1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "AMDGPUSubtarget.h" 15 #include "SIDefines.h" 16 #include "SIInstrInfo.h" 17 #include "SIRegisterInfo.h" 18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/ScheduleDAG.h" 25 #include "llvm/MC/MCInstrDesc.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include <algorithm> 28 #include <cassert> 29 #include <limits> 30 #include <set> 31 #include <vector> 32 33 using namespace llvm; 34 35 //===----------------------------------------------------------------------===// 36 // Hazard Recoginizer Implementation 37 //===----------------------------------------------------------------------===// 38 39 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 40 IsHazardRecognizerMode(false), 41 CurrCycleInstr(nullptr), 42 MF(MF), 43 ST(MF.getSubtarget<GCNSubtarget>()), 44 TII(*ST.getInstrInfo()), 45 TRI(TII.getRegisterInfo()), 46 ClauseUses(TRI.getNumRegUnits()), 47 ClauseDefs(TRI.getNumRegUnits()) { 48 MaxLookAhead = 5; 49 } 50 51 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 52 EmitInstruction(SU->getInstr()); 53 } 54 55 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 56 CurrCycleInstr = MI; 57 } 58 59 static bool isDivFMas(unsigned Opcode) { 60 return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64; 61 } 62 63 static bool isSGetReg(unsigned Opcode) { 64 return Opcode == AMDGPU::S_GETREG_B32; 65 } 66 67 static bool isSSetReg(unsigned Opcode) { 68 return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32; 69 } 70 71 static bool isRWLane(unsigned Opcode) { 72 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 73 } 74 75 static bool isRFE(unsigned Opcode) { 76 return Opcode == AMDGPU::S_RFE_B64; 77 } 78 79 static bool isSMovRel(unsigned Opcode) { 80 switch (Opcode) { 81 case AMDGPU::S_MOVRELS_B32: 82 case AMDGPU::S_MOVRELS_B64: 83 case AMDGPU::S_MOVRELD_B32: 84 case AMDGPU::S_MOVRELD_B64: 85 return true; 86 default: 87 return false; 88 } 89 } 90 91 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 92 const MachineInstr &MI) { 93 if (TII.isAlwaysGDS(MI.getOpcode())) 94 return true; 95 96 switch (MI.getOpcode()) { 97 case AMDGPU::S_SENDMSG: 98 case AMDGPU::S_SENDMSGHALT: 99 case AMDGPU::S_TTRACEDATA: 100 return true; 101 // These DS opcodes don't support GDS. 102 case AMDGPU::DS_NOP: 103 case AMDGPU::DS_PERMUTE_B32: 104 case AMDGPU::DS_BPERMUTE_B32: 105 return false; 106 default: 107 if (TII.isDS(MI.getOpcode())) { 108 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 109 AMDGPU::OpName::gds); 110 if (MI.getOperand(GDS).getImm()) 111 return true; 112 } 113 return false; 114 } 115 } 116 117 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 118 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 119 AMDGPU::OpName::simm16); 120 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 121 } 122 123 ScheduleHazardRecognizer::HazardType 124 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 125 MachineInstr *MI = SU->getInstr(); 126 127 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 128 return NoopHazard; 129 130 // FIXME: Should flat be considered vmem? 131 if ((SIInstrInfo::isVMEM(*MI) || 132 SIInstrInfo::isFLAT(*MI)) 133 && checkVMEMHazards(MI) > 0) 134 return NoopHazard; 135 136 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 137 return NoopHazard; 138 139 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 140 return NoopHazard; 141 142 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 143 return NoopHazard; 144 145 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 146 return NoopHazard; 147 148 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 149 return NoopHazard; 150 151 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 152 return NoopHazard; 153 154 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 155 return NoopHazard; 156 157 if (ST.hasReadM0MovRelInterpHazard() && 158 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) && 159 checkReadM0Hazards(MI) > 0) 160 return NoopHazard; 161 162 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) && 163 checkReadM0Hazards(MI) > 0) 164 return NoopHazard; 165 166 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 167 return NoopHazard; 168 169 if (checkAnyInstHazards(MI) > 0) 170 return NoopHazard; 171 172 return NoHazard; 173 } 174 175 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) { 176 IsHazardRecognizerMode = false; 177 return PreEmitNoopsCommon(SU->getInstr()); 178 } 179 180 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 181 IsHazardRecognizerMode = true; 182 CurrCycleInstr = MI; 183 unsigned W = PreEmitNoopsCommon(MI); 184 CurrCycleInstr = nullptr; 185 return W; 186 } 187 188 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 189 int WaitStates = std::max(0, checkAnyInstHazards(MI)); 190 191 if (SIInstrInfo::isSMRD(*MI)) 192 return