are replaced during operand folding. 131 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 132 const MachineInstr &UseMI, 133 unsigned OpNo, 134 const MachineOperand &OpToFold) { 135 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 136 return true; 137 138 unsigned Opc = UseMI.getOpcode(); 139 switch (Opc) { 140 case AMDGPU::V_MAC_F32_e64: 141 case AMDGPU::V_MAC_F16_e64: 142 case AMDGPU::V_FMAC_F32_e64: { 143 // Special case for mac. Since this is replaced with mad when folded into 144 // src2, we need to check the legality for the final instruction. 145 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 146 if (static_cast<int>(OpNo) == Src2Idx) { 147 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; 148 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 149 150 unsigned Opc = IsFMA ? 151 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 152 const MCInstrDesc &MadDesc = TII->get(Opc); 153 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 154 } 155 return false; 156 } 157 default: 158 return false; 159 } 160 } 161 162 FunctionPass *llvm::createSIFoldOperandsPass() { 163 return new SIFoldOperands(); 164 } 165 166 static bool updateOperand(FoldCandidate &Fold, 167 const SIInstrInfo &TII, 168 const TargetRegisterInfo &TRI) { 169 MachineInstr *MI = Fold.UseMI; 170 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 171 assert(Old.isReg()); 172 173 if (Fold.isImm()) { 174 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked) { 175 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 176 // already set. 177 unsigned Opcode = MI->getOpcode(); 178 int OpNo = MI->getOperandNo(&Old); 179 int ModIdx = -1; 180 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 181 ModIdx = AMDGPU::OpName::src0_modifiers; 182 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 183 ModIdx = AMDGPU::OpName::src1_modifiers; 184 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 185 ModIdx = AMDGPU::OpName::src2_modifiers; 186 assert(ModIdx != -1); 187 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 188 MachineOperand &Mod = MI->getOperand(ModIdx); 189 unsigned Val = Mod.getImm(); 190 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) 191 return false; 192 // If upper part is all zero we do not need op_sel_hi. 193 if (!isUInt<16>(Fold.ImmToFold)) { 194 if (!(Fold.ImmToFold & 0xffff)) { 195 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 196 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 197 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 198 return true; 199 } 200 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 201 } 202 } 203 204 if (Fold.needsShrink()) { 205 MachineBasicBlock *MBB = MI->getParent(); 206 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI); 207 if (Liveness != MachineBasicBlock::LQR_Dead) 208 return false; 209 210 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 211 int Op32 = Fold.getShrinkOpcode(); 212 MachineOperand &Dst0 = MI->getOperand(0); 213 MachineOperand &Dst1 = MI->getOperand(1); 214 assert(Dst0.isDef() && Dst1.isDef()); 215 216 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 217 218 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 219 unsigned NewReg0 = MRI.createVirtualRegister(Dst0RC); 220 const TargetRegisterClass *Dst1RC = MRI.getRegClass(Dst1.getReg()); 221 unsigned NewReg1 = MRI.createVirtualRegister(Dst1RC); 222 223 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 224 225 if (HaveNonDbgCarryUse) { 226 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 227 .addReg(AMDGPU::VCC, RegState::Kill); 228 } 229 230 // Keep the old instruction around to avoid breaking iterators, but 231 // replace the outputs with dummy registers. 232 Dst0.setReg(NewReg0); 233 Dst1.setReg(NewReg1); 234 235 if (Fold.isCommuted()) 236 TII.commuteInstruction(*Inst32, false); 237 return true; 238 } 239 240 Old.ChangeToImmediate(Fold.ImmToFold); 241 return true; 242 } 243 244 assert(!Fold.needsShrink() && "not handled"); 245 246 if (Fold.isFI()) { 247 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 248 return true; 249 } 250 251 MachineOperand *New = Fold.OpToFold; 252 if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) && 253 TargetRegisterInfo::isVirtualRegister(New->getReg())) { 254 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 255 256 Old.setIsUndef(New->isUndef()); 257 return true; 258 } 259 260 // FIXME: Handle physical registers. 