1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "AMDGPUSubtarget.h" 15 #include "SIDefines.h" 16 #include "SIInstrInfo.h" 17 #include "SIRegisterInfo.h" 18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/ScheduleDAG.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <limits> 31 #include <set> 32 #include <vector> 33 34 using namespace llvm; 35 36 //===----------------------------------------------------------------------===// 37 // Hazard Recoginizer Implementation 38 //===----------------------------------------------------------------------===// 39 40 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 41 IsHazardRecognizerMode(false), 42 CurrCycleInstr(nullptr), 43 MF(MF), 44 ST(MF.getSubtarget<GCNSubtarget>()), 45 TII(*ST.getInstrInfo()), 46 TRI(TII.getRegisterInfo()), 47 ClauseUses(TRI.getNumRegUnits()), 48 ClauseDefs(TRI.getNumRegUnits()) { 49 MaxLookAhead = 5; 50 } 51 52 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 53 EmitInstruction(SU->getInstr()); 54 } 55 56 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 57 CurrCycleInstr = MI; 58 } 59 60 static bool isDivFMas(unsigned Opcode) { 61 return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64; 62 } 63 64 static bool isSGetReg(unsigned Opcode) { 65 return Opcode == AMDGPU::S_GETREG_B32; 66 } 67 68 static bool isSSetReg(unsigned Opcode) { 69 return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32; 70 } 71 72 static bool isRWLane(unsigned Opcode) { 73 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 74 } 75 76 static bool isRFE(unsigned Opcode) { 77 return Opcode == AMDGPU::S_RFE_B64; 78 } 79 80 static bool isSMovRel(unsigned Opcode) { 81 switch (Opcode) { 82 case AMDGPU::S_MOVRELS_B32: 83 case AMDGPU::S_MOVRELS_B64: 84 case AMDGPU::S_MOVRELD_B32: 85 case AMDGPU::S_MOVRELD_B64: 86 return true; 87 default: 88 return false; 89 } 90 } 91 92 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 93 const MachineInstr &MI) { 94 if (TII.isAlwaysGDS(MI.getOpcode())) 95 return true; 96 97 switch (MI.getOpcode()) { 98 case AMDGPU::S_SENDMSG: 99 case AMDGPU::S_SENDMSGHALT: 100 case AMDGPU::S_TTRACEDATA: 101 return true; 102 // These DS opcodes don't support GDS. 103 case AMDGPU::DS_NOP: 104 case AMDGPU::DS_PERMUTE_B32: 105 case AMDGPU::DS_BPERMUTE_B32: 106 return false; 107 default: 108 if (TII.isDS(MI.getOpcode())) { 109 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 110 AMDGPU::OpName::gds); 111 if (MI.getOperand(GDS).getImm()) 112 return true; 113 } 114 return false; 115 } 116 } 117 118 static bool isPermlane(const MachineInstr &MI) { 119 unsigned Opcode = MI.getOpcode(); 120 return Opcode == AMDGPU::V_PERMLANE16_B32 || 121 Opcode == AMDGPU::V_PERMLANEX16_B32; 122 } 123 124 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 125 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 126 AMDGPU::OpName::simm16); 127 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 128 } 129 130 ScheduleHazardRecognizer::HazardType 131 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 132 MachineInstr *MI = SU->getInstr(); 133 if (MI->isBundle()) 134 return NoHazard; 135 136 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 137 return NoopHazard; 138 139 // FIXME: Should flat be considered vmem? 140 if ((SIInstrInfo::isVMEM(*MI) || 141 SIInstrInfo::isFLAT(*MI)) 142 && checkVMEMHazards(MI) > 0) 143 return NoopHazard; 144 145 if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) 146 return NoopHazard; 147 148 if (ST.hasNoDataDepHazard()) 149 return NoHazard; 150 151 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 152 return NoopHazard; 153 154 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 155 return NoopHazard; 156 157 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 158 return NoopHazard; 159 160 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 161 return NoopHazard; 162 163 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 164 return NoopHazard; 165 166 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 167 return NoopHazard; 168 169 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 170 return NoopHazard; 171 172 if (ST.hasReadM0MovRelInterpHazard() && 173 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) && 174 checkReadM0Hazards(MI) > 0) 175 return NoopHazard; 176 177 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) && 178 checkReadM0Hazards(MI) > 0) 179 return NoopHazard; 180 181 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 182 return NoopHazard; 183 184 if (checkAnyInstHazards(MI) > 0) 185 return NoopHazard; 186 187 return NoHazard; 188 } 189 190 static void insertNoopInBundle(MachineInstr *MI, const SIInstrInfo &TII) { 191 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP)) 192 .addImm(0); 193 } 194 195 void GCNHazardRecognizer::processBundle() { 196 MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator()); 197 MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); 198 // Check bundled MachineInstr's for hazards. 199 for (; MI != E && MI->isInsideBundle(); ++MI) { 200 CurrCycleInstr = &*MI; 201 unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); 202 203 if (IsHazardRecognizerMode) 204 fixHazards(CurrCycleInstr); 205 206 for (unsigned i = 0; i < WaitStates; ++i) 207 insertNoopInBundle(CurrCycleInstr, TII); 208 209 // It’s unnecessary to track more than MaxLookAhead instructions. Since we 210 // include the bundled MI directly after, only add a maximum of 211 // (MaxLookAhead - 1) noops to EmittedInstrs. 212 for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i) 213 EmittedInstrs.push_front(nullptr); 214 215 EmittedInstrