xref: /llvm-project/llvm/lib/Target/AMDGPU/GCNHazardRecognizer.cpp (revision f898edd117daec42762c19dd733189307414d88a)
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements hazard recognizers for scheduling on GCN processors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "GCNHazardRecognizer.h"
15 #include "AMDGPUSubtarget.h"
16 #include "SIDefines.h"
17 #include "SIInstrInfo.h"
18 #include "SIRegisterInfo.h"
19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
20 #include "Utils/AMDGPUBaseInfo.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <limits>
31 #include <set>
32 #include <vector>
33 
34 using namespace llvm;
35 
36 //===----------------------------------------------------------------------===//
37 // Hazard Recoginizer Implementation
38 //===----------------------------------------------------------------------===//
39 
40 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
41   CurrCycleInstr(nullptr),
42   MF(MF),
43   ST(MF.getSubtarget<GCNSubtarget>()),
44   TII(*ST.getInstrInfo()),
45   TRI(TII.getRegisterInfo()),
46   ClauseUses(TRI.getNumRegUnits()),
47   ClauseDefs(TRI.getNumRegUnits()) {
48   MaxLookAhead = 5;
49 }
50 
51 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
52   EmitInstruction(SU->getInstr());
53 }
54 
55 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
56   CurrCycleInstr = MI;
57 }
58 
59 static bool isDivFMas(unsigned Opcode) {
60   return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64;
61 }
62 
63 static bool isSGetReg(unsigned Opcode) {
64   return Opcode == AMDGPU::S_GETREG_B32;
65 }
66 
67 static bool isSSetReg(unsigned Opcode) {
68   return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32;
69 }
70 
71 static bool isRWLane(unsigned Opcode) {
72   return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
73 }
74 
75 static bool isRFE(unsigned Opcode) {
76   return Opcode == AMDGPU::S_RFE_B64;
77 }
78 
79 static bool isSMovRel(unsigned Opcode) {
80   switch (Opcode) {
81   case AMDGPU::S_MOVRELS_B32:
82   case AMDGPU::S_MOVRELS_B64:
83   case AMDGPU::S_MOVRELD_B32:
84   case AMDGPU::S_MOVRELD_B64:
85     return true;
86   default:
87     return false;
88   }
89 }
90 
91 static bool isSendMsgTraceDataOrGDS(const MachineInstr &MI) {
92   switch (MI.getOpcode()) {
93   case AMDGPU::S_SENDMSG:
94   case AMDGPU::S_SENDMSGHALT:
95   case AMDGPU::S_TTRACEDATA:
96     return true;
97   default:
98     // TODO: GDS
99     return false;
100   }
101 }
102 
103 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
104   const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
105                                                      AMDGPU::OpName::simm16);
106   return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
107 }
108 
109 ScheduleHazardRecognizer::HazardType
110 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
111   MachineInstr *MI = SU->getInstr();
112 
113   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
114     return NoopHazard;
115 
116   // FIXME: Should flat be considered vmem?
