1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 /// \file 9 //===----------------------------------------------------------------------===// 10 // 11 12 #include "AMDGPU.h" 13 #include "AMDGPUSubtarget.h" 14 #include "SIInstrInfo.h" 15 #include "SIMachineFunctionInfo.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/MachineFunctionPass.h" 18 #include "llvm/CodeGen/MachineInstrBuilder.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetMachine.h" 23 24 #define DEBUG_TYPE "si-fold-operands" 25 using namespace llvm; 26 27 namespace { 28 29 struct FoldCandidate { 30 MachineInstr *UseMI; 31 union { 32 MachineOperand *OpToFold; 33 uint64_t ImmToFold; 34 int FrameIndexToFold; 35 }; 36 unsigned char UseOpNo; 37 MachineOperand::MachineOperandType Kind; 38 39 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp) : 40 UseMI(MI), OpToFold(nullptr), UseOpNo(OpNo), Kind(FoldOp->getType()) { 41 if (FoldOp->isImm()) { 42 ImmToFold = FoldOp->getImm(); 43 } else if (FoldOp->isFI()) { 44 FrameIndexToFold = FoldOp->getIndex(); 45 } else { 46 assert(FoldOp->isReg()); 47 OpToFold = FoldOp; 48 } 49 } 50 51 bool isFI() const { 52 return Kind == MachineOperand::MO_FrameIndex; 53 } 54 55 bool isImm() const { 56 return Kind == MachineOperand::MO_Immediate; 57 } 58 59 bool isReg() const { 60 return Kind == MachineOperand::MO_Register; 61 } 62 }; 63 64 class SIFoldOperands : public MachineFunctionPass { 65 public: 66 static char ID; 67 MachineRegisterInfo *MRI; 68 const SIInstrInfo *TII; 69 const SIRegisterInfo *TRI; 70 const SISubtarget *ST; 71 72 void foldOperand(MachineOperand &OpToFold, 73 MachineInstr *UseMI, 74 unsigned UseOpIdx, 75 SmallVectorImpl<FoldCandidate> &FoldList, 76 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 77 78 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 79 80 const MachineOperand *isClamp(const MachineInstr &MI) const; 81 bool tryFoldClamp(MachineInstr &MI); 82 83 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 84 bool tryFoldOMod(MachineInstr &MI); 85 86 public: 87 SIFoldOperands() : MachineFunctionPass(ID) { 88 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 89 } 90 91 bool runOnMachineFunction(MachineFunction &MF) override; 92 93 StringRef getPassName() const override { return "SI Fold Operands"; } 94 95 void getAnalysisUsage(AnalysisUsage &AU) const override { 96 AU.setPreservesCFG(); 97 MachineFunctionPass::getAnalysisUsage(AU); 98 } 99 }; 100 101 } // End anonymous namespace. 102 103 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 104 "SI Fold Operands", false, false) 105 106 char SIFoldOperands::ID = 0; 107 108 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 109 110 // Wrapper around isInlineConstant that understands special cases when 111 // instruction types are replaced during operand folding. 112 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 113 const MachineInstr &UseMI, 114 unsigned OpNo, 115 const MachineOperand &OpToFold) { 116 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 117 return true; 118 119 unsigned Opc = UseMI.getOpcode(); 120 switch (Opc) { 121 case AMDGPU::V_MAC_F32_e64: 122 case AMDGPU::V_MAC_F16_e64: { 123 // Special case for mac. Since this is replaced with mad when folded into 124 // src2, we need to check the legality for the final instruction. 125 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 126 if (static_cast<int>(OpNo) == Src2Idx) { 127 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 128 const MCInstrDesc &MadDesc 129 = TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 130 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 131 } 132 } 133 default: 134 return false; 135 } 136 } 137 138 FunctionPass *llvm::createSIFoldOperandsPass() { 139 return new SIFoldOperands(); 140 } 141 142 static bool updateOperand(FoldCandidate &Fold, 143 const TargetRegisterInfo &TRI) { 144 MachineInstr *MI = Fold.UseMI; 145 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 146 assert(Old.isReg()); 147 148 if (Fold.isImm()) { 149 Old.ChangeToImmediate(Fold.ImmToFold); 150 return true; 151 } 152 153 if (Fold.isFI()) { 154 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 155 return true; 156 } 157 158 MachineOperand *New = Fold.OpToFold; 159 if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) && 160 TargetRegisterInfo::isVirtualRegister(New->getReg())) { 161 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 162 return true; 163 } 164 165 // FIXME: Handle physical registers. 