xref: /llvm-project/llvm/lib/Target/AMDGPU/GCNHazardRecognizer.cpp (revision f29a19b0b8d279616df795db52a3b6fafef6e1de)
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements hazard recognizers for scheduling on GCN processors.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "GCNHazardRecognizer.h"
14 #include "GCNSubtarget.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "SIMachineFunctionInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/ScheduleDAG.h"
19 #include "llvm/Support/TargetParser.h"
20 
21 using namespace llvm;
22 
23 namespace {
24 
25 struct MFMAPaddingRatioParser : public cl::parser<unsigned> {
26   MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {}
27 
28   bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) {
29     if (Arg.getAsInteger(0, Value))
30       return O.error("'" + Arg + "' value invalid for uint argument!");
31 
32     if (Value > 100)
33       return O.error("'" + Arg + "' value must be in the range [0, 100]!");
34 
35     return false;
36   }
37 };
38 
39 } // end anonymous namespace
40 
41 static cl::opt<unsigned, false, MFMAPaddingRatioParser>
42     MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden,
43                      cl::desc("Fill a percentage of the latency between "
44                               "neighboring MFMA with s_nops."));
45 
46 //===----------------------------------------------------------------------===//
47 // Hazard Recognizer Implementation
48 //===----------------------------------------------------------------------===//
49 
50 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
51                                                  const GCNSubtarget &ST);
52 
53 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
54   IsHazardRecognizerMode(false),
55   CurrCycleInstr(nullptr),
56   MF(MF),
57   ST(MF.getSubtarget<GCNSubtarget>()),
58   TII(*ST.getInstrInfo()),
59   TRI(TII.getRegisterInfo()),
60   ClauseUses(TRI.getNumRegUnits()),
61   ClauseDefs(TRI.getNumRegUnits()) {
62   MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5;
63   TSchedModel.init(&ST);
64   RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST);
65 }
66 
67 void GCNHazardRecognizer::Reset() {
68   EmittedInstrs.clear();
69 }
70 
71 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
72   EmitInstruction(SU->getInstr());
73 }
74 
75 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
76   CurrCycleInstr = MI;
77 }
78 
79 static bool isDivFMas(unsigned Opcode) {
80   return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64;
81 }
82 
83 static bool isSGetReg(unsigned Opcode) {
84   return Opcode == AMDGPU::S_GETREG_B32;
85 }
86 
87 static bool isSSetReg(unsigned Opcode) {
88   switch (Opcode) {
89   case AMDGPU::S_SETREG_B32:
90   case AMDGPU::S_SETREG_B32_mode:
91   case AMDGPU::S_SETREG_IMM32_B32:
92   case AMDGPU::S_SETREG_IMM32_B32_mode:
93     return true;
94   }
95   return false;
96 }
97 
98 static bool isRWLane(unsigned Opcode) {
99   return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
100 }
101 
102 static bool isRFE(unsigned Opcode) {
103   return Opcode == AMDGPU::S_RFE_B64;
104 }
105 
106 static bool isSMovRel(unsigned Opcode) {
107   switch (Opcode) {
108   case AMDGPU::S_MOVRELS_B32:
109   case AMDGPU::S_MOVRELS_B64:
110   case AMDGPU::S_MOVRELD_B32:
111   case AMDGPU::S_MOVRELD_B64:
112     return true;
113   default:
114     return false;
115   }
116 }
117 
118 static bool isDGEMM(unsigned Opcode) {
119   return AMDGPU::getMAIIsDGEMM(Opcode);
120 }
121 
122 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) {
123   unsigned Opcode = MI.getOpcode();
124 
125   if (!SIInstrInfo::isMAI(MI) ||
126       isDGEMM(Opcode) ||
127       Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
128       Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64)
129     return false;
130 
131   if (!ST.hasGFX940Insts())
132     return true;
133 
134   return AMDGPU::getMAIIsGFX940XDL(Opcode);
135 }
136 
137 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII,
138                                     const MachineInstr &MI) {
139   if (TII.isAlwaysGDS(MI.getOpcode()))
140     return true;
141 
142   switch (MI.getOpcode()) {
143   case AMDGPU::S_SENDMSG:
144   case AMDGPU::S_SENDMSGHALT:
145   case AMDGPU::S_TTRACEDATA:
146     return true;
147   // These DS opcodes don't support GDS.
148   case AMDGPU::DS_NOP:
149   case AMDGPU::DS_PERMUTE_B32:
150   case AMDGPU::DS_BPERMUTE_B32:
151     return false;
152   default:
153     if (TII.isDS(MI.getOpcode())) {
154       int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
155                                            AMDGPU::OpName::gds);
156       if (MI.getOperand(GDS).getImm())
157         return true;
158     }
159     return false;
160   }
161 }
162 
163 static bool isPermlane(const MachineInstr &MI) {
164   unsigned Opcode = MI.getOpcode();
165   return Opcode == AMDGPU::V_PERMLANE16_B32_e64 ||
166          Opcode == AMDGPU::V_PERMLANEX16_B32_e64;
167 }
168 
169 static bool isLdsDma(const MachineInstr &MI) {
170   return SIInstrInfo::isVALU(MI) &&
171          (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI));
172 }
173 
174 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
175   const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
176                                                      AMDGPU::OpName::simm16);
177   return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
178 }
179 
180 ScheduleHazardRecognizer::HazardType
181 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
182   MachineInstr *MI = SU->getInstr();
183   // If we are not in "HazardRecognizerMode" and therefore not being run from
184   // the scheduler, track possible stalls from hazards but don't insert noops.
185   auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard;
186 
187   if (MI->isBundle())
188    return NoHazard;
189 
190   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
191     return HazardType;
192 
193   if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0)
194     return HazardType;
195 
196   if (checkFPAtomicToDenormModeHazard(MI) > 0)
197     return HazardType;
198 
199   if (ST.hasNoDataDepHazard())
200     return NoHazard;
201 
202   // FIXME: Should flat be considered vmem?
203   if ((SIInstrInfo::isVMEM(*MI) ||
204        SIInstrInfo::isFLAT(*MI))
205       && checkVMEMHazards(MI) > 0)
206     return HazardType;
207 
208   if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
209     return HazardType;
210 
211   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
212     return HazardType;
213 
214   if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
215     return HazardType;
216 
217   if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
218     return HazardType;
219 
220   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
221        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
222        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
223     return HazardType;
224 
225   if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
226     return HazardType;
227 
228   if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
229     return HazardType;
230 
231   if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
232     return HazardType;
233 
234   if (((ST.hasReadM0MovRelInterpHazard() &&
235         (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) ||
236          MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 ||
237          MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) ||
238        (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) ||
239        (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) ||
240        (ST.hasReadM0LdsDirectHazard() &&
241         MI->readsRegister(AMDGPU::LDS_DIRECT))) &&
242       checkReadM0Hazards(MI) > 0)
243     return HazardType;
244 
245   if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0)
246     return HazardType;
247 
248   if ((SIInstrInfo::isVMEM(*MI) ||
249        SIInstrInfo::isFLAT(*MI) ||
250        SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0)
251     return HazardType;
252 
253   if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
254     return HazardType;
255 
256   return NoHazard;
257 }
258 
259 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII,
260                                 unsigned Quantity) {
261   while (Quantity > 0) {
262     unsigned Arg = std::min(Quantity, 8u);
263     Quantity -= Arg;
264     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP))
265         .addImm(Arg - 1);
266   }
267 }
268 
269 unsigned
270 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const {
271   const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI);
272   assert(TSchedModel.getWriteProcResBegin(SC) !=
273          TSchedModel.getWriteProcResEnd(SC));
274   return TSchedModel.getWriteProcResBegin(SC)->Cycles;
275 }
276 
277 void GCNHazardRecognizer::processBundle() {
278   MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator());
279   MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end();
280   // Check bundled MachineInstr's for hazards.
281   for (; MI != E && MI->isInsideBundle(); ++MI) {
282     CurrCycleInstr = &*MI;
283     unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr);
284 
285     if (IsHazardRecognizerMode) {
286       fixHazards(CurrCycleInstr);
287 
288       insertNoopsInBundle(CurrCycleInstr, TII, WaitStates);
289     }
290 
291     // It’s unnecessary to track more than MaxLookAhead instructions. Since we
292     // include the bundled MI directly after, only add a maximum of
293     // (MaxLookAhead - 1) noops to EmittedInstrs.
294     for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i)
295       EmittedInstrs.push_front(nullptr);
296 
297     EmittedInstrs.push_front(CurrCycleInstr);
298     EmittedInstrs.resize(MaxLookAhead);
299   }
300   CurrCycleInstr = nullptr;
301 }
302 
303 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
304   IsHazardRecognizerMode = true;
305   CurrCycleInstr = MI;
306   unsigned W = PreEmitNoopsCommon(MI);
307   fixHazards(MI);
308   CurrCycleInstr = nullptr;
309   return W;
310 }
311 
312 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) {
313   if (MI->isBundle())
314     return 0;
315 
316   int WaitStates = 0;
317 
318   if (SIInstrInfo::isSMRD(*MI))
319     return std::max(WaitStates, checkSMRDHazards(MI));
320 
321   if (ST.hasNSAtoVMEMBug())
322     WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI));
323 
324   WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI));
325 
326   if (ST.hasNoDataDepHazard())
327     return WaitStates;
328 
329   if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
330     WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
331 
332   if (SIInstrInfo::isVALU(*MI))
333     WaitStates = std::max(WaitStates, checkVALUHazards(MI));
334 
335   if (SIInstrInfo::isDPP(*MI))
336     WaitStates = std::max(WaitStates, checkDPPHazards(MI));
337 
338   if (isDivFMas(MI->getOpcode()))
339     WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
340 
341   if (isRWLane(MI->getOpcode()))
342     WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
343 
344   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
345        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
346        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
347     WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI));
348 
349   if (MI->isInlineAsm())
350     return std::max(WaitStates, checkInlineAsmHazards(MI));
351 
352   if (isSGetReg(MI->getOpcode()))
353     return std::max(WaitStates, checkGetRegHazards(MI));
354 
355   if (isSSetReg(MI->getOpcode()))
356     return std::max(WaitStates, checkSetRegHazards(MI));
357 
358   if (isRFE(MI->getOpcode()))
359     return std::max(WaitStates, checkRFEHazards(MI));
360 
361   if ((ST.hasReadM0MovRelInterpHazard() &&
362        (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) ||
363         MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 ||
364         MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) ||
365       (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) ||
366       (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) ||
367       (ST.hasReadM0LdsDirectHazard() && MI->readsRegister(AMDGPU::LDS_DIRECT)))
368     return std::max(WaitStates, checkReadM0Hazards(MI));
369 
370   if (SIInstrInfo::isMAI(*MI))
371     return std::max(WaitStates, checkMAIHazards(MI));
372 
373   if (SIInstrInfo::isVMEM(*MI) ||
374       SIInstrInfo::isFLAT(*MI) ||
375       SIInstrInfo::isDS(*MI))
376     return std::max(WaitStates, checkMAILdStHazards(MI));
377 
378   return WaitStates;
379 }
380 
381 void GCNHazardRecognizer::EmitNoop() {
382   EmittedInstrs.push_front(nullptr);
383 }
384 
385 void GCNHazardRecognizer::AdvanceCycle() {
386   // When the scheduler detects a stall, it will call AdvanceCycle() without
387   // emitting any instructions.
388   if (!CurrCycleInstr) {
389     EmittedInstrs.push_front(nullptr);
390     return;
391   }
392 
393   if (CurrCycleInstr->isBundle()) {
394     processBundle();
395     return;
396   }
397 
398   unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
399   if (!NumWaitStates) {
400     CurrCycleInstr = nullptr;
401     return;
402   }
403 
404   // Keep track of emitted instructions
405   EmittedInstrs.push_front(CurrCycleInstr);
406 
407   // Add a nullptr for each additional wait state after the first.  Make sure
408   // not to add more than getMaxLookAhead() items to the list, since we
409   // truncate the list to that size right after this loop.
410   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
411        i < e; ++i) {
412     EmittedInstrs.push_front(nullptr);
413   }
414 
415   // getMaxLookahead() is the largest number of wait states we will ever need
416   // to insert, so there is no point in keeping track of more than that many
417   // wait states.
418   EmittedInstrs.resize(getMaxLookAhead());
419 
420   CurrCycleInstr = nullptr;
421 }
422 
423 void GCNHazardRecognizer::RecedeCycle() {
424   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
425 }
426 
427 //===----------------------------------------------------------------------===//
428 // Helper Functions
429 //===----------------------------------------------------------------------===//
430 
431 typedef enum { HazardFound, HazardExpired, NoHazardFound } HazardFnResult;
432 
433 typedef function_ref<bool(const MachineInstr &, int WaitStates)> IsExpiredFn;
434 typedef function_ref<unsigned int(const MachineInstr &)> GetNumWaitStatesFn;
435 
436 // Search for a hazard in a block and its predecessors.
437 template <typename StateT>
438 static bool
439 hasHazard(StateT State,
440           function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard,
441           function_ref<void(StateT &, const MachineInstr &)> UpdateState,
442           const MachineBasicBlock *MBB,
443           MachineBasicBlock::const_reverse_instr_iterator I,
444           DenseSet<const MachineBasicBlock *> &Visited) {
445   for (auto E = MBB->instr_rend(); I != E; ++I) {
446     // No need to look at parent BUNDLE instructions.
447     if (I->isBundle())
448       continue;
449 
450     switch (IsHazard(State, *I)) {
451     case HazardFound:
452       return true;
453     case HazardExpired:
454       return false;
455     default:
456       // Continue search
457       break;
458     }
459 
460     if (I->isInlineAsm() || I->isMetaInstruction())
461       continue;
462 
463     UpdateState(State, *I);
464   }
465 
466   for (MachineBasicBlock *Pred : MBB->predecessors()) {
467     if (!Visited.insert(Pred).second)
468       continue;
469 
470     if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(),
471                   Visited))
472       return true;
473   }
474 
475   return false;
476 }
477 
478 // Returns a minimum wait states since \p I walking all predecessors.
479 // Only scans until \p IsExpired does not return true.
480 // Can only be run in a hazard recognizer mode.
481 static int getWaitStatesSince(
482     GCNHazardRecognizer::IsHazardFn IsHazard, const MachineBasicBlock *MBB,
483     MachineBasicBlock::const_reverse_instr_iterator I, int WaitStates,
484     IsExpiredFn IsExpired, DenseSet<const MachineBasicBlock *> &Visited,
485     GetNumWaitStatesFn GetNumWaitStates = SIInstrInfo::getNumWaitStates) {
486   for (auto E = MBB->instr_rend(); I != E; ++I) {
487     // Don't add WaitStates for parent BUNDLE instructions.
488     if (I->isBundle())
489       continue;
490 
491     if (IsHazard(*I))
492       return WaitStates;
493 
494     if (I->isInlineAsm())
495       continue;
496 
497     WaitStates += GetNumWaitStates(*I);
498 
499     if (IsExpired(*I, WaitStates))
500       return std::numeric_limits<int>::max();
501   }
502 
503   int MinWaitStates = std::numeric_limits<int>::max();
504   for (MachineBasicBlock *Pred : MBB->predecessors()) {
505     if (!Visited.insert(Pred).second)
506       continue;
507 
508     int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), WaitStates,
509                                IsExpired, Visited, GetNumWaitStates);
510 
511     MinWaitStates = std::min(MinWaitStates, W);
512   }
513 
514   return MinWaitStates;
515 }
516 
517 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
518                               const MachineInstr *MI, IsExpiredFn IsExpired) {
519   DenseSet<const MachineBasicBlock *> Visited;
520   return getWaitStatesSince(IsHazard, MI->getParent(),
521                             std::next(MI->getReverseIterator()),
522                             0, IsExpired, Visited);
523 }
524 
525 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) {
526   if (IsHazardRecognizerMode) {
527     auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) {
528       return WaitStates >= Limit;
529     };
530     return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn);
531   }
532 
533   int WaitStates = 0;
534   for (MachineInstr *MI : EmittedInstrs) {
535     if (MI) {
536       if (IsHazard(*MI))
537         return WaitStates;
538 
539       if (MI->isInlineAsm())
540         continue;
541     }
542     ++WaitStates;
543 
544     if (WaitStates >= Limit)
545       break;
546   }
547   return std::numeric_limits<int>::max();
548 }
549 
550 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg,
551                                                IsHazardFn IsHazardDef,
552                                                int Limit) {
553   const SIRegisterInfo *TRI = ST.getRegisterInfo();
554 
555   auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) {
556     return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI);
557   };
558 
559   return getWaitStatesSince(IsHazardFn, Limit);
560 }
561 
562 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard,
563                                                   int Limit) {
564   auto IsHazardFn = [IsHazard](const MachineInstr &MI) {
565     return isSSetReg(MI.getOpcode()) && IsHazard(MI);
566   };
567 
568   return getWaitStatesSince(IsHazardFn, Limit);
569 }
570 
571 //===----------------------------------------------------------------------===//
572 // No-op Hazard Detection
573 //===----------------------------------------------------------------------===//
574 
575 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV,
576                         MCRegister Reg) {
577   for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI)
578     BV.set(*RUI);
579 }
580 
581 static void addRegsToSet(const SIRegisterInfo &TRI,
582                          iterator_range<MachineInstr::const_mop_iterator> Ops,
583                          BitVector &Set) {
584   for (const MachineOperand &Op : Ops) {
585     if (Op.isReg())
586       addRegUnits(TRI, Set, Op.getReg().asMCReg());
587   }
588 }
589 
590 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
591   // XXX: Do we need to worry about implicit operands
592   addRegsToSet(TRI, MI.defs(), ClauseDefs);
593   addRegsToSet(TRI, MI.uses(), ClauseUses);
594 }
595 
596 static bool breaksSMEMSoftClause(MachineInstr *MI) {
597   return !SIInstrInfo::isSMRD(*MI);
598 }
599 
600 static bool breaksVMEMSoftClause(MachineInstr *MI) {
601   return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI);
602 }
603 
604 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
605   // SMEM soft clause are only present on VI+, and only matter if xnack is
606   // enabled.
607   if (!ST.isXNACKEnabled())
608     return 0;
609 
610   bool IsSMRD = TII.isSMRD(*MEM);
611 
612   resetClause();
613 
614   // A soft-clause is any group of consecutive SMEM instructions.  The
615   // instructions in this group may return out of order and/or may be
616   // replayed (i.e. the same instruction issued more than once).
617   //
618   // In order to handle these situations correctly we need to make sure that
619   // when a clause has more than one instruction, no instruction in the clause
620   // writes to a register that is read by another instruction in the clause
621   // (including itself). If we encounter this situation, we need to break the
622   // clause by inserting a non SMEM instruction.
623 
624   for (MachineInstr *MI : EmittedInstrs) {
625     // When we hit a non-SMEM instruction then we have passed the start of the
626     // clause and we can stop.
627     if (!MI)
628       break;
629 
630     if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI))
631       break;
632 
633     addClauseInst(*MI);
634   }
635 
636   if (ClauseDefs.none())
637     return 0;
638 
639   // We need to make sure not to put loads and stores in the same clause if they
640   // use the same address. For now, just start a new clause whenever we see a
641   // store.
642   if (MEM->mayStore())
643     return 1;
644 
645   addClauseInst(*MEM);
646 
647   // If the set of defs and uses intersect then we cannot add this instruction
648   // to the clause, so we have a hazard.
649   return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
650 }
651 
652 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
653   int WaitStatesNeeded = 0;
654 
655   WaitStatesNeeded = checkSoftClauseHazards(SMRD);
656 
657   // This SMRD hazard only affects SI.
658   if (!ST.hasSMRDReadVALUDefHazard())
659     return WaitStatesNeeded;
660 
661   // A read of an SGPR by SMRD instruction requires 4 wait states when the
662   // SGPR was written by a VALU instruction.
663   int SmrdSgprWaitStates = 4;
664   auto IsHazardDefFn = [this](const MachineInstr &MI) {
665     return TII.isVALU(MI);
666   };
667   auto IsBufferHazardDefFn = [this](const MachineInstr &MI) {
668     return TII.isSALU(MI);
669   };
670 
671   bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);
672 
673   for (const MachineOperand &Use : SMRD->uses()) {
674     if (!Use.isReg())
675       continue;
676     int WaitStatesNeededForUse =
677         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
678                                                    SmrdSgprWaitStates);
679     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
680 
681     // This fixes what appears to be undocumented hardware behavior in SI where
682     // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
683     // needs some number of nops in between. We don't know how many we need, but
684     // let's use 4. This wasn't discovered before probably because the only
685     // case when this happens is when we expand a 64-bit pointer into a full
686     // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
687     // probably never encountered in the closed-source land.