117   if ((SIInstrInfo::isVMEM(*MI) ||
118        SIInstrInfo::isFLAT(*MI))
119       && checkVMEMHazards(MI) > 0)
120     return NoopHazard;
121 
122   if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
123     return NoopHazard;
124 
125   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
126     return NoopHazard;
127 
128   if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
129     return NoopHazard;
130 
131   if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
132     return NoopHazard;
133 
134   if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
135     return NoopHazard;
136 
137   if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
138     return NoopHazard;
139 
140   if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
141     return NoopHazard;
142 
143   if (ST.hasReadM0MovRelInterpHazard() &&
144       (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) &&
145       checkReadM0Hazards(MI) > 0)
146     return NoopHazard;
147 
148   if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(*MI) &&
149       checkReadM0Hazards(MI) > 0)
150     return NoopHazard;
151 
152   if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
153     return NoopHazard;
154 
155   if (checkAnyInstHazards(MI) > 0)
156     return NoopHazard;
157 
158   return NoHazard;
159 }
160 
161 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
162   return PreEmitNoops(SU->getInstr());
163 }
164 
165 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
166   int WaitStates = std::max(0, checkAnyInstHazards(MI));
167 
168   if (SIInstrInfo::isSMRD(*MI))
169     return std::max(WaitStates, checkSMRDHazards(MI));
170 
171   if (SIInstrInfo::isVALU(*MI))
172     WaitStates = std::max(WaitStates, checkVALUHazards(MI));
173 
174   if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
175     WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
176 
177   if (SIInstrInfo::isDPP(*MI))
178     WaitStates = std::max(WaitStates, checkDPPHazards(MI));
179 
180   if (isDivFMas(MI->getOpcode()))
181     WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
182 
183   if (isRWLane(MI->getOpcode()))
184     WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
185 
186   if (MI->isInlineAsm())
187     return std::max(WaitStates, checkInlineAsmHazards(MI));
188 
189   if (isSGetReg(MI->getOpcode()))
190     return std::max(WaitStates, checkGetRegHazards(MI));
191 
192   if (isSSetReg(MI->getOpcode()))
193     return std::max(WaitStates, checkSetRegHazards(MI));
194 
195   if (isRFE(MI->getOpcode()))
196     return std::max(WaitStates, checkRFEHazards(MI));
197 
198   if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) ||
199                                            isSMovRel(MI->getOpcode())))
200     return std::max(WaitStates, checkReadM0Hazards(MI));
201 
202   if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(*MI))
203     return std::max(WaitStates, checkReadM0Hazards(MI));
204 
205   return WaitStates;
206 }
207 
208 void GCNHazardRecognizer::EmitNoop() {
209   EmittedInstrs.push_front(nullptr);
210 }
211 
212 void GCNHazardRecognizer::AdvanceCycle() {
213   // When the scheduler detects a stall, it will call AdvanceCycle() without
214   // emitting any instructions.
215   if (!CurrCycleInstr)
216     return;
217 
218   // Do not track non-instructions which do not affect the wait states.
219   // If included, these instructions can lead to buffer overflow such that
220   // detectable hazards are missed.
221   if (CurrCycleInstr->getOpcode() == AMDGPU::IMPLICIT_DEF)
222     return;
223   else if (CurrCycleInstr->isDebugInstr())
224     return;
225 
226   unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
227 
228   // Keep track of emitted instructions
229   EmittedInstrs.push_front(CurrCycleInstr);
230 
231   // Add a nullptr for each additional wait state after the first.  Make sure
232   // not to add more than getMaxLookAhead() items to the list, since we
233   // truncate the list to that size right after this loop.
234   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
235        i < e; ++i) {
236     EmittedInstrs.push_front(nullptr);
237   }
238 
239   // getMaxLookahead() is the largest number of wait states we will ever need
240   // to insert, so there is no point in keeping track of more than that many
241   // wait states.
242   EmittedInstrs.resize(getMaxLookAhead());
243 
244   CurrCycleInstr = nullptr;
245 }
246 
247 void GCNHazardRecognizer::RecedeCycle() {
248   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
249 }
250 
251 //===----------------------------------------------------------------------===//
252 // Helper Functions
253 //===----------------------------------------------------------------------===//
254 
255 int GCNHazardRecognizer::getWaitStatesSince(
256     function_ref<bool(MachineInstr *)> IsHazard) {
257   int WaitStates = 0;
258   for (MachineInstr *MI : EmittedInstrs) {
259     if (MI) {
260       if (IsHazard(MI))
261         return WaitStates;
262 
263       unsigned Opcode = MI->getOpcode();
