xref: /llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp (revision 038d884a50a4e72d3f65a315d28d35bda024cb4a)
1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 //===----------------------------------------------------------------------===//
9 //
10 
11 #include "AMDGPU.h"
12 #include "AMDGPUSubtarget.h"
13 #include "SIInstrInfo.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetMachine.h"
24 
25 #define DEBUG_TYPE "si-fold-operands"
26 using namespace llvm;
27 
28 namespace {
29 
30 struct FoldCandidate {
31   MachineInstr *UseMI;
32   union {
33     MachineOperand *OpToFold;
34     uint64_t ImmToFold;
35     int FrameIndexToFold;
36   };
37   int ShrinkOpcode;
38   unsigned UseOpNo;
39   MachineOperand::MachineOperandType Kind;
40   bool Commuted;
41 
42   FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
43                 bool Commuted_ = false,
44                 int ShrinkOp = -1) :
45     UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
46     Kind(FoldOp->getType()),
47     Commuted(Commuted_) {
48     if (FoldOp->isImm()) {
49       ImmToFold = FoldOp->getImm();
50     } else if (FoldOp->isFI()) {
51       FrameIndexToFold = FoldOp->getIndex();
52     } else {
53       assert(FoldOp->isReg() || FoldOp->isGlobal());
54       OpToFold = FoldOp;
55     }
56   }
57 
58   bool isFI() const {
59     return Kind == MachineOperand::MO_FrameIndex;
60   }
61 
62   bool isImm() const {
63     return Kind == MachineOperand::MO_Immediate;
64   }
65 
66   bool isReg() const {
67     return Kind == MachineOperand::MO_Register;
68   }
69 
70   bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
71 
72   bool isCommuted() const {
73     return Commuted;
74   }
75 
76   bool needsShrink() const {
77     return ShrinkOpcode != -1;
78   }
79 
80   int getShrinkOpcode() const {
81     return ShrinkOpcode;
82   }
83 };
84 
85 class SIFoldOperands : public MachineFunctionPass {
86 public:
87   static char ID;
88   MachineRegisterInfo *MRI;
89   const SIInstrInfo *TII;
90   const SIRegisterInfo *TRI;
91   const GCNSubtarget *ST;
92   const SIMachineFunctionInfo *MFI;
93 
94   void foldOperand(MachineOperand &OpToFold,
95                    MachineInstr *UseMI,
96                    int UseOpIdx,
97                    SmallVectorImpl<FoldCandidate> &FoldList,
98                    SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
99 
100   void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
101 
102   const MachineOperand *isClamp(const MachineInstr &MI) const;
103   bool tryFoldClamp(MachineInstr &MI);
104 
105   std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
106   bool tryFoldOMod(MachineInstr &MI);
107 
108 public:
109   SIFoldOperands() : MachineFunctionPass(ID) {
110     initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
111   }
112 
113   bool runOnMachineFunction(MachineFunction &MF) override;
114 
115   StringRef getPassName() const override { return "SI Fold Operands"; }
116 
117   void getAnalysisUsage(AnalysisUsage &AU) const override {
118     AU.setPreservesCFG();
119     MachineFunctionPass::getAnalysisUsage(AU);
120   }
121 };
122 
123 } // End anonymous namespace.
124 
125 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
126                 "SI Fold Operands", false, false)
127 
128 char SIFoldOperands::ID = 0;
129 
130 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
131 
132 // Wrapper around isInlineConstant that understands special cases when
133 // instruction types are replaced during operand folding.
134 static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
135                                      const MachineInstr &UseMI,
136                                      unsigned OpNo,
137                                      const MachineOperand &OpToFold) {
138   if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
139     return true;
140 
141   unsigned Opc = UseMI.getOpcode();
142   switch (Opc) {
143   case AMDGPU::V_MAC_F32_e64:
144   case AMDGPU::V_MAC_F16_e64:
145   case AMDGPU::V_FMAC_F32_e64:
146   case AMDGPU::V_FMAC_F16_e64: {
147     // Special case for mac. Since this is replaced with mad when folded into
148     // src2, we need to check the legality for the final instruction.
149     int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
150     if (static_cast<int>(OpNo) == Src2Idx) {
151       bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 ||
152                    Opc == AMDGPU::V_FMAC_F16_e64;
153       bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 ||
154                    Opc == AMDGPU::V_FMAC_F32_e64;
155 
156       unsigned Opc = IsFMA ?
157         (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) :
158         (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
159       const MCInstrDesc &MadDesc = TII->get(Opc);
160       return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
161     }
162     return false;
163   }
164   default:
165     return false;
166   }
167 }
168 
169 // TODO: Add heuristic that the frame index might not fit in the addressing mode
170 // immediate offset to avoid materializing in loops.
171 static bool frameIndexMayFold(const SIInstrInfo *TII,
172                               const MachineInstr &UseMI,
173                               int OpNo,
174                               const MachineOperand &OpToFold) {
175   return OpToFold.isFI() &&
176     TII->isMUBUF(UseMI) &&
177     OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr);
178 }
179 
180 FunctionPass *llvm::createSIFoldOperandsPass() {
181   return new SIFoldOperands();
182 }
183 
184 static bool updateOperand(FoldCandidate &Fold,
185                           const SIInstrInfo &TII,
186                           const TargetRegisterInfo &TRI,
187                           const GCNSubtarget &ST) {
188   MachineInstr *MI = Fold.UseMI;
189   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
190   assert(Old.isReg());
191 
192   if (Fold.isImm()) {
193     if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked &&
194         !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) &&
195         AMDGPU::isFoldableLiteralV216(Fold.ImmToFold,
196                                       ST.hasInv2PiInlineImm())) {
197       // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
198       // already set.
199       unsigned Opcode = MI->getOpcode();
200       int OpNo = MI->getOperandNo(&Old);
201       int ModIdx = -1;
202       if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
203         ModIdx = AMDGPU::OpName::src0_modifiers;
204       else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
205         ModIdx = AMDGPU::OpName::src1_modifiers;
206       else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
207         ModIdx = AMDGPU::OpName::src2_modifiers;
208       assert(ModIdx != -1);
209       ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
210       MachineOperand &Mod = MI->getOperand(ModIdx);
211       unsigned Val = Mod.getImm();
212       if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) {
213         // Only apply the following transformation if that operand requries
214         // a packed immediate.