688     if (IsBufferSMRD) {
689       int WaitStatesNeededForUse =
690         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
691                                                    IsBufferHazardDefFn,
692                                                    SmrdSgprWaitStates);
693       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
694     }
695   }
696 
697   return WaitStatesNeeded;
698 }
699 
700 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
701   if (!ST.hasVMEMReadSGPRVALUDefHazard())
702     return 0;
703 
704   int WaitStatesNeeded = checkSoftClauseHazards(VMEM);
705 
706   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
707   // SGPR was written by a VALU Instruction.
708   const int VmemSgprWaitStates = 5;
709   auto IsHazardDefFn = [this](const MachineInstr &MI) {
710     return TII.isVALU(MI);
711   };
712   for (const MachineOperand &Use : VMEM->uses()) {
713     if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg()))
714       continue;
715 
716     int WaitStatesNeededForUse =
717         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
718                                                    VmemSgprWaitStates);
719     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
720   }
721   return WaitStatesNeeded;
722 }
723 
724 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
725   const SIRegisterInfo *TRI = ST.getRegisterInfo();
726   const SIInstrInfo *TII = ST.getInstrInfo();
727 
728   // Check for DPP VGPR read after VALU VGPR write and EXEC write.
729   int DppVgprWaitStates = 2;
730   int DppExecWaitStates = 5;
731   int WaitStatesNeeded = 0;
732   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
733     return TII->isVALU(MI);
734   };
735 
736   for (const MachineOperand &Use : DPP->uses()) {
737     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
738       continue;
739     int WaitStatesNeededForUse =
740         DppVgprWaitStates - getWaitStatesSinceDef(
741                                 Use.getReg(),
742                                 [](const MachineInstr &) { return true; },
743                                 DppVgprWaitStates);
744     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
745   }
746 
747   WaitStatesNeeded = std::max(
748       WaitStatesNeeded,
749       DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn,
750                                                 DppExecWaitStates));
751 
752   return WaitStatesNeeded;
753 }
754 
755 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
756   const SIInstrInfo *TII = ST.getInstrInfo();
757 
758   // v_div_fmas requires 4 wait states after a write to vcc from a VALU
759   // instruction.
760   const int DivFMasWaitStates = 4;
761   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
762     return TII->isVALU(MI);
763   };
764   int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn,
765                                                DivFMasWaitStates);
766 
767   return DivFMasWaitStates - WaitStatesNeeded;
768 }
769 
770 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
771   const SIInstrInfo *TII = ST.getInstrInfo();
772   unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
773 
774   const int GetRegWaitStates = 2;
775   auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) {
776     return GetRegHWReg == getHWReg(TII, MI);
777   };
778   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates);
779 
780   return GetRegWaitStates - WaitStatesNeeded;
781 }
782 
783 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
784   const SIInstrInfo *TII = ST.getInstrInfo();
785   unsigned HWReg = getHWReg(TII, *SetRegInstr);
786 
787   const int SetRegWaitStates = ST.getSetRegWaitStates();
788   auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) {
789     return HWReg == getHWReg(TII, MI);
790   };
791   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates);
792   return SetRegWaitStates - WaitStatesNeeded;
793 }
794 
795 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
796   if (!MI.mayStore())
797     return -1;
798 
799   const SIInstrInfo *TII = ST.getInstrInfo();
800   unsigned Opcode = MI.getOpcode();
801   const MCInstrDesc &Desc = MI.getDesc();
802 
803   int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
804   int VDataRCID = -1;
805   if (VDataIdx != -1)
806     VDataRCID = Desc.OpInfo[VDataIdx].RegClass;
807 
808   if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
809     // There is no hazard if the instruction does not use vector regs
810     // (like wbinvl1)
811     if (VDataIdx == -1)
812       return -1;
813     // For MUBUF/MTBUF instructions this hazard only exists if the
814     // instruction is not using a register in the soffset field.
815     const MachineOperand *SOffset =
816         TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
817     // If we have no soffset operand, then assume this field has been
818     // hardcoded to zero.
819     if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
820         (!SOffset || !SOffset->isReg()))
821       return VDataIdx;
822   }
823 
824   // MIMG instructions create a hazard if they don't use a 256-bit T# and
825   // the store size is greater than 8 bytes and they have more than two bits
826   // of their dmask set.
827   // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
828   if (TII->isMIMG(MI)) {
829     int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
830     assert(SRsrcIdx != -1 &&
831            AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
832     (void)SRsrcIdx;
833   }
834 
835   if (TII->isFLAT(MI)) {
836     int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
837     if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
838       return DataIdx;
839   }
840 
841   return -1;
842 }
843 
844 int
845 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
846                                             const MachineRegisterInfo &MRI) {
847   // Helper to check for the hazard where VMEM instructions that store more than
848   // 8 bytes can have there store data over written by the next instruction.
849   const SIRegisterInfo *TRI = ST.getRegisterInfo();
850 
851   const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1;
852   int WaitStatesNeeded = 0;
853 
854   if (!TRI->isVectorRegister(MRI, Def.getReg()))
855     return WaitStatesNeeded;
856   Register Reg = Def.getReg();
857   auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) {
858     int DataIdx = createsVALUHazard(MI);
859     return DataIdx >= 0 &&
860            TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg);
861   };
862   int WaitStatesNeededForDef =
863     VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates);
864   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
865 
866   return WaitStatesNeeded;
867 }
868 
869 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
870   int WaitStatesNeeded = 0;
871 
872   if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) {
873     const int TransDefWaitstates = 1;
874 
875     auto IsTransDefFn = [this, VALU](const MachineInstr &MI) {
876       if (!SIInstrInfo::isTRANS(MI))
877         return false;
878       const SIRegisterInfo *TRI = ST.getRegisterInfo();
879       const SIInstrInfo *TII = ST.getInstrInfo();
880       Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg();
881 
882       for (const MachineOperand &Use : VALU->explicit_uses()) {
883         if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg()))
884           return true;
885       }
886 
887       return false;
888     };
889 
890     int WaitStatesNeededForDef =
891         TransDefWaitstates -
892         getWaitStatesSince(IsTransDefFn, TransDefWaitstates);
893     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
894   }
895 
896   if (ST.hasDstSelForwardingHazard()) {
897     const int Shift16DefWaitstates = 1;
898 
899     auto IsShift16BitDefFn = [this, VALU](const MachineInstr &MI) {
900       if (!SIInstrInfo::isVALU(MI))
901         return false;
902       const SIInstrInfo *TII = ST.getInstrInfo();
903       if (SIInstrInfo::isSDWA(MI)) {
904         if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel))
905           if (DstSel->getImm() == AMDGPU::SDWA::DWORD)
906             return false;
907       } else {
908         if ((AMDGPU::getNamedOperandIdx(MI.getOpcode(),
909                                         AMDGPU::OpName::op_sel) == -1) ||
910             !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)
911                   ->getImm() &
912               SISrcMods::DST_OP_SEL))
913           return false;
914       }
915       const SIRegisterInfo *TRI = ST.getRegisterInfo();
916       if (auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) {
917         Register Def = Dst->getReg();
918 
919         for (const MachineOperand &Use : VALU->explicit_uses()) {
920           if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg()))
921             return true;
922         }
923       }
924 
925       return false;
926     };
927 
928     int WaitStatesNeededForDef =
929         Shift16DefWaitstates -
930         getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates);
931     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
932   }
933 
934   if (ST.hasVDecCoExecHazard()) {
935     const int VALUWriteSGPRVALUReadWaitstates = 2;
936     const int VALUWriteEXECRWLane = 4;
937     const int VALUWriteVGPRReadlaneRead = 1;
938 
939     const SIRegisterInfo *TRI = ST.getRegisterInfo();
940     const MachineRegisterInfo &MRI = MF.getRegInfo();
941     Register UseReg;
942     auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) {
943       if (!SIInstrInfo::isVALU(MI))
944         return false;
945       return MI.modifiesRegister(UseReg, TRI);
946     };
947 
948     for (const MachineOperand &Use : VALU->explicit_uses()) {
949       if (!Use.isReg())
950         continue;
951 
952       UseReg = Use.getReg();
953       if (TRI->isSGPRReg(MRI, UseReg)) {
954         int WaitStatesNeededForDef =
955             VALUWriteSGPRVALUReadWaitstates -
956             getWaitStatesSince(IsVALUDefSGPRFn,
957                                VALUWriteSGPRVALUReadWaitstates);
958         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
959       }
960     }
961 
962     if (VALU->readsRegister(AMDGPU::VCC, TRI)) {
963       UseReg = AMDGPU::VCC;
964       int WaitStatesNeededForDef =
965           VALUWriteSGPRVALUReadWaitstates -
966           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates);
967       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
968     }
969 
970     switch (VALU->getOpcode()) {
971     case AMDGPU::V_READLANE_B32:
972     case AMDGPU::V_READFIRSTLANE_B32: {
973       MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0);
974       UseReg = Src->getReg();
975       int WaitStatesNeededForDef =
976           VALUWriteVGPRReadlaneRead -
977           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead);
978       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
979     }
980       LLVM_FALLTHROUGH;
981     case AMDGPU::V_WRITELANE_B32: {
982       UseReg = AMDGPU::EXEC;
983       int WaitStatesNeededForDef =
984           VALUWriteEXECRWLane -
985           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane);
986       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
987       break;
988     }
989     default:
990       break;
991     }
992   }
993 
994   // This checks for the hazard where VMEM instructions that store more than
995   // 8 bytes can have there store data over written by the next instruction.
996   if (!ST.has12DWordStoreHazard())
997     return WaitStatesNeeded;
998 
999   const MachineRegisterInfo &MRI = MF.getRegInfo();
1000 
1001   for (const MachineOperand &Def : VALU->defs()) {
1002     WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
1003   }
1004 
1005   return WaitStatesNeeded;
1006 }
1007 
1008 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
1009   // This checks for hazards associated with inline asm statements.