261 262 return false; 263 } 264 265 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 266 const MachineInstr *MI) { 267 for (auto Candidate : FoldList) { 268 if (Candidate.UseMI == MI) 269 return true; 270 } 271 return false; 272 } 273 274 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 275 MachineInstr *MI, unsigned OpNo, 276 MachineOperand *OpToFold, 277 const SIInstrInfo *TII) { 278 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 279 280 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 281 unsigned Opc = MI->getOpcode(); 282 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 283 Opc == AMDGPU::V_FMAC_F32_e64) && 284 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 285 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; 286 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 287 unsigned NewOpc = IsFMA ? 288 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 289 290 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 291 // to fold the operand. 292 MI->setDesc(TII->get(NewOpc)); 293 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 294 if (FoldAsMAD) { 295 MI->untieRegOperand(OpNo); 296 return true; 297 } 298 MI->setDesc(TII->get(Opc)); 299 } 300 301 // Special case for s_setreg_b32 302 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 303 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 304 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 305 return true; 306 } 307 308 // If we are already folding into another operand of MI, then 309 // we can't commute the instruction, otherwise we risk making the 310 // other fold illegal. 311 if (isUseMIInFoldList(FoldList, MI)) 312 return false; 313 314 unsigned CommuteOpNo = OpNo; 315 316 // Operand is not legal, so try to commute the instruction to 317 // see if this makes it possible to fold. 318 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 319 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 320 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 321 322 if (CanCommute) { 323 if (CommuteIdx0 == OpNo) 324 CommuteOpNo = CommuteIdx1; 325 else if (CommuteIdx1 == OpNo) 326 CommuteOpNo = CommuteIdx0; 327 } 328 329 330 // One of operands might be an Imm operand, and OpNo may refer to it after 331 // the call of commuteInstruction() below. Such situations are avoided 332 // here explicitly as OpNo must be a register operand to be a candidate 333 // for memory folding. 334 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 335 !MI->getOperand(CommuteIdx1).isReg())) 336 return false; 337 338 if (!CanCommute || 339 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 340 return false; 341 342 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 343 if ((Opc == AMDGPU::V_ADD_I32_e64 || 344 Opc == AMDGPU::V_SUB_I32_e64 || 345 Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME 346 OpToFold->isImm()) { 347 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 348 349 // Verify the other operand is a VGPR, otherwise we would violate the 350 // constant bus restriction. 351 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 352 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 353 if (!OtherOp.isReg() || 354 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 355 return false; 356 357 assert(MI->getOperand(1).isDef()); 358 359 int Op32 = AMDGPU::getVOPe32(Opc); 360 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true, 361 Op32)); 362 return true; 363 } 364 365 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 366 return false; 367 } 368 369 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true)); 370 return true; 371 } 372 373 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 374 return true; 375 } 376 377 // If the use operand doesn't care about the value, this may be an operand only 378 // used for register indexing, in which case it is unsafe to fold. 379 static bool isUseSafeToFold(const SIInstrInfo *TII, 380 const MachineInstr &MI, 381 const MachineOperand &UseMO) { 382 return !UseMO.isUndef() && !TII->isSDWA(MI); 383 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 384 } 385 386 void SIFoldOperands::foldOperand( 387 MachineOperand &OpToFold, 388 MachineInstr *UseMI, 389 unsigned UseOpIdx, 390 SmallVectorImpl<FoldCandidate> &FoldList, 391 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 392 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 393 394 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 395 return; 396 397 // FIXME: Fold operands with subregs. 