1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "GCNSubtarget.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "SIMachineFunctionInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/ScheduleDAG.h" 19 #include "llvm/Support/TargetParser.h" 20 21 using namespace llvm; 22 23 namespace { 24 25 struct MFMAPaddingRatioParser : public cl::parser<unsigned> { 26 MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {} 27 28 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 29 if (Arg.getAsInteger(0, Value)) 30 return O.error("'" + Arg + "' value invalid for uint argument!"); 31 32 if (Value > 100) 33 return O.error("'" + Arg + "' value must be in the range [0, 100]!"); 34 35 return false; 36 } 37 }; 38 39 } // end anonymous namespace 40 41 static cl::opt<unsigned, false, MFMAPaddingRatioParser> 42 MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden, 43 cl::desc("Fill a percentage of the latency between " 44 "neighboring MFMA with s_nops.")); 45 46 //===----------------------------------------------------------------------===// 47 // Hazard Recognizer Implementation 48 //===----------------------------------------------------------------------===// 49 50 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 51 const GCNSubtarget &ST); 52 53 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 54 IsHazardRecognizerMode(false), 55 CurrCycleInstr(nullptr), 56 MF(MF), 57 ST(MF.getSubtarget<GCNSubtarget>()), 58 TII(*ST.getInstrInfo()), 59 TRI(TII.getRegisterInfo()), 60 ClauseUses(TRI.getNumRegUnits()), 61 ClauseDefs(TRI.getNumRegUnits()) { 62 MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5; 63 TSchedModel.init(&ST); 64 RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST); 65 } 66 67 void GCNHazardRecognizer::Reset() { 68 EmittedInstrs.clear(); 69 } 70 71 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 72 EmitInstruction(SU->getInstr()); 73 } 74 75 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 76 CurrCycleInstr = MI; 77 } 78 79 static bool isDivFMas(unsigned Opcode) { 80 return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64; 81 } 82 83 static bool isSGetReg(unsigned Opcode) { 84 return Opcode == AMDGPU::S_GETREG_B32; 85 } 86 87 static bool isSSetReg(unsigned Opcode) { 88 switch (Opcode) { 89 case AMDGPU::S_SETREG_B32: 90 case AMDGPU::S_SETREG_B32_mode: 91 case AMDGPU::S_SETREG_IMM32_B32: 92 case AMDGPU::S_SETREG_IMM32_B32_mode: 93 return true; 94 } 95 return false; 96 } 97 98 static bool isRWLane(unsigned Opcode) { 99 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 100 } 101 102 static bool isRFE(unsigned Opcode) { 103 return Opcode == AMDGPU::S_RFE_B64; 104 } 105 106 static bool isSMovRel(unsigned Opcode) { 107 switch (Opcode) { 108 case AMDGPU::S_MOVRELS_B32: 109 case AMDGPU::S_MOVRELS_B64: 110 case AMDGPU::S_MOVRELD_B32: 111 case AMDGPU::S_MOVRELD_B64: 112 return true; 113 default: 114 return false; 115 } 116 } 117 118 static bool isDGEMM(unsigned Opcode) { 119 return AMDGPU::getMAIIsDGEMM(Opcode); 120 } 121 122 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) { 123 unsigned Opcode = MI.getOpcode(); 124 125 if (!SIInstrInfo::isMAI(MI) || 126 isDGEMM(Opcode) || 127 Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 128 Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64) 129 return false; 130 131 if (!ST.hasGFX940Insts()) 132 return true; 133 134 return AMDGPU::getMAIIsGFX940XDL(Opcode); 135 } 136 137 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 138 const MachineInstr &MI) { 139 if (TII.isAlwaysGDS(MI.getOpcode())) 140 return true; 141 142 switch (MI.getOpcode()) { 143 case AMDGPU::S_SENDMSG: 144 case AMDGPU::S_SENDMSGHALT: 145 case AMDGPU::S_TTRACEDATA: 146 return true; 147 // These DS opcodes don't support GDS. 148 case AMDGPU::DS_NOP: 149 case AMDGPU::DS_PERMUTE_B32: 150 case AMDGPU::DS_BPERMUTE_B32: 151 return false; 152 default: 153 if (TII.isDS(MI.getOpcode())) { 154 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 155 AMDGPU::OpName::gds); 156 if (MI.getOperand(GDS).getImm()) 157 return true; 158 } 159 return false; 160 } 161 } 162 163 static bool isPermlane(const MachineInstr &MI) { 164 unsigned Opcode = MI.getOpcode(); 165 return Opcode == AMDGPU::V_PERMLANE16_B32_e64 || 166 Opcode == AMDGPU::V_PERMLANEX16_B32_e64; 167 } 168 169 static bool isLdsDma(const MachineInstr &MI) { 170 return SIInstrInfo::isVALU(MI) && 171 (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)); 172 } 173 174 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 175 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 176 AMDGPU::OpName::simm16); 177 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 178 } 179 180 ScheduleHazardRecognizer::HazardType 181 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 182 MachineInstr *MI = SU->getInstr(); 183 // If we are not in "HazardRecognizerMode" and therefore not being run from 184 // the scheduler, track possible stalls from hazards but don't insert noops. 185 auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard; 186 187 if (MI->isBundle()) 188 return NoHazard; 189 190 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 191 return HazardType; 192 193 if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) 194 return HazardType; 195 196 if (checkFPAtomicToDenormModeHazard(MI) > 0) 197 return HazardType; 198 199 if (ST.hasNoDataDepHazard()) 200 return NoHazard; 201 202 // FIXME: Should flat be considered vmem? 203 if ((SIInstrInfo::isVMEM(*MI) || 204 SIInstrInfo::isFLAT(*MI)) 205 && checkVMEMHazards(MI) > 0) 206 return HazardType; 207 208 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 209 return HazardType; 210 211 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 212 return HazardType; 213 214 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 215 return HazardType; 216 217 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 218 return HazardType; 219 220 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 221 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 222 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 223 return HazardType; 224 225 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 226 return HazardType; 227 228 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 229 return HazardType; 230 231 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 232 return HazardType; 233 234 if (((ST.hasReadM0MovRelInterpHazard() && 235 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 236 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 237 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 238 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 239 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 240 (ST.hasReadM0LdsDirectHazard() && 241 MI->readsRegister(AMDGPU::LDS_DIRECT))) && 242 checkReadM0Hazards(MI) > 0) 243 return HazardType; 244 245 if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0) 246 return HazardType; 247 248 if ((SIInstrInfo::isVMEM(*MI) || 249 SIInstrInfo::isFLAT(*MI) || 250 SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0) 251 return HazardType; 252 253 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 254 return HazardType; 255 256 return NoHazard; 257 } 258 259 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII, 260 unsigned Quantity) { 261 while (Quantity > 0) { 262 unsigned Arg = std::min(Quantity, 8u); 263 Quantity -= Arg; 264 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP)) 265 .addImm(Arg - 1); 266 } 267 } 268 269 unsigned 270 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const { 271 const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI); 272 assert(TSchedModel.getWriteProcResBegin(SC) != 273 TSchedModel.getWriteProcResEnd(SC)); 274 return TSchedModel.getWriteProcResBegin(SC)->Cycles; 275 } 276 277 void GCNHazardRecognizer::processBundle() { 278 MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator()); 279 MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); 280 // Check bundled MachineInstr's for hazards. 281 for (; MI != E && MI->isInsideBundle(); ++MI) { 282 CurrCycleInstr = &*MI; 283 unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); 284 285 if (IsHazardRecognizerMode) { 286 fixHazards(CurrCycleInstr); 287 288 insertNoopsInBundle(CurrCycleInstr, TII, WaitStates); 289 } 290 291 // It’s unnecessary to track more than MaxLookAhead instructions. Since we 292 // include the bundled MI directly after, only add a maximum of 293 // (MaxLookAhead - 1) noops to EmittedInstrs. 294 for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i) 295 EmittedInstrs.push_front(nullptr); 296 297 EmittedInstrs.push_front(CurrCycleInstr); 298 EmittedInstrs.resize(MaxLookAhead); 299 } 300 CurrCycleInstr = nullptr; 301 } 302 303 void GCNHazardRecognizer::runOnInstruction(MachineInstr *MI) { 304 assert(IsHazardRecognizerMode); 305 306 unsigned NumPreNoops = PreEmitNoops(MI); 307 EmitNoops(NumPreNoops); 308 if (MI->isInsideBundle()) 309 insertNoopsInBundle(MI, TII, NumPreNoops); 310 else 311 TII.insertNoops(*MI->getParent(), MachineBasicBlock::iterator(MI), 312 NumPreNoops); 313 EmitInstruction(MI); 314 AdvanceCycle(); 315 } 316 317 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 318 IsHazardRecognizerMode = true; 319 CurrCycleInstr = MI; 320 unsigned W = PreEmitNoopsCommon(MI); 321 fixHazards(MI); 322 CurrCycleInstr = nullptr; 323 return W; 324 } 325 326 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 327 if (MI->isBundle()) 328 return 0; 329 330 int WaitStates = 0; 331 332 if (SIInstrInfo::isSMRD(*MI)) 333 return std::max(WaitStates, checkSMRDHazards(MI)); 334 335 if (ST.hasNSAtoVMEMBug()) 336 WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI)); 337 338 WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI)); 339 340 if (ST.hasNoDataDepHazard()) 341 return WaitStates; 342 343 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 344 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 345 346 if (SIInstrInfo::isVALU(*MI)) 347 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 348 349 if (SIInstrInfo::isDPP(*MI)) 350 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 351 352 if (isDivFMas(MI->getOpcode())) 353 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 354 355 if (isRWLane(MI->getOpcode())) 356 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 357 358 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 359 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 360 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 361 WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI)); 362 363 if (MI->isInlineAsm()) 364 return std::max(WaitStates, checkInlineAsmHazards(MI)); 365 366 if (isSGetReg(MI->getOpcode())) 367 return std::max(WaitStates, checkGetRegHazards(MI)); 368 369 if (isSSetReg(MI->getOpcode())) 370 return std::max(WaitStates, checkSetRegHazards(MI)); 371 372 if (isRFE(MI->getOpcode())) 373 return std::max(WaitStates, checkRFEHazards(MI)); 374 375 if ((ST.hasReadM0MovRelInterpHazard() && 376 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 377 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 378 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 379 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 380 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 381 (ST.hasReadM0LdsDirectHazard() && MI->readsRegister(AMDGPU::LDS_DIRECT))) 382 return std::max(WaitStates, checkReadM0Hazards(MI)); 383 384 if (SIInstrInfo::isMAI(*MI)) 385 return std::max(WaitStates, checkMAIHazards(MI)); 386 387 if (SIInstrInfo::isVMEM(*MI) || 388 SIInstrInfo::isFLAT(*MI) || 389 SIInstrInfo::isDS(*MI)) 390 return std::max(WaitStates, checkMAILdStHazards(MI)); 391 392 return WaitStates; 393 } 394 395 void GCNHazardRecognizer::EmitNoop() { 396 EmittedInstrs.push_front(nullptr); 397 } 398 399 void GCNHazardRecognizer::AdvanceCycle() { 400 // When the scheduler detects a stall, it will call AdvanceCycle() without 401 // emitting any instructions. 