215         switch (TII.get(Opcode).OpInfo[OpNo].OperandType) {
216         case AMDGPU::OPERAND_REG_IMM_V2FP16:
217         case AMDGPU::OPERAND_REG_IMM_V2INT16:
218         case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
219         case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
220           // If upper part is all zero we do not need op_sel_hi.
221           if (!isUInt<16>(Fold.ImmToFold)) {
222             if (!(Fold.ImmToFold & 0xffff)) {
223               Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
224               Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
225               Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
226               return true;
227             }
228             Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
229             Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
230             return true;
231           }
232           break;
233         default:
234           break;
235         }
236       }
237     }
238   }
239 
240   if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
241     MachineBasicBlock *MBB = MI->getParent();
242     auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16);
243     if (Liveness != MachineBasicBlock::LQR_Dead) {
244       LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
245       return false;
246     }
247 
248     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
249     int Op32 = Fold.getShrinkOpcode();
250     MachineOperand &Dst0 = MI->getOperand(0);
251     MachineOperand &Dst1 = MI->getOperand(1);
252     assert(Dst0.isDef() && Dst1.isDef());
253 
254     bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg());
255 
256     const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg());
257     Register NewReg0 = MRI.createVirtualRegister(Dst0RC);
258 
259     MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32);
260 
261     if (HaveNonDbgCarryUse) {
262       BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg())
263         .addReg(AMDGPU::VCC, RegState::Kill);
264     }
265 
266     // Keep the old instruction around to avoid breaking iterators, but
267     // replace it with a dummy instruction to remove uses.
268     //
269     // FIXME: We should not invert how this pass looks at operands to avoid
270     // this. Should track set of foldable movs instead of looking for uses
271     // when looking at a use.
272     Dst0.setReg(NewReg0);
273     for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
274       MI->RemoveOperand(I);
275     MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF));
276 
277     if (Fold.isCommuted())
278       TII.commuteInstruction(*Inst32, false);
279     return true;
280   }
281 
282   assert(!Fold.needsShrink() && "not handled");
283 
284   if (Fold.isImm()) {
285     Old.ChangeToImmediate(Fold.ImmToFold);
286     return true;
287   }
288 
289   if (Fold.isGlobal()) {
290     Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
291                    Fold.OpToFold->getTargetFlags());
292     return true;
293   }
294 
295   if (Fold.isFI()) {
296     Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
297     return true;
298   }
299 
300   MachineOperand *New = Fold.OpToFold;
301   Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
302   Old.setIsUndef(New->isUndef());
303   return true;
304 }
305 
306 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
307                               const MachineInstr *MI) {
308   for (auto Candidate : FoldList) {
309     if (Candidate.UseMI == MI)
310       return true;
311   }
312   return false;
313 }
314 
315 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList,
316                                 MachineInstr *MI, unsigned OpNo,
317                                 MachineOperand *FoldOp, bool Commuted = false,
318                                 int ShrinkOp = -1) {
319   // Skip additional folding on the same operand.
320   for (FoldCandidate &Fold : FoldList)
321     if (Fold.UseMI == MI && Fold.UseOpNo == OpNo)
322       return;
323   LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal")
324                     << " operand " << OpNo << "\n  " << *MI << '\n');
325   FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp));
326 }
327 
328 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
329                              MachineInstr *MI, unsigned OpNo,
330                              MachineOperand *OpToFold,
331                              const SIInstrInfo *TII) {
332   if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
333     // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
334     unsigned Opc = MI->getOpcode();
335     if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
336          Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) &&
337         (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
338       bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 ||
339                    Opc == AMDGPU::V_FMAC_F16_e64;
340       bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 ||
341                    Opc == AMDGPU::V_FMAC_F32_e64;
342       unsigned NewOpc = IsFMA ?
343         (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) :
344         (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
345 
346       // Check if changing this to a v_mad_{f16, f32} instruction will allow us
347       // to fold the operand.
348       MI->setDesc(TII->get(NewOpc));
349       bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
350       if (FoldAsMAD) {
351         MI->untieRegOperand(OpNo);
352         return true;
353       }
354       MI->setDesc(TII->get(Opc));
355     }
356 
357     // Special case for s_setreg_b32
358     if (OpToFold->isImm()) {
359       unsigned ImmOpc = 0;
360       if (Opc == AMDGPU::S_SETREG_B32)
361         ImmOpc = AMDGPU::S_SETREG_IMM32_B32;
362       else if (Opc == AMDGPU::S_SETREG_B32_mode)
363         ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode;
364       if (ImmOpc) {
365         MI->setDesc(TII->get(ImmOpc));
366         appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
367         return true;
368       }
369     }
370 
371     // If we are already folding into another operand of MI, then
372     // we can't commute the instruction, otherwise we risk making the
373     // other fold illegal.
374     if (isUseMIInFoldList(FoldList, MI))
375       return false;
376 
377     unsigned CommuteOpNo = OpNo;
378 
379     // Operand is not legal, so try to commute the instruction to
380     // see if this makes it possible to fold.
381     unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
382     unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
383     bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
384 
385     if (CanCommute) {
386       if (CommuteIdx0 == OpNo)
387         CommuteOpNo = CommuteIdx1;
388       else if (CommuteIdx1 == OpNo)
389         CommuteOpNo = CommuteIdx0;
390     }
391 
392 
393     // One of operands might be an Imm operand, and OpNo may refer to it after
394     // the call of commuteInstruction() below. Such situations are avoided
395     // here explicitly as OpNo must be a register operand to be a candidate
396     // for memory folding.
397     if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
398                        !MI->getOperand(CommuteIdx1).isReg()))
399       return false;
400 
401     if (!CanCommute ||
402         !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
403       return false;
404 
405     if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
406       if ((Opc == AMDGPU::V_ADD_CO_U32_e64 ||
407            Opc == AMDGPU::V_SUB_CO_U32_e64 ||
408            Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME
409           (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) {
410         MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
411 
412         // Verify the other operand is a VGPR, otherwise we would violate the
413         // constant bus restriction.
414         unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
415         MachineOperand &OtherOp = MI->getOperand(OtherIdx);
416         if (!OtherOp.isReg() ||
417             !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg()))
418           return false;
419 
420         assert(MI->getOperand(1).isDef());
421 
422         // Make sure to get the 32-bit version of the commuted opcode.