398 if (UseOp.isReg() && OpToFold.isReg()) { 399 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 400 return; 401 402 // Don't fold subregister extracts into tied operands, only if it is a full 403 // copy since a subregister use tied to a full register def doesn't really 404 // make sense. e.g. don't fold: 405 // 406 // %1 = COPY %0:sub1 407 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0> 408 // 409 // into 410 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0> 411 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister) 412 return; 413 } 414 415 // Special case for REG_SEQUENCE: We can't fold literals into 416 // REG_SEQUENCE instructions, so we have to fold them into the 417 // uses of REG_SEQUENCE. 418 if (UseMI->isRegSequence()) { 419 unsigned RegSeqDstReg = UseMI->getOperand(0).getReg(); 420 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 421 422 for (MachineRegisterInfo::use_iterator 423 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 424 RSUse != RSE; ++RSUse) { 425 426 MachineInstr *RSUseMI = RSUse->getParent(); 427 if (RSUse->getSubReg() != RegSeqDstSubReg) 428 continue; 429 430 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 431 CopiesToReplace); 432 } 433 434 return; 435 } 436 437 438 bool FoldingImm = OpToFold.isImm(); 439 440 if (FoldingImm && UseMI->isCopy()) { 441 unsigned DestReg = UseMI->getOperand(0).getReg(); 442 const TargetRegisterClass *DestRC 443 = TargetRegisterInfo::isVirtualRegister(DestReg) ? 444 MRI->getRegClass(DestReg) : 445 TRI->getPhysRegClass(DestReg); 446 447 unsigned SrcReg = UseMI->getOperand(1).getReg(); 448 if (TargetRegisterInfo::isVirtualRegister(DestReg) && 449 TargetRegisterInfo::isVirtualRegister(SrcReg)) { 450 const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg); 451 if (TRI->isSGPRClass(SrcRC) && TRI->hasVGPRs(DestRC)) { 452 MachineRegisterInfo::use_iterator NextUse; 453 SmallVector<FoldCandidate, 4> CopyUses; 454 for (MachineRegisterInfo::use_iterator 455 Use = MRI->use_begin(DestReg), E = MRI->use_end(); 456 Use != E; Use = NextUse) { 457 NextUse = std::next(Use); 458 FoldCandidate FC = FoldCandidate(Use->getParent(), 459 Use.getOperandNo(), &UseMI->getOperand(1)); 460 CopyUses.push_back(FC); 461 } 462 for (auto & F : CopyUses) { 463 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, 464 FoldList, CopiesToReplace); 465 } 466 } 467 } 468 469 // In order to fold immediates into copies, we need to change the 470 // copy to a MOV. 471 472 unsigned MovOp = TII->getMovOpcode(DestRC); 473 if (MovOp == AMDGPU::COPY) 474 return; 475 476 UseMI->setDesc(TII->get(MovOp)); 477 CopiesToReplace.push_back(UseMI); 478 } else { 479 if (UseMI->isCopy() && OpToFold.isReg() && 480 TargetRegisterInfo::isVirtualRegister(UseMI->getOperand(0).getReg()) && 481 TargetRegisterInfo::isVirtualRegister(UseMI->getOperand(1).getReg()) && 482 TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 483 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()) && 484 !UseMI->getOperand(1).getSubReg()) { 485 UseMI->getOperand(1).setReg(OpToFold.getReg()); 486 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 487 UseMI->getOperand(1).setIsKill(false); 488 CopiesToReplace.push_back(UseMI); 489 OpToFold.setIsKill(false); 490 return; 491 } 492 493 const MCInstrDesc &UseDesc = UseMI->getDesc(); 494 495 // Don't fold into target independent nodes. Target independent opcodes 496 // don't have defined register classes. 497 if (UseDesc.isVariadic() || 498 UseOp.isImplicit() || 499 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 500 return; 501 } 502 503 if (!FoldingImm) { 504 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 505 506 // FIXME: We could try to change the instruction from 64-bit to 32-bit 507 // to enable more folding opportunites. The shrink operands pass 508 // already does this. 509 return; 510 } 511 512 513 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 514 const TargetRegisterClass *FoldRC = 515 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 516 517 518 // Split 64-bit constants into 32-bits for folding. 