402 if (!CurrCycleInstr) { 403 EmittedInstrs.push_front(nullptr); 404 return; 405 } 406 407 if (CurrCycleInstr->isBundle()) { 408 processBundle(); 409 return; 410 } 411 412 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 413 if (!NumWaitStates) { 414 CurrCycleInstr = nullptr; 415 return; 416 } 417 418 // Keep track of emitted instructions 419 EmittedInstrs.push_front(CurrCycleInstr); 420 421 // Add a nullptr for each additional wait state after the first. Make sure 422 // not to add more than getMaxLookAhead() items to the list, since we 423 // truncate the list to that size right after this loop. 424 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 425 i < e; ++i) { 426 EmittedInstrs.push_front(nullptr); 427 } 428 429 // getMaxLookahead() is the largest number of wait states we will ever need 430 // to insert, so there is no point in keeping track of more than that many 431 // wait states. 432 EmittedInstrs.resize(getMaxLookAhead()); 433 434 CurrCycleInstr = nullptr; 435 } 436 437 void GCNHazardRecognizer::RecedeCycle() { 438 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 439 } 440 441 //===----------------------------------------------------------------------===// 442 // Helper Functions 443 //===----------------------------------------------------------------------===// 444 445 typedef enum { HazardFound, HazardExpired, NoHazardFound } HazardFnResult; 446 447 typedef function_ref<bool(const MachineInstr &, int WaitStates)> IsExpiredFn; 448 typedef function_ref<unsigned int(const MachineInstr &)> GetNumWaitStatesFn; 449 450 // Search for a hazard in a block and its predecessors. 451 template <typename StateT> 452 static bool 453 hasHazard(StateT State, 454 function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard, 455 function_ref<void(StateT &, const MachineInstr &)> UpdateState, 456 const MachineBasicBlock *MBB, 457 MachineBasicBlock::const_reverse_instr_iterator I, 458 DenseSet<const MachineBasicBlock *> &Visited) { 459 for (auto E = MBB->instr_rend(); I != E; ++I) { 460 // No need to look at parent BUNDLE instructions. 461 if (I->isBundle()) 462 continue; 463 464 switch (IsHazard(State, *I)) { 465 case HazardFound: 466 return true; 467 case HazardExpired: 468 return false; 469 default: 470 // Continue search 471 break; 472 } 473 474 if (I->isInlineAsm() || I->isMetaInstruction()) 475 continue; 476 477 UpdateState(State, *I); 478 } 479 480 for (MachineBasicBlock *Pred : MBB->predecessors()) { 481 if (!Visited.insert(Pred).second) 482 continue; 483 484 if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(), 485 Visited)) 486 return true; 487 } 488 489 return false; 490 } 491 492 // Returns a minimum wait states since \p I walking all predecessors. 493 // Only scans until \p IsExpired does not return true. 494 // Can only be run in a hazard recognizer mode. 495 static int getWaitStatesSince( 496 GCNHazardRecognizer::IsHazardFn IsHazard, const MachineBasicBlock *MBB, 497 MachineBasicBlock::const_reverse_instr_iterator I, int WaitStates, 498 IsExpiredFn IsExpired, DenseSet<const MachineBasicBlock *> &Visited, 499 GetNumWaitStatesFn GetNumWaitStates = SIInstrInfo::getNumWaitStates) { 500 for (auto E = MBB->instr_rend(); I != E; ++I) { 501 // Don't add WaitStates for parent BUNDLE instructions. 502 if (I->isBundle()) 503 continue; 504 505 if (IsHazard(*I)) 506 return WaitStates; 507 508 if (I->isInlineAsm()) 509 continue; 510 511 WaitStates += GetNumWaitStates(*I); 512 513 if (IsExpired(*I, WaitStates)) 514 return std::numeric_limits<int>::max(); 515 } 516 517 int MinWaitStates = std::numeric_limits<int>::max(); 518 for (MachineBasicBlock *Pred : MBB->predecessors()) { 519 if (!Visited.insert(Pred).second) 520 continue; 521 522 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), WaitStates, 523 IsExpired, Visited, GetNumWaitStates); 524 525 MinWaitStates = std::min(MinWaitStates, W); 526 } 527 528 return MinWaitStates; 529 } 530 531 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 532 const MachineInstr *MI, IsExpiredFn IsExpired) { 533 DenseSet<const MachineBasicBlock *> Visited; 534 return getWaitStatesSince(IsHazard, MI->getParent(), 535 std::next(MI->getReverseIterator()), 536 0, IsExpired, Visited); 537 } 538 539 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 540 if (IsHazardRecognizerMode) { 541 auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) { 542 return WaitStates >= Limit; 543 }; 544 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 545 } 546 547 int WaitStates = 0; 548 for (MachineInstr *MI : EmittedInstrs) { 549 if (MI) { 550 if (IsHazard(*MI)) 551 return WaitStates; 552 553 if (MI->isInlineAsm()) 554 continue; 555 } 556 ++WaitStates; 557 558 if (WaitStates >= Limit) 559 break; 560 } 561 return std::numeric_limits<int>::max(); 562 } 563 564 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 565 IsHazardFn IsHazardDef, 566 int Limit) { 567 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 568 569 auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) { 570 return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI); 571 }; 572 573 return getWaitStatesSince(IsHazardFn, Limit); 574 } 575 576 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 577 int Limit) { 578 auto IsHazardFn = [IsHazard](const MachineInstr &MI) { 579 return isSSetReg(MI.getOpcode()) && IsHazard(MI); 580 }; 581 582 return getWaitStatesSince(IsHazardFn, Limit); 583 } 584 585 //===----------------------------------------------------------------------===// 586 // No-op Hazard Detection 587 //===----------------------------------------------------------------------===// 588 589 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV, 590 MCRegister Reg) { 591 for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI) 592 BV.set(*RUI); 593 } 594 595 static void addRegsToSet(const SIRegisterInfo &TRI, 596 iterator_range<MachineInstr::const_mop_iterator> Ops, 597 BitVector &Set) { 598 for (const MachineOperand &Op : Ops) { 599 if (Op.isReg()) 600 addRegUnits(TRI, Set, Op.getReg().asMCReg()); 601 } 602 } 603 604 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 605 // XXX: Do we need to worry about implicit operands 606 addRegsToSet(TRI, MI.defs(), ClauseDefs); 607 addRegsToSet(TRI, MI.uses(), ClauseUses); 608 } 609 610 static bool breaksSMEMSoftClause(MachineInstr *MI) { 611 return !SIInstrInfo::isSMRD(*MI); 612 } 613 614 static bool breaksVMEMSoftClause(MachineInstr *MI) { 615 return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI); 616 } 617 618 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 619 // SMEM soft clause are only present on VI+, and only matter if xnack is 620 // enabled. 621 if (!ST.isXNACKEnabled()) 622 return 0; 623 624 bool IsSMRD = TII.isSMRD(*MEM); 625 626 resetClause(); 627 628 // A soft-clause is any group of consecutive SMEM instructions. The 629 // instructions in this group may return out of order and/or may be 630 // replayed (i.e. the same instruction issued more than once). 631 // 632 // In order to handle these situations correctly we need to make sure that 633 // when a clause has more than one instruction, no instruction in the clause 634 // writes to a register that is read by another instruction in the clause 635 // (including itself). If we encounter this situation, we need to break the 636 // clause by inserting a non SMEM instruction. 637 638 for (MachineInstr *MI : EmittedInstrs) { 639 // When we hit a non-SMEM instruction then we have passed the start of the 640 // clause and we can stop. 641 if (!MI) 642 break; 643 644 if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI)) 645 break; 646 647 addClauseInst(*MI); 648 } 649 650 if (ClauseDefs.none()) 651 return 0; 652 653 // We need to make sure not to put loads and stores in the same clause if they 654 // use the same address. For now, just start a new clause whenever we see a 655 // store. 656 if (MEM->mayStore()) 657 return 1; 658 659 addClauseInst(*MEM); 660 661 // If the set of defs and uses intersect then we cannot add this instruction 662 // to the clause, so we have a hazard. 663 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 664 } 665 666 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 667 int WaitStatesNeeded = 0; 668 669 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 670 671 // This SMRD hazard only affects SI. 672 if (!ST.hasSMRDReadVALUDefHazard()) 673 return WaitStatesNeeded; 674 675 // A read of an SGPR by SMRD instruction requires 4 wait states when the 676 // SGPR was written by a VALU instruction. 677 int SmrdSgprWaitStates = 4; 678 auto IsHazardDefFn = [this](const MachineInstr &MI) { 679 return TII.isVALU(MI); 680 }; 681 auto IsBufferHazardDefFn = [this](const MachineInstr &MI) { 682 return TII.isSALU(MI); 683 }; 684 685 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 686 687 for (const MachineOperand &Use : SMRD->uses()) { 688 if (!Use.isReg()) 689 continue; 690 int WaitStatesNeededForUse = 691 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 692 SmrdSgprWaitStates); 693 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 694 695 // This fixes what appears to be undocumented hardware behavior in SI where 696 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 697 // needs some number of nops in between. We don't know how many we need, but 698 // let's use 4. This wasn't discovered before probably because the only 699 // case when this happens is when we expand a 64-bit pointer into a full 700 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 701 // probably never encountered in the closed-source land. 702 if (IsBufferSMRD) { 703 int WaitStatesNeededForUse = 704 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 705 IsBufferHazardDefFn, 706 SmrdSgprWaitStates); 707 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 708 } 709 } 710 711 return WaitStatesNeeded; 712 } 713 714 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 715 if (!ST.hasVMEMReadSGPRVALUDefHazard()) 716 return 0; 717 718 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 719 720 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 721 // SGPR was written by a VALU Instruction. 