std::max(WaitStates, checkSMRDHazards(MI)); 193 194 if (SIInstrInfo::isVALU(*MI)) 195 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 196 197 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 198 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 199 200 if (SIInstrInfo::isDPP(*MI)) 201 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 202 203 if (isDivFMas(MI->getOpcode())) 204 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 205 206 if (isRWLane(MI->getOpcode())) 207 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 208 209 if (MI->isInlineAsm()) 210 return std::max(WaitStates, checkInlineAsmHazards(MI)); 211 212 if (isSGetReg(MI->getOpcode())) 213 return std::max(WaitStates, checkGetRegHazards(MI)); 214 215 if (isSSetReg(MI->getOpcode())) 216 return std::max(WaitStates, checkSetRegHazards(MI)); 217 218 if (isRFE(MI->getOpcode())) 219 return std::max(WaitStates, checkRFEHazards(MI)); 220 221 if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) || 222 isSMovRel(MI->getOpcode()))) 223 return std::max(WaitStates, checkReadM0Hazards(MI)); 224 225 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) 226 return std::max(WaitStates, checkReadM0Hazards(MI)); 227 228 return WaitStates; 229 } 230 231 void GCNHazardRecognizer::EmitNoop() { 232 EmittedInstrs.push_front(nullptr); 233 } 234 235 void GCNHazardRecognizer::AdvanceCycle() { 236 // When the scheduler detects a stall, it will call AdvanceCycle() without 237 // emitting any instructions. 238 if (!CurrCycleInstr) 239 return; 240 241 // Do not track non-instructions which do not affect the wait states. 242 // If included, these instructions can lead to buffer overflow such that 243 // detectable hazards are missed. 244 if (CurrCycleInstr->isImplicitDef()) 245 return; 246 else if (CurrCycleInstr->isDebugInstr()) 247 return; 248 249 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 250 251 // Keep track of emitted instructions 252 EmittedInstrs.push_front(CurrCycleInstr); 253 254 // Add a nullptr for each additional wait state after the first. Make sure 255 // not to add more than getMaxLookAhead() items to the list, since we 256 // truncate the list to that size right after this loop. 257 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 258 i < e; ++i) { 259 EmittedInstrs.push_front(nullptr); 260 } 261 262 // getMaxLookahead() is the largest number of wait states we will ever need 263 // to insert, so there is no point in keeping track of more than that many 264 // wait states. 265 EmittedInstrs.resize(getMaxLookAhead()); 266 267 CurrCycleInstr = nullptr; 268 } 269 270 void GCNHazardRecognizer::RecedeCycle() { 271 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 272 } 273 274 //===----------------------------------------------------------------------===// 275 // Helper Functions 276 //===----------------------------------------------------------------------===// 277 278 typedef function_ref<bool(MachineInstr *, int WaitStates)> IsExpiredFn; 279 280 // Returns a minimum wait states since \p I walking all predecessors. 281 // Only scans until \p IsExpired does not return true. 282 // Can only be run in a hazard recognizer mode. 283 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 284 MachineBasicBlock *MBB, 285 MachineBasicBlock::reverse_instr_iterator I, 286 int WaitStates, 287 IsExpiredFn IsExpired, 288 DenseSet<const MachineBasicBlock *> &Visited) { 289 290 for (auto E = MBB->rend() ; I != E; ++I) { 291 if (IsHazard(&*I)) 292 return WaitStates; 293 294 if (I->isInlineAsm() || I->isImplicitDef() || I->isDebugInstr()) 295 continue; 296 297 WaitStates += SIInstrInfo::getNumWaitStates(*I); 298 299 if (IsExpired(&*I, WaitStates)) 300 return std::numeric_limits<int>::max(); 301 } 302 303 int MinWaitStates = WaitStates; 304 bool Found = false; 305 for (MachineBasicBlock *Pred : MBB->predecessors()) { 306 if (!Visited.insert(Pred).second) 307 continue; 308 309 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), 310 WaitStates, IsExpired, Visited); 311 312 if (W == std::numeric_limits<int>::max()) 313 continue; 314 315 MinWaitStates = Found ? std::min(MinWaitStates, W) : W; 316 if (IsExpired(nullptr, MinWaitStates)) 317 return MinWaitStates; 318 319 Found = true; 320 } 321 322 if (Found) 323 return MinWaitStates; 324 325 return std::numeric_limits<int>::max(); 326 } 327 328 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 329 MachineInstr *MI, 330 IsExpiredFn IsExpired) { 331 DenseSet<const MachineBasicBlock *> Visited; 332 return getWaitStatesSince(IsHazard, MI->getParent(), 333 std::next(MI->getReverseIterator()), 334 0, IsExpired, Visited); 335 } 336 337 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 338 if (IsHazardRecognizerMode) { 339 auto IsExpiredFn = [Limit] (MachineInstr *, int WaitStates) { 340 return WaitStates >= Limit; 341 }; 342 