519 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 520 unsigned UseReg = UseOp.getReg(); 521 const TargetRegisterClass *UseRC 522 = TargetRegisterInfo::isVirtualRegister(UseReg) ? 523 MRI->getRegClass(UseReg) : 524 TRI->getPhysRegClass(UseReg); 525 526 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 527 return; 528 529 APInt Imm(64, OpToFold.getImm()); 530 if (UseOp.getSubReg() == AMDGPU::sub0) { 531 Imm = Imm.getLoBits(32); 532 } else { 533 assert(UseOp.getSubReg() == AMDGPU::sub1); 534 Imm = Imm.getHiBits(32); 535 } 536 537 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 538 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 539 return; 540 } 541 542 543 544 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 545 } 546 547 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 548 uint32_t LHS, uint32_t RHS) { 549 switch (Opcode) { 550 case AMDGPU::V_AND_B32_e64: 551 case AMDGPU::V_AND_B32_e32: 552 case AMDGPU::S_AND_B32: 553 Result = LHS & RHS; 554 return true; 555 case AMDGPU::V_OR_B32_e64: 556 case AMDGPU::V_OR_B32_e32: 557 case AMDGPU::S_OR_B32: 558 Result = LHS | RHS; 559 return true; 560 case AMDGPU::V_XOR_B32_e64: 561 case AMDGPU::V_XOR_B32_e32: 562 case AMDGPU::S_XOR_B32: 563 Result = LHS ^ RHS; 564 return true; 565 case AMDGPU::V_LSHL_B32_e64: 566 case AMDGPU::V_LSHL_B32_e32: 567 case AMDGPU::S_LSHL_B32: 568 // The instruction ignores the high bits for out of bounds shifts. 569 Result = LHS << (RHS & 31); 570 return true; 571 case AMDGPU::V_LSHLREV_B32_e64: 572 case AMDGPU::V_LSHLREV_B32_e32: 573 Result = RHS << (LHS & 31); 574 return true; 575 case AMDGPU::V_LSHR_B32_e64: 576 case AMDGPU::V_LSHR_B32_e32: 577 case AMDGPU::S_LSHR_B32: 578 Result = LHS >> (RHS & 31); 579 return true; 580 case AMDGPU::V_LSHRREV_B32_e64: 581 case AMDGPU::V_LSHRREV_B32_e32: 582 Result = RHS >> (LHS & 31); 583 return true; 584 case AMDGPU::V_ASHR_I32_e64: 585 case AMDGPU::V_ASHR_I32_e32: 586 case AMDGPU::S_ASHR_I32: 587 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 588 return true; 589 case AMDGPU::V_ASHRREV_I32_e64: 590 case AMDGPU::V_ASHRREV_I32_e32: 591 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 592 return true; 593 default: 594 return false; 595 } 596 } 597 598 static unsigned getMovOpc(bool IsScalar) { 599 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 600 } 601 602 /// Remove any leftover implicit operands from mutating the instruction. e.g. 603 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 604 /// anymore. 605 static void stripExtraCopyOperands(MachineInstr &MI) { 606 const MCInstrDesc &Desc = MI.getDesc(); 607 unsigned NumOps = Desc.getNumOperands() + 608 Desc.getNumImplicitUses() + 609 Desc.getNumImplicitDefs(); 610 611 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 612 MI.RemoveOperand(I); 613 } 614 615 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 616 MI.setDesc(NewDesc); 617 stripExtraCopyOperands(MI); 618 } 619 620 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 621 MachineOperand &Op) { 622 if (Op.isReg()) { 623 // If this has a subregister, it obviously is a register source. 624 if (Op.getSubReg() != AMDGPU::NoSubRegister || 625 !TargetRegisterInfo::isVirtualRegister(Op.getReg())) 626 return &Op; 627 628 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 629 if (Def && Def->isMoveImmediate()) { 630 MachineOperand &ImmSrc = Def->getOperand(1); 631 if (ImmSrc.isImm()) 632 return &ImmSrc; 633 } 634 } 635 636 return &Op; 637 } 638 639 // Try to simplify operations with a constant that may appear after instruction 640 // selection. 641 // TODO: See if a frame index with a fixed offset can fold. 642 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 643 const SIInstrInfo *TII, 644 MachineInstr *MI, 645 MachineOperand *ImmOp) { 646 unsigned Opc = MI->getOpcode(); 647 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 648 Opc == AMDGPU::S_NOT_B32) { 649 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 650 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 651 return true; 652 } 653 654 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 655 if (Src1Idx == -1) 656 return false; 657 658 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 659 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 660 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 661 662 if (!Src0->isImm() && !Src1->isImm()) 663 return false; 664 665 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) { 666 if (Src0->isImm() && Src0->getImm() == 0) { 667 // v_lshl_or_b32 0, X, Y -> copy Y 668 // v_lshl_or_b32 0, X, K -> v_mov_b32 K 669 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg(); 670 MI->RemoveOperand(Src1Idx); 671 MI->RemoveOperand(Src0Idx); 672 673 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32)); 674 return true; 675 } 676 } 677 678 // and k0, k1 -> v_mov_b32 (k0 & k1) 679 // or k0, k1 -> v_mov_b32 (k0 | k1) 680 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 681 if (Src0->isImm() && Src1->isImm()) { 682 int32_t NewImm; 683 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 684 return false; 685 686 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 687 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 688 689 // Be careful to change the right operand, src0 may belong to a different 690 // instruction. 691 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 692 MI->RemoveOperand(Src1Idx); 693 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 694 return true; 695 } 696 697 if (!MI->isCommutable()) 698 return false; 699 700 if (Src0->isImm() && !Src1->isImm()) { 701 std::swap(Src0, Src1); 702 std::swap(Src0Idx, Src1Idx); 703 } 704 705 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 706 if (Opc == AMDGPU::V_OR_B32_e64 || 707 Opc == AMDGPU::V_OR_B32_e32 || 708 Opc == AMDGPU::S_OR_B32) { 709 if (Src1Val == 0) { 710 // y = or x, 0 => y = copy x 711 MI->RemoveOperand(Src1Idx); 712 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 713 } else if (Src1Val == -1) { 714 // y = or x, -1 => y = v_mov_b32 -1 715 MI->RemoveOperand(Src1Idx); 716 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 717 } else 718 return false; 719 720 return true; 721 } 722 723 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 724 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 725 MI->getOpcode() == AMDGPU::S_AND_B32) { 726 if (Src1Val == 0) { 727 // y = and x, 0 => y = v_mov_b32 0 728 MI->RemoveOperand(Src0Idx); 729 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 730 } else if (Src1Val == -1) { 731 // y = and x, -1 => y = copy x 732 MI->RemoveOperand(Src1Idx); 733 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 734 stripExtraCopyOperands(*MI); 735 } else 736 return false; 737 738 return true; 739 } 740 741 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 742 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 743 MI->getOpcode() == AMDGPU::S_XOR_B32) { 744 if (Src1Val == 0) { 745 // y = xor x, 0 => y = copy x 746 MI->RemoveOperand(Src1Idx); 747 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 748 return true; 749 } 750 } 751 752 return false; 753 } 754 755 // Try to fold an instruction into a simpler one 756 static bool tryFoldInst(const SIInstrInfo *TII, 757 MachineInstr *MI) { 758 unsigned Opc = MI->getOpcode(); 759 760 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 761 Opc == AMDGPU::V_CNDMASK_B32_e64 || 762 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 763 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 764 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 765 if (Src1->isIdenticalTo(*Src0)) { 766 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 767 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 768 if (Src2Idx != -1) 769 MI->RemoveOperand(Src2Idx); 770 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 771 mutateCopyOp(*MI, TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY 772 : getMovOpc(false))); 773 LLVM_DEBUG(dbgs() << *MI << '\n'); 774 return true; 775 } 776 } 777 778 return false; 779 } 780 781 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 782 MachineOperand &OpToFold) const { 783 // We need mutate the operands of new mov instructions to add implicit 784 // uses of EXEC, but adding them invalidates the use_iterator, so defer 785 // this. 786 SmallVector<MachineInstr *, 4> CopiesToReplace; 787 SmallVector<FoldCandidate, 4> FoldList; 788 MachineOperand &Dst = MI.getOperand(0); 789 790 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 791 if (FoldingImm) { 792 unsigned NumLiteralUses = 0; 793 MachineOperand *NonInlineUse = nullptr; 794 int NonInlineUseOpNo = -1; 795 796 MachineRegisterInfo::use_iterator NextUse; 797 for (MachineRegisterInfo::use_iterator 798 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 799 Use != E; Use = NextUse) { 800 NextUse = std::next(Use); 801 MachineInstr *UseMI = Use->getParent(); 802 unsigned OpNo = Use.getOperandNo(); 803 804 // Folding the immediate may reveal operations that can be constant 805 // folded or replaced with a copy. This can happen for example after 806 // frame indices are lowered to constants or from splitting 64-bit 807 // constants. 808 // 809 // We may also encounter cases where one or both operands are 810 // immediates materialized into a register, which would ordinarily not 811 // be folded due to multiple uses or operand constraints. 812 813 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 814 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 815 816 // Some constant folding cases change the same immediate's use to a new 817 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 818 // again. The same constant folded instruction could also have a second 819 // use operand. 820 NextUse = MRI->use_begin(Dst.getReg()); 821 FoldList.clear(); 822 continue; 823 } 824 825 // Try to fold any inline immediate uses, and then only fold other 826 // constants if they have one use. 827 // 828 // The legality of the inline immediate must be checked based on the use 829 // operand, not the defining instruction, because 32-bit instructions 830 // with 32-bit inline immediate sources may be used to materialize 831 // constants used in 16-bit operands. 832 // 833 // e.g. it is unsafe to fold: 834 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 835 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 836 837 // Folding immediates with more than one use will increase program size. 838 // FIXME: This will also reduce register usage, which may be better 839 // in some cases. A better heuristic is needed. 840 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 841 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 842 } else { 843 if (++NumLiteralUses == 1) { 844 NonInlineUse = &*Use; 845 NonInlineUseOpNo = OpNo; 846 } 847 } 848 } 849 850 if (NumLiteralUses == 1) { 851 MachineInstr *UseMI = NonInlineUse->getParent(); 852 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 853 } 854 } else { 855 // Folding register. 856 SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess; 857 for (MachineRegisterInfo::use_iterator 858 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 859 Use != E; ++Use) { 860 UsesToProcess.push_back(Use); 861 } 862 for (auto U : UsesToProcess) { 863 MachineInstr *UseMI = U->getParent(); 864 865 foldOperand(OpToFold, UseMI, U.getOperandNo(), 866 FoldList, CopiesToReplace); 867 } 868 } 869 870 MachineFunction *MF = MI.getParent()->getParent(); 871 // Make sure we add EXEC uses to any new v_mov instructions created. 872 for (MachineInstr *Copy : CopiesToReplace) 873 Copy->addImplicitDefUseOperands(*MF); 874 875 for (FoldCandidate &Fold : FoldList) { 876 if (updateOperand(Fold, *TII, *TRI)) { 877 // Clear kill flags. 878 if (Fold.isReg()) { 879 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 880 // FIXME: Probably shouldn't bother trying to fold if not an 881 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 882 // copies. 883 MRI->clearKillFlags(Fold.OpToFold->getReg()); 884 } 885 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 886 << static_cast<int>(Fold.UseOpNo) << " of " 887 << *Fold.UseMI << '\n'); 888 tryFoldInst(TII, Fold.UseMI); 889 } else if (Fold.isCommuted()) { 890 // Restoring instruction's original operand order if fold has failed. 