722 const int VmemSgprWaitStates = 5; 723 auto IsHazardDefFn = [this](const MachineInstr &MI) { 724 return TII.isVALU(MI); 725 }; 726 for (const MachineOperand &Use : VMEM->uses()) { 727 if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg())) 728 continue; 729 730 int WaitStatesNeededForUse = 731 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 732 VmemSgprWaitStates); 733 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 734 } 735 return WaitStatesNeeded; 736 } 737 738 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 739 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 740 const SIInstrInfo *TII = ST.getInstrInfo(); 741 742 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 743 int DppVgprWaitStates = 2; 744 int DppExecWaitStates = 5; 745 int WaitStatesNeeded = 0; 746 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 747 return TII->isVALU(MI); 748 }; 749 750 for (const MachineOperand &Use : DPP->uses()) { 751 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 752 continue; 753 int WaitStatesNeededForUse = 754 DppVgprWaitStates - getWaitStatesSinceDef( 755 Use.getReg(), 756 [](const MachineInstr &) { return true; }, 757 DppVgprWaitStates); 758 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 759 } 760 761 WaitStatesNeeded = std::max( 762 WaitStatesNeeded, 763 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 764 DppExecWaitStates)); 765 766 return WaitStatesNeeded; 767 } 768 769 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 770 const SIInstrInfo *TII = ST.getInstrInfo(); 771 772 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 773 // instruction. 774 const int DivFMasWaitStates = 4; 775 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 776 return TII->isVALU(MI); 777 }; 778 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 779 DivFMasWaitStates); 780 781 return DivFMasWaitStates - WaitStatesNeeded; 782 } 783 784 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 785 const SIInstrInfo *TII = ST.getInstrInfo(); 786 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 787 788 const int GetRegWaitStates = 2; 789 auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) { 790 return GetRegHWReg == getHWReg(TII, MI); 791 }; 792 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 793 794 return GetRegWaitStates - WaitStatesNeeded; 795 } 796 797 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 798 const SIInstrInfo *TII = ST.getInstrInfo(); 799 unsigned HWReg = getHWReg(TII, *SetRegInstr); 800 801 const int SetRegWaitStates = ST.getSetRegWaitStates(); 802 auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) { 803 return HWReg == getHWReg(TII, MI); 804 }; 805 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 806 return SetRegWaitStates - WaitStatesNeeded; 807 } 808 809 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 810 if (!MI.mayStore()) 811 return -1; 812 813 const SIInstrInfo *TII = ST.getInstrInfo(); 814 unsigned Opcode = MI.getOpcode(); 815 const MCInstrDesc &Desc = MI.getDesc(); 816 817 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 818 int VDataRCID = -1; 819 if (VDataIdx != -1) 820 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 821 822 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 823 // There is no hazard if the instruction does not use vector regs 824 // (like wbinvl1) 825 if (VDataIdx == -1) 826 return -1; 827 // For MUBUF/MTBUF instructions this hazard only exists if the 828 // instruction is not using a register in the soffset field. 829 const MachineOperand *SOffset = 830 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 831 // If we have no soffset operand, then assume this field has been 832 // hardcoded to zero. 833 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 834 (!SOffset || !SOffset->isReg())) 835 return VDataIdx; 836 } 837 838 // MIMG instructions create a hazard if they don't use a 256-bit T# and 839 // the store size is greater than 8 bytes and they have more than two bits 840 // of their dmask set. 841 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 842 if (TII->isMIMG(MI)) { 843 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 844 assert(SRsrcIdx != -1 && 845 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 846 (void)SRsrcIdx; 847 } 848 849 if (TII->isFLAT(MI)) { 850 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 851 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 852 return DataIdx; 853 } 854 855 return -1; 856 } 857 858 int 859 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 860 const MachineRegisterInfo &MRI) { 861 // Helper to check for the hazard where VMEM instructions that store more than 862 // 8 bytes can have there store data over written by the next instruction. 863 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 864 865 const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1; 866 int WaitStatesNeeded = 0; 867 868 if (!TRI->isVectorRegister(MRI, Def.getReg())) 869 return WaitStatesNeeded; 870 Register Reg = Def.getReg(); 871 auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) { 872 int DataIdx = createsVALUHazard(MI); 873 return DataIdx >= 0 && 874 TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg); 875 }; 876 int WaitStatesNeededForDef = 877 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 878 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 879 880 return WaitStatesNeeded; 881 } 882 883 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 884 int WaitStatesNeeded = 0; 885 886 if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) { 887 const int TransDefWaitstates = 1; 888 889 auto IsTransDefFn = [this, VALU](const MachineInstr &MI) { 890 if (!SIInstrInfo::isTRANS(MI)) 891 return false; 892 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 893 const SIInstrInfo *TII = ST.getInstrInfo(); 894 Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg(); 895 896 for (const MachineOperand &Use : VALU->explicit_uses()) { 897 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 898 return true; 899 } 900 901 return false; 902 }; 903 904 int WaitStatesNeededForDef = 905 TransDefWaitstates - 906 getWaitStatesSince(IsTransDefFn, TransDefWaitstates); 907 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 908 } 909 910 if (ST.hasDstSelForwardingHazard()) { 911 const int Shift16DefWaitstates = 1; 912 913 auto IsShift16BitDefFn = [this, VALU](const MachineInstr &MI) { 914 if (!SIInstrInfo::isVALU(MI)) 915 return false; 916 const SIInstrInfo *TII = ST.getInstrInfo(); 917 if (SIInstrInfo::isSDWA(MI)) { 918 if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel)) 919 if (DstSel->getImm() == AMDGPU::SDWA::DWORD) 920 return false; 921 } else { 922 if ((AMDGPU::getNamedOperandIdx(MI.getOpcode(), 923 AMDGPU::OpName::op_sel) == -1) || 924 !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers) 925 ->getImm() & 926 SISrcMods::DST_OP_SEL)) 927 return false; 928 } 929 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 930 if (auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) { 931 Register Def = Dst->getReg(); 932 933 for (const MachineOperand &Use : VALU->explicit_uses()) { 934 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 935 return true; 936 } 937 } 938 939 return false; 940 }; 941 942 int WaitStatesNeededForDef = 943 Shift16DefWaitstates - 944 getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates); 945 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 946 } 947 948 if (ST.hasVDecCoExecHazard()) { 949 const int VALUWriteSGPRVALUReadWaitstates = 2; 950 const int VALUWriteEXECRWLane = 4; 951 const int VALUWriteVGPRReadlaneRead = 1; 952 953 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 954 const MachineRegisterInfo &MRI = MF.getRegInfo(); 955 Register UseReg; 956 auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) { 957 if (!SIInstrInfo::isVALU(MI)) 958 return false; 959 return MI.modifiesRegister(UseReg, TRI); 960 }; 961 962 for (const MachineOperand &Use : VALU->explicit_uses()) { 963 if (!Use.isReg()) 964 continue; 965 966 UseReg = Use.getReg(); 967 if (TRI->isSGPRReg(MRI, UseReg)) { 968 int WaitStatesNeededForDef = 969 VALUWriteSGPRVALUReadWaitstates - 970 getWaitStatesSince(IsVALUDefSGPRFn, 971 VALUWriteSGPRVALUReadWaitstates); 972 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 973 } 974 } 975 976 if (VALU->readsRegister(AMDGPU::VCC, TRI)) { 977 UseReg = AMDGPU::VCC; 978 int WaitStatesNeededForDef = 979 VALUWriteSGPRVALUReadWaitstates - 980 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates); 981 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 982 } 983 984 switch (VALU->getOpcode()) { 985 case AMDGPU::V_READLANE_B32: 986 case AMDGPU::V_READFIRSTLANE_B32: { 987 MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0); 988 UseReg = Src->getReg(); 989 int WaitStatesNeededForDef = 990 VALUWriteVGPRReadlaneRead - 991 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead); 992 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 993 } 994 [[fallthrough]]; 995 case AMDGPU::V_WRITELANE_B32: { 996 UseReg = AMDGPU::EXEC; 997 int WaitStatesNeededForDef = 998 VALUWriteEXECRWLane - 999 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane); 1000 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 1001 break; 1002 } 1003 default: 1004 break; 1005 } 1006 } 1007 1008 // This checks for the hazard where VMEM instructions that store more than 1009 // 8 bytes can have there store data over written by the next instruction. 1010 if (!ST.has12DWordStoreHazard()) 1011 return WaitStatesNeeded; 1012 1013 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1014 1015 for (const MachineOperand &Def : VALU->defs()) { 1016 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 1017 } 1018 1019 return WaitStatesNeeded; 1020 } 1021 1022 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 1023 // This checks for hazards associated with inline asm statements. 1024 // Since inline asms can contain just about anything, we use this 1025 // to call/leverage other check*Hazard routines. Note that 1026 // this function doesn't attempt to address all possible inline asm 1027 // hazards (good luck), but is a collection of what has been 1028 // problematic thus far. 1029 1030 // see checkVALUHazards() 1031 if (!ST.has12DWordStoreHazard()) 1032 return 0; 1033 1034 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1035 int WaitStatesNeeded = 0; 1036 1037 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands(); 1038 I != E; ++I) { 1039 const MachineOperand &Op = IA->getOperand(I); 1040 if (Op.isReg() && Op.isDef()) { 1041 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 1042 } 1043 } 1044 1045 return WaitStatesNeeded; 1046 } 1047 1048 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 1049 const SIInstrInfo *TII = ST.getInstrInfo(); 1050 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1051 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1052 1053 const MachineOperand *LaneSelectOp = 1054 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 1055 1056 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 1057 return 0; 1058 1059 Register LaneSelectReg = LaneSelectOp->getReg(); 1060 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); }; 1061 1062 const int RWLaneWaitStates = 4; 1063 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 1064 RWLaneWaitStates); 1065 return RWLaneWaitStates - WaitStatesSince; 1066 } 1067 1068 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 1069 if (!ST.hasRFEHazards()) 1070 return 0; 1071 1072 const SIInstrInfo *TII = ST.getInstrInfo(); 1073 1074 const int RFEWaitStates = 1; 1075 1076 auto IsHazardFn = [TII](const MachineInstr &MI) { 1077 return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS; 1078 }; 1079 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 