166 167 return false; 168 } 169 170 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 171 const MachineInstr *MI) { 172 for (auto Candidate : FoldList) { 173 if (Candidate.UseMI == MI) 174 return true; 175 } 176 return false; 177 } 178 179 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 180 MachineInstr *MI, unsigned OpNo, 181 MachineOperand *OpToFold, 182 const SIInstrInfo *TII) { 183 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 184 185 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 186 unsigned Opc = MI->getOpcode(); 187 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64) && 188 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 189 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 190 191 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 192 // to fold the operand. 193 MI->setDesc(TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16)); 194 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 195 if (FoldAsMAD) { 196 MI->untieRegOperand(OpNo); 197 return true; 198 } 199 MI->setDesc(TII->get(Opc)); 200 } 201 202 // Special case for s_setreg_b32 203 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 204 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 205 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 206 return true; 207 } 208 209 // If we are already folding into another operand of MI, then 210 // we can't commute the instruction, otherwise we risk making the 211 // other fold illegal. 212 if (isUseMIInFoldList(FoldList, MI)) 213 return false; 214 215 // Operand is not legal, so try to commute the instruction to 216 // see if this makes it possible to fold. 217 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 218 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 219 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 220 221 if (CanCommute) { 222 if (CommuteIdx0 == OpNo) 223 OpNo = CommuteIdx1; 224 else if (CommuteIdx1 == OpNo) 225 OpNo = CommuteIdx0; 226 } 227 228 // One of operands might be an Imm operand, and OpNo may refer to it after 229 // the call of commuteInstruction() below. Such situations are avoided 230 // here explicitly as OpNo must be a register operand to be a candidate 231 // for memory folding. 232 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 233 !MI->getOperand(CommuteIdx1).isReg())) 234 return false; 235 236 if (!CanCommute || 237 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 238 return false; 239 240 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) 241 return false; 242 } 243 244 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 245 return true; 246 } 247 248 // If the use operand doesn't care about the value, this may be an operand only 249 // used for register indexing, in which case it is unsafe to fold. 250 static bool isUseSafeToFold(const MachineInstr &MI, 251 const MachineOperand &UseMO) { 252 return !UseMO.isUndef(); 253 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 254 } 255 256 void SIFoldOperands::foldOperand( 257 MachineOperand &OpToFold, 258 MachineInstr *UseMI, 259 unsigned UseOpIdx, 260 SmallVectorImpl<FoldCandidate> &FoldList, 261 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 262 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 263 264 if (!isUseSafeToFold(*UseMI, UseOp)) 265 return; 266 267 // FIXME: Fold operands with subregs. 268 if (UseOp.isReg() && OpToFold.isReg()) { 269 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 270 return; 271 272 // Don't fold subregister extracts into tied operands, only if it is a full 273 // copy since a subregister use tied to a full register def doesn't really 274 // make sense. e.g. don't fold: 275 // 276 // %vreg1 = COPY %vreg0:sub1 277 // %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg1<tied0> 278 // 279 // into 280 // %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg0:sub1<tied0> 281 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister) 282 return; 283 } 284 285 // Special case for REG_SEQUENCE: We can't fold literals into 286 // REG_SEQUENCE instructions, so we have to fold them into the 287 // uses of REG_SEQUENCE. 