423         unsigned MaybeCommutedOpc = MI->getOpcode();
424         int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
425 
426         appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32);
427         return true;
428       }
429 
430       TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
431       return false;
432     }
433 
434     appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true);
435     return true;
436   }
437 
438   // Check the case where we might introduce a second constant operand to a
439   // scalar instruction
440   if (TII->isSALU(MI->getOpcode())) {
441     const MCInstrDesc &InstDesc = MI->getDesc();
442     const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo];
443     const SIRegisterInfo &SRI = TII->getRegisterInfo();
444 
445     // Fine if the operand can be encoded as an inline constant
446     if (OpToFold->isImm()) {
447       if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) ||
448           !TII->isInlineConstant(*OpToFold, OpInfo)) {
449         // Otherwise check for another constant
450         for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) {
451           auto &Op = MI->getOperand(i);
452           if (OpNo != i &&
453               TII->isLiteralConstantLike(Op, OpInfo)) {
454             return false;
455           }
456         }
457       }
458     }
459   }
460 
461   appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
462   return true;
463 }
464 
465 // If the use operand doesn't care about the value, this may be an operand only
466 // used for register indexing, in which case it is unsafe to fold.
467 static bool isUseSafeToFold(const SIInstrInfo *TII,
468                             const MachineInstr &MI,
469                             const MachineOperand &UseMO) {
470   if (UseMO.isUndef() || TII->isSDWA(MI))
471     return false;
472 
473   switch (MI.getOpcode()) {
474   case AMDGPU::V_MOV_B32_e32:
475   case AMDGPU::V_MOV_B32_e64:
476   case AMDGPU::V_MOV_B64_PSEUDO:
477     // Do not fold into an indirect mov.
478     return !MI.hasRegisterImplicitUseOperand(AMDGPU::M0);
479   }
480 
481   return true;
482   //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
483 }
484 
485 // Find a def of the UseReg, check if it is a reg_seqence and find initializers
486 // for each subreg, tracking it to foldable inline immediate if possible.
487 // Returns true on success.
488 static bool getRegSeqInit(
489     SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs,
490     Register UseReg, uint8_t OpTy,
491     const SIInstrInfo *TII, const MachineRegisterInfo &MRI) {
492   MachineInstr *Def = MRI.getUniqueVRegDef(UseReg);
493   if (!Def || !Def->isRegSequence())
494     return false;
495 
496   for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
497     MachineOperand *Sub = &Def->getOperand(I);
498     assert (Sub->isReg());
499 
500     for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg());
501          SubDef && Sub->isReg() && !Sub->getSubReg() &&
502          TII->isFoldableCopy(*SubDef);
503          SubDef = MRI.getUniqueVRegDef(Sub->getReg())) {
504       MachineOperand *Op = &SubDef->getOperand(1);
505       if (Op->isImm()) {
506         if (TII->isInlineConstant(*Op, OpTy))
507           Sub = Op;
508         break;
509       }
510       if (!Op->isReg())
511         break;
512       Sub = Op;
513     }
514 
515     Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm()));
516   }
517 
518   return true;
519 }
520 
521 static bool tryToFoldACImm(const SIInstrInfo *TII,
522                            const MachineOperand &OpToFold,
523                            MachineInstr *UseMI,
524                            unsigned UseOpIdx,
525                            SmallVectorImpl<FoldCandidate> &FoldList) {
526   const MCInstrDesc &Desc = UseMI->getDesc();
527   const MCOperandInfo *OpInfo = Desc.OpInfo;
528   if (!OpInfo || UseOpIdx >= Desc.getNumOperands())
529     return false;
530 
531   uint8_t OpTy = OpInfo[UseOpIdx].OperandType;
532   if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST ||
533       OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST)
534     return false;
535 
536   if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
537       TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
538     UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
539     return true;
540   }
541 
542   if (!OpToFold.isReg())
543     return false;
544 
545   Register UseReg = OpToFold.getReg();
546   if (!UseReg.isVirtual())
547     return false;
548 
549   if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) {
550         return FC.UseMI == UseMI; }) != FoldList.end())
551     return false;
552 
553   MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo();
554   SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
555   if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI))
556     return false;
557 
558   int32_t Imm;
559   for (unsigned I = 0, E = Defs.size(); I != E; ++I) {
560     const MachineOperand *Op = Defs[I].first;
561     if (!Op->isImm())
562       return false;
563 
564     auto SubImm = Op->getImm();
565     if (!I) {
566       Imm = SubImm;
567       if (!TII->isInlineConstant(*Op, OpTy) ||
568           !TII->isOperandLegal(*UseMI, UseOpIdx, Op))
569         return false;
570 
571       continue;
572     }
573     if (Imm != SubImm)
574       return false; // Can only fold splat constants
575   }
576 
577   appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first);
578   return true;
579 }
580 
581 void SIFoldOperands::foldOperand(
582   MachineOperand &OpToFold,
583   MachineInstr *UseMI,
584   int UseOpIdx,
585   SmallVectorImpl<FoldCandidate> &FoldList,
586   SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
587   const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
588 
589   if (!isUseSafeToFold(TII, *UseMI, UseOp))
590     return;
591 
592   // FIXME: Fold operands with subregs.
593   if (UseOp.isReg() && OpToFold.isReg()) {
594     if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
595       return;
596   }
597 
598   // Special case for REG_SEQUENCE: We can't fold literals into
599   // REG_SEQUENCE instructions, so we have to fold them into the
600   // uses of REG_SEQUENCE.
601   if (UseMI->isRegSequence()) {
602     Register RegSeqDstReg = UseMI->getOperand(0).getReg();
603     unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
604 
605     MachineRegisterInfo::use_nodbg_iterator Next;
606     for (MachineRegisterInfo::use_nodbg_iterator
607            RSUse = MRI->use_nodbg_begin(RegSeqDstReg), RSE = MRI->use_nodbg_end();
608          RSUse != RSE; RSUse = Next) {
609       Next = std::next(RSUse);
610 
611       MachineInstr *RSUseMI = RSUse->getParent();
612 
613       if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI,
614                          RSUse.getOperandNo(), FoldList))
615         continue;
616 
617       if (RSUse->getSubReg() != RegSeqDstSubReg)
618         continue;
619 
620       foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
621                   CopiesToReplace);
622     }
623 
624     return;
625   }
626 
627   if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList))
628     return;
629 
630   if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) {
631     // Sanity check that this is a stack access.
632     // FIXME: Should probably use stack pseudos before frame lowering.