1010   // Since inline asms can contain just about anything, we use this
1011   // to call/leverage other check*Hazard routines. Note that
1012   // this function doesn't attempt to address all possible inline asm
1013   // hazards (good luck), but is a collection of what has been
1014   // problematic thus far.
1015 
1016   // see checkVALUHazards()
1017   if (!ST.has12DWordStoreHazard())
1018     return 0;
1019 
1020   const MachineRegisterInfo &MRI = MF.getRegInfo();
1021   int WaitStatesNeeded = 0;
1022 
1023   for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands();
1024        I != E; ++I) {
1025     const MachineOperand &Op = IA->getOperand(I);
1026     if (Op.isReg() && Op.isDef()) {
1027       WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
1028     }
1029   }
1030 
1031   return WaitStatesNeeded;
1032 }
1033 
1034 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
1035   const SIInstrInfo *TII = ST.getInstrInfo();
1036   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1037   const MachineRegisterInfo &MRI = MF.getRegInfo();
1038 
1039   const MachineOperand *LaneSelectOp =
1040       TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
1041 
1042   if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
1043     return 0;
1044 
1045   Register LaneSelectReg = LaneSelectOp->getReg();
1046   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); };
1047 
1048   const int RWLaneWaitStates = 4;
1049   int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn,
1050                                               RWLaneWaitStates);
1051   return RWLaneWaitStates - WaitStatesSince;
1052 }
1053 
1054 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
1055   if (!ST.hasRFEHazards())
1056     return 0;
1057 
1058   const SIInstrInfo *TII = ST.getInstrInfo();
1059 
1060   const int RFEWaitStates = 1;
1061 
1062   auto IsHazardFn = [TII](const MachineInstr &MI) {
1063     return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS;
1064   };
1065   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates);
1066   return RFEWaitStates - WaitStatesNeeded;
1067 }
1068 
1069 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
1070   const SIInstrInfo *TII = ST.getInstrInfo();
1071   const int ReadM0WaitStates = 1;
1072   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); };
1073   return ReadM0WaitStates -
1074          getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, ReadM0WaitStates);
1075 }
1076 
1077 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) {
1078   fixVMEMtoScalarWriteHazards(MI);
1079   fixVcmpxPermlaneHazards(MI);
1080   fixSMEMtoVectorWriteHazards(MI);
1081   fixVcmpxExecWARHazard(MI);
1082   fixLdsBranchVmemWARHazard(MI);
1083   if (ST.hasLdsDirect()) {
1084     fixLdsDirectVALUHazard(MI);
1085     fixLdsDirectVMEMHazard(MI);
1086   }
1087   fixVALUPartialForwardingHazard(MI);
1088   fixVALUTransUseHazard(MI);
1089   fixWMMAHazards(MI);
1090 }
1091 
1092 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) {
1093   if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI))
1094     return false;
1095 
1096   const SIInstrInfo *TII = ST.getInstrInfo();
1097   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1098   auto IsHazardFn = [TII, TRI](const MachineInstr &MI) {
1099     return (TII->isVOPC(MI) ||
1100             ((TII->isVOP3(MI) || TII->isSDWA(MI)) && MI.isCompare())) &&
1101            MI.modifiesRegister(AMDGPU::EXEC, TRI);
1102   };
1103 
1104   auto IsExpiredFn = [](const MachineInstr &MI, int) {
1105     unsigned Opc = MI.getOpcode();
1106     return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 &&
1107            Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa;
1108   };
1109 
1110   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1111       std::numeric_limits<int>::max())
1112     return false;
1113 
1114   // V_NOP will be discarded by SQ.
1115   // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE*
1116   // which is always a VGPR and available.
1117   auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
1118   Register Reg = Src0->getReg();
1119   bool IsUndef = Src0->isUndef();
1120   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1121           TII->get(AMDGPU::V_MOV_B32_e32))
1122     .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0))
1123     .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill);
1124 
1125   return true;
1126 }
1127 
1128 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) {
1129   if (!ST.hasVMEMtoScalarWriteHazard())
1130     return false;
1131 
1132   if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI))
1133     return false;
1134 
1135   if (MI->getNumDefs() == 0)
1136     return false;
1137 
1138   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1139 
1140   auto IsHazardFn = [TRI, MI](const MachineInstr &I) {
1141     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) &&
1142         !SIInstrInfo::isFLAT(I))
1143       return false;
1144 
1145     for (const MachineOperand &Def : MI->defs()) {
1146       const MachineOperand *Op =
1147           I.findRegisterUseOperand(Def.getReg(), false, TRI);
1148       if (!Op)
1149         continue;
1150       return true;
1151     }
1152     return false;
1153   };
1154 
1155   auto IsExpiredFn = [](const MachineInstr &MI, int) {
1156     return SIInstrInfo::isVALU(MI) ||
1157            (MI.getOpcode() == AMDGPU::S_WAITCNT &&
1158             !MI.getOperand(0).getImm()) ||
1159            (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1160             MI.getOperand(0).getImm() == 0xffe3);
1161   };
1162 
1163   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1164       std::numeric_limits<int>::max())
1165     return false;
1166 
1167   const SIInstrInfo *TII = ST.getInstrInfo();
1168   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1169           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
1170       .addImm(0xffe3);
1171   return true;
1172 }
1173 
1174 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) {
1175   if (!ST.hasSMEMtoVectorWriteHazard())
1176     return false;
1177 
1178   if (!SIInstrInfo::isVALU(*MI))
1179     return false;
1180 
1181   unsigned SDSTName;
1182   switch (MI->getOpcode()) {
1183   case AMDGPU::V_READLANE_B32:
1184   case AMDGPU::V_READFIRSTLANE_B32:
1185     SDSTName = AMDGPU::OpName::vdst;
1186     break;
1187   default:
1188     SDSTName = AMDGPU::OpName::sdst;
1189     break;
1190   }
1191 
1192   const SIInstrInfo *TII = ST.getInstrInfo();
1193   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1194   const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU());
1195   const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName);
1196   if (!SDST) {
1197     for (const auto &MO : MI->implicit_operands()) {
1198       if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) {
1199         SDST = &MO;
1200         break;
1201       }
1202     }
1203   }
1204 
1205   if (!SDST)
1206     return false;
1207 
1208   const Register SDSTReg = SDST->getReg();
1209   auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) {
1210     return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI);
1211   };
1212 
1213   auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) {
1214     if (TII->isSALU(MI)) {
1215       switch (MI.getOpcode()) {
1216       case AMDGPU::S_SETVSKIP:
1217       case AMDGPU::S_VERSION:
1218       case AMDGPU::S_WAITCNT_VSCNT:
1219       case AMDGPU::S_WAITCNT_VMCNT:
1220       case AMDGPU::S_WAITCNT_EXPCNT:
1221         // These instructions cannot not mitigate the hazard.
1222         return false;
1223       case AMDGPU::S_WAITCNT_LGKMCNT:
1224         // Reducing lgkmcnt count to 0 always mitigates the hazard.
1225         return (MI.getOperand(1).getImm() == 0) &&
1226                (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1227       case AMDGPU::S_WAITCNT: {
1228         const int64_t Imm = MI.getOperand(0).getImm();
1229         AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm);
1230         return (Decoded.LgkmCnt == 0);
1231       }
1232       default:
1233         // SOPP instructions cannot mitigate the hazard.
1234         if (TII->isSOPP(MI))
1235           return false;
1236         // At this point the SALU can be assumed to mitigate the hazard
1237         // because either:
1238         // (a) it is independent of the at risk SMEM (breaking chain),
1239         // or
1240         // (b) it is dependent on the SMEM, in which case an appropriate
1241         //     s_waitcnt lgkmcnt _must_ exist between it and the at risk
1242         //     SMEM instruction.
1243         return true;
1244       }
1245     }
1246     return false;
1247   };
1248 
1249   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1250       std::numeric_limits<int>::max())
1251     return false;
1252 
1253   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1254           TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL)
1255       .addImm(0);
1256   return true;
1257 }
1258 
1259 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) {
1260   if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI))
1261     return false;
1262 
1263   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1264   if (!MI->modifiesRegister(AMDGPU::EXEC, TRI))
1265     return false;
1266 
1267   auto IsHazardFn = [TRI](const MachineInstr &I) {
1268     if (SIInstrInfo::isVALU(I))
1269       return false;
1270     return I.readsRegister(AMDGPU::EXEC, TRI);
1271   };
1272 
1273   const SIInstrInfo *TII = ST.getInstrInfo();
1274   auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) {
1275     if (SIInstrInfo::isVALU(MI)) {
1276       if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst))
1277         return true;
1278       for (auto MO : MI.implicit_operands())
1279         if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg())))
1280           return true;
1281     }
1282     if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1283         (MI.getOperand(0).getImm() & 0xfffe) == 0xfffe)
1284       return true;
1285     return false;
1286   };
1287 
1288   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1289       std::numeric_limits<int>::max())
1290     return false;
1291 
1292   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1293           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
1294     .addImm(0xfffe);
1295   return true;
1296 }
1297 
1298 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
1299                                                  const GCNSubtarget &ST) {
1300   if (!ST.hasLdsBranchVmemWARHazard())
1301     return false;
1302 
1303   // Check if the necessary condition for the hazard is met: both LDS and VMEM
1304   // instructions need to appear in the same function.