288 if (UseMI->isRegSequence()) { 289 unsigned RegSeqDstReg = UseMI->getOperand(0).getReg(); 290 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 291 292 for (MachineRegisterInfo::use_iterator 293 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 294 RSUse != RSE; ++RSUse) { 295 296 MachineInstr *RSUseMI = RSUse->getParent(); 297 if (RSUse->getSubReg() != RegSeqDstSubReg) 298 continue; 299 300 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 301 CopiesToReplace); 302 } 303 304 return; 305 } 306 307 308 bool FoldingImm = OpToFold.isImm(); 309 310 // In order to fold immediates into copies, we need to change the 311 // copy to a MOV. 312 if (FoldingImm && UseMI->isCopy()) { 313 unsigned DestReg = UseMI->getOperand(0).getReg(); 314 const TargetRegisterClass *DestRC 315 = TargetRegisterInfo::isVirtualRegister(DestReg) ? 316 MRI->getRegClass(DestReg) : 317 TRI->getPhysRegClass(DestReg); 318 319 unsigned MovOp = TII->getMovOpcode(DestRC); 320 if (MovOp == AMDGPU::COPY) 321 return; 322 323 UseMI->setDesc(TII->get(MovOp)); 324 CopiesToReplace.push_back(UseMI); 325 } else { 326 const MCInstrDesc &UseDesc = UseMI->getDesc(); 327 328 // Don't fold into target independent nodes. Target independent opcodes 329 // don't have defined register classes. 330 if (UseDesc.isVariadic() || 331 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 332 return; 333 } 334 335 if (!FoldingImm) { 336 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 337 338 // FIXME: We could try to change the instruction from 64-bit to 32-bit 339 // to enable more folding opportunites. The shrink operands pass 340 // already does this. 341 return; 342 } 343 344 345 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 346 const TargetRegisterClass *FoldRC = 347 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 348 349 350 // Split 64-bit constants into 32-bits for folding. 351 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 352 unsigned UseReg = UseOp.getReg(); 353 const TargetRegisterClass *UseRC 354 = TargetRegisterInfo::isVirtualRegister(UseReg) ? 355 MRI->getRegClass(UseReg) : 356 TRI->getPhysRegClass(UseReg); 357 358 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 359 return; 360 361 APInt Imm(64, OpToFold.getImm()); 362 if (UseOp.getSubReg() == AMDGPU::sub0) { 363 Imm = Imm.getLoBits(32); 364 } else { 365 assert(UseOp.getSubReg() == AMDGPU::sub1); 366 Imm = Imm.getHiBits(32); 367 } 368 369 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 370 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 371 return; 372 } 373 374 375 376 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 377 } 378 379 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 380 uint32_t LHS, uint32_t RHS) { 381 switch (Opcode) { 382 case AMDGPU::V_AND_B32_e64: 383 case AMDGPU::V_AND_B32_e32: 384 case AMDGPU::S_AND_B32: 385 Result = LHS & RHS; 386 return true; 387 case AMDGPU::V_OR_B32_e64: 388 case AMDGPU::V_OR_B32_e32: 389 case AMDGPU::S_OR_B32: 390 Result = LHS | RHS; 391 return true; 392 case AMDGPU::V_XOR_B32_e64: 393 case AMDGPU::V_XOR_B32_e32: 394 case AMDGPU::S_XOR_B32: 395 Result = LHS ^ RHS; 396 return true; 397 case AMDGPU::V_LSHL_B32_e64: 398 case AMDGPU::V_LSHL_B32_e32: 399 case AMDGPU::S_LSHL_B32: 400 // The instruction ignores the high bits for out of bounds shifts. 401 Result = LHS << (RHS & 31); 402 return true; 403 case AMDGPU::V_LSHLREV_B32_e64: 404 case AMDGPU::V_LSHLREV_B32_e32: 405 Result = RHS << (LHS & 31); 406 return true; 407 case AMDGPU::V_LSHR_B32_e64: 408 case AMDGPU::V_LSHR_B32_e32: 409 case AMDGPU::S_LSHR_B32: 410 Result = LHS >> (RHS & 31); 411 return true; 412 case AMDGPU::V_LSHRREV_B32_e64: 413 case AMDGPU::V_LSHRREV_B32_e32: 414 Result = RHS >> (LHS & 31); 415 return true; 416 case AMDGPU::V_ASHR_I32_e64: 417 case AMDGPU::V_ASHR_I32_e32: 418 case AMDGPU::S_ASHR_I32: 419 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 420 return true; 421 case AMDGPU::V_ASHRREV_I32_e64: 422 case AMDGPU::V_ASHRREV_I32_e32: 423 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 424 return true; 425 default: 426 return false; 427 } 428 } 429 430 static unsigned getMovOpc(bool IsScalar) { 431 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 432 } 433 434 /// Remove any leftover implicit operands from mutating the instruction. e.g. 435 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 436 /// anymore. 