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 343 } 344 345 int WaitStates = 0; 346 for (MachineInstr *MI : EmittedInstrs) { 347 if (MI) { 348 if (IsHazard(MI)) 349 return WaitStates; 350 351 if (MI->isInlineAsm()) 352 continue; 353 } 354 ++WaitStates; 355 356 if (WaitStates >= Limit) 357 break; 358 } 359 return std::numeric_limits<int>::max(); 360 } 361 362 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 363 IsHazardFn IsHazardDef, 364 int Limit) { 365 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 366 367 auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) { 368 return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI); 369 }; 370 371 return getWaitStatesSince(IsHazardFn, Limit); 372 } 373 374 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 375 int Limit) { 376 auto IsHazardFn = [IsHazard] (MachineInstr *MI) { 377 return isSSetReg(MI->getOpcode()) && IsHazard(MI); 378 }; 379 380 return getWaitStatesSince(IsHazardFn, Limit); 381 } 382 383 //===----------------------------------------------------------------------===// 384 // No-op Hazard Detection 385 //===----------------------------------------------------------------------===// 386 387 static void addRegUnits(const SIRegisterInfo &TRI, 388 BitVector &BV, unsigned Reg) { 389 for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI) 390 BV.set(*RUI); 391 } 392 393 static void addRegsToSet(const SIRegisterInfo &TRI, 394 iterator_range<MachineInstr::const_mop_iterator> Ops, 395 BitVector &Set) { 396 for (const MachineOperand &Op : Ops) { 397 if (Op.isReg()) 398 addRegUnits(TRI, Set, Op.getReg()); 399 } 400 } 401 402 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 403 // XXX: Do we need to worry about implicit operands 404 addRegsToSet(TRI, MI.defs(), ClauseDefs); 405 addRegsToSet(TRI, MI.uses(), ClauseUses); 406 } 407 408 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 409 // SMEM soft clause are only present on VI+, and only matter if xnack is 410 // enabled. 411 if (!ST.isXNACKEnabled()) 412 return 0; 413 414 bool IsSMRD = TII.isSMRD(*MEM); 415 416 resetClause(); 417 418 // A soft-clause is any group of consecutive SMEM instructions. The 419 // instructions in this group may return out of order and/or may be 420 // replayed (i.e. the same instruction issued more than once). 421 // 422 // In order to handle these situations correctly we need to make sure 423 // that when a clause has more than one instruction, no instruction in the 424 // clause writes to a register that is read another instruction in the clause 425 // (including itself). If we encounter this situaion, we need to break the 426 // clause by inserting a non SMEM instruction. 427 428 for (MachineInstr *MI : EmittedInstrs) { 429 // When we hit a non-SMEM instruction then we have passed the start of the 430 // clause and we can stop. 431 if (!MI) 432 break; 433 434 if (IsSMRD != SIInstrInfo::isSMRD(*MI)) 435 break; 436 437 addClauseInst(*MI); 438 } 439 440 if (ClauseDefs.none()) 441 return 0; 442 443 // We need to make sure not to put loads and stores in the same clause if they 444 // use the same address. For now, just start a new clause whenever we see a 445 // store. 446 if (MEM->mayStore()) 447 return 1; 448 449 addClauseInst(*MEM); 450 451 // If the set of defs and uses intersect then we cannot add this instruction 452 // to the clause, so we have a hazard. 453 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 454 } 455 456 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 457 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 458 int WaitStatesNeeded = 0; 459 460 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 461 462 // This SMRD hazard only affects SI. 463 if (ST.getGeneration() != AMDGPUSubtarget::SOUTHERN_ISLANDS) 464 return WaitStatesNeeded; 465 466 // A read of an SGPR by SMRD instruction requires 4 wait states when the 467 // SGPR was written by a VALU instruction. 468 int SmrdSgprWaitStates = 4; 469 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 470 auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); }; 471 472 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 473 474 for (const MachineOperand &Use : SMRD->uses()) { 475 if (!Use.isReg()) 476 continue; 477 int WaitStatesNeededForUse = 478 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 479 SmrdSgprWaitStates); 480 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 481 482 // This fixes what appears to be undocumented hardware behavior in SI where 483 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 484 // needs some number of nops in between. We don't know how many we need, but 485 // let's use 4. This wasn't discovered before probably because the only 486 // case when this happens is when we expand a 64-bit pointer into a full 487 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 488 // probably never encountered in the closed-source land. 489 if (IsBufferSMRD) { 490 int WaitStatesNeededForUse = 491 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 492 IsBufferHazardDefFn, 493 SmrdSgprWaitStates); 494 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 495 } 496 } 497 498 return WaitStatesNeeded; 499 } 500 501 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 502 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 503 return 0; 504 505 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 506 507 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 508 // SGPR was written by a VALU Instruction. 