633 
634     if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
635         MFI->getScratchRSrcReg())
636       return;
637 
638     // Ensure this is either relative to the current frame or the current wave.
639     MachineOperand &SOff =
640         *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
641     if ((!SOff.isReg() || SOff.getReg() != MFI->getStackPtrOffsetReg()) &&
642         (!SOff.isImm() || SOff.getImm() != 0))
643       return;
644 
645     // A frame index will resolve to a positive constant, so it should always be
646     // safe to fold the addressing mode, even pre-GFX9.
647     UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
648 
649     // If this is relative to the current wave, update it to be relative to the
650     // current frame.
651     if (SOff.isImm())
652       SOff.ChangeToRegister(MFI->getStackPtrOffsetReg(), false);
653     return;
654   }
655 
656   bool FoldingImmLike =
657       OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
658 
659   if (FoldingImmLike && UseMI->isCopy()) {
660     Register DestReg = UseMI->getOperand(0).getReg();
661     Register SrcReg = UseMI->getOperand(1).getReg();
662     assert(SrcReg.isVirtual());
663 
664     const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg);
665 
666     // Don't fold into a copy to a physical register with the same class. Doing
667     // so would interfere with the register coalescer's logic which would avoid
668     // redundant initalizations.
669     if (DestReg.isPhysical() && SrcRC->contains(DestReg))
670       return;
671 
672     const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg);
673     if (!DestReg.isPhysical()) {
674       if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) {
675         MachineRegisterInfo::use_nodbg_iterator NextUse;
676         SmallVector<FoldCandidate, 4> CopyUses;
677         for (MachineRegisterInfo::use_nodbg_iterator Use = MRI->use_nodbg_begin(DestReg),
678                E = MRI->use_nodbg_end();
679              Use != E; Use = NextUse) {
680           NextUse = std::next(Use);
681           // There's no point trying to fold into an implicit operand.
682           if (Use->isImplicit())
683             continue;
684 
685           FoldCandidate FC = FoldCandidate(Use->getParent(), Use.getOperandNo(),
686                                            &UseMI->getOperand(1));
687           CopyUses.push_back(FC);
688         }
689         for (auto &F : CopyUses) {
690           foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList, CopiesToReplace);
691         }
692       }
693 
694       if (DestRC == &AMDGPU::AGPR_32RegClass &&
695           TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
696         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
697         UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
698         CopiesToReplace.push_back(UseMI);
699         return;
700       }
701     }
702 
703     // In order to fold immediates into copies, we need to change the
704     // copy to a MOV.
705 
706     unsigned MovOp = TII->getMovOpcode(DestRC);
707     if (MovOp == AMDGPU::COPY)
708       return;
709 
710     UseMI->setDesc(TII->get(MovOp));
711     MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
712     MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
713     while (ImpOpI != ImpOpE) {
714       MachineInstr::mop_iterator Tmp = ImpOpI;
715       ImpOpI++;
716       UseMI->RemoveOperand(UseMI->getOperandNo(Tmp));
717     }
718     CopiesToReplace.push_back(UseMI);
719   } else {
720     if (UseMI->isCopy() && OpToFold.isReg() &&
721         UseMI->getOperand(0).getReg().isVirtual() &&
722         !UseMI->getOperand(1).getSubReg()) {
723       LLVM_DEBUG(dbgs() << "Folding " << OpToFold
724                         << "\n into " << *UseMI << '\n');
725       unsigned Size = TII->getOpSize(*UseMI, 1);
726       Register UseReg = OpToFold.getReg();
727       UseMI->getOperand(1).setReg(UseReg);
728       UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
729       UseMI->getOperand(1).setIsKill(false);
730       CopiesToReplace.push_back(UseMI);
731       OpToFold.setIsKill(false);
732 
733       // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32
734       // can only accept VGPR or inline immediate. Recreate a reg_sequence with
735       // its initializers right here, so we will rematerialize immediates and
736       // avoid copies via different reg classes.
737       SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
738       if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
739           getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII,
740                         *MRI)) {
741         const DebugLoc &DL = UseMI->getDebugLoc();
742         MachineBasicBlock &MBB = *UseMI->getParent();
743 
744         UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE));
745         for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I)
746           UseMI->RemoveOperand(I);
747 
748         MachineInstrBuilder B(*MBB.getParent(), UseMI);
749         DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies;
750         SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs;
751         for (unsigned I = 0; I < Size / 4; ++I) {
752           MachineOperand *Def = Defs[I].first;
753           TargetInstrInfo::RegSubRegPair CopyToVGPR;
754           if (Def->isImm() &&
755               TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
756             int64_t Imm = Def->getImm();
757 
758             auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
759             BuildMI(MBB, UseMI, DL,
760                     TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addImm(Imm);
761             B.addReg(Tmp);
762           } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) {
763             auto Src = getRegSubRegPair(*Def);
764             Def->setIsKill(false);
765             if (!SeenAGPRs.insert(Src)) {
766               // We cannot build a reg_sequence out of the same registers, they
767               // must be copied. Better do it here before copyPhysReg() created
768               // several reads to do the AGPR->VGPR->AGPR copy.
769               CopyToVGPR = Src;
770             } else {
771               B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0,
772                        Src.SubReg);
773             }
774           } else {
775             assert(Def->isReg());
776             Def->setIsKill(false);
777             auto Src = getRegSubRegPair(*Def);
778 
779             // Direct copy from SGPR to AGPR is not possible. To avoid creation
780             // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later,
781             // create a copy here and track if we already have such a copy.