437 static void stripExtraCopyOperands(MachineInstr &MI) { 438 const MCInstrDesc &Desc = MI.getDesc(); 439 unsigned NumOps = Desc.getNumOperands() + 440 Desc.getNumImplicitUses() + 441 Desc.getNumImplicitDefs(); 442 443 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 444 MI.RemoveOperand(I); 445 } 446 447 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 448 MI.setDesc(NewDesc); 449 stripExtraCopyOperands(MI); 450 } 451 452 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 453 MachineOperand &Op) { 454 if (Op.isReg()) { 455 // If this has a subregister, it obviously is a register source. 456 if (Op.getSubReg() != AMDGPU::NoSubRegister) 457 return &Op; 458 459 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 460 if (Def->isMoveImmediate()) { 461 MachineOperand &ImmSrc = Def->getOperand(1); 462 if (ImmSrc.isImm()) 463 return &ImmSrc; 464 } 465 } 466 467 return &Op; 468 } 469 470 // Try to simplify operations with a constant that may appear after instruction 471 // selection. 472 // TODO: See if a frame index with a fixed offset can fold. 473 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 474 const SIInstrInfo *TII, 475 MachineInstr *MI, 476 MachineOperand *ImmOp) { 477 unsigned Opc = MI->getOpcode(); 478 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 479 Opc == AMDGPU::S_NOT_B32) { 480 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 481 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 482 return true; 483 } 484 485 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 486 if (Src1Idx == -1) 487 return false; 488 489 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 490 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 491 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 492 493 if (!Src0->isImm() && !Src1->isImm()) 494 return false; 495 496 // and k0, k1 -> v_mov_b32 (k0 & k1) 497 // or k0, k1 -> v_mov_b32 (k0 | k1) 498 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 499 if (Src0->isImm() && Src1->isImm()) { 500 int32_t NewImm; 501 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 502 return false; 503 504 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 505 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 506 507 // Be careful to change the right operand, src0 may belong to a different 508 // instruction. 509 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 510 MI->RemoveOperand(Src1Idx); 511 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 512 return true; 513 } 514 515 if (!MI->isCommutable()) 516 return false; 517 518 if (Src0->isImm() && !Src1->isImm()) { 519 std::swap(Src0, Src1); 520 std::swap(Src0Idx, Src1Idx); 521 } 522 523 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 524 if (Opc == AMDGPU::V_OR_B32_e64 || 525 Opc == AMDGPU::V_OR_B32_e32 || 526 Opc == AMDGPU::S_OR_B32) { 527 if (Src1Val == 0) { 528 // y = or x, 0 => y = copy x 529 MI->RemoveOperand(Src1Idx); 530 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 531 } else if (Src1Val == -1) { 532 // y = or x, -1 => y = v_mov_b32 -1 533 MI->RemoveOperand(Src1Idx); 534 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 535 } else 536 return false; 537 538 return true; 539 } 540 541 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 542 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 543 MI->getOpcode() == AMDGPU::S_AND_B32) { 544 if (Src1Val == 0) { 545 // y = and x, 0 => y = v_mov_b32 0 546 MI->RemoveOperand(Src0Idx); 547 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 548 } else if (Src1Val == -1) { 549 // y = and x, -1 => y = copy x 550 MI->RemoveOperand(Src1Idx); 551 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 552 stripExtraCopyOperands(*MI); 553 } else 554 return false; 555 556 return true; 557 } 558 559 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 560 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 561 MI->getOpcode() == AMDGPU::S_XOR_B32) { 562 if (Src1Val == 0) { 563 // y = xor x, 0 => y = copy x 564 MI->RemoveOperand(Src1Idx); 565 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 566 return true; 567 } 568 } 569 570 return false; 571 } 