1080 return RFEWaitStates - WaitStatesNeeded; 1081 } 1082 1083 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 1084 const SIInstrInfo *TII = ST.getInstrInfo(); 1085 const int ReadM0WaitStates = 1; 1086 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); }; 1087 return ReadM0WaitStates - 1088 getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, ReadM0WaitStates); 1089 } 1090 1091 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { 1092 fixVMEMtoScalarWriteHazards(MI); 1093 fixVcmpxPermlaneHazards(MI); 1094 fixSMEMtoVectorWriteHazards(MI); 1095 fixVcmpxExecWARHazard(MI); 1096 fixLdsBranchVmemWARHazard(MI); 1097 if (ST.hasLdsDirect()) { 1098 fixLdsDirectVALUHazard(MI); 1099 fixLdsDirectVMEMHazard(MI); 1100 } 1101 fixVALUPartialForwardingHazard(MI); 1102 fixVALUTransUseHazard(MI); 1103 fixWMMAHazards(MI); 1104 fixShift64HighRegBug(MI); 1105 } 1106 1107 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) { 1108 if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI)) 1109 return false; 1110 1111 const SIInstrInfo *TII = ST.getInstrInfo(); 1112 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1113 auto IsHazardFn = [TII, TRI](const MachineInstr &MI) { 1114 return (TII->isVOPC(MI) || 1115 ((TII->isVOP3(MI) || TII->isSDWA(MI)) && MI.isCompare())) && 1116 MI.modifiesRegister(AMDGPU::EXEC, TRI); 1117 }; 1118 1119 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1120 unsigned Opc = MI.getOpcode(); 1121 return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 && 1122 Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa; 1123 }; 1124 1125 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1126 std::numeric_limits<int>::max()) 1127 return false; 1128 1129 // V_NOP will be discarded by SQ. 1130 // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE* 1131 // which is always a VGPR and available. 1132 auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1133 Register Reg = Src0->getReg(); 1134 bool IsUndef = Src0->isUndef(); 1135 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1136 TII->get(AMDGPU::V_MOV_B32_e32)) 1137 .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0)) 1138 .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill); 1139 1140 return true; 1141 } 1142 1143 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { 1144 if (!ST.hasVMEMtoScalarWriteHazard()) 1145 return false; 1146 1147 if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI)) 1148 return false; 1149 1150 if (MI->getNumDefs() == 0) 1151 return false; 1152 1153 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1154 1155 auto IsHazardFn = [TRI, MI](const MachineInstr &I) { 1156 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) && 1157 !SIInstrInfo::isFLAT(I)) 1158 return false; 1159 1160 for (const MachineOperand &Def : MI->defs()) { 1161 const MachineOperand *Op = 1162 I.findRegisterUseOperand(Def.getReg(), false, TRI); 1163 if (!Op) 1164 continue; 1165 return true; 1166 } 1167 return false; 1168 }; 1169 1170 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1171 return SIInstrInfo::isVALU(MI) || 1172 (MI.getOpcode() == AMDGPU::S_WAITCNT && 1173 !MI.getOperand(0).getImm()) || 1174 (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1175 MI.getOperand(0).getImm() == 0xffe3); 1176 }; 1177 1178 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1179 std::numeric_limits<int>::max()) 1180 return false; 1181 1182 const SIInstrInfo *TII = ST.getInstrInfo(); 1183 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1184 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1185 .addImm(0xffe3); 1186 return true; 1187 } 1188 1189 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { 1190 if (!ST.hasSMEMtoVectorWriteHazard()) 1191 return false; 1192 1193 if (!SIInstrInfo::isVALU(*MI)) 1194 return false; 1195 1196 unsigned SDSTName; 1197 switch (MI->getOpcode()) { 1198 case AMDGPU::V_READLANE_B32: 1199 case AMDGPU::V_READFIRSTLANE_B32: 1200 SDSTName = AMDGPU::OpName::vdst; 1201 break; 1202 default: 1203 SDSTName = AMDGPU::OpName::sdst; 1204 break; 1205 } 1206 1207 const SIInstrInfo *TII = ST.getInstrInfo(); 1208 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1209 const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU()); 1210 const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName); 1211 if (!SDST) { 1212 for (const auto &MO : MI->implicit_operands()) { 1213 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) { 1214 SDST = &MO; 1215 break; 1216 } 1217 } 1218 } 1219 1220 if (!SDST) 1221 return false; 1222 1223 const Register SDSTReg = SDST->getReg(); 1224 auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) { 1225 return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI); 1226 }; 1227 1228 auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) { 1229 if (TII->isSALU(MI)) { 1230 switch (MI.getOpcode()) { 1231 case AMDGPU::S_SETVSKIP: 1232 case AMDGPU::S_VERSION: 1233 case AMDGPU::S_WAITCNT_VSCNT: 1234 case AMDGPU::S_WAITCNT_VMCNT: 1235 case AMDGPU::S_WAITCNT_EXPCNT: 1236 // These instructions cannot not mitigate the hazard. 1237 return false; 1238 case AMDGPU::S_WAITCNT_LGKMCNT: 1239 // Reducing lgkmcnt count to 0 always mitigates the hazard. 1240 return (MI.getOperand(1).getImm() == 0) && 1241 (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1242 case AMDGPU::S_WAITCNT: { 1243 const int64_t Imm = MI.getOperand(0).getImm(); 1244 AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm); 1245 return (Decoded.LgkmCnt == 0); 1246 } 1247 default: 1248 // SOPP instructions cannot mitigate the hazard. 1249 if (TII->isSOPP(MI)) 1250 return false; 1251 // At this point the SALU can be assumed to mitigate the hazard 1252 // because either: 1253 // (a) it is independent of the at risk SMEM (breaking chain), 1254 // or 1255 // (b) it is dependent on the SMEM, in which case an appropriate 1256 // s_waitcnt lgkmcnt _must_ exist between it and the at risk 1257 // SMEM instruction. 1258 return true; 1259 } 1260 } 1261 return false; 1262 }; 1263 1264 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1265 std::numeric_limits<int>::max()) 1266 return false; 1267 1268 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1269 TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL) 1270 .addImm(0); 1271 return true; 1272 } 1273 1274 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { 1275 if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI)) 1276 return false; 1277 1278 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1279 if (!MI->modifiesRegister(AMDGPU::EXEC, TRI)) 1280 return false; 1281 1282 auto IsHazardFn = [TRI](const MachineInstr &I) { 1283 if (SIInstrInfo::isVALU(I)) 1284 return false; 1285 return I.readsRegister(AMDGPU::EXEC, TRI); 1286 }; 1287 1288 const SIInstrInfo *TII = ST.getInstrInfo(); 1289 auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) { 1290 if (SIInstrInfo::isVALU(MI)) { 1291 if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst)) 1292 return true; 1293 for (auto MO : MI.implicit_operands()) 1294 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) 1295 return true; 1296 } 1297 if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1298 (MI.getOperand(0).getImm() & 0xfffe) == 0xfffe) 1299 return true; 1300 return false; 1301 }; 1302 1303 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1304 std::numeric_limits<int>::max()) 1305 return false; 1306 1307 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1308 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1309 .addImm(0xfffe); 1310 return true; 1311 } 1312 1313 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 1314 const GCNSubtarget &ST) { 1315 if (!ST.hasLdsBranchVmemWARHazard()) 1316 return false; 1317 1318 // Check if the necessary condition for the hazard is met: both LDS and VMEM 1319 // instructions need to appear in the same function. 1320 bool HasLds = false; 1321 bool HasVmem = false; 1322 for (auto &MBB : MF) { 1323 for (auto &MI : MBB) { 1324 HasLds |= SIInstrInfo::isDS(MI); 1325 HasVmem |= 1326 SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI); 1327 if (HasLds && HasVmem) 1328 return true; 1329 } 1330 } 1331 return false; 1332 } 1333 1334 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { 1335 if (!RunLdsBranchVmemWARHazardFixup) 1336 return false; 1337 1338 assert(ST.hasLdsBranchVmemWARHazard()); 1339 1340 auto IsHazardInst = [](const MachineInstr &MI) { 1341 if (SIInstrInfo::isDS(MI)) 1342 return 1; 1343 if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI)) 1344 return 2; 1345 return 0; 1346 }; 1347 1348 auto InstType = IsHazardInst(*MI); 1349 if (!InstType) 1350 return false; 1351 1352 auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) { 1353 return IsHazardInst(I) || (I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1354 I.getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1355 !I.getOperand(1).getImm()); 1356 }; 1357 1358 auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) { 1359 if (!I.isBranch()) 1360 return false; 1361 1362 auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) { 1363 auto InstType2 = IsHazardInst(I); 1364 return InstType2 && InstType != InstType2; 1365 }; 1366 1367 auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) { 1368 auto InstType2 = IsHazardInst(I); 1369 if (InstType == InstType2) 1370 return true; 1371 1372 return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1373 I.getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1374 !I.getOperand(1).getImm(); 1375 }; 1376 1377 return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) != 1378 std::numeric_limits<int>::max(); 1379 }; 1380 1381 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1382 std::numeric_limits<int>::max()) 1383 return false; 1384 1385 const SIInstrInfo *TII = ST.getInstrInfo(); 1386 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1387 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1388 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1389 .addImm(0); 1390 1391 return true; 1392 } 1393 1394 bool GCNHazardRecognizer::fixLdsDirectVALUHazard(MachineInstr *MI) { 1395 if (!SIInstrInfo::isLDSDIR(*MI)) 1396 return false; 1397 1398 const int NoHazardWaitStates = 15; 1399 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1400 const Register VDSTReg = VDST->getReg(); 1401 1402 bool VisitedTrans = false; 1403 auto IsHazardFn = [this, VDSTReg, &VisitedTrans](const MachineInstr &I) { 1404 if (!SIInstrInfo::isVALU(I)) 1405 return false; 1406 VisitedTrans = VisitedTrans || SIInstrInfo::isTRANS(I); 1407 // Cover both WAR and WAW 1408 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1409 }; 1410 auto IsExpiredFn = [&](const MachineInstr &I, int WaitStates) { 1411 if (WaitStates >= NoHazardWaitStates) 1412 return true; 1413 // Instructions which cause va_vdst==0 expire hazard 1414 return SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1415 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I); 1416 }; 1417 auto GetWaitStatesFn = [](const MachineInstr &MI) { 1418 return SIInstrInfo::isVALU(MI) ? 1 : 0; 1419 }; 1420 1421 DenseSet<const MachineBasicBlock *> Visited; 1422 auto Count = ::getWaitStatesSince(IsHazardFn, MI->getParent(), 1423 std::next(MI->getReverseIterator()), 0, 1424 IsExpiredFn, Visited, GetWaitStatesFn); 1425 1426 // Transcendentals can execute in parallel to other VALUs. 