782             if (TRI->isSGPRReg(*MRI, Src.Reg)) {
783               CopyToVGPR = Src;
784             } else {
785               auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
786               BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def);
787               B.addReg(Tmp);
788             }
789           }
790 
791           if (CopyToVGPR.Reg) {
792             Register Vgpr;
793             if (VGPRCopies.count(CopyToVGPR)) {
794               Vgpr = VGPRCopies[CopyToVGPR];
795             } else {
796               Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
797               BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def);
798               VGPRCopies[CopyToVGPR] = Vgpr;
799             }
800             auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
801             BuildMI(MBB, UseMI, DL,
802                     TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addReg(Vgpr);
803             B.addReg(Tmp);
804           }
805 
806           B.addImm(Defs[I].second);
807         }
808         LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n');
809         return;
810       }
811 
812       if (Size != 4)
813         return;
814       if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
815           TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()))
816         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
817       else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) &&
818                TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
819         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32));
820       return;
821     }
822 
823     unsigned UseOpc = UseMI->getOpcode();
824     if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
825         (UseOpc == AMDGPU::V_READLANE_B32 &&
826          (int)UseOpIdx ==
827          AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
828       // %vgpr = V_MOV_B32 imm
829       // %sgpr = V_READFIRSTLANE_B32 %vgpr
830       // =>
831       // %sgpr = S_MOV_B32 imm
832       if (FoldingImmLike) {
833         if (execMayBeModifiedBeforeUse(*MRI,
834                                        UseMI->getOperand(UseOpIdx).getReg(),
835                                        *OpToFold.getParent(),
836                                        *UseMI))
837           return;
838 
839         UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
840 
841         if (OpToFold.isImm())
842           UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
843         else
844           UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
845         UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
846         return;
847       }
848 
849       if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
850         if (execMayBeModifiedBeforeUse(*MRI,
851                                        UseMI->getOperand(UseOpIdx).getReg(),
852                                        *OpToFold.getParent(),
853                                        *UseMI))
854           return;
855 
856         // %vgpr = COPY %sgpr0
857         // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
858         // =>
859         // %sgpr1 = COPY %sgpr0
860         UseMI->setDesc(TII->get(AMDGPU::COPY));
861         UseMI->getOperand(1).setReg(OpToFold.getReg());
862         UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
863         UseMI->getOperand(1).setIsKill(false);
864         UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
865         return;
866       }
867     }
868 
869     const MCInstrDesc &UseDesc = UseMI->getDesc();
870 
871     // Don't fold into target independent nodes.  Target independent opcodes
872     // don't have defined register classes.
873     if (UseDesc.isVariadic() ||
874         UseOp.isImplicit() ||
875         UseDesc.OpInfo[UseOpIdx].RegClass == -1)
876       return;
877   }
878 
879   if (!FoldingImmLike) {
880     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
881 
882     // FIXME: We could try to change the instruction from 64-bit to 32-bit
883     // to enable more folding opportunites.  The shrink operands pass
884     // already does this.
885     return;
886   }
887 
888 
889   const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
890   const TargetRegisterClass *FoldRC =
891     TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
892 
893   // Split 64-bit constants into 32-bits for folding.
894   if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
895     Register UseReg = UseOp.getReg();
896     const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
897 
898     if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
899       return;
900 
901     APInt Imm(64, OpToFold.getImm());
902     if (UseOp.getSubReg() == AMDGPU::sub0) {
903       Imm = Imm.getLoBits(32);
904     } else {
905       assert(UseOp.getSubReg() == AMDGPU::sub1);
906       Imm = Imm.getHiBits(32);
907     }
908 
909     MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
910     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
911     return;
912   }
913 
914 
915 
916   tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
917 }
918 
919 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
920                                   uint32_t LHS, uint32_t RHS) {
921   switch (Opcode) {
922   case AMDGPU::V_AND_B32_e64:
923   case AMDGPU::V_AND_B32_e32:
924   case AMDGPU::S_AND_B32:
925     Result = LHS & RHS;
926     return true;
927   case AMDGPU::V_OR_B32_e64:
928   case AMDGPU::V_OR_B32_e32:
929   case AMDGPU::S_OR_B32:
930     Result = LHS | RHS;
931     return true;
932   case AMDGPU::V_XOR_B32_e64:
933   case AMDGPU::V_XOR_B32_e32:
934   case AMDGPU::S_XOR_B32:
935     Result = LHS ^ RHS;
936     return true;
937   case AMDGPU::S_XNOR_B32:
938     Result = ~(LHS ^ RHS);
939     return true;
940   case AMDGPU::S_NAND_B32:
941     Result = ~(LHS & RHS);
942     return true;
943   case AMDGPU::S_NOR_B32:
944     Result = ~(LHS | RHS);
945     return true;
946   case AMDGPU::S_ANDN2_B32:
947     Result = LHS & ~RHS;
948     return true;
949   case AMDGPU::S_ORN2_B32:
950     Result = LHS | ~RHS;
951     return true;
952   case AMDGPU::V_LSHL_B32_e64:
953   case AMDGPU::V_LSHL_B32_e32:
954   case AMDGPU::S_LSHL_B32:
955     // The instruction ignores the high bits for out of bounds shifts.
956     Result = LHS << (RHS & 31);
957     return true;
958   case AMDGPU::V_LSHLREV_B32_e64:
959   case AMDGPU::V_LSHLREV_B32_e32:
960     Result = RHS << (LHS & 31);
961     return true;
962   case AMDGPU::V_LSHR_B32_e64:
963   case AMDGPU::V_LSHR_B32_e32:
964   case AMDGPU::S_LSHR_B32:
965     Result = LHS >> (RHS & 31);
966     return true;
967   case AMDGPU::V_LSHRREV_B32_e64:
968   case AMDGPU::V_LSHRREV_B32_e32:
969     Result = RHS >> (LHS & 31);
970     return true;
971   case AMDGPU::V_ASHR_I32_e64:
972   case AMDGPU::V_ASHR_I32_e32:
973   case AMDGPU::S_ASHR_I32:
974     Result = static_cast<int32_t>(LHS) >> (RHS & 31);
975     return true;
976   case AMDGPU::V_ASHRREV_I32_e64:
977   case AMDGPU::V_ASHRREV_I32_e32:
978     Result = static_cast<int32_t>(RHS) >> (LHS & 31);
979     return true;
980   default:
981     return false;
982   }
983 }
984 
985 static unsigned getMovOpc(bool IsScalar) {
986   return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
987 }
988 
989 /// Remove any leftover implicit operands from mutating the instruction. e.g.
990 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
991 /// anymore.
992 static void stripExtraCopyOperands(MachineInstr &MI) {
993   const MCInstrDesc &Desc = MI.getDesc();
994   unsigned NumOps = Desc.getNumOperands() +
995                     Desc.getNumImplicitUses() +
996                     Desc.getNumImplicitDefs();
997 
998   for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
999     MI.RemoveOperand(I);
1000 }
1001 
1002 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
1003   MI.setDesc(NewDesc);
1004   stripExtraCopyOperands(MI);
1005 }
1006 
1007 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
1008                                                MachineOperand &Op) {
1009   if (Op.isReg()) {
1010     // If this has a subregister, it obviously is a register source.