572 573 // Try to fold an instruction into a simpler one 574 static bool tryFoldInst(const SIInstrInfo *TII, 575 MachineInstr *MI) { 576 unsigned Opc = MI->getOpcode(); 577 578 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 579 Opc == AMDGPU::V_CNDMASK_B32_e64 || 580 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 581 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 582 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 583 if (Src1->isIdenticalTo(*Src0)) { 584 DEBUG(dbgs() << "Folded " << *MI << " into "); 585 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 586 if (Src2Idx != -1) 587 MI->RemoveOperand(Src2Idx); 588 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 589 mutateCopyOp(*MI, TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY 590 : getMovOpc(false))); 591 DEBUG(dbgs() << *MI << '\n'); 592 return true; 593 } 594 } 595 596 return false; 597 } 598 599 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 600 MachineOperand &OpToFold) const { 601 // We need mutate the operands of new mov instructions to add implicit 602 // uses of EXEC, but adding them invalidates the use_iterator, so defer 603 // this. 604 SmallVector<MachineInstr *, 4> CopiesToReplace; 605 SmallVector<FoldCandidate, 4> FoldList; 606 MachineOperand &Dst = MI.getOperand(0); 607 608 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 609 if (FoldingImm) { 610 unsigned NumLiteralUses = 0; 611 MachineOperand *NonInlineUse = nullptr; 612 int NonInlineUseOpNo = -1; 613 614 MachineRegisterInfo::use_iterator NextUse, NextInstUse; 615 for (MachineRegisterInfo::use_iterator 616 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 617 Use != E; Use = NextUse) { 618 NextUse = std::next(Use); 619 MachineInstr *UseMI = Use->getParent(); 620 unsigned OpNo = Use.getOperandNo(); 621 622 // Folding the immediate may reveal operations that can be constant 623 // folded or replaced with a copy. This can happen for example after 624 // frame indices are lowered to constants or from splitting 64-bit 625 // constants. 626 // 627 // We may also encounter cases where one or both operands are 628 // immediates materialized into a register, which would ordinarily not 629 // be folded due to multiple uses or operand constraints. 630 631 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 632 DEBUG(dbgs() << "Constant folded " << *UseMI <<'\n'); 633 634 // Some constant folding cases change the same immediate's use to a new 635 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 636 // again. The same constant folded instruction could also have a second 637 // use operand. 638 NextUse = MRI->use_begin(Dst.getReg()); 639 continue; 640 } 641 642 // Try to fold any inline immediate uses, and then only fold other 643 // constants if they have one use. 644 // 645 // The legality of the inline immediate must be checked based on the use 646 // operand, not the defining instruction, because 32-bit instructions 647 // with 32-bit inline immediate sources may be used to materialize 648 // constants used in 16-bit operands. 649 // 650 // e.g. it is unsafe to fold: 651 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 652 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 653 654 // Folding immediates with more than one use will increase program size. 655 // FIXME: This will also reduce register usage, which may be better 656 // in some cases. A better heuristic is needed. 657 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 658 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 659 } else { 660 if (++NumLiteralUses == 1) { 661 NonInlineUse = &*Use; 662 NonInlineUseOpNo = OpNo; 663 } 664 } 665 } 666 667 if (NumLiteralUses == 1) { 668 MachineInstr *UseMI = NonInlineUse->getParent(); 669 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 670 } 671 } else { 672 // Folding register. 673 for (MachineRegisterInfo::use_iterator 674 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 675 Use != E; ++Use) { 676 MachineInstr *UseMI = Use->getParent(); 677 678 foldOperand(OpToFold, UseMI, Use.getOperandNo(), 679 FoldList, CopiesToReplace); 680 } 681 } 682 683 MachineFunction *MF = MI.getParent()->getParent(); 684 // Make sure we add EXEC uses to any new v_mov instructions created. 