1427 // This makes va_vdst count unusable with a mixture of VALU and TRANS. 1428 if (VisitedTrans) 1429 Count = 0; 1430 1431 MachineOperand *WaitVdstOp = 1432 TII.getNamedOperand(*MI, AMDGPU::OpName::waitvdst); 1433 WaitVdstOp->setImm(std::min(Count, NoHazardWaitStates)); 1434 1435 return true; 1436 } 1437 1438 bool GCNHazardRecognizer::fixLdsDirectVMEMHazard(MachineInstr *MI) { 1439 if (!SIInstrInfo::isLDSDIR(*MI)) 1440 return false; 1441 1442 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1443 const Register VDSTReg = VDST->getReg(); 1444 1445 auto IsHazardFn = [this, VDSTReg](const MachineInstr &I) { 1446 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I) && 1447 !SIInstrInfo::isDS(I)) 1448 return false; 1449 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1450 }; 1451 auto IsExpiredFn = [](const MachineInstr &I, int) { 1452 return SIInstrInfo::isVALU(I) || SIInstrInfo::isEXP(I) || 1453 (I.getOpcode() == AMDGPU::S_WAITCNT && !I.getOperand(0).getImm()) || 1454 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1455 I.getOperand(0).getImm() == 0xffe3); 1456 }; 1457 1458 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1459 std::numeric_limits<int>::max()) 1460 return false; 1461 1462 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1463 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1464 .addImm(0xffe3); 1465 1466 return true; 1467 } 1468 1469 bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) { 1470 if (!ST.isWave64()) 1471 return false; 1472 if (!ST.hasVALUPartialForwardingHazard()) 1473 return false; 1474 if (!SIInstrInfo::isVALU(*MI)) 1475 return false; 1476 1477 SmallSetVector<Register, 4> SrcVGPRs; 1478 1479 for (const MachineOperand &Use : MI->explicit_uses()) { 1480 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1481 SrcVGPRs.insert(Use.getReg()); 1482 } 1483 1484 // Only applies with >= 2 unique VGPR sources 1485 if (SrcVGPRs.size() <= 1) 1486 return false; 1487 1488 // Look for the following pattern: 1489 // Va <- VALU [PreExecPos] 1490 // intv1 1491 // Exec <- SALU [ExecPos] 1492 // intv2 1493 // Vb <- VALU [PostExecPos] 1494 // intv3 1495 // MI Va, Vb (WaitState = 0) 1496 // 1497 // Where: 1498 // intv1 + intv2 <= 2 VALUs 1499 // intv3 <= 4 VALUs 1500 // 1501 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1502 1503 const int Intv1plus2MaxVALUs = 2; 1504 const int Intv3MaxVALUs = 4; 1505 const int IntvMaxVALUs = 6; 1506 const int NoHazardVALUWaitStates = IntvMaxVALUs + 2; 1507 1508 struct StateType { 1509 SmallDenseMap<Register, int, 4> DefPos; 1510 int ExecPos = std::numeric_limits<int>::max(); 1511 int VALUs = 0; 1512 }; 1513 1514 StateType State; 1515 1516 // This overloads expiry testing with all the hazard detection 1517 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1518 // Too many VALU states have passed 1519 if (State.VALUs > NoHazardVALUWaitStates) 1520 return HazardExpired; 1521 1522 // Instructions which cause va_vdst==0 expire hazard 1523 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1524 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1525 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1526 I.getOperand(0).getImm() == 0x0fff)) 1527 return HazardExpired; 1528 1529 // Track registers writes 1530 bool Changed = false; 1531 if (SIInstrInfo::isVALU(I)) { 1532 for (Register Src : SrcVGPRs) { 1533 if (!State.DefPos.count(Src) && I.modifiesRegister(Src, &TRI)) { 1534 State.DefPos[Src] = State.VALUs; 1535 Changed = true; 1536 } 1537 } 1538 } else if (SIInstrInfo::isSALU(I)) { 1539 if (State.ExecPos == std::numeric_limits<int>::max()) { 1540 if (!State.DefPos.empty() && I.modifiesRegister(AMDGPU::EXEC, &TRI)) { 1541 State.ExecPos = State.VALUs; 1542 Changed = true; 1543 } 1544 } 1545 } 1546 1547 // Early expiration: too many VALUs in intv3 1548 if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty()) 1549 return HazardExpired; 1550 1551 // Only evaluate state if something changed 1552 if (!Changed) 1553 return NoHazardFound; 1554 1555 // Determine positions of VALUs pre/post exec change 1556 if (State.ExecPos == std::numeric_limits<int>::max()) 1557 return NoHazardFound; 1558 1559 int PreExecPos = std::numeric_limits<int>::max(); 1560 int PostExecPos = std::numeric_limits<int>::max(); 1561 1562 for (auto Entry : State.DefPos) { 1563 int DefVALUs = Entry.second; 1564 if (DefVALUs != std::numeric_limits<int>::max()) { 1565 if (DefVALUs >= State.ExecPos) 1566 PreExecPos = std::min(PreExecPos, DefVALUs); 1567 else if (DefVALUs < State.ExecPos) 1568 PostExecPos = std::min(PostExecPos, DefVALUs); 1569 } 1570 } 1571 1572 // Need a VALUs post exec change 1573 if (PostExecPos == std::numeric_limits<int>::max()) 1574 return NoHazardFound; 1575 1576 // Too many VALUs in intv3? 1577 int Intv3VALUs = PostExecPos; 1578 if (Intv3VALUs > Intv3MaxVALUs) 1579 return HazardExpired; 1580 1581 // Too many VALUs in intv2? 1582 int Intv2VALUs = (State.ExecPos - PostExecPos) - 1; 1583 if (Intv2VALUs > Intv1plus2MaxVALUs) 1584 return HazardExpired; 1585 1586 // Need a VALUs pre exec change 1587 if (PreExecPos == std::numeric_limits<int>::max()) 1588 return NoHazardFound; 1589 1590 // Too many VALUs in intv1? 1591 int Intv1VALUs = PreExecPos - State.ExecPos; 1592 if (Intv1VALUs > Intv1plus2MaxVALUs) 1593 return HazardExpired; 1594 1595 // Too many VALUs in intv1 + intv2 1596 if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs) 1597 return HazardExpired; 1598 1599 return HazardFound; 1600 }; 1601 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1602 if (SIInstrInfo::isVALU(MI)) 1603 State.VALUs += 1; 1604 }; 1605 1606 DenseSet<const MachineBasicBlock *> Visited; 1607 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1608 std::next(MI->getReverseIterator()), Visited)) 1609 return false; 1610 1611 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1612 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1613 .addImm(0x0fff); 1614 1615 return true; 1616 } 1617 1618 bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) { 1619 if (!ST.hasVALUTransUseHazard()) 1620 return false; 1621 if (!SIInstrInfo::isVALU(*MI)) 1622 return false; 1623 1624 SmallSet<Register, 4> SrcVGPRs; 1625 1626 for (const MachineOperand &Use : MI->explicit_uses()) { 1627 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1628 SrcVGPRs.insert(Use.getReg()); 1629 } 1630 1631 // Look for the following pattern: 1632 // Va <- TRANS VALU 1633 // intv 1634 // MI Va (WaitState = 0) 1635 // 1636 // Where: 1637 // intv <= 5 VALUs / 1 TRANS 1638 // 1639 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1640 1641 const int IntvMaxVALUs = 5; 1642 const int IntvMaxTRANS = 1; 1643 1644 struct StateType { 1645 int VALUs = 0; 1646 int TRANS = 0; 1647 }; 1648 1649 StateType State; 1650 1651 // This overloads expiry testing with all the hazard detection 1652 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1653 // Too many VALU states have passed 1654 if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS) 1655 return HazardExpired; 1656 1657 // Instructions which cause va_vdst==0 expire hazard 1658 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1659 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1660 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1661 I.getOperand(0).getImm() == 0x0fff)) 1662 return HazardExpired; 1663 1664 // Track registers writes 1665 if (SIInstrInfo::isTRANS(I)) { 1666 for (Register Src : SrcVGPRs) { 1667 if (I.modifiesRegister(Src, &TRI)) { 1668 return HazardFound; 1669 } 1670 } 1671 } 1672 1673 return NoHazardFound; 1674 }; 1675 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1676 if (SIInstrInfo::isVALU(MI)) 1677 State.VALUs += 1; 1678 if (SIInstrInfo::isTRANS(MI)) 1679 State.TRANS += 1; 1680 }; 1681 1682 DenseSet<const MachineBasicBlock *> Visited; 1683 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1684 std::next(MI->getReverseIterator()), Visited)) 1685 return false; 1686 1687 // Hazard is observed - insert a wait on va_dst counter to ensure hazard is 1688 // avoided (mask 0x0fff achieves this). 1689 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1690 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1691 .addImm(0x0fff); 1692 1693 return true; 1694 } 1695 1696 bool GCNHazardRecognizer::fixWMMAHazards(MachineInstr *MI) { 1697 if (!SIInstrInfo::isWMMA(*MI)) 1698 return false; 1699 1700 const SIInstrInfo *TII = ST.getInstrInfo(); 1701 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1702 1703 auto IsHazardFn = [MI, TII, TRI](const MachineInstr &I) { 1704 if (!SIInstrInfo::isWMMA(I)) 1705 return false; 1706 1707 // Src0 or Src1 of the current wmma instruction overlaps with the dest of 1708 // the previous wmma. 1709 const Register CurSrc0Reg = 1710 TII->getNamedOperand(*MI, AMDGPU::OpName::src0)->getReg(); 1711 const Register CurSrc1Reg = 1712 TII->getNamedOperand(*MI, AMDGPU::OpName::src1)->getReg(); 1713 1714 const Register PrevDstReg = 1715 TII->getNamedOperand(I, AMDGPU::OpName::vdst)->getReg(); 1716 1717 if (TRI->regsOverlap(PrevDstReg, CurSrc0Reg) || 1718 TRI->regsOverlap(PrevDstReg, CurSrc1Reg)) { 1719 return true; 1720 } 1721 1722 // Src2 of the current wmma instruction overlaps with the dest of the 1723 // previous wmma. 1724 const MachineOperand *Src2 = 1725 TII->getNamedOperand(*MI, AMDGPU::OpName::src2); 1726 const Register CurSrc2Reg = Src2->isReg() ? Src2->getReg() : Register(); 1727 1728 if (CurSrc2Reg != AMDGPU::NoRegister && 1729 TRI->regsOverlap(PrevDstReg, CurSrc2Reg)) { 1730 1731 const MachineOperand *Src2Mods = 1732 TII->getNamedOperand(*MI, AMDGPU::OpName::src2_modifiers); 1733 const bool NoSrc2Mods = 1734 (Src2Mods->getImm() & (SISrcMods::NEG | SISrcMods::NEG_HI)) == 0; 1735 // Exception: there is no hazard if the wmma instructions are of the same 1736 // type and there is no input modifier on src2 of the current instruction. 1737 return !(NoSrc2Mods && (TII->pseudoToMCOpcode(I.getOpcode()) == 1738 TII->pseudoToMCOpcode(MI->getOpcode()))); 1739 } 1740 1741 return false; 1742 }; 1743 1744 auto IsExpiredFn = [](const MachineInstr &I, int) { 1745 return SIInstrInfo::isVALU(I); 1746 }; 1747 1748 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1749 std::numeric_limits<int>::max()) 1750 return false; 1751 1752 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32)); 1753 1754 return true; 1755 } 1756 1757 bool GCNHazardRecognizer::fixShift64HighRegBug(MachineInstr *MI) { 1758 if (!ST.hasShift64HighRegBug()) 1759 return false; 1760 1761 switch (MI->getOpcode()) { 1762 default: 1763 return false; 1764 case AMDGPU::V_LSHLREV_B64_e64: 1765 case AMDGPU::V_LSHRREV_B64_e64: 1766 case AMDGPU::V_ASHRREV_I64_e64: 1767 break; 1768 } 1769 1770 MachineOperand *Amt = TII.getNamedOperand(*MI, AMDGPU::OpName::src0); 1771 if (!Amt->isReg()) 1772 return false; 1773 1774 Register AmtReg = Amt->getReg(); 1775 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1776 // Check if this is a last VGPR in the allocation block. 