509 const int VmemSgprWaitStates = 5; 510 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 511 512 for (const MachineOperand &Use : VMEM->uses()) { 513 if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 514 continue; 515 516 int WaitStatesNeededForUse = 517 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 518 VmemSgprWaitStates); 519 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 520 } 521 return WaitStatesNeeded; 522 } 523 524 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 525 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 526 const SIInstrInfo *TII = ST.getInstrInfo(); 527 528 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 529 int DppVgprWaitStates = 2; 530 int DppExecWaitStates = 5; 531 int WaitStatesNeeded = 0; 532 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 533 534 for (const MachineOperand &Use : DPP->uses()) { 535 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 536 continue; 537 int WaitStatesNeededForUse = 538 DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 539 [](MachineInstr *) { return true; }, 540 DppVgprWaitStates); 541 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 542 } 543 544 WaitStatesNeeded = std::max( 545 WaitStatesNeeded, 546 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 547 DppExecWaitStates)); 548 549 return WaitStatesNeeded; 550 } 551 552 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 553 const SIInstrInfo *TII = ST.getInstrInfo(); 554 555 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 556 // instruction. 557 const int DivFMasWaitStates = 4; 558 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 559 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 560 DivFMasWaitStates); 561 562 return DivFMasWaitStates - WaitStatesNeeded; 563 } 564 565 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 566 const SIInstrInfo *TII = ST.getInstrInfo(); 567 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 568 569 const int GetRegWaitStates = 2; 570 auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) { 571 return GetRegHWReg == getHWReg(TII, *MI); 572 }; 573 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 574 575 return GetRegWaitStates - WaitStatesNeeded; 576 } 577 578 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 579 const SIInstrInfo *TII = ST.getInstrInfo(); 580 unsigned HWReg = getHWReg(TII, *SetRegInstr); 581 582 const int SetRegWaitStates = 583 ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2; 584 auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) { 585 return HWReg == getHWReg(TII, *MI); 586 }; 587 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 588 return SetRegWaitStates - WaitStatesNeeded; 589 } 590 591 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 592 if (!MI.mayStore()) 593 return -1; 594 595 const SIInstrInfo *TII = ST.getInstrInfo(); 596 unsigned Opcode = MI.getOpcode(); 597 const MCInstrDesc &Desc = MI.getDesc(); 598 599 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 600 int VDataRCID = -1; 601 if (VDataIdx != -1) 602 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 603 604 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 605 // There is no hazard if the instruction does not use vector regs 606 // (like wbinvl1) 607 if (VDataIdx == -1) 608 return -1; 609 // For MUBUF/MTBUF instructions this hazard only exists if the 610 // instruction is not using a register in the soffset field. 611 const MachineOperand *SOffset = 612 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 613 // If we have no soffset operand, then assume this field has been 614 // hardcoded to zero. 615 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 616 (!SOffset || !SOffset->isReg())) 617 return VDataIdx; 618 } 619 620 // MIMG instructions create a hazard if they don't use a 256-bit T# and 621 // the store size is greater than 8 bytes and they have more than two bits 622 // of their dmask set. 623 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 624 if (TII->isMIMG(MI)) { 625 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 626 assert(SRsrcIdx != -1 && 627 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 628 (void)SRsrcIdx; 629 } 630 631 if (TII->isFLAT(MI)) { 632 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 633 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 634 return DataIdx; 635 } 636 637 return -1; 638 } 639 640 int GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 641 const MachineRegisterInfo &MRI) { 642 // Helper to check for the hazard where VMEM instructions that store more than 643 // 8 bytes can have there store data over written by the next instruction. 