685 for (MachineInstr *Copy : CopiesToReplace) 686 Copy->addImplicitDefUseOperands(*MF); 687 688 for (FoldCandidate &Fold : FoldList) { 689 if (updateOperand(Fold, *TRI)) { 690 // Clear kill flags. 691 if (Fold.isReg()) { 692 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 693 // FIXME: Probably shouldn't bother trying to fold if not an 694 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 695 // copies. 696 MRI->clearKillFlags(Fold.OpToFold->getReg()); 697 } 698 DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " << 699 static_cast<int>(Fold.UseOpNo) << " of " << *Fold.UseMI << '\n'); 700 tryFoldInst(TII, Fold.UseMI); 701 } 702 } 703 } 704 705 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 706 unsigned Op = MI.getOpcode(); 707 switch (Op) { 708 case AMDGPU::V_MAX_F32_e64: 709 case AMDGPU::V_MAX_F16_e64: 710 case AMDGPU::V_MAX_F64: { 711 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 712 return nullptr; 713 714 // Make sure sources are identical. 715 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 716 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 717 if (!Src0->isReg() || Src0->getSubReg() != Src1->getSubReg() || 718 Src0->getSubReg() != AMDGPU::NoSubRegister) 719 return nullptr; 720 721 // Can't fold up if we have modifiers. 722 if (TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 723 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 724 TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 725 return nullptr; 726 return Src0; 727 } 728 default: 729 return nullptr; 730 } 731 } 732 733 // We obviously have multiple uses in a clamp since the register is used twice 734 // in the same instruction. 735 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 736 int Count = 0; 737 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 738 I != E; ++I) { 739 if (++Count > 1) 740 return false; 741 } 742 743 return true; 744 } 745 746 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 747 const MachineOperand *ClampSrc = isClamp(MI); 748 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 749 return false; 750 751 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 752 if (!TII->hasFPClamp(*Def)) 753 return false; 754 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 755 if (!DefClamp) 756 return false; 757 758 DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def << '\n'); 759 760 // Clamp is applied after omod, so it is OK if omod is set. 761 DefClamp->setImm(1); 762 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 763 MI.eraseFromParent(); 764 return true; 765 } 766 767 static int getOModValue(unsigned Opc, int64_t Val) { 768 switch (Opc) { 769 case AMDGPU::V_MUL_F32_e64: { 770 switch (static_cast<uint32_t>(Val)) { 771 case 0x3f000000: // 0.5 772 return SIOutMods::DIV2; 773 case 0x40000000: // 2.0 774 return SIOutMods::MUL2; 775 case 0x40800000: // 4.0 776 return SIOutMods::MUL4; 777 default: 778 return SIOutMods::NONE; 779 } 780 } 781 case AMDGPU::V_MUL_F16_e64: { 782 switch (static_cast<uint16_t>(Val)) { 783 case 0x3800: // 0.5 784 return SIOutMods::DIV2; 785 case 0x4000: // 2.0 786 return SIOutMods::MUL2; 787 case 0x4400: // 4.0 788 return SIOutMods::MUL4; 789 default: 790 return SIOutMods::NONE; 791 } 792 } 793 default: 794 llvm_unreachable("invalid mul opcode"); 795 } 796 } 797 798 // FIXME: Does this really not support denormals with f16? 799 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 800 // handled, so will anything other than that break? 801 std::pair<const MachineOperand *, int> 802 SIFoldOperands::isOMod(const MachineInstr &MI) const { 803 unsigned Op = MI.getOpcode(); 804 switch (Op) { 805 case AMDGPU::V_MUL_F32_e64: 806 case AMDGPU::V_MUL_F16_e64: { 807 // If output denormals are enabled, omod is ignored. 