1777 if (!TRI.isVGPR(MRI, AmtReg) || ((AmtReg - AMDGPU::VGPR0) & 7) != 7) 1778 return false; 1779 1780 if (AmtReg != AMDGPU::VGPR255 && MRI.isPhysRegUsed(AmtReg + 1)) 1781 return false; 1782 1783 MachineOperand *Src1 = TII.getNamedOperand(*MI, AMDGPU::OpName::src1); 1784 bool OverlappedSrc = Src1->isReg() && TRI.regsOverlap(Src1->getReg(), AmtReg); 1785 bool OverlappedDst = MI->modifiesRegister(AmtReg, &TRI); 1786 bool Overlapped = OverlappedSrc || OverlappedDst; 1787 1788 assert(!OverlappedDst || !OverlappedSrc || 1789 Src1->getReg() == MI->getOperand(0).getReg()); 1790 assert(ST.needsAlignedVGPRs()); 1791 static_assert(AMDGPU::VGPR0 + 1 == AMDGPU::VGPR1); 1792 1793 Register NewReg; 1794 for (MCRegister Reg : Overlapped ? AMDGPU::VReg_64_Align2RegClass 1795 : AMDGPU::VGPR_32RegClass) { 1796 if (!MI->modifiesRegister(Reg, &TRI) && !MI->readsRegister(Reg, &TRI)) { 1797 NewReg = Reg; 1798 break; 1799 } 1800 } 1801 1802 Register NewAmt = Overlapped ? (Register)TRI.getSubReg(NewReg, AMDGPU::sub1) 1803 : NewReg; 1804 Register NewAmtLo; 1805 1806 if (Overlapped) 1807 NewAmtLo = TRI.getSubReg(NewReg, AMDGPU::sub0); 1808 1809 DebugLoc DL = MI->getDebugLoc(); 1810 MachineBasicBlock *MBB = MI->getParent(); 1811 // Insert a full wait count because found register might be pending a wait. 1812 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_WAITCNT)) 1813 .addImm(0); 1814 1815 // Insert V_SWAP_B32 instruction(s) and run hazard recognizer on them. 1816 if (Overlapped) 1817 runOnInstruction( 1818 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmtLo) 1819 .addDef(AmtReg - 1) 1820 .addReg(AmtReg - 1, RegState::Undef) 1821 .addReg(NewAmtLo, RegState::Undef)); 1822 runOnInstruction(BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmt) 1823 .addDef(AmtReg) 1824 .addReg(AmtReg, RegState::Undef) 1825 .addReg(NewAmt, RegState::Undef)); 1826 1827 // Instructions emitted after the current instruction will be processed by the 1828 // parent loop of the hazard recognizer in a natural way. 1829 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1830 AmtReg) 1831 .addDef(NewAmt) 1832 .addReg(NewAmt) 1833 .addReg(AmtReg); 1834 if (Overlapped) 1835 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1836 AmtReg - 1) 1837 .addDef(NewAmtLo) 1838 .addReg(NewAmtLo) 1839 .addReg(AmtReg - 1); 1840 1841 // Re-running hazard recognizer on the modified instruction is not necessary, 1842 // inserted V_SWAP_B32 has already both read and write new registers so 1843 // hazards related to these register has already been handled. 1844 Amt->setReg(NewAmt); 1845 Amt->setIsKill(false); 1846 // We do not update liveness, so verifier may see it as undef. 1847 Amt->setIsUndef(true); 1848 if (OverlappedDst) 1849 MI->getOperand(0).setReg(NewReg); 1850 if (OverlappedSrc) { 1851 Src1->setReg(NewReg); 1852 Src1->setIsKill(false); 1853 Src1->setIsUndef(true); 1854 } 1855 1856 return true; 1857 } 1858 1859 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { 1860 int NSAtoVMEMWaitStates = 1; 1861 1862 if (!ST.hasNSAtoVMEMBug()) 1863 return 0; 1864 1865 if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI)) 1866 return 0; 1867 1868 const SIInstrInfo *TII = ST.getInstrInfo(); 1869 const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset); 1870 if (!Offset || (Offset->getImm() & 6) == 0) 1871 return 0; 1872 1873 auto IsHazardFn = [TII](const MachineInstr &I) { 1874 if (!SIInstrInfo::isMIMG(I)) 1875 return false; 1876 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode()); 1877 return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && 1878 TII->getInstSizeInBytes(I) >= 16; 1879 }; 1880 1881 return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1); 1882 } 1883 1884 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) { 1885 int FPAtomicToDenormModeWaitStates = 3; 1886 1887 if (MI->getOpcode() != AMDGPU::S_DENORM_MODE) 1888 return 0; 1889 1890 auto IsHazardFn = [](const MachineInstr &I) { 1891 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I)) 1892 return false; 1893 return SIInstrInfo::isFPAtomic(I); 1894 }; 1895 1896 auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) { 1897 if (WaitStates >= 3 || SIInstrInfo::isVALU(MI)) 1898 return true; 1899 1900 switch (MI.getOpcode()) { 1901 case AMDGPU::S_WAITCNT: 1902 case AMDGPU::S_WAITCNT_VSCNT: 1903 case AMDGPU::S_WAITCNT_VMCNT: 1904 case AMDGPU::S_WAITCNT_EXPCNT: 1905 case AMDGPU::S_WAITCNT_LGKMCNT: 1906 case AMDGPU::S_WAIT_IDLE: 1907 return true; 1908 default: 1909 break; 1910 } 1911 1912 return false; 1913 }; 1914 1915 return FPAtomicToDenormModeWaitStates - 1916 ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn); 1917 } 1918 1919 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) { 1920 assert(SIInstrInfo::isMAI(*MI)); 1921 1922 return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI); 1923 } 1924 1925 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) { 1926 // Early exit if no padding is requested. 1927 if (MFMAPaddingRatio == 0) 1928 return 0; 1929 1930 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1931 if (!SIInstrInfo::isMFMA(*MI) || MFI->getOccupancy() < 2) 1932 return 0; 1933 1934 int NeighborMFMALatency = 0; 1935 auto IsNeighboringMFMA = [&NeighborMFMALatency, 1936 this](const MachineInstr &MI) { 1937 if (!SIInstrInfo::isMFMA(MI)) 1938 return false; 1939 1940 NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI); 1941 return true; 1942 }; 1943 1944 const int MaxMFMAPipelineWaitStates = 16; 1945 int WaitStatesSinceNeighborMFMA = 1946 getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates); 1947 1948 int NeighborMFMAPaddingNeeded = 1949 (NeighborMFMALatency * MFMAPaddingRatio / 100) - 1950 WaitStatesSinceNeighborMFMA; 1951 1952 return std::max(0, NeighborMFMAPaddingNeeded); 1953 } 1954 1955 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) { 1956 int WaitStatesNeeded = 0; 1957 unsigned Opc = MI->getOpcode(); 1958 1959 auto IsVALUFn = [](const MachineInstr &MI) { 1960 return SIInstrInfo::isVALU(MI); 1961 }; 1962 1963 if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write 1964 const int LegacyVALUWritesVGPRWaitStates = 2; 1965 const int VALUWritesExecWaitStates = 4; 1966 const int MaxWaitStates = 4; 1967 1968 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 1969 getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates); 1970 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1971 1972 if (WaitStatesNeeded < MaxWaitStates) { 1973 for (const MachineOperand &Use : MI->explicit_uses()) { 1974 const int MaxWaitStates = 2; 1975 1976 if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1977 continue; 1978 1979 int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates - 1980 getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates); 1981 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1982 1983 if (WaitStatesNeeded == MaxWaitStates) 1984 break; 1985 } 1986 } 1987 } 1988 1989 for (const MachineOperand &Op : MI->explicit_operands()) { 1990 if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg())) 1991 continue; 1992 1993 if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 1994 continue; 1995 1996 const int MFMAWritesAGPROverlappedSrcABWaitStates = 4; 1997 const int MFMAWritesAGPROverlappedSrcCWaitStates = 2; 1998 const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4; 1999 const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10; 2000 const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18; 2001 const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1; 2002 const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7; 2003 const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15; 2004 const int MaxWaitStates = 18; 2005 Register Reg = Op.getReg(); 2006 unsigned HazardDefLatency = 0; 2007 2008 auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency, 2009 this](const MachineInstr &MI) { 2010 if (!SIInstrInfo::isMFMA(MI)) 2011 return false; 2012 Register DstReg = MI.getOperand(0).getReg(); 2013 if (DstReg == Reg) 2014 return false; 2015 HazardDefLatency = 2016 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2017 return TRI.regsOverlap(DstReg, Reg); 2018 }; 2019 2020 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, 2021 MaxWaitStates); 2022 int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates; 2023 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2024 int OpNo = MI->getOperandNo(&Op); 2025 if (OpNo == SrcCIdx) { 2026 NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates; 2027 } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) { 2028 switch (HazardDefLatency) { 2029 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates; 2030 break; 2031 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates; 2032 break; 2033 case 16: [[fallthrough]]; 2034 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates; 2035 break; 2036 } 2037 } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2038 switch (HazardDefLatency) { 2039 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates; 2040 break; 2041 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates; 2042 break; 2043 case 16: [[fallthrough]]; 2044 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates; 2045 break; 2046 } 2047 } 2048 2049 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2050 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2051 2052 if (WaitStatesNeeded == MaxWaitStates) 2053 return WaitStatesNeeded; // Early exit. 2054 2055 auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) { 2056 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2057 return false; 2058 Register DstReg = MI.getOperand(0).getReg(); 2059 return TRI.regsOverlap(Reg, DstReg); 2060 }; 2061 2062 const int AccVGPRWriteMFMAReadSrcCWaitStates = 1; 2063 const int AccVGPRWriteMFMAReadSrcABWaitStates = 3; 2064 const int AccVGPRWriteAccVgprReadWaitStates = 3; 2065 NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates; 2066 if (OpNo == SrcCIdx) 2067 NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates; 2068 else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) 2069 NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates; 2070 2071 WaitStatesNeededForUse = NeedWaitStates - 2072 getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates); 2073 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2074 2075 if (WaitStatesNeeded == MaxWaitStates) 2076 return WaitStatesNeeded; // Early exit. 2077 } 2078 2079 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2080 const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0; 2081 const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5; 2082 const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13; 2083 const int MaxWaitStates = 13; 2084 Register DstReg = MI->getOperand(0).getReg(); 2085 unsigned HazardDefLatency = 0; 2086 2087 auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency, 2088 this](const MachineInstr &MI) { 2089 if (!SIInstrInfo::isMFMA(MI)) 2090 return false; 2091 Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg(); 2092 HazardDefLatency = 2093 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2094 return TRI.regsOverlap(Reg, DstReg); 2095 }; 2096 2097 int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates); 2098 int NeedWaitStates; 2099 switch (HazardDefLatency) { 2100 case 2: NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates; 2101 break; 2102 case 8: NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates; 2103 break; 2104 case 16: [[fallthrough]]; 2105 default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates; 2106 break; 2107 } 2108 2109 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince; 2110 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2111 } 2112 2113 // Pad neighboring MFMA with noops for better inter-wave performance. 