891 TII->commuteInstruction(*Fold.UseMI, false); 892 } 893 } 894 } 895 896 // Clamp patterns are canonically selected to v_max_* instructions, so only 897 // handle them. 898 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 899 unsigned Op = MI.getOpcode(); 900 switch (Op) { 901 case AMDGPU::V_MAX_F32_e64: 902 case AMDGPU::V_MAX_F16_e64: 903 case AMDGPU::V_MAX_F64: 904 case AMDGPU::V_PK_MAX_F16: { 905 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 906 return nullptr; 907 908 // Make sure sources are identical. 909 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 910 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 911 if (!Src0->isReg() || !Src1->isReg() || 912 Src0->getReg() != Src1->getReg() || 913 Src0->getSubReg() != Src1->getSubReg() || 914 Src0->getSubReg() != AMDGPU::NoSubRegister) 915 return nullptr; 916 917 // Can't fold up if we have modifiers. 918 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 919 return nullptr; 920 921 unsigned Src0Mods 922 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 923 unsigned Src1Mods 924 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 925 926 // Having a 0 op_sel_hi would require swizzling the output in the source 927 // instruction, which we can't do. 928 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 : 0; 929 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 930 return nullptr; 931 return Src0; 932 } 933 default: 934 return nullptr; 935 } 936 } 937 938 // We obviously have multiple uses in a clamp since the register is used twice 939 // in the same instruction. 940 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 941 int Count = 0; 942 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 943 I != E; ++I) { 944 if (++Count > 1) 945 return false; 946 } 947 948 return true; 949 } 950 951 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 952 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 953 const MachineOperand *ClampSrc = isClamp(MI); 954 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 955 return false; 956 957 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 958 959 // The type of clamp must be compatible. 960 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 961 return false; 962 963 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 964 if (!DefClamp) 965 return false; 966 967 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 968 << '\n'); 969 970 // Clamp is applied after omod, so it is OK if omod is set. 971 DefClamp->setImm(1); 972 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 973 MI.eraseFromParent(); 974 return true; 975 } 976 977 static int getOModValue(unsigned Opc, int64_t Val) { 978 switch (Opc) { 979 case AMDGPU::V_MUL_F32_e64: { 980 switch (static_cast<uint32_t>(Val)) { 981 case 0x3f000000: // 0.5 982 return SIOutMods::DIV2; 983 case 0x40000000: // 2.0 984 return SIOutMods::MUL2; 985 case 0x40800000: // 4.0 986 return SIOutMods::MUL4; 987 default: 988 return SIOutMods::NONE; 989 } 990 } 991 case AMDGPU::V_MUL_F16_e64: { 992 switch (static_cast<uint16_t>(Val)) { 993 case 0x3800: // 0.5 994 return SIOutMods::DIV2; 995 case 0x4000: // 2.0 996 return SIOutMods::MUL2; 997 case 0x4400: // 4.0 998 return SIOutMods::MUL4; 999 default: 1000 return SIOutMods::NONE; 1001 } 1002 } 1003 default: 1004 llvm_unreachable("invalid mul opcode"); 1005 } 1006 } 1007 1008 // FIXME: Does this really not support denormals with f16? 1009 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1010 // handled, so will anything other than that break? 1011 std::pair<const MachineOperand *, int> 1012 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1013 unsigned Op = MI.getOpcode(); 1014 switch (Op) { 1015 case AMDGPU::V_MUL_F32_e64: 1016 case AMDGPU::V_MUL_F16_e64: { 1017 // If output denormals are enabled, omod is ignored. 1018 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || 1019 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) 1020 return std::make_pair(nullptr, SIOutMods::NONE); 1021 1022 const MachineOperand *RegOp = nullptr; 1023 const MachineOperand *ImmOp = nullptr; 1024 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1025 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1026 if (Src0->isImm()) { 1027 ImmOp = Src0; 1028 RegOp = Src1; 1029 } else if (Src1->isImm()) { 1030 ImmOp = Src1; 1031 RegOp = Src0; 1032 } else 1033 return std::make_pair(nullptr, SIOutMods::NONE); 1034 1035 int OMod = getOModValue(Op, ImmOp->getImm()); 1036 if (OMod == SIOutMods::NONE || 1037 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1038 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1039 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1040 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1041 return std::make_pair(nullptr, SIOutMods::NONE); 1042 1043 return std::make_pair(RegOp, OMod); 1044 } 1045 case AMDGPU::V_ADD_F32_e64: 1046 case AMDGPU::V_ADD_F16_e64: { 1047 // If output denormals are enabled, omod is ignored. 