808 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || 809 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) 810 return std::make_pair(nullptr, SIOutMods::NONE); 811 812 const MachineOperand *RegOp = nullptr; 813 const MachineOperand *ImmOp = nullptr; 814 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 815 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 816 if (Src0->isImm()) { 817 ImmOp = Src0; 818 RegOp = Src1; 819 } else if (Src1->isImm()) { 820 ImmOp = Src1; 821 RegOp = Src0; 822 } else 823 return std::make_pair(nullptr, SIOutMods::NONE); 824 825 int OMod = getOModValue(Op, ImmOp->getImm()); 826 if (OMod == SIOutMods::NONE || 827 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 828 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 829 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 830 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 831 return std::make_pair(nullptr, SIOutMods::NONE); 832 833 return std::make_pair(RegOp, OMod); 834 } 835 case AMDGPU::V_ADD_F32_e64: 836 case AMDGPU::V_ADD_F16_e64: { 837 // If output denormals are enabled, omod is ignored. 838 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || 839 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) 840 return std::make_pair(nullptr, SIOutMods::NONE); 841 842 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 843 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 844 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 845 846 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 847 Src0->getSubReg() == Src1->getSubReg() && 848 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 849 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 850 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 851 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 852 return std::make_pair(Src0, SIOutMods::MUL2); 853 854 return std::make_pair(nullptr, SIOutMods::NONE); 855 } 856 default: 857 return std::make_pair(nullptr, SIOutMods::NONE); 858 } 859 } 860 861 // FIXME: Does this need to check IEEE bit on function? 862 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 863 const MachineOperand *RegOp; 864 int OMod; 865 std::tie(RegOp, OMod) = isOMod(MI); 866 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 867 RegOp->getSubReg() != AMDGPU::NoSubRegister || 868 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 869 return false; 870 871 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 872 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 873 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 874 return false; 875 876 // Clamp is applied after omod. If the source already has clamp set, don't 877 // fold it. 878 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 879 return false; 880 881 DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 882 883 DefOMod->setImm(OMod); 884 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 885 MI.eraseFromParent(); 886 return true; 887 } 888 889 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 890 if (skipFunction(*MF.getFunction())) 891 return false; 892 893 MRI = &MF.getRegInfo(); 894 ST = &MF.getSubtarget<SISubtarget>(); 895 TII = ST->getInstrInfo(); 896 TRI = &TII->getRegisterInfo(); 897 898 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 899 900 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 901 // correctly handle signed zeros. 902 // 903 // TODO: Check nsz on instructions when fast math flags are preserved to MI 904 // level. 905 bool IsIEEEMode = ST->enableIEEEBit(MF) || !MFI->hasNoSignedZerosFPMath(); 906 907 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); 908 BI != BE; ++BI) { 909 910 MachineBasicBlock &MBB = *BI; 911 MachineBasicBlock::iterator I, Next; 912 for (I = MBB.begin(); I != MBB.end(); I = Next) { 913 Next = std::next(I); 914 MachineInstr &MI = *I; 915 916 tryFoldInst(TII, &MI); 917 918 if (!TII->isFoldableCopy(MI)) { 919 if (IsIEEEMode || !tryFoldOMod(MI)) 920 tryFoldClamp(MI); 921 continue; 922 } 923 924 MachineOperand &OpToFold = MI.getOperand(1); 925 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 926 927 // FIXME: We could also be folding things like TargetIndexes. 928 if (!FoldingImm && !OpToFold.isReg()) 929 continue; 930 931 if (OpToFold.isReg() && 932 !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg())) 933 continue; 934 935 // Prevent folding operands backwards in the function. For example, 936 // the COPY opcode must not be replaced by 1 in this example: 937 // 938 // %vreg3<def> = COPY %VGPR0; VGPR_32:%vreg3 939 // ... 940 // %VGPR0<def> = V_MOV_B32_e32 1, %EXEC<imp-use> 941 MachineOperand &Dst = MI.getOperand(0); 942 if (Dst.isReg() && 943 !TargetRegisterInfo::isVirtualRegister(Dst.getReg())) 944 continue; 945 946 foldInstOperand(MI, OpToFold); 947 } 948 } 949 return false; 950 } 951