1011     if (Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual())
1012       return &Op;
1013 
1014     MachineInstr *Def = MRI.getVRegDef(Op.getReg());
1015     if (Def && Def->isMoveImmediate()) {
1016       MachineOperand &ImmSrc = Def->getOperand(1);
1017       if (ImmSrc.isImm())
1018         return &ImmSrc;
1019     }
1020   }
1021 
1022   return &Op;
1023 }
1024 
1025 // Try to simplify operations with a constant that may appear after instruction
1026 // selection.
1027 // TODO: See if a frame index with a fixed offset can fold.
1028 static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
1029                               const SIInstrInfo *TII,
1030                               MachineInstr *MI,
1031                               MachineOperand *ImmOp) {
1032   unsigned Opc = MI->getOpcode();
1033   if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
1034       Opc == AMDGPU::S_NOT_B32) {
1035     MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
1036     mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
1037     return true;
1038   }
1039 
1040   int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1041   if (Src1Idx == -1)
1042     return false;
1043 
1044   int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1045   MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
1046   MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
1047 
1048   if (!Src0->isImm() && !Src1->isImm())
1049     return false;
1050 
1051   // and k0, k1 -> v_mov_b32 (k0 & k1)
1052   // or k0, k1 -> v_mov_b32 (k0 | k1)
1053   // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
1054   if (Src0->isImm() && Src1->isImm()) {
1055     int32_t NewImm;
1056     if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
1057       return false;
1058 
1059     const SIRegisterInfo &TRI = TII->getRegisterInfo();
1060     bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
1061 
1062     // Be careful to change the right operand, src0 may belong to a different
1063     // instruction.
1064     MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
1065     MI->RemoveOperand(Src1Idx);
1066     mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
1067     return true;
1068   }
1069 
1070   if (!MI->isCommutable())
1071     return false;
1072 
1073   if (Src0->isImm() && !Src1->isImm()) {
1074     std::swap(Src0, Src1);
1075     std::swap(Src0Idx, Src1Idx);
1076   }
1077 
1078   int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
1079   if (Opc == AMDGPU::V_OR_B32_e64 ||
1080       Opc == AMDGPU::V_OR_B32_e32 ||
1081       Opc == AMDGPU::S_OR_B32) {
1082     if (Src1Val == 0) {
1083       // y = or x, 0 => y = copy x
1084       MI->RemoveOperand(Src1Idx);
1085       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1086     } else if (Src1Val == -1) {
1087       // y = or x, -1 => y = v_mov_b32 -1
1088       MI->RemoveOperand(Src1Idx);
1089       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
1090     } else
1091       return false;
1092 
1093     return true;
1094   }
1095 
1096   if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
1097       MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
1098       MI->getOpcode() == AMDGPU::S_AND_B32) {
1099     if (Src1Val == 0) {
1100       // y = and x, 0 => y = v_mov_b32 0
1101       MI->RemoveOperand(Src0Idx);
1102       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
1103     } else if (Src1Val == -1) {
1104       // y = and x, -1 => y = copy x
1105       MI->RemoveOperand(Src1Idx);
1106       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1107       stripExtraCopyOperands(*MI);
1108     } else
1109       return false;
1110 
1111     return true;
1112   }
1113 
1114   if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
1115       MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
1116       MI->getOpcode() == AMDGPU::S_XOR_B32) {
1117     if (Src1Val == 0) {
1118       // y = xor x, 0 => y = copy x
1119       MI->RemoveOperand(Src1Idx);
1120       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1121       return true;
1122     }
1123   }
1124 
1125   return false;
1126 }
1127 
1128 // Try to fold an instruction into a simpler one
1129 static bool tryFoldInst(const SIInstrInfo *TII,
1130                         MachineInstr *MI) {
1131   unsigned Opc = MI->getOpcode();
1132 
1133   if (Opc == AMDGPU::V_CNDMASK_B32_e32    ||
1134       Opc == AMDGPU::V_CNDMASK_B32_e64    ||
1135       Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
1136     const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
1137     const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
1138     int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
1139     int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
1140     if (Src1->isIdenticalTo(*Src0) &&
1141         (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) &&
1142         (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) {
1143       LLVM_DEBUG(dbgs() << "Folded " << *MI << " into ");
1144       auto &NewDesc =
1145           TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
1146       int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1147       if (Src2Idx != -1)
1148         MI->RemoveOperand(Src2Idx);
1149       MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
1150       if (Src1ModIdx != -1)
1151         MI->RemoveOperand(Src1ModIdx);
1152       if (Src0ModIdx != -1)
1153         MI->RemoveOperand(Src0ModIdx);
1154       mutateCopyOp(*MI, NewDesc);
1155       LLVM_DEBUG(dbgs() << *MI << '\n');
1156       return true;
1157     }
1158   }
1159 
1160   return false;
1161 }
1162 
1163 void SIFoldOperands::foldInstOperand(MachineInstr &MI,
1164                                      MachineOperand &OpToFold) const {
1165   // We need mutate the operands of new mov instructions to add implicit
1166   // uses of EXEC, but adding them invalidates the use_iterator, so defer
1167   // this.
1168   SmallVector<MachineInstr *, 4> CopiesToReplace;
1169   SmallVector<FoldCandidate, 4> FoldList;
1170   MachineOperand &Dst = MI.getOperand(0);
1171 
1172   bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1173   if (FoldingImm) {
1174     unsigned NumLiteralUses = 0;
1175     MachineOperand *NonInlineUse = nullptr;
1176     int NonInlineUseOpNo = -1;
1177 
1178     MachineRegisterInfo::use_nodbg_iterator NextUse;
1179     for (MachineRegisterInfo::use_nodbg_iterator
1180            Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end();
1181          Use != E; Use = NextUse) {
1182       NextUse = std::next(Use);
1183       MachineInstr *UseMI = Use->getParent();
1184       unsigned OpNo = Use.getOperandNo();
1185 
1186       // Folding the immediate may reveal operations that can be constant
1187       // folded or replaced with a copy. This can happen for example after
1188       // frame indices are lowered to constants or from splitting 64-bit
1189       // constants.
1190       //
1191       // We may also encounter cases where one or both operands are
1192       // immediates materialized into a register, which would ordinarily not
1193       // be folded due to multiple uses or operand constraints.
1194 
1195       if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
1196         LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n');
1197 
1198         // Some constant folding cases change the same immediate's use to a new
1199         // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
1200         // again. The same constant folded instruction could also have a second
1201         // use operand.
1202         NextUse = MRI->use_nodbg_begin(Dst.getReg());
1203         FoldList.clear();
1204         continue;
1205       }
1206 
1207       // Try to fold any inline immediate uses, and then only fold other
1208       // constants if they have one use.
1209       //
1210       // The legality of the inline immediate must be checked based on the use
1211       // operand, not the defining instruction, because 32-bit instructions
1212       // with 32-bit inline immediate sources may be used to materialize
1213       // constants used in 16-bit operands.
1214       //
1215       // e.g. it is unsafe to fold:
1216       //  s_mov_b32 s0, 1.0    // materializes 0x3f800000
1217       //  v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
1218 
1219       // Folding immediates with more than one use will increase program size.
1220       // FIXME: This will also reduce register usage, which may be better
1221       // in some cases. A better heuristic is needed.
1222       if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
1223         foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
1224       } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) {
1225         foldOperand(OpToFold, UseMI, OpNo, FoldList,
1226                     CopiesToReplace);
1227       } else {
1228         if (++NumLiteralUses == 1) {
1229           NonInlineUse = &*Use;
1230           NonInlineUseOpNo = OpNo;
1231         }
1232       }
1233     }
1234 
1235     if (NumLiteralUses == 1) {
1236       MachineInstr *UseMI = NonInlineUse->getParent();
1237       foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
1238     }
1239   } else {
1240     // Folding register.
1241     SmallVector <MachineRegisterInfo::use_nodbg_iterator, 4> UsesToProcess;
1242     for (MachineRegisterInfo::use_nodbg_iterator
1243            Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end();
1244          Use != E; ++Use) {
1245       UsesToProcess.push_back(Use);
1246     }
1247     for (auto U : UsesToProcess) {
1248       MachineInstr *UseMI = U->getParent();
1249 
1250       foldOperand(OpToFold, UseMI, U.getOperandNo(),
1251         FoldList, CopiesToReplace);
1252     }
1253   }
1254 
1255   MachineFunction *MF = MI.getParent()->getParent();
1256   // Make sure we add EXEC uses to any new v_mov instructions created.
1257   for (MachineInstr *Copy : CopiesToReplace)
1258     Copy->addImplicitDefUseOperands(*MF);
1259 
1260   for (FoldCandidate &Fold : FoldList) {
1261     assert(!Fold.isReg() || Fold.OpToFold);
1262     if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) {
1263       Register Reg = Fold.OpToFold->getReg();
1264       MachineInstr *DefMI = Fold.OpToFold->getParent();
1265       if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
1266           execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
1267         continue;
1268     }
1269     if (updateOperand(Fold, *TII, *TRI, *ST)) {
1270       // Clear kill flags.
1271       if (Fold.isReg()) {
1272         assert(Fold.OpToFold && Fold.OpToFold->isReg());
1273         // FIXME: Probably shouldn't bother trying to fold if not an
1274         // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1275         // copies.
1276         MRI->clearKillFlags(Fold.OpToFold->getReg());
1277       }
1278       LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
1279                         << static_cast<int>(Fold.UseOpNo) << " of "
1280                         << *Fold.UseMI << '\n');
1281       tryFoldInst(TII, Fold.UseMI);
1282     } else if (Fold.isCommuted()) {
1283       // Restoring instruction's original operand order if fold has failed.
1284       TII->commuteInstruction(*Fold.UseMI, false);
1285     }
1286   }
1287 }
1288 
1289 // Clamp patterns are canonically selected to v_max_* instructions, so only
1290 // handle them.
1291 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
1292   unsigned Op = MI.getOpcode();
1293   switch (Op) {
1294   case AMDGPU::V_MAX_F32_e64:
1295   case AMDGPU::V_MAX_F16_e64:
1296   case AMDGPU::V_MAX_F64:
1297   case AMDGPU::V_PK_MAX_F16: {
1298     if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
1299       return nullptr;
1300 
1301     // Make sure sources are identical.
1302     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1303     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1304     if (!Src0->isReg() || !Src1->isReg() ||
1305         Src0->getReg() != Src1->getReg() ||
1306         Src0->getSubReg() != Src1->getSubReg() ||
1307         Src0->getSubReg() != AMDGPU::NoSubRegister)
1308       return nullptr;
1309 
1310     // Can't fold up if we have modifiers.
1311     if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1312       return nullptr;
1313 
1314     unsigned Src0Mods
1315       = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
1316     unsigned Src1Mods
1317       = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
1318 
1319     // Having a 0 op_sel_hi would require swizzling the output in the source
1320     // instruction, which we can't do.
1321     unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
1322                                                       : 0u;
1323     if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
1324       return nullptr;
1325     return Src0;
1326   }
1327   default:
1328     return nullptr;
1329   }
1330 }
1331 
1332 // We obviously have multiple uses in a clamp since the register is used twice
1333 // in the same instruction.
1334 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
1335   int Count = 0;
1336   for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
1337        I != E; ++I) {
1338     if (++Count > 1)
1339       return false;
1340   }
1341 
1342   return true;
1343 }
1344 
1345 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
1346 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
1347   const MachineOperand *ClampSrc = isClamp(MI);
1348   if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
1349     return false;
1350 
1351   MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
1352 
1353   // The type of clamp must be compatible.
1354   if (TII->getClampMask(*Def) != TII->getClampMask(MI))
1355     return false;
1356 
1357   MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
1358   if (!DefClamp)
1359     return false;
1360 
1361   LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def
1362                     << '\n');
1363 
1364   // Clamp is applied after omod, so it is OK if omod is set.
1365   DefClamp->setImm(1);
1366   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1367   MI.eraseFromParent();
1368   return true;
1369 }
1370 
1371 static int getOModValue(unsigned Opc, int64_t Val) {
1372   switch (Opc) {
1373   case AMDGPU::V_MUL_F32_e64: {
1374     switch (static_cast<uint32_t>(Val)) {
1375     case 0x3f000000: // 0.5
1376       return SIOutMods::DIV2;
1377     case 0x40000000: // 2.0
1378       return SIOutMods::MUL2;
1379     case 0x40800000: // 4.0
1380       return SIOutMods::MUL4;
1381     default:
1382       return SIOutMods::NONE;
1383     }
1384   }
1385   case AMDGPU::V_MUL_F16_e64: {
1386     switch (static_cast<uint16_t>(Val)) {
1387     case 0x3800: // 0.5
1388       return SIOutMods::DIV2;
1389     case 0x4000: // 2.0
1390       return SIOutMods::MUL2;
1391     case 0x4400: // 4.0
1392       return SIOutMods::MUL4;
1393     default:
1394       return SIOutMods::NONE;
1395     }
1396   }
1397   default:
1398     llvm_unreachable("invalid mul opcode");
1399   }
1400 }
1401 
1402 // FIXME: Does this really not support denormals with f16?