2114 WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI)); 2115 2116 return WaitStatesNeeded; 2117 } 2118 2119 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) { 2120 int WaitStatesNeeded = 0; 2121 unsigned Opc = MI->getOpcode(); 2122 2123 auto IsLegacyVALUFn = [](const MachineInstr &MI) { 2124 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI); 2125 }; 2126 2127 auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) { 2128 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) && 2129 !SIInstrInfo::isDOT(MI); 2130 }; 2131 2132 if (!SIInstrInfo::isMFMA(*MI)) 2133 return WaitStatesNeeded; 2134 2135 const int VALUWritesExecWaitStates = 4; 2136 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 2137 getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn, 2138 VALUWritesExecWaitStates); 2139 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2140 2141 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2142 2143 // Loop for both DGEMM and S/HGEMM 2nd instruction. 2144 for (const MachineOperand &Use : MI->explicit_uses()) { 2145 const int LegacyVALUNotDotWritesVGPRWaitStates = 2; 2146 const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2; 2147 const int GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates = 3; 2148 const int GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates = 5; 2149 const int GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates = 4; 2150 const int GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates = 9; 2151 const int GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates = 8; 2152 const int GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates = 17; 2153 const int GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates = 16; 2154 const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8; 2155 const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16; 2156 const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3; 2157 const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9; 2158 const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17; 2159 const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9; 2160 const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4; 2161 const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5; 2162 const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11; 2163 const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19; 2164 const int GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates = 4; 2165 const int GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates = 6; 2166 const int GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates = 10; 2167 const int GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates = 18; 2168 const int GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates = 5; 2169 const int GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates = 7; 2170 const int GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates = 11; 2171 const int GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates = 19; 2172 const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6; 2173 const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11; 2174 const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4; 2175 const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2; 2176 const int MaxWaitStates = 19; 2177 2178 if (!Use.isReg()) 2179 continue; 2180 Register Reg = Use.getReg(); 2181 bool FullReg; 2182 const MachineInstr *MI1; 2183 2184 auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1, 2185 this](const MachineInstr &MI) { 2186 if (!SIInstrInfo::isMFMA(MI)) 2187 return false; 2188 Register DstReg = MI.getOperand(0).getReg(); 2189 FullReg = (DstReg == Reg); 2190 MI1 = &MI; 2191 return TRI.regsOverlap(DstReg, Reg); 2192 }; 2193 2194 WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates - 2195 getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates); 2196 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2197 2198 int NumWaitStates = 2199 getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates); 2200 if (NumWaitStates == std::numeric_limits<int>::max()) 2201 continue; 2202 2203 int OpNo = MI->getOperandNo(&Use); 2204 unsigned Opc1 = MI1->getOpcode(); 2205 int NeedWaitStates = 0; 2206 if (OpNo == SrcCIdx) { 2207 if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) { 2208 NeedWaitStates = 0; 2209 } else if (FullReg) { 2210 if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2211 Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) && 2212 (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2213 Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64)) 2214 NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates; 2215 else if (ST.hasGFX940Insts() && 2216 TSchedModel.computeInstrLatency(MI1) == 2) 2217 NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates; 2218 } else { 2219 switch (Opc1) { 2220 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2221 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2222 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2223 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2224 if (!isXDL(ST, *MI)) 2225 NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates; 2226 break; 2227 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2228 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2229 if (!isXDL(ST, *MI)) 2230 NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates; 2231 break; 2232 default: 2233 if (ST.hasGFX940Insts() && isXDL(ST, *MI) && !isXDL(ST, *MI1)) 2234 break; 2235 switch (TSchedModel.computeInstrLatency(MI1)) { 2236 case 2: 2237 NeedWaitStates = ST.hasGFX940Insts() 2238 ? isXDL(ST, *MI1) 2239 ? GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates 2240 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates 2241 : isDGEMM(Opc) 2242 ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates 2243 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates; 2244 break; 2245 case 4: 2246 assert(ST.hasGFX940Insts()); 2247 NeedWaitStates = isXDL(ST, *MI1) 2248 ? GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates 2249 : GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates; 2250 break; 2251 case 8: 2252 NeedWaitStates = ST.hasGFX940Insts() 2253 ? isXDL(ST, *MI1) 2254 ? GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates 2255 : GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates 2256 : isDGEMM(Opc) 2257 ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates 2258 : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates; 2259 break; 2260 case 16: [[fallthrough]]; 2261 default: 2262 NeedWaitStates = ST.hasGFX940Insts() 2263 ? isXDL(ST, *MI1) 2264 ? GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates 2265 : GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates 2266 : isDGEMM(Opc) 2267 ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates 2268 : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates; 2269 } 2270 } 2271 } 2272 } else { 2273 switch (Opc1) { 2274 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2275 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2276 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2277 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2278 NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates; 2279 break; 2280 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2281 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2282 NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates; 2283 break; 2284 default: 2285 switch (TSchedModel.computeInstrLatency(MI1)) { 2286 case 2: 2287 NeedWaitStates = ST.hasGFX940Insts() 2288 ? isXDL(ST, *MI1) 2289 ? GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates 2290 : GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates 2291 : SMFMA4x4WritesVGPROverlappedSrcABWaitStates; 2292 break; 2293 case 4: 2294 assert(ST.hasGFX940Insts()); 2295 NeedWaitStates = isXDL(ST, *MI1) 2296 ? GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates 2297 : GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates; 2298 break; 2299 case 8: 2300 NeedWaitStates = ST.hasGFX940Insts() 2301 ? isXDL(ST, *MI1) 2302 ? GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates 2303 : GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates 2304 : SMFMA16x16WritesVGPROverlappedSrcABWaitStates; 2305 break; 2306 case 16: [[fallthrough]]; 2307 default: 2308 NeedWaitStates = ST.hasGFX940Insts() 2309 ? isXDL(ST, *MI1) 2310 ? GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates 2311 : GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates 2312 : SMFMA32x32WritesVGPROverlappedSrcABWaitStates; 2313 } 2314 } 2315 } 2316 if (WaitStatesNeeded >= NeedWaitStates) 2317 continue; 2318 2319 WaitStatesNeededForUse = NeedWaitStates - NumWaitStates; 2320 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2321 2322 if (WaitStatesNeeded == MaxWaitStates) 2323 break; 2324 } 2325 2326 return WaitStatesNeeded; 2327 } 2328 2329 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) { 2330 // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards() 2331 if (!ST.hasMAIInsts() || ST.hasGFX90AInsts()) 2332 return 0; 2333 2334 int WaitStatesNeeded = 0; 2335 2336 auto IsAccVgprReadFn = [](const MachineInstr &MI) { 2337 return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64; 2338 }; 2339 2340 for (const MachineOperand &Op : MI->explicit_uses()) { 2341 if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg())) 2342 continue; 2343 2344 Register Reg = Op.getReg(); 2345 2346 const int AccVgprReadLdStWaitStates = 2; 2347 const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1; 2348 const int MaxWaitStates = 2; 2349 2350 int WaitStatesNeededForUse = AccVgprReadLdStWaitStates - 2351 getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates); 2352 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2353 2354 if (WaitStatesNeeded == MaxWaitStates) 2355 return WaitStatesNeeded; // Early exit. 2356 2357 auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) { 2358 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 && 2359 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2360 return false; 2361 auto IsVALUFn = [](const MachineInstr &MI) { 2362 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI); 2363 }; 2364 return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) < 2365 std::numeric_limits<int>::max(); 2366 }; 2367 2368 WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates - 2369 getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates); 2370 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2371 } 2372 2373 return WaitStatesNeeded; 2374 } 2375 2376 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) { 2377 if (!ST.hasGFX90AInsts()) 2378 return 0; 2379 2380 auto IsDGEMMFn = [](const MachineInstr &MI) -> bool { 2381 return isDGEMM(MI.getOpcode()); 2382 }; 2383 2384 // This is checked in checkMAIHazards90A() 2385 if (SIInstrInfo::isMFMA(*MI)) 2386 return 0; 2387 2388 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2389 2390 int WaitStatesNeeded = 0; 2391 2392 bool