644 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 645 646 const int VALUWaitStates = 1; 647 int WaitStatesNeeded = 0; 648 649 if (!TRI->isVGPR(MRI, Def.getReg())) 650 return WaitStatesNeeded; 651 unsigned Reg = Def.getReg(); 652 auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) { 653 int DataIdx = createsVALUHazard(*MI); 654 return DataIdx >= 0 && 655 TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg); 656 }; 657 int WaitStatesNeededForDef = 658 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 659 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 660 661 return WaitStatesNeeded; 662 } 663 664 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 665 // This checks for the hazard where VMEM instructions that store more than 666 // 8 bytes can have there store data over written by the next instruction. 667 if (!ST.has12DWordStoreHazard()) 668 return 0; 669 670 const MachineRegisterInfo &MRI = MF.getRegInfo(); 671 int WaitStatesNeeded = 0; 672 673 for (const MachineOperand &Def : VALU->defs()) { 674 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 675 } 676 677 return WaitStatesNeeded; 678 } 679 680 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 681 // This checks for hazards associated with inline asm statements. 682 // Since inline asms can contain just about anything, we use this 683 // to call/leverage other check*Hazard routines. Note that 684 // this function doesn't attempt to address all possible inline asm 685 // hazards (good luck), but is a collection of what has been 686 // problematic thus far. 687 688 // see checkVALUHazards() 689 if (!ST.has12DWordStoreHazard()) 690 return 0; 691 692 const MachineRegisterInfo &MRI = MF.getRegInfo(); 693 int WaitStatesNeeded = 0; 694 695 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands(); 696 I != E; ++I) { 697 const MachineOperand &Op = IA->getOperand(I); 698 if (Op.isReg() && Op.isDef()) { 699 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 700 } 701 } 702 703 return WaitStatesNeeded; 704 } 705 706 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 707 const SIInstrInfo *TII = ST.getInstrInfo(); 708 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 709 const MachineRegisterInfo &MRI = MF.getRegInfo(); 710 711 const MachineOperand *LaneSelectOp = 712 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 713 714 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 715 return 0; 716 717 unsigned LaneSelectReg = LaneSelectOp->getReg(); 718 auto IsHazardFn = [TII] (MachineInstr *MI) { 719 return TII->isVALU(*MI); 720 }; 721 722 const int RWLaneWaitStates = 4; 723 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 724 RWLaneWaitStates); 725 return RWLaneWaitStates - WaitStatesSince; 726 } 727 728 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 729 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 730 return 0; 731 732 const SIInstrInfo *TII = ST.getInstrInfo(); 733 734 const int RFEWaitStates = 1; 735 736 auto IsHazardFn = [TII] (MachineInstr *MI) { 737 return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS; 738 }; 739 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 740 return RFEWaitStates - WaitStatesNeeded; 741 } 742 743 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) { 744 if (MI->isDebugInstr()) 745 return 0; 746 747 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 748 if (!ST.hasSMovFedHazard()) 749 return 0; 750 751 // Check for any instruction reading an SGPR after a write from 752 // s_mov_fed_b32. 753 int MovFedWaitStates = 1; 754 int WaitStatesNeeded = 0; 755 756 for (const MachineOperand &Use : MI->uses()) { 757 if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 758 continue; 759 auto IsHazardFn = [] (MachineInstr *MI) { 760 return MI->getOpcode() == AMDGPU::S_MOV_FED_B32; 761 }; 762 int WaitStatesNeededForUse = 763 MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn, 764 MovFedWaitStates); 765 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 766 } 767 768 return WaitStatesNeeded; 769 } 770 771 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 772 const SIInstrInfo *TII = ST.getInstrInfo(); 773 const int SMovRelWaitStates = 1; 774 auto IsHazardFn = [TII] (MachineInstr *MI) { 775 return TII->isSALU(*MI); 776 }; 777 return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, 778 SMovRelWaitStates); 779 } 780