1048 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || 1049 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) 1050 return std::make_pair(nullptr, SIOutMods::NONE); 1051 1052 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1053 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1054 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1055 1056 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1057 Src0->getSubReg() == Src1->getSubReg() && 1058 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1059 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1060 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1061 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1062 return std::make_pair(Src0, SIOutMods::MUL2); 1063 1064 return std::make_pair(nullptr, SIOutMods::NONE); 1065 } 1066 default: 1067 return std::make_pair(nullptr, SIOutMods::NONE); 1068 } 1069 } 1070 1071 // FIXME: Does this need to check IEEE bit on function? 1072 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1073 const MachineOperand *RegOp; 1074 int OMod; 1075 std::tie(RegOp, OMod) = isOMod(MI); 1076 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1077 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1078 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1079 return false; 1080 1081 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1082 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1083 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1084 return false; 1085 1086 // Clamp is applied after omod. If the source already has clamp set, don't 1087 // fold it. 1088 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1089 return false; 1090 1091 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1092 1093 DefOMod->setImm(OMod); 1094 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1095 MI.eraseFromParent(); 1096 return true; 1097 } 1098 1099 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1100 if (skipFunction(MF.getFunction())) 1101 return false; 1102 1103 MRI = &MF.getRegInfo(); 1104 ST = &MF.getSubtarget<GCNSubtarget>(); 1105 TII = ST->getInstrInfo(); 1106 TRI = &TII->getRegisterInfo(); 1107 1108 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1109 1110 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1111 // correctly handle signed zeros. 1112 // 1113 bool IsIEEEMode = ST->enableIEEEBit(MF); 1114 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1115 1116 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1117 MachineBasicBlock::iterator I, Next; 1118 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1119 Next = std::next(I); 1120 MachineInstr &MI = *I; 1121 1122 tryFoldInst(TII, &MI); 1123 1124 if (!TII->isFoldableCopy(MI)) { 1125 // TODO: Omod might be OK if there is NSZ only on the source 1126 // instruction, and not the omod multiply. 1127 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1128 !tryFoldOMod(MI)) 1129 tryFoldClamp(MI); 1130 continue; 1131 } 1132 1133 MachineOperand &OpToFold = MI.getOperand(1); 1134 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 1135 1136 // FIXME: We could also be folding things like TargetIndexes. 1137 if (!FoldingImm && !OpToFold.isReg()) 1138 continue; 1139 1140 if (OpToFold.isReg() && 1141 !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg())) 1142 continue; 1143 1144 // Prevent folding operands backwards in the function. For example, 1145 // the COPY opcode must not be replaced by 1 in this example: 1146 // 1147 // %3 = COPY %vgpr0; VGPR_32:%3 1148 // ... 1149 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1150 MachineOperand &Dst = MI.getOperand(0); 1151 if (Dst.isReg() && 1152 !TargetRegisterInfo::isVirtualRegister(Dst.getReg())) 1153 continue; 1154 1155 foldInstOperand(MI, OpToFold); 1156 } 1157 } 1158 return false; 1159 } 1160