1305   bool HasLds = false;
1306   bool HasVmem = false;
1307   for (auto &MBB : MF) {
1308     for (auto &MI : MBB) {
1309       HasLds |= SIInstrInfo::isDS(MI);
1310       HasVmem |=
1311           SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI);
1312       if (HasLds && HasVmem)
1313         return true;
1314     }
1315   }
1316   return false;
1317 }
1318 
1319 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) {
1320   if (!RunLdsBranchVmemWARHazardFixup)
1321     return false;
1322 
1323   assert(ST.hasLdsBranchVmemWARHazard());
1324 
1325   auto IsHazardInst = [](const MachineInstr &MI) {
1326     if (SIInstrInfo::isDS(MI))
1327       return 1;
1328     if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI))
1329       return 2;
1330     return 0;
1331   };
1332 
1333   auto InstType = IsHazardInst(*MI);
1334   if (!InstType)
1335     return false;
1336 
1337   auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) {
1338     return IsHazardInst(I) || (I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1339                                I.getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
1340                                !I.getOperand(1).getImm());
1341   };
1342 
1343   auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) {
1344     if (!I.isBranch())
1345       return false;
1346 
1347     auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) {
1348       auto InstType2 = IsHazardInst(I);
1349       return InstType2 && InstType != InstType2;
1350     };
1351 
1352     auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) {
1353       auto InstType2 = IsHazardInst(I);
1354       if (InstType == InstType2)
1355         return true;
1356 
1357       return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1358              I.getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
1359              !I.getOperand(1).getImm();
1360     };
1361 
1362     return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) !=
1363            std::numeric_limits<int>::max();
1364   };
1365 
1366   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1367       std::numeric_limits<int>::max())
1368     return false;
1369 
1370   const SIInstrInfo *TII = ST.getInstrInfo();
1371   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1372           TII->get(AMDGPU::S_WAITCNT_VSCNT))
1373     .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1374     .addImm(0);
1375 
1376   return true;
1377 }
1378 
1379 bool GCNHazardRecognizer::fixLdsDirectVALUHazard(MachineInstr *MI) {
1380   if (!SIInstrInfo::isLDSDIR(*MI))
1381     return false;
1382 
1383   const int NoHazardWaitStates = 15;
1384   const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst);
1385   const Register VDSTReg = VDST->getReg();
1386 
1387   bool VisitedTrans = false;
1388   auto IsHazardFn = [this, VDSTReg, &VisitedTrans](const MachineInstr &I) {
1389     if (!SIInstrInfo::isVALU(I))
1390       return false;
1391     VisitedTrans = VisitedTrans || SIInstrInfo::isTRANS(I);
1392     // Cover both WAR and WAW
1393     return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI);
1394   };
1395   auto IsExpiredFn = [&](const MachineInstr &I, int WaitStates) {
1396     if (WaitStates >= NoHazardWaitStates)
1397       return true;
1398     // Instructions which cause va_vdst==0 expire hazard
1399     return SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1400            SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I);
1401   };
1402   auto GetWaitStatesFn = [](const MachineInstr &MI) {
1403     return SIInstrInfo::isVALU(MI) ? 1 : 0;
1404   };
1405 
1406   DenseSet<const MachineBasicBlock *> Visited;
1407   auto Count = ::getWaitStatesSince(IsHazardFn, MI->getParent(),
1408                                     std::next(MI->getReverseIterator()), 0,
1409                                     IsExpiredFn, Visited, GetWaitStatesFn);
1410 
1411   // Transcendentals can execute in parallel to other VALUs.
1412   // This makes va_vdst count unusable with a mixture of VALU and TRANS.
1413   if (VisitedTrans)
1414     Count = 0;
1415 
1416   MachineOperand *WaitVdstOp =
1417       TII.getNamedOperand(*MI, AMDGPU::OpName::waitvdst);
1418   WaitVdstOp->setImm(std::min(Count, NoHazardWaitStates));
1419 
1420   return true;
1421 }
1422 
1423 bool GCNHazardRecognizer::fixLdsDirectVMEMHazard(MachineInstr *MI) {
1424   if (!SIInstrInfo::isLDSDIR(*MI))
1425     return false;
1426 
1427   const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst);
1428   const Register VDSTReg = VDST->getReg();
1429 
1430   auto IsHazardFn = [this, VDSTReg](const MachineInstr &I) {
1431     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I) &&
1432         !SIInstrInfo::isDS(I))
1433       return false;
1434     return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI);
1435   };
1436   auto IsExpiredFn = [](const MachineInstr &I, int) {
1437     return SIInstrInfo::isVALU(I) || SIInstrInfo::isEXP(I) ||
1438            (I.getOpcode() == AMDGPU::S_WAITCNT && !I.getOperand(0).getImm()) ||
1439            (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1440             I.getOperand(0).getImm() == 0xffe3);
1441   };
1442 
1443   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1444       std::numeric_limits<int>::max())
1445     return false;
1446 
1447   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1448           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1449       .addImm(0xffe3);
1450 
1451   return true;
1452 }
1453 
1454 bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) {
1455   if (!ST.isWave64())
1456     return false;
1457   if (!ST.hasVALUPartialForwardingHazard())
1458     return false;
1459   if (!SIInstrInfo::isVALU(*MI))
1460     return false;
1461 
1462   SmallSetVector<Register, 4> SrcVGPRs;
1463 
1464   for (const MachineOperand &Use : MI->explicit_uses()) {
1465     if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1466       SrcVGPRs.insert(Use.getReg());
1467   }
1468 
1469   // Only applies with >= 2 unique VGPR sources
1470   if (SrcVGPRs.size() <= 1)
1471     return false;
1472 
1473   // Look for the following pattern:
1474   //   Va <- VALU [PreExecPos]
1475   //   intv1
1476   //   Exec <- SALU [ExecPos]
1477   //   intv2
1478   //   Vb <- VALU [PostExecPos]
1479   //   intv3
1480   //   MI Va, Vb (WaitState = 0)
1481   //
1482   // Where:
1483   // intv1 + intv2 <= 2 VALUs
1484   // intv3 <= 4 VALUs
1485   //
1486   // If found, insert an appropriate S_WAITCNT_DEPCTR before MI.
1487 
1488   const int Intv1plus2MaxVALUs = 2;
1489   const int Intv3MaxVALUs = 4;
1490   const int IntvMaxVALUs = 6;
1491   const int NoHazardVALUWaitStates = IntvMaxVALUs + 2;
1492 
1493   struct StateType {
1494     SmallDenseMap<Register, int, 4> DefPos;
1495     int ExecPos = std::numeric_limits<int>::max();
1496     int VALUs = 0;
1497   };
1498 
1499   StateType State;
1500 
1501   // This overloads expiry testing with all the hazard detection
1502   auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) {
1503     // Too many VALU states have passed
1504     if (State.VALUs > NoHazardVALUWaitStates)
1505       return HazardExpired;
1506 
1507     // Instructions which cause va_vdst==0 expire hazard
1508     if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1509         SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) ||
1510         (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1511          I.getOperand(0).getImm() == 0x0fff))
1512       return HazardExpired;
1513 
1514     // Track registers writes
1515     bool Changed = false;
1516     if (SIInstrInfo::isVALU(I)) {
1517       for (Register Src : SrcVGPRs) {
1518         if (!State.DefPos.count(Src) && I.modifiesRegister(Src, &TRI)) {
1519           State.DefPos[Src] = State.VALUs;
1520           Changed = true;
1521         }
1522       }
1523     } else if (SIInstrInfo::isSALU(I)) {
1524       if (State.ExecPos == std::numeric_limits<int>::max()) {
1525         if (!State.DefPos.empty() && I.modifiesRegister(AMDGPU::EXEC, &TRI)) {
1526           State.ExecPos = State.VALUs;
1527           Changed = true;
1528         }
1529       }
1530     }
1531 
1532     // Early expiration: too many VALUs in intv3
1533     if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty())
1534       return HazardExpired;
1535 
1536     // Only evaluate state if something changed
1537     if (!Changed)
1538       return NoHazardFound;
1539 
1540     // Determine positions of VALUs pre/post exec change
1541     if (State.ExecPos == std::numeric_limits<int>::max())
1542       return NoHazardFound;
1543 
1544     int PreExecPos = std::numeric_limits<int>::max();
1545     int PostExecPos = std::numeric_limits<int>::max();
1546 
1547     for (auto Entry : State.DefPos) {
1548       int DefVALUs = Entry.second;
1549       if (DefVALUs != std::numeric_limits<int>::max()) {
1550         if (DefVALUs >= State.ExecPos)
1551           PreExecPos = std::min(PreExecPos, DefVALUs);
1552         else if (DefVALUs < State.ExecPos)
1553           PostExecPos = std::min(PostExecPos, DefVALUs);
1554       }
1555     }
1556 
1557     // Need a VALUs post exec change
1558     if (PostExecPos == std::numeric_limits<int>::max())
1559       return NoHazardFound;
1560 
1561     // Too many VALUs in intv3?
1562     int Intv3VALUs = PostExecPos;
1563     if (Intv3VALUs > Intv3MaxVALUs)
1564       return HazardExpired;
1565 
1566     // Too many VALUs in intv2?
1567     int Intv2VALUs = (State.ExecPos - PostExecPos) - 1;
1568     if (Intv2VALUs > Intv1plus2MaxVALUs)
1569       return HazardExpired;
1570 
1571     // Need a VALUs pre exec change
1572     if (PreExecPos == std::numeric_limits<int>::max())
1573       return NoHazardFound;
1574 
1575     // Too many VALUs in intv1?
1576     int Intv1VALUs = PreExecPos - State.ExecPos;
1577     if (Intv1VALUs > Intv1plus2MaxVALUs)
1578       return HazardExpired;
1579 
1580     // Too many VALUs in intv1 + intv2
1581     if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs)
1582       return HazardExpired;
1583 
1584     return HazardFound;
1585   };
1586   auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) {
1587     if (SIInstrInfo::isVALU(MI))
1588       State.VALUs += 1;
1589   };
1590 
1591   DenseSet<const MachineBasicBlock *> Visited;
1592   if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(),
1593                             std::next(MI->getReverseIterator()), Visited))
1594     return false;
1595 
1596   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1597           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1598       .addImm(0x0fff);
1599 
1600   return true;
1601 }
1602 
1603 bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) {
1604   if (!ST.hasVALUTransUseHazard())
1605     return false;
1606   if (!SIInstrInfo::isVALU(*MI))
1607     return false;
1608 
1609   SmallSet<Register, 4> SrcVGPRs;
1610 
1611   for (const MachineOperand &Use : MI->explicit_uses()) {
1612     if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1613       SrcVGPRs.insert(Use.getReg());
1614   }
1615 
1616   // Look for the following pattern:
1617   //   Va <- TRANS VALU
1618   //   intv
1619   //   MI Va (WaitState = 0)
1620   //
1621   // Where:
1622   // intv <= 5 VALUs / 1 TRANS
1623   //
1624   // If found, insert an appropriate S_WAITCNT_DEPCTR before MI.