1403 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1404 // handled, so will anything other than that break?
1405 std::pair<const MachineOperand *, int>
1406 SIFoldOperands::isOMod(const MachineInstr &MI) const {
1407   unsigned Op = MI.getOpcode();
1408   switch (Op) {
1409   case AMDGPU::V_MUL_F32_e64:
1410   case AMDGPU::V_MUL_F16_e64: {
1411     // If output denormals are enabled, omod is ignored.
1412     if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) ||
1413         (Op == AMDGPU::V_MUL_F16_e64 && MFI->getMode().FP64FP16OutputDenormals))
1414       return std::make_pair(nullptr, SIOutMods::NONE);
1415 
1416     const MachineOperand *RegOp = nullptr;
1417     const MachineOperand *ImmOp = nullptr;
1418     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1419     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1420     if (Src0->isImm()) {
1421       ImmOp = Src0;
1422       RegOp = Src1;
1423     } else if (Src1->isImm()) {
1424       ImmOp = Src1;
1425       RegOp = Src0;
1426     } else
1427       return std::make_pair(nullptr, SIOutMods::NONE);
1428 
1429     int OMod = getOModValue(Op, ImmOp->getImm());
1430     if (OMod == SIOutMods::NONE ||
1431         TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1432         TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1433         TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1434         TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1435       return std::make_pair(nullptr, SIOutMods::NONE);
1436 
1437     return std::make_pair(RegOp, OMod);
1438   }
1439   case AMDGPU::V_ADD_F32_e64:
1440   case AMDGPU::V_ADD_F16_e64: {
1441     // If output denormals are enabled, omod is ignored.
1442     if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) ||
1443         (Op == AMDGPU::V_ADD_F16_e64 && MFI->getMode().FP64FP16OutputDenormals))
1444       return std::make_pair(nullptr, SIOutMods::NONE);
1445 
1446     // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1447     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1448     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1449 
1450     if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1451         Src0->getSubReg() == Src1->getSubReg() &&
1452         !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1453         !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1454         !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1455         !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1456       return std::make_pair(Src0, SIOutMods::MUL2);
1457 
1458     return std::make_pair(nullptr, SIOutMods::NONE);
1459   }
1460   default:
1461     return std::make_pair(nullptr, SIOutMods::NONE);
1462   }
1463 }
1464 
1465 // FIXME: Does this need to check IEEE bit on function?
1466 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1467   const MachineOperand *RegOp;
1468   int OMod;
1469   std::tie(RegOp, OMod) = isOMod(MI);
1470   if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1471       RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1472       !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
1473     return false;
1474 
1475   MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
1476   MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1477   if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1478     return false;
1479 
1480   // Clamp is applied after omod. If the source already has clamp set, don't
1481   // fold it.
1482   if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1483     return false;
1484 
1485   LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
1486 
1487   DefOMod->setImm(OMod);
1488   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1489   MI.eraseFromParent();
1490   return true;
1491 }
1492 
1493 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
1494   if (skipFunction(MF.getFunction()))
1495     return false;
1496 
1497   MRI = &MF.getRegInfo();
1498   ST = &MF.getSubtarget<GCNSubtarget>();
1499   TII = ST->getInstrInfo();
1500   TRI = &TII->getRegisterInfo();
1501   MFI = MF.getInfo<SIMachineFunctionInfo>();
1502 
1503   // omod is ignored by hardware if IEEE bit is enabled. omod also does not
1504   // correctly handle signed zeros.
1505   //
1506   // FIXME: Also need to check strictfp
1507   bool IsIEEEMode = MFI->getMode().IEEE;
1508   bool HasNSZ = MFI->hasNoSignedZerosFPMath();
1509 
1510   for (MachineBasicBlock *MBB : depth_first(&MF)) {
1511     MachineBasicBlock::iterator I, Next;
1512 
1513     MachineOperand *CurrentKnownM0Val = nullptr;
1514     for (I = MBB->begin(); I != MBB->end(); I = Next) {
1515       Next = std::next(I);
1516       MachineInstr &MI = *I;
1517 
1518       tryFoldInst(TII, &MI);
1519 
1520       if (!TII->isFoldableCopy(MI)) {
1521         // Saw an unknown clobber of m0, so we no longer know what it is.
1522         if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
1523           CurrentKnownM0Val = nullptr;
1524 
1525         // TODO: Omod might be OK if there is NSZ only on the source
1526         // instruction, and not the omod multiply.
1527         if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
1528             !tryFoldOMod(MI))
1529           tryFoldClamp(MI);
1530 
1531         continue;
1532       }
1533 
1534       // Specially track simple redefs of m0 to the same value in a block, so we
1535       // can erase the later ones.
1536       if (MI.getOperand(0).getReg() == AMDGPU::M0) {
1537         MachineOperand &NewM0Val = MI.getOperand(1);
1538         if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) {
1539           MI.eraseFromParent();
1540           continue;
1541         }
1542 
1543         // We aren't tracking other physical registers
1544         CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ?
1545           nullptr : &NewM0Val;
1546         continue;
1547       }
1548 
1549       MachineOperand &OpToFold = MI.getOperand(1);
1550       bool FoldingImm =
1551           OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1552 
1553       // FIXME: We could also be folding things like TargetIndexes.
1554       if (!FoldingImm && !OpToFold.isReg())
1555         continue;
1556 
1557       if (OpToFold.isReg() && !OpToFold.getReg().isVirtual())
1558         continue;
1559 
1560       // Prevent folding operands backwards in the function. For example,
1561       // the COPY opcode must not be replaced by 1 in this example:
1562       //
1563       //    %3 = COPY %vgpr0; VGPR_32:%3
1564       //    ...
1565       //    %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1566       MachineOperand &Dst = MI.getOperand(0);
1567       if (Dst.isReg() && !Dst.getReg().isVirtual())
1568         continue;
1569 
1570       foldInstOperand(MI, OpToFold);
1571     }
1572   }
1573   return true;
1574 }
1575