264       if (Opcode == AMDGPU::INLINEASM)
265         continue;
266     }
267     ++WaitStates;
268   }
269   return std::numeric_limits<int>::max();
270 }
271 
272 int GCNHazardRecognizer::getWaitStatesSinceDef(
273     unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) {
274   const SIRegisterInfo *TRI = ST.getRegisterInfo();
275 
276   auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) {
277     return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI);
278   };
279 
280   return getWaitStatesSince(IsHazardFn);
281 }
282 
283 int GCNHazardRecognizer::getWaitStatesSinceSetReg(
284     function_ref<bool(MachineInstr *)> IsHazard) {
285   auto IsHazardFn = [IsHazard] (MachineInstr *MI) {
286     return isSSetReg(MI->getOpcode()) && IsHazard(MI);
287   };
288 
289   return getWaitStatesSince(IsHazardFn);
290 }
291 
292 //===----------------------------------------------------------------------===//
293 // No-op Hazard Detection
294 //===----------------------------------------------------------------------===//
295 
296 static void addRegUnits(const SIRegisterInfo &TRI,
297                         BitVector &BV, unsigned Reg) {
298   for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI)
299     BV.set(*RUI);
300 }
301 
302 static void addRegsToSet(const SIRegisterInfo &TRI,
303                          iterator_range<MachineInstr::const_mop_iterator> Ops,
304                          BitVector &Set) {
305   for (const MachineOperand &Op : Ops) {
306     if (Op.isReg())
307       addRegUnits(TRI, Set, Op.getReg());
308   }
309 }
310 
311 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
312   // XXX: Do we need to worry about implicit operands
313   addRegsToSet(TRI, MI.defs(), ClauseDefs);
314   addRegsToSet(TRI, MI.uses(), ClauseUses);
315 }
316 
317 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
318   // SMEM soft clause are only present on VI+, and only matter if xnack is
319   // enabled.
320   if (!ST.isXNACKEnabled())
321     return 0;
322 
323   bool IsSMRD = TII.isSMRD(*MEM);
324 
325   resetClause();
326 
327   // A soft-clause is any group of consecutive SMEM instructions.  The
328   // instructions in this group may return out of order and/or may be
329   // replayed (i.e. the same instruction issued more than once).
330   //
331   // In order to handle these situations correctly we need to make sure
332   // that when a clause has more than one instruction, no instruction in the
333   // clause writes to a register that is read another instruction in the clause
334   // (including itself). If we encounter this situaion, we need to break the
335   // clause by inserting a non SMEM instruction.
336 
337   for (MachineInstr *MI : EmittedInstrs) {
338     // When we hit a non-SMEM instruction then we have passed the start of the
339     // clause and we can stop.
340     if (!MI)
341       break;
342 
343     if (IsSMRD != SIInstrInfo::isSMRD(*MI))
344       break;
345 
346     addClauseInst(*MI);
347   }
348 
349   if (ClauseDefs.none())
350     return 0;
351 
352   // We need to make sure not to put loads and stores in the same clause if they
353   // use the same address. For now, just start a new clause whenever we see a
354   // store.
355   if (MEM->mayStore())
356     return 1;
357 
358   addClauseInst(*MEM);
359 
360   // If the set of defs and uses intersect then we cannot add this instruction
361   // to the clause, so we have a hazard.
362   return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
363 }
364 
365 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
366   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
367   int WaitStatesNeeded = 0;
368 
369   WaitStatesNeeded = checkSoftClauseHazards(SMRD);
370 
371   // This SMRD hazard only affects SI.
372   if (ST.getGeneration() != AMDGPUSubtarget::SOUTHERN_ISLANDS)
373     return WaitStatesNeeded;
374 
375   // A read of an SGPR by SMRD instruction requires 4 wait states when the
376   // SGPR was written by a VALU instruction.
377   int SmrdSgprWaitStates = 4;
378   auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
379   auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); };
380 
381   bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);
382 
383   for (const MachineOperand &Use : SMRD->uses()) {
384     if (!Use.isReg())
385       continue;
386     int WaitStatesNeededForUse =
387         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
388     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
389 
390     // This fixes what appears to be undocumented hardware behavior in SI where
391     // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
392     // needs some number of nops in between. We don't know how many we need, but
393     // let's use 4. This wasn't discovered before probably because the only
394     // case when this happens is when we expand a 64-bit pointer into a full
395     // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
396     // probably never encountered in the closed-source land.