IsMem = SIInstrInfo::isVMEM(*MI) || 2393 SIInstrInfo::isFLAT(*MI) || 2394 SIInstrInfo::isDS(*MI); 2395 bool IsMemOrExport = IsMem || SIInstrInfo::isEXP(*MI); 2396 bool IsVALU = SIInstrInfo::isVALU(*MI); 2397 2398 const MachineInstr *MFMA = nullptr; 2399 unsigned Reg; 2400 auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2401 if (!SIInstrInfo::isMFMA(MI) || 2402 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2403 return false; 2404 MFMA = &MI; 2405 return true; 2406 }; 2407 2408 const MachineInstr *DOT = nullptr; 2409 auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) { 2410 if (!SIInstrInfo::isDOT(MI) || 2411 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2412 return false; 2413 DOT = &MI; 2414 return true; 2415 }; 2416 2417 bool DGEMMAfterVALUWrite = false; 2418 auto IsDGEMMHazard = [&DGEMMAfterVALUWrite, this](const MachineInstr &MI) { 2419 // Found DGEMM on reverse traversal to def. 2420 if (isDGEMM(MI.getOpcode())) 2421 DGEMMAfterVALUWrite = true; 2422 2423 // Only hazard if register is defined by a VALU and a DGEMM is found after 2424 // after the def. 2425 if (!TII.isVALU(MI) || !DGEMMAfterVALUWrite) 2426 return false; 2427 2428 return true; 2429 }; 2430 2431 int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), 2432 AMDGPU::OpName::src2); 2433 2434 if (IsMemOrExport || IsVALU) { 2435 const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5; 2436 const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11; 2437 const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19; 2438 const int GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates = 4; 2439 const int GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates = 6; 2440 const int GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates = 10; 2441 const int GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates = 18; 2442 const int GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates = 5; 2443 const int GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates = 7; 2444 const int GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates = 11; 2445 const int GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates = 19; 2446 const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9; 2447 const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18; 2448 const int DMFMA4x4WriteVgprVALUReadWaitStates = 6; 2449 const int DMFMA16x16WriteVgprVALUReadWaitStates = 11; 2450 const int DotWriteSameDotReadSrcAB = 3; 2451 const int DotWriteDifferentVALURead = 3; 2452 const int DMFMABetweenVALUWriteVMEMRead = 2; 2453 const int MaxWaitStates = 19; 2454 2455 for (const MachineOperand &Use : MI->explicit_uses()) { 2456 if (!Use.isReg()) 2457 continue; 2458 Reg = Use.getReg(); 2459 2460 DOT = nullptr; 2461 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2462 MaxWaitStates); 2463 if (DOT) { 2464 int NeedWaitStates = 0; 2465 if (DOT->getOpcode() == MI->getOpcode()) { 2466 if (&Use - &MI->getOperand(0) != SrcCIdx) 2467 NeedWaitStates = DotWriteSameDotReadSrcAB; 2468 } else { 2469 NeedWaitStates = DotWriteDifferentVALURead; 2470 } 2471 2472 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2473 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2474 } 2475 2476 // Workaround for HW data hazard bug observed only in GFX90A. When there 2477 // is a DGEMM instruction in-between a VALU and a VMEM instruction it 2478 // causes the SQ to incorrectly not insert two wait states between the two 2479 // instructions needed to avoid data hazard. 2480 if (IsMem && ST.hasGFX90AInsts() && !ST.hasGFX940Insts()) { 2481 DGEMMAfterVALUWrite = false; 2482 if (TRI.isVectorRegister(MRI, Reg)) { 2483 int WaitStatesNeededForUse = 2484 DMFMABetweenVALUWriteVMEMRead - 2485 getWaitStatesSinceDef(Reg, IsDGEMMHazard, 2486 DMFMABetweenVALUWriteVMEMRead); 2487 2488 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2489 } 2490 } 2491 2492 MFMA = nullptr; 2493 WaitStatesSinceDef = 2494 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2495 if (!MFMA) 2496 continue; 2497 2498 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2499 int NeedWaitStates = MaxWaitStates; 2500 switch (HazardDefLatency) { 2501 case 2: 2502 NeedWaitStates = 2503 ST.hasGFX940Insts() 2504 ? isXDL(ST, *MFMA) 2505 ? GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates 2506 : GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates 2507 : SMFMA4x4WriteVgprVALUMemExpReadWaitStates; 2508 break; 2509 case 4: 2510 assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts()); 2511 NeedWaitStates = 2512 isDGEMM(MFMA->getOpcode()) 2513 ? IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates 2514 : DMFMA4x4WriteVgprVALUReadWaitStates 2515 : isXDL(ST, *MFMA) 2516 ? GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates 2517 : GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates; 2518 break; 2519 case 8: 2520 NeedWaitStates = 2521 ST.hasGFX940Insts() 2522 ? isXDL(ST, *MFMA) 2523 ? GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates 2524 : GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates 2525 : SMFMA16x16WriteVgprVALUMemExpReadWaitStates; 2526 break; 2527 case 16: [[fallthrough]]; 2528 default: 2529 NeedWaitStates = 2530 isDGEMM(MFMA->getOpcode()) 2531 ? IsMemOrExport ? DMFMA16x16WriteVgprMemExpReadWaitStates 2532 : DMFMA16x16WriteVgprVALUReadWaitStates 2533 : ST.hasGFX940Insts() 2534 ? isXDL(ST, *MFMA) 2535 ? GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates 2536 : GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates 2537 : SMFMA32x32WriteVgprVALUMemExpReadWaitStates; 2538 break; 2539 } 2540 2541 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2542 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2543 2544 if (WaitStatesNeeded == MaxWaitStates) 2545 break; 2546 } 2547 } 2548 2549 unsigned Opc = MI->getOpcode(); 2550 const int DMFMAToFMA64WaitStates = 2; 2551 if ((Opc == AMDGPU::V_FMA_F64_e64 || 2552 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 || 2553 Opc == AMDGPU::V_FMAC_F64_dpp) && 2554 WaitStatesNeeded < DMFMAToFMA64WaitStates) { 2555 int WaitStatesNeededForUse = DMFMAToFMA64WaitStates - 2556 getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates); 2557 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2558 } 2559 2560 if (!IsVALU && !IsMemOrExport) 2561 return WaitStatesNeeded; 2562 2563 for (const MachineOperand &Def : MI->defs()) { 2564 const int SMFMA4x4WriteVgprVALUWawWaitStates = 5; 2565 const int SMFMA16x16WriteVgprVALUWawWaitStates = 11; 2566 const int SMFMA32x32WriteVgprVALUWawWaitStates = 19; 2567 const int GFX940_SMFMA2PassWriteVgprVALUWawWaitStates = 4; 2568 const int GFX940_SMFMA4PassWriteVgprVALUWawWaitStates = 6; 2569 const int GFX940_SMFMA8PassWriteVgprVALUWawWaitStates = 10; 2570 const int GFX940_SMFMA16PassWriteVgprVALUWawWaitStates = 18; 2571 const int GFX940_XDL2PassWriteVgprVALUWawWaitStates = 5; 2572 const int GFX940_XDL4PassWriteVgprVALUWawWaitStates = 7; 2573 const int GFX940_XDL8PassWriteVgprVALUWawWaitStates = 11; 2574 const int GFX940_XDL16PassWriteVgprVALUWawWaitStates = 19; 2575 const int SMFMA4x4ReadVgprVALUWarWaitStates = 1; 2576 const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3; 2577 const int SMFMA16x16ReadVgprVALUWarWaitStates = 7; 2578 const int SMFMA32x32ReadVgprVALUWarWaitStates = 15; 2579 const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6; 2580 const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11; 2581 const int DotWriteDifferentVALUWrite = 3; 2582 const int MaxWaitStates = 19; 2583 const int MaxWarWaitStates = 15; 2584 2585 Reg = Def.getReg(); 2586 2587 DOT = nullptr; 2588 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2589 MaxWaitStates); 2590 if (DOT && DOT->getOpcode() != MI->getOpcode()) 2591 WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite - 2592 WaitStatesSinceDef); 2593 2594 MFMA = nullptr; 2595 WaitStatesSinceDef = 2596 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2597 if (MFMA) { 2598 int NeedWaitStates = MaxWaitStates; 2599 switch (TSchedModel.computeInstrLatency(MFMA)) { 2600 case 2: 2601 NeedWaitStates = ST.hasGFX940Insts() 2602 ? isXDL(ST, *MFMA) 2603 ? GFX940_XDL2PassWriteVgprVALUWawWaitStates 2604 : GFX940_SMFMA2PassWriteVgprVALUWawWaitStates 2605 : SMFMA4x4WriteVgprVALUWawWaitStates; 2606 break; 2607 case 4: 2608 assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts()); 2609 NeedWaitStates = isDGEMM(MFMA->getOpcode()) 2610 ? DMFMA4x4WriteVgprVALUWriteWaitStates 2611 : isXDL(ST, *MFMA) 2612 ? GFX940_XDL4PassWriteVgprVALUWawWaitStates 2613 : GFX940_SMFMA4PassWriteVgprVALUWawWaitStates; 2614 break; 2615 case 8: 2616 NeedWaitStates = ST.hasGFX940Insts() 2617 ? isXDL(ST, *MFMA) 2618 ? GFX940_XDL8PassWriteVgprVALUWawWaitStates 2619 : GFX940_SMFMA8PassWriteVgprVALUWawWaitStates 2620 : SMFMA16x16WriteVgprVALUWawWaitStates; 2621 break; 2622 case 16: [[fallthrough]]; 2623 default: 2624 NeedWaitStates = isDGEMM(MFMA->getOpcode()) 2625 ? DMFMA16x16WriteVgprVALUWriteWaitStates 2626 : ST.hasGFX940Insts() 2627 ? isXDL(ST, *MFMA) 2628 ? GFX940_XDL16PassWriteVgprVALUWawWaitStates 2629 : GFX940_SMFMA16PassWriteVgprVALUWawWaitStates 2630 : SMFMA32x32WriteVgprVALUWawWaitStates; 2631 break; 2632 } 2633 2634 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2635 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2636 2637 if (WaitStatesNeeded == MaxWaitStates) 2638 break; 2639 } 2640 2641 auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2642 if (!SIInstrInfo::isMFMA(MI) || isDGEMM(MI.getOpcode()) || 2643 !MI.readsRegister(Reg, &TRI)) 2644 return false; 2645 2646 if (ST.hasGFX940Insts() && !isXDL(ST, MI)) 2647 return false; 2648 2649 const MachineOperand *SrcC = 2650 TII.getNamedOperand(MI, AMDGPU::OpName::src2); 2651 assert(SrcC); 2652 if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg)) 2653 return false; 2654 2655 MFMA = &MI; 2656 return true; 2657 }; 2658 2659 MFMA = nullptr; 2660 int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn, 2661 MaxWarWaitStates); 2662 if (!MFMA) 2663 continue; 2664 2665 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2666 int NeedWaitStates = MaxWaitStates; 2667 switch (HazardDefLatency) { 2668 case 2: NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates; 2669 break; 2670 case 4: assert(ST.hasGFX940Insts()); 2671 NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates; 2672 break; 2673 case 8: NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates; 2674 break; 2675 case 16: [[fallthrough]]; 2676 default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates; 2677 break; 2678 } 2679 2680 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse; 2681 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2682 } 2683 2684 return WaitStatesNeeded; 2685 } 2686 2687 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) { 2688 if (!SU->isInstr()) 2689 return false; 2690 2691 const MachineInstr *MAI = nullptr; 2692 2693 auto IsMFMAFn = [&MAI](const MachineInstr &MI) { 2694 MAI = nullptr; 2695 if (SIInstrInfo::isMFMA(MI)) 2696 MAI = &MI; 2697 return MAI != nullptr; 2698 }; 2699 2700 MachineInstr *MI = SU->getInstr(); 2701 if (IsMFMAFn(*MI)) { 2702 int W = getWaitStatesSince(IsMFMAFn, 16); 2703 if (MAI) 2704 return W < (int)TSchedModel.computeInstrLatency(MAI); 2705 } 2706 2707 return false; 2708 } 2709