1625 
1626   const int IntvMaxVALUs = 5;
1627   const int IntvMaxTRANS = 1;
1628 
1629   struct StateType {
1630     int VALUs = 0;
1631     int TRANS = 0;
1632   };
1633 
1634   StateType State;
1635 
1636   // This overloads expiry testing with all the hazard detection
1637   auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) {
1638     // Too many VALU states have passed
1639     if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS)
1640       return HazardExpired;
1641 
1642     // Instructions which cause va_vdst==0 expire hazard
1643     if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1644         SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) ||
1645         (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1646          I.getOperand(0).getImm() == 0x0fff))
1647       return HazardExpired;
1648 
1649     // Track registers writes
1650     if (SIInstrInfo::isTRANS(I)) {
1651       for (Register Src : SrcVGPRs) {
1652         if (I.modifiesRegister(Src, &TRI)) {
1653           return HazardFound;
1654         }
1655       }
1656     }
1657 
1658     return NoHazardFound;
1659   };
1660   auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) {
1661     if (SIInstrInfo::isVALU(MI))
1662       State.VALUs += 1;
1663     if (SIInstrInfo::isTRANS(MI))
1664       State.TRANS += 1;
1665   };
1666 
1667   DenseSet<const MachineBasicBlock *> Visited;
1668   if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(),
1669                             std::next(MI->getReverseIterator()), Visited))
1670     return false;
1671 
1672   // Hazard is observed - insert a wait on va_dst counter to ensure hazard is
1673   // avoided (mask 0x0fff achieves this).
1674   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1675           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1676       .addImm(0x0fff);
1677 
1678   return true;
1679 }
1680 
1681 bool GCNHazardRecognizer::fixWMMAHazards(MachineInstr *MI) {
1682   if (!SIInstrInfo::isWMMA(*MI))
1683     return false;
1684 
1685   const SIInstrInfo *TII = ST.getInstrInfo();
1686   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1687 
1688   auto IsHazardFn = [MI, TII, TRI](const MachineInstr &I) {
1689     if (!SIInstrInfo::isWMMA(I))
1690       return false;
1691 
1692     // Src0 or Src1 of the current wmma instruction overlaps with the dest of
1693     // the previous wmma.
1694     const Register CurSrc0Reg =
1695         TII->getNamedOperand(*MI, AMDGPU::OpName::src0)->getReg();
1696     const Register CurSrc1Reg =
1697         TII->getNamedOperand(*MI, AMDGPU::OpName::src1)->getReg();
1698 
1699     const Register PrevDstReg =
1700         TII->getNamedOperand(I, AMDGPU::OpName::vdst)->getReg();
1701 
1702     if (TRI->regsOverlap(PrevDstReg, CurSrc0Reg) ||
1703         TRI->regsOverlap(PrevDstReg, CurSrc1Reg)) {
1704       return true;
1705     }
1706 
1707     // Src2 of the current wmma instruction overlaps with the dest of the
1708     // previous wmma.
1709     const MachineOperand *Src2 =
1710         TII->getNamedOperand(*MI, AMDGPU::OpName::src2);
1711     const Register CurSrc2Reg = Src2->isReg() ? Src2->getReg() : Register();
1712 
1713     if (CurSrc2Reg != AMDGPU::NoRegister &&
1714         TRI->regsOverlap(PrevDstReg, CurSrc2Reg)) {
1715 
1716       const MachineOperand *Src2Mods =
1717           TII->getNamedOperand(*MI, AMDGPU::OpName::src2_modifiers);
1718       const bool NoSrc2Mods =
1719           (Src2Mods->getImm() & (SISrcMods::NEG | SISrcMods::NEG_HI)) == 0;
1720       // Exception: there is no hazard if the wmma instructions are of the same
1721       // type and there is no input modifier on src2 of the current instruction.
1722       return !(NoSrc2Mods && (TII->pseudoToMCOpcode(I.getOpcode()) ==
1723                               TII->pseudoToMCOpcode(MI->getOpcode())));
1724     }
1725 
1726     return false;
1727   };
1728 
1729   auto IsExpiredFn = [](const MachineInstr &I, int) {
1730     return SIInstrInfo::isVALU(I);
1731   };
1732 
1733   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1734       std::numeric_limits<int>::max())
1735     return false;
1736 
1737   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32));
1738 
1739   return true;
1740 }
1741 
1742 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) {
1743   int NSAtoVMEMWaitStates = 1;
1744 
1745   if (!ST.hasNSAtoVMEMBug())
1746     return 0;
1747 
1748   if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI))
1749     return 0;
1750 
1751   const SIInstrInfo *TII = ST.getInstrInfo();
1752   const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset);
1753   if (!Offset || (Offset->getImm() & 6) == 0)
1754     return 0;
1755 
1756   auto IsHazardFn = [TII](const MachineInstr &I) {
1757     if (!SIInstrInfo::isMIMG(I))
1758       return false;
1759     const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode());
1760     return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA &&
1761            TII->getInstSizeInBytes(I) >= 16;
1762   };
1763 
1764   return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1);
1765 }
1766 
1767 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) {
1768   int FPAtomicToDenormModeWaitStates = 3;
1769 
1770   if (MI->getOpcode() != AMDGPU::S_DENORM_MODE)
1771     return 0;
1772 
1773   auto IsHazardFn = [](const MachineInstr &I) {
1774     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I))
1775       return false;
1776     return SIInstrInfo::isFPAtomic(I);
1777   };
1778 
1779   auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) {
1780     if (WaitStates >= 3 || SIInstrInfo::isVALU(MI))
1781       return true;
1782 
1783     switch (MI.getOpcode()) {
1784     case AMDGPU::S_WAITCNT:
1785     case AMDGPU::S_WAITCNT_VSCNT:
1786     case AMDGPU::S_WAITCNT_VMCNT:
1787     case AMDGPU::S_WAITCNT_EXPCNT:
1788     case AMDGPU::S_WAITCNT_LGKMCNT:
1789     case AMDGPU::S_WAIT_IDLE:
1790       return true;
1791     default:
1792       break;
1793     }
1794 
1795     return false;
1796   };
1797 
1798   return FPAtomicToDenormModeWaitStates -
1799          ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn);
1800 }
1801 
1802 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) {
1803   assert(SIInstrInfo::isMAI(*MI));
1804 
1805   return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI);
1806 }
1807 
1808 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) {
1809   // Early exit if no padding is requested.
1810   if (MFMAPaddingRatio == 0)
1811     return 0;
1812 
1813   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1814   if (!SIInstrInfo::isMFMA(*MI) || MFI->getOccupancy() < 2)
1815     return 0;
1816 
1817   int NeighborMFMALatency = 0;
1818   auto IsNeighboringMFMA = [&NeighborMFMALatency,
1819                             this](const MachineInstr &MI) {
1820     if (!SIInstrInfo::isMFMA(MI))
1821       return false;
1822 
1823     NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI);
1824     return true;
1825   };
1826 
1827   const int MaxMFMAPipelineWaitStates = 16;
1828   int WaitStatesSinceNeighborMFMA =
1829       getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates);
1830 
1831   int NeighborMFMAPaddingNeeded =
1832       (NeighborMFMALatency * MFMAPaddingRatio / 100) -
1833       WaitStatesSinceNeighborMFMA;
1834 
1835   return std::max(0, NeighborMFMAPaddingNeeded);
1836 }
1837 
1838 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) {
1839   int WaitStatesNeeded = 0;
1840   unsigned Opc = MI->getOpcode();
1841 
1842   auto IsVALUFn = [](const MachineInstr &MI) {
1843     return SIInstrInfo::isVALU(MI);
1844   };
1845 
1846   if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write
1847     const int LegacyVALUWritesVGPRWaitStates = 2;
1848     const int VALUWritesExecWaitStates = 4;
1849     const int MaxWaitStates = 4;
1850 
1851     int WaitStatesNeededForUse = VALUWritesExecWaitStates -
1852       getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates);
1853     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1854 
1855     if (WaitStatesNeeded < MaxWaitStates) {
1856       for (const MachineOperand &Use : MI->explicit_uses()) {
1857         const int MaxWaitStates = 2;
1858 
1859         if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1860           continue;
1861 
1862         int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates -
1863           getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates);
1864         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1865 
1866         if (WaitStatesNeeded == MaxWaitStates)
1867           break;
1868       }
1869     }
1870   }
1871 
1872   for (const MachineOperand &Op : MI->explicit_operands()) {
1873     if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg()))
1874       continue;
1875 
1876     if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
1877       continue;
1878 
1879     const int MFMAWritesAGPROverlappedSrcABWaitStates = 4;
1880     const int MFMAWritesAGPROverlappedSrcCWaitStates = 2;
1881     const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4;
1882     const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10;
1883     const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18;
1884     const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1;
1885     const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7;
1886     const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15;
1887     const int MaxWaitStates = 18;
1888     Register Reg = Op.getReg();
1889     unsigned HazardDefLatency = 0;
1890 
1891     auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency,
1892                                this](const MachineInstr &MI) {
1893       if (!SIInstrInfo::isMFMA(MI))
1894         return false;
1895       Register DstReg = MI.getOperand(0).getReg();
1896       if (DstReg == Reg)
1897         return false;
1898       HazardDefLatency =
1899           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
1900       return TRI.regsOverlap(DstReg, Reg);
1901     };
1902 
1903     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn,
1904                                                    MaxWaitStates);
1905     int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates;
1906     int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1907     int OpNo = MI->getOperandNo(&Op);
1908     if (OpNo == SrcCIdx) {
1909       NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates;
1910     } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) {
1911       switch (HazardDefLatency) {
1912       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates;
1913                break;
1914       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates;
1915                break;
1916       case 16: LLVM_FALLTHROUGH;
1917       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates;
1918                break;
1919       }
1920     } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
1921       switch (HazardDefLatency) {
1922       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates;
1923                break;
1924       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates;
1925                break;
1926       case 16: LLVM_FALLTHROUGH;
1927       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates;
1928                break;
1929       }
1930     }
1931 
1932     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
1933     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1934 
1935     if (WaitStatesNeeded == MaxWaitStates)
1936       return WaitStatesNeeded; // Early exit.
1937 
1938     auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) {
1939       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
1940         return false;
1941       Register DstReg = MI.getOperand(0).getReg();
1942       return TRI.regsOverlap(Reg, DstReg);
1943     };
1944 
1945     const int AccVGPRWriteMFMAReadSrcCWaitStates = 1;
1946     const int AccVGPRWriteMFMAReadSrcABWaitStates = 3;
1947     const int AccVGPRWriteAccVgprReadWaitStates = 3;
1948     NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates;
1949     if (OpNo == SrcCIdx)
1950       NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates;
1951     else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64)
1952       NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates;
1953 
1954     WaitStatesNeededForUse = NeedWaitStates -
1955       getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates);
1956     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1957 
1958     if (WaitStatesNeeded == MaxWaitStates)
1959       return WaitStatesNeeded; // Early exit.