397     if (IsBufferSMRD) {
398       int WaitStatesNeededForUse =
399         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
400                                                    IsBufferHazardDefFn);
401       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
402     }
403   }
404 
405   return WaitStatesNeeded;
406 }
407 
408 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
409   if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
410     return 0;
411 
412   int WaitStatesNeeded = checkSoftClauseHazards(VMEM);
413 
414   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
415   // SGPR was written by a VALU Instruction.
416   const int VmemSgprWaitStates = 5;
417   auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
418 
419   for (const MachineOperand &Use : VMEM->uses()) {
420     if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
421       continue;
422 
423     int WaitStatesNeededForUse =
424         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
425     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
426   }
427   return WaitStatesNeeded;
428 }
429 
430 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
431   const SIRegisterInfo *TRI = ST.getRegisterInfo();
432   const SIInstrInfo *TII = ST.getInstrInfo();
433 
434   // Check for DPP VGPR read after VALU VGPR write and EXEC write.
435   int DppVgprWaitStates = 2;
436   int DppExecWaitStates = 5;
437   int WaitStatesNeeded = 0;
438   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
439 
440   for (const MachineOperand &Use : DPP->uses()) {
441     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
442       continue;
443     int WaitStatesNeededForUse =
444         DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg());
445     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
446   }
447 
448   WaitStatesNeeded = std::max(
449       WaitStatesNeeded,
450       DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn));
451 
452   return WaitStatesNeeded;
453 }
454 
455 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
456   const SIInstrInfo *TII = ST.getInstrInfo();
457 
458   // v_div_fmas requires 4 wait states after a write to vcc from a VALU
459   // instruction.
460   const int DivFMasWaitStates = 4;
461   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
462   int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn);
463 
464   return DivFMasWaitStates - WaitStatesNeeded;
465 }
466 
467 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
468   const SIInstrInfo *TII = ST.getInstrInfo();
469   unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
470 
471   const int GetRegWaitStates = 2;
472   auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) {
473     return GetRegHWReg == getHWReg(TII, *MI);
474   };
475   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
476 
477   return GetRegWaitStates - WaitStatesNeeded;
478 }
479 
480 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
481   const SIInstrInfo *TII = ST.getInstrInfo();
482   unsigned HWReg = getHWReg(TII, *SetRegInstr);
483 
484   const int SetRegWaitStates =
485       ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2;
486   auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) {
487     return HWReg == getHWReg(TII, *MI);
488   };
489   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
490   return SetRegWaitStates - WaitStatesNeeded;
491 }
492 
493 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
494   if (!MI.mayStore())
495     return -1;
496 
497   const SIInstrInfo *TII = ST.getInstrInfo();
498   unsigned Opcode = MI.getOpcode();
499   const MCInstrDesc &Desc = MI.getDesc();
500 
501   int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
502   int VDataRCID = -1;
503   if (VDataIdx != -1)
504     VDataRCID = Desc.OpInfo[VDataIdx].RegClass;
505 
506   if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
507     // There is no hazard if the instruction does not use vector regs
508     // (like wbinvl1)
509     if (VDataIdx == -1)
510       return -1;
511     // For MUBUF/MTBUF instructions this hazard only exists if the
512     // instruction is not using a register in the soffset field.
513     const MachineOperand *SOffset =
514         TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
515     // If we have no soffset operand, then assume this field has been
516     // hardcoded to zero.
517     if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
518         (!SOffset || !SOffset->isReg()))
519       return VDataIdx;
520   }
521 
522   // MIMG instructions create a hazard if they don't use a 256-bit T# and
523   // the store size is greater than 8 bytes and they have more than two bits
524   // of their dmask set.
525   // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
526   if (TII->isMIMG(MI)) {
527     int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
528     assert(SRsrcIdx != -1 &&
529            AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
530     (void)SRsrcIdx;
531   }
532 
533   if (TII->isFLAT(MI)) {
534     int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
535     if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
536       return DataIdx;
537   }
538 
539   return -1;
540 }
541 
542 int GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
543 						const MachineRegisterInfo &MRI) {
544   // Helper to check for the hazard where VMEM instructions that store more than
545   // 8 bytes can have there store data over written by the next instruction.
546   const SIRegisterInfo *TRI = ST.getRegisterInfo();
547 
548   const int VALUWaitStates = 1;
549   int WaitStatesNeeded = 0;
550 
551   if (!TRI->isVGPR(MRI, Def.getReg()))
552     return WaitStatesNeeded;
553   unsigned Reg = Def.getReg();
554   auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) {
555     int DataIdx = createsVALUHazard(*MI);
556     return DataIdx >= 0 &&
557     TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg);
558   };
559   int WaitStatesNeededForDef =
560     VALUWaitStates - getWaitStatesSince(IsHazardFn);
561   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
562 
563   return WaitStatesNeeded;
564 }
565 
566 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
567   // This checks for the hazard where VMEM instructions that store more than
568   // 8 bytes can have there store data over written by the next instruction.
569   if (!ST.has12DWordStoreHazard())
570     return 0;
571 
572   const MachineRegisterInfo &MRI = MF.getRegInfo();
573   int WaitStatesNeeded = 0;
574 
575   for (const MachineOperand &Def : VALU->defs()) {
576     WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
577   }
578 
579   return WaitStatesNeeded;
580 }
581 
582 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
583   // This checks for hazards associated with inline asm statements.
584   // Since inline asms can contain just about anything, we use this
585   // to call/leverage other check*Hazard routines. Note that
586   // this function doesn't attempt to address all possible inline asm
587   // hazards (good luck), but is a collection of what has been
588   // problematic thus far.
589 
590   // see checkVALUHazards()
591   if (!ST.has12DWordStoreHazard())
592     return 0;
593 
594   const MachineRegisterInfo &MRI = MF.getRegInfo();
595   int WaitStatesNeeded = 0;
596 
597   for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands();
598        I != E; ++I) {
599     const MachineOperand &Op = IA->getOperand(I);
600     if (Op.isReg() && Op.isDef()) {
601       WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
602     }
603   }
604 
605   return WaitStatesNeeded;
606 }
607 
608 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
609   const SIInstrInfo *TII = ST.getInstrInfo();
610   const SIRegisterInfo *TRI = ST.getRegisterInfo();
611   const MachineRegisterInfo &MRI = MF.getRegInfo();
612 
613   const MachineOperand *LaneSelectOp =
614       TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
615 
616   if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
617     return 0;
618 
619   unsigned LaneSelectReg = LaneSelectOp->getReg();
620   auto IsHazardFn = [TII] (MachineInstr *MI) {
621     return TII->isVALU(*MI);
622   };
623 
624   const int RWLaneWaitStates = 4;
625   int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn);
626   return RWLaneWaitStates - WaitStatesSince;
627 }
628 
629 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
630   if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
631     return 0;
632 
633   const SIInstrInfo *TII = ST.getInstrInfo();
634 
635   const int RFEWaitStates = 1;
636 
637   auto IsHazardFn = [TII] (MachineInstr *MI) {
638     return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS;
639   };
640   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
641   return RFEWaitStates - WaitStatesNeeded;
642 }
643 
644 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) {
645   if (MI->isDebugInstr())
646     return 0;
647 
648   const SIRegisterInfo *TRI = ST.getRegisterInfo();
649   if (!ST.hasSMovFedHazard())
650     return 0;
651 
652   // Check for any instruction reading an SGPR after a write from
653   // s_mov_fed_b32.
654   int MovFedWaitStates = 1;
655   int WaitStatesNeeded = 0;
656 
657   for (const MachineOperand &Use : MI->uses()) {
658     if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
659       continue;
660     auto IsHazardFn = [] (MachineInstr *MI) {
661       return MI->getOpcode() == AMDGPU::S_MOV_FED_B32;
662     };
663     int WaitStatesNeededForUse =
664         MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn);
665     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
666   }
667 
668   return WaitStatesNeeded;
669 }
670 
671 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
672   const SIInstrInfo *TII = ST.getInstrInfo();
673   const int SMovRelWaitStates = 1;
674   auto IsHazardFn = [TII] (MachineInstr *MI) {
675     return TII->isSALU(*MI);
676   };
677   return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn);
678 }
679