1960   }
1961 
1962   if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
1963     const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0;
1964     const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5;
1965     const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13;
1966     const int MaxWaitStates = 13;
1967     Register DstReg = MI->getOperand(0).getReg();
1968     unsigned HazardDefLatency = 0;
1969 
1970     auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency,
1971                          this](const MachineInstr &MI) {
1972       if (!SIInstrInfo::isMFMA(MI))
1973         return false;
1974       Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg();
1975       HazardDefLatency =
1976           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
1977       return TRI.regsOverlap(Reg, DstReg);
1978     };
1979 
1980     int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates);
1981     int NeedWaitStates;
1982     switch (HazardDefLatency) {
1983     case 2:  NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates;
1984              break;
1985     case 8:  NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates;
1986              break;
1987     case 16: LLVM_FALLTHROUGH;
1988     default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates;
1989              break;
1990     }
1991 
1992     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince;
1993     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1994   }
1995 
1996   // Pad neighboring MFMA with noops for better inter-wave performance.
1997   WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI));
1998 
1999   return WaitStatesNeeded;
2000 }
2001 
2002 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) {
2003   int WaitStatesNeeded = 0;
2004   unsigned Opc = MI->getOpcode();
2005 
2006   auto IsLegacyVALUFn = [](const MachineInstr &MI) {
2007     return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI);
2008   };
2009 
2010   auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) {
2011     return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) &&
2012            !SIInstrInfo::isDOT(MI);
2013   };
2014 
2015   if (!SIInstrInfo::isMFMA(*MI))
2016     return WaitStatesNeeded;
2017 
2018   const int VALUWritesExecWaitStates = 4;
2019   int WaitStatesNeededForUse = VALUWritesExecWaitStates -
2020     getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn,
2021                           VALUWritesExecWaitStates);
2022   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2023 
2024   int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
2025 
2026   // Loop for both DGEMM and S/HGEMM 2nd instruction.
2027   for (const MachineOperand &Use : MI->explicit_uses()) {
2028     const int LegacyVALUNotDotWritesVGPRWaitStates = 2;
2029     const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2;
2030     const int GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates = 3;
2031     const int GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates = 5;
2032     const int GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates = 4;
2033     const int GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates = 9;
2034     const int GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates = 8;
2035     const int GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates = 17;
2036     const int GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates = 16;
2037     const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8;
2038     const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16;
2039     const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3;
2040     const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9;
2041     const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17;
2042     const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9;
2043     const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4;
2044     const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5;
2045     const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11;
2046     const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19;
2047     const int GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates = 4;
2048     const int GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates = 6;
2049     const int GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates = 10;
2050     const int GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates = 18;
2051     const int GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates = 5;
2052     const int GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates = 7;
2053     const int GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates = 11;
2054     const int GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates = 19;
2055     const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6;
2056     const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11;
2057     const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4;
2058     const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2;
2059     const int MaxWaitStates = 19;
2060 
2061     if (!Use.isReg())
2062       continue;
2063     Register Reg = Use.getReg();
2064     bool FullReg;
2065     const MachineInstr *MI1;
2066 
2067     auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1,
2068                                this](const MachineInstr &MI) {
2069       if (!SIInstrInfo::isMFMA(MI))
2070         return false;
2071       Register DstReg = MI.getOperand(0).getReg();
2072       FullReg = (DstReg == Reg);
2073       MI1 = &MI;
2074       return TRI.regsOverlap(DstReg, Reg);
2075     };
2076 
2077     WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates -
2078       getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates);
2079     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2080 
2081     int NumWaitStates =
2082         getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates);
2083     if (NumWaitStates == std::numeric_limits<int>::max())
2084       continue;
2085 
2086     int OpNo = MI->getOperandNo(&Use);
2087     unsigned Opc1 = MI1->getOpcode();
2088     int NeedWaitStates = 0;
2089     if (OpNo == SrcCIdx) {
2090       if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) {
2091         NeedWaitStates = 0;
2092       } else if (FullReg) {
2093         if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
2094              Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) &&
2095             (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
2096              Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64))
2097           NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates;
2098         else if (ST.hasGFX940Insts() &&
2099                  TSchedModel.computeInstrLatency(MI1) == 2)
2100           NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates;
2101       } else {
2102         switch (Opc1) {
2103         case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
2104         case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
2105         case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64:
2106         case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64:
2107           if (!isXDL(ST, *MI))
2108             NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates;
2109           break;
2110         case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
2111         case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
2112           if (!isXDL(ST, *MI))
2113             NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates;
2114           break;
2115         default:
2116           if (ST.hasGFX940Insts() && isXDL(ST, *MI) && !isXDL(ST, *MI1))
2117             break;
2118           switch (TSchedModel.computeInstrLatency(MI1)) {
2119           case 2:
2120             NeedWaitStates = ST.hasGFX940Insts()
2121               ? isXDL(ST, *MI1)
2122                 ? GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates
2123                 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates
2124               : isDGEMM(Opc)
2125                 ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates
2126                 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates;
2127             break;
2128           case 4:
2129             assert(ST.hasGFX940Insts());
2130             NeedWaitStates = isXDL(ST, *MI1)
2131               ? GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates
2132               : GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates;
2133             break;
2134           case 8:
2135             NeedWaitStates = ST.hasGFX940Insts()
2136               ? isXDL(ST, *MI1)
2137                 ? GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates
2138                 : GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates
2139               : isDGEMM(Opc)
2140                 ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates
2141                 : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates;
2142             break;
2143           case 16: LLVM_FALLTHROUGH;
2144           default:
2145             NeedWaitStates = ST.hasGFX940Insts()
2146               ? isXDL(ST, *MI1)
2147                 ? GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates
2148                 : GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates
2149               : isDGEMM(Opc)
2150                 ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates
2151                 : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates;
2152           }
2153         }
2154       }
2155     } else {
2156       switch (Opc1) {
2157       case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
2158       case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
2159       case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64:
2160       case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64:
2161         NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates;
2162         break;
2163       case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
2164       case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
2165         NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates;
2166         break;
2167       default:
2168         switch (TSchedModel.computeInstrLatency(MI1)) {
2169         case 2:
2170           NeedWaitStates = ST.hasGFX940Insts()
2171             ? isXDL(ST, *MI1)
2172               ? GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates
2173               : GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates
2174             : SMFMA4x4WritesVGPROverlappedSrcABWaitStates;
2175           break;
2176         case 4:
2177           assert(ST.hasGFX940Insts());
2178           NeedWaitStates = isXDL(ST, *MI1)
2179             ? GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates
2180             : GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates;
2181           break;
2182         case 8:
2183           NeedWaitStates = ST.hasGFX940Insts()
2184             ? isXDL(ST, *MI1)
2185               ? GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates
2186               : GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates
2187             : SMFMA16x16WritesVGPROverlappedSrcABWaitStates;
2188           break;
2189         case 16: LLVM_FALLTHROUGH;
2190         default:
2191           NeedWaitStates = ST.hasGFX940Insts()
2192             ? isXDL(ST, *MI1)
2193               ? GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates
2194               : GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates
2195             : SMFMA32x32WritesVGPROverlappedSrcABWaitStates;
2196         }
2197       }
2198     }
2199     if (WaitStatesNeeded >= NeedWaitStates)
2200       continue;
2201 
2202     WaitStatesNeededForUse = NeedWaitStates - NumWaitStates;
2203     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2204 
2205     if (WaitStatesNeeded == MaxWaitStates)
2206       break;
2207   }
2208 
2209   return WaitStatesNeeded;
2210 }
2211 
2212 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) {
2213   // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards()
2214   if (!ST.hasMAIInsts() || ST.hasGFX90AInsts())
2215     return 0;
2216 
2217   int WaitStatesNeeded = 0;
2218 
2219   auto IsAccVgprReadFn = [](const MachineInstr &MI) {
2220     return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64;
2221   };
2222 
2223   for (const MachineOperand &Op : MI->explicit_uses()) {
2224     if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg()))
2225       continue;
2226 
2227     Register Reg = Op.getReg();
2228 
2229     const int AccVgprReadLdStWaitStates = 2;
2230     const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1;
2231     const int MaxWaitStates = 2;
2232 
2233     int WaitStatesNeededForUse = AccVgprReadLdStWaitStates -
2234       getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates);
2235     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2236 
2237     if (WaitStatesNeeded == MaxWaitStates)
2238       return WaitStatesNeeded; // Early exit.
2239 
2240     auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) {
2241       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 &&
2242           MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
2243         return false;
2244       auto IsVALUFn = [](const MachineInstr &MI) {
2245         return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI);
2246       };
2247       return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) <
2248              std::numeric_limits<int>::max();
2249     };
2250 
2251     WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates -
2252       getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates);
2253     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2254   }
2255 
2256   return WaitStatesNeeded;
2257 }
2258 
2259 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) {
2260   if (!ST.hasGFX90AInsts())
2261     return 0;
2262 
2263   auto IsDGEMMFn = [](const MachineInstr &MI) -> bool {
2264     return isDGEMM(MI.getOpcode());
2265   };
2266 
2267   // This is checked in checkMAIHazards90A()
2268   if (SIInstrInfo::isMFMA(*MI))
2269     return 0;
2270 
2271   int WaitStatesNeeded = 0;
2272 
2273   bool IsMemOrExport = SIInstrInfo::isVMEM(*MI) ||
2274                        SIInstrInfo::isFLAT(*MI) ||
2275                        SIInstrInfo::isDS(*MI) ||
2276                        SIInstrInfo::isEXP(*MI);
2277   bool IsVALU = SIInstrInfo::isVALU(*MI);
2278 
2279   const MachineInstr *MFMA = nullptr;
2280   unsigned Reg;
2281   auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) {
2282     if (!SIInstrInfo::isMFMA(MI) ||
2283         !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
2284       return false;
2285     MFMA = &MI;
2286     return true;
2287   };
2288 
2289   const MachineInstr *DOT = nullptr;
2290   auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) {
2291     if (!SIInstrInfo::isDOT(MI) ||
2292         !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
2293       return false;
2294     DOT = &MI;
2295     return true;
2296   };
2297 
2298   int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
2299                                            AMDGPU::OpName::src2);
2300 
2301   if (IsMemOrExport || IsVALU) {
2302     const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5;
2303     const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11;
2304     const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19;
2305     const int GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates = 4;
2306     const int GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates = 6;
2307     const int GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates = 10;
2308     const int GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates = 18;
2309     const int GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates = 5;
2310     const int GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates = 7;
2311     const int GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates = 11;
2312     const int GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates = 19;
2313     const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9;
2314     const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18;
2315     const int DMFMA4x4WriteVgprVALUReadWaitStates = 6;
2316     const int DMFMA16x16WriteVgprVALUReadWaitStates = 11;
2317     const int DotWriteSameDotReadSrcAB = 3;
2318     const int DotWriteDifferentVALURead = 3;
2319     const int MaxWaitStates = 19;
2320 
2321     for (const MachineOperand &Use : MI->explicit_uses()) {
2322       if (!Use.isReg())
2323         continue;
2324       Reg = Use.getReg();
2325 
2326       DOT = nullptr;
2327       int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
2328                                                      MaxWaitStates);
2329       if (DOT) {
2330         int NeedWaitStates = 0;
2331         if (DOT->getOpcode() == MI->getOpcode()) {
2332           if (&Use - &MI->getOperand(0) != SrcCIdx)
2333             NeedWaitStates = DotWriteSameDotReadSrcAB;
2334         } else {
2335           NeedWaitStates = DotWriteDifferentVALURead;
2336         }
2337 
2338         int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2339         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2340       }
2341 
2342       MFMA = nullptr;
2343       WaitStatesSinceDef =
2344           getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates);
2345       if (!MFMA)
2346         continue;
2347 
2348       unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
2349       int NeedWaitStates = MaxWaitStates;
2350       switch (HazardDefLatency) {
2351       case 2:
2352         NeedWaitStates =
2353           ST.hasGFX940Insts()
2354             ? isXDL(ST, *MFMA)
2355               ? GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates
2356               : GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates
2357             : SMFMA4x4WriteVgprVALUMemExpReadWaitStates;
2358         break;
2359       case 4:
2360         assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts());
2361         NeedWaitStates =
2362           isDGEMM(MFMA->getOpcode())
2363             ? IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates
2364                             : DMFMA4x4WriteVgprVALUReadWaitStates
2365             : isXDL(ST, *MFMA)
2366               ? GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates
2367               : GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates;
2368         break;
2369       case 8:
2370         NeedWaitStates =
2371           ST.hasGFX940Insts()
2372             ? isXDL(ST, *MFMA)
2373               ? GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates
2374               : GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates
2375             : SMFMA16x16WriteVgprVALUMemExpReadWaitStates;
2376         break;
2377       case 16: LLVM_FALLTHROUGH;
2378       default:
2379         NeedWaitStates =
2380           isDGEMM(MFMA->getOpcode())
2381             ? IsMemOrExport ? DMFMA16x16WriteVgprMemExpReadWaitStates
2382                             : DMFMA16x16WriteVgprVALUReadWaitStates
2383             : ST.hasGFX940Insts()
2384               ? isXDL(ST, *MFMA)
2385                 ? GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates
2386                 : GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates
2387               : SMFMA32x32WriteVgprVALUMemExpReadWaitStates;
2388         break;
2389       }
2390 
2391       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2392       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2393 
2394       if (WaitStatesNeeded == MaxWaitStates)
2395         break;
2396     }
2397   }
2398 
2399   unsigned Opc = MI->getOpcode();
2400   const int DMFMAToFMA64WaitStates = 2;
2401   if ((Opc == AMDGPU::V_FMA_F64_e64 ||
2402        Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 ||
2403        Opc == AMDGPU::V_FMAC_F64_dpp) &&
2404       WaitStatesNeeded < DMFMAToFMA64WaitStates) {
2405     int WaitStatesNeededForUse = DMFMAToFMA64WaitStates -
2406       getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates);
2407     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2408   }
2409 
2410   if (!IsVALU && !IsMemOrExport)
2411     return WaitStatesNeeded;
2412 
2413   for (const MachineOperand &Def : MI->defs()) {
2414     const int SMFMA4x4WriteVgprVALUWawWaitStates = 5;
2415     const int SMFMA16x16WriteVgprVALUWawWaitStates = 11;
2416     const int SMFMA32x32WriteVgprVALUWawWaitStates = 19;
2417     const int GFX940_SMFMA2PassWriteVgprVALUWawWaitStates = 4;
2418     const int GFX940_SMFMA4PassWriteVgprVALUWawWaitStates = 6;
2419     const int GFX940_SMFMA8PassWriteVgprVALUWawWaitStates = 10;
2420     const int GFX940_SMFMA16PassWriteVgprVALUWawWaitStates = 18;
2421     const int GFX940_XDL2PassWriteVgprVALUWawWaitStates = 5;
2422     const int GFX940_XDL4PassWriteVgprVALUWawWaitStates = 7;
2423     const int GFX940_XDL8PassWriteVgprVALUWawWaitStates = 11;
2424     const int GFX940_XDL16PassWriteVgprVALUWawWaitStates = 19;
2425     const int SMFMA4x4ReadVgprVALUWarWaitStates = 1;
2426     const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3;
2427     const int SMFMA16x16ReadVgprVALUWarWaitStates = 7;
2428     const int SMFMA32x32ReadVgprVALUWarWaitStates = 15;
2429     const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6;
2430     const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11;
2431     const int DotWriteDifferentVALUWrite = 3;
2432     const int MaxWaitStates = 19;
2433     const int MaxWarWaitStates = 15;
2434 
2435     Reg = Def.getReg();
2436 
2437     DOT = nullptr;
2438     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
2439                                                    MaxWaitStates);
2440     if (DOT && DOT->getOpcode() != MI->getOpcode())
2441       WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite -
2442                                                     WaitStatesSinceDef);
2443 
2444     MFMA = nullptr;
2445     WaitStatesSinceDef =
2446         getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates);
2447     if (MFMA) {
2448       int NeedWaitStates = MaxWaitStates;
2449       switch (TSchedModel.computeInstrLatency(MFMA)) {
2450       case 2:
2451         NeedWaitStates = ST.hasGFX940Insts()
2452           ? isXDL(ST, *MFMA)
2453             ? GFX940_XDL2PassWriteVgprVALUWawWaitStates
2454             : GFX940_SMFMA2PassWriteVgprVALUWawWaitStates
2455           : SMFMA4x4WriteVgprVALUWawWaitStates;
2456         break;
2457       case 4:
2458         assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts());
2459         NeedWaitStates = isDGEMM(MFMA->getOpcode())
2460             ? DMFMA4x4WriteVgprVALUWriteWaitStates
2461             : isXDL(ST, *MFMA)
2462               ? GFX940_XDL4PassWriteVgprVALUWawWaitStates
2463               : GFX940_SMFMA4PassWriteVgprVALUWawWaitStates;
2464         break;
2465       case 8:
2466         NeedWaitStates = ST.hasGFX940Insts()
2467           ? isXDL(ST, *MFMA)
2468             ? GFX940_XDL8PassWriteVgprVALUWawWaitStates
2469             : GFX940_SMFMA8PassWriteVgprVALUWawWaitStates
2470           : SMFMA16x16WriteVgprVALUWawWaitStates;
2471         break;
2472       case 16: LLVM_FALLTHROUGH;
2473       default:
2474         NeedWaitStates = isDGEMM(MFMA->getOpcode())
2475                    ? DMFMA16x16WriteVgprVALUWriteWaitStates
2476                    : ST.hasGFX940Insts()
2477                      ? isXDL(ST, *MFMA)
2478                        ? GFX940_XDL16PassWriteVgprVALUWawWaitStates
2479                        : GFX940_SMFMA16PassWriteVgprVALUWawWaitStates
2480                    : SMFMA32x32WriteVgprVALUWawWaitStates;
2481         break;
2482       }
2483 
2484       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2485       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2486 
2487       if (WaitStatesNeeded == MaxWaitStates)
2488         break;
2489     }
2490 
2491     auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) {
2492       if (!SIInstrInfo::isMFMA(MI) || isDGEMM(MI.getOpcode()) ||
2493           !MI.readsRegister(Reg, &TRI))
2494         return false;
2495 
2496       if (ST.hasGFX940Insts() && !isXDL(ST, MI))
2497         return false;
2498 
2499       const MachineOperand *SrcC =
2500           TII.getNamedOperand(MI, AMDGPU::OpName::src2);
2501       assert(SrcC);
2502       if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg))
2503         return false;
2504 
2505       MFMA = &MI;
2506       return true;
2507     };
2508 
2509     MFMA = nullptr;
2510     int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn,
2511                                                 MaxWarWaitStates);
2512     if (!MFMA)
2513       continue;
2514 
2515     unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
2516     int NeedWaitStates = MaxWaitStates;
2517     switch (HazardDefLatency) {
2518     case 2:  NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates;
2519              break;
2520     case 4:  assert(ST.hasGFX940Insts());
2521              NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates;
2522              break;
2523     case 8:  NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates;
2524              break;
2525     case 16: LLVM_FALLTHROUGH;
2526     default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates;
2527              break;
2528     }
2529 
2530     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse;
2531     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2532   }
2533 
2534   return WaitStatesNeeded;
2535 }
2536 
2537 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) {
2538   if (!SU->isInstr())
2539     return false;
2540 
2541   const MachineInstr *MAI = nullptr;
2542 
2543   auto IsMFMAFn = [&MAI](const MachineInstr &MI) {
2544     MAI = nullptr;
2545     if (SIInstrInfo::isMFMA(MI))
2546       MAI = &MI;
2547     return MAI != nullptr;
2548   };
2549 
2550   MachineInstr *MI = SU->getInstr();
2551   if (IsMFMAFn(*MI)) {
2552     int W = getWaitStatesSince(IsMFMAFn, 16);
2553     if (MAI)
2554       return W < (int)TSchedModel.computeInstrLatency(MAI);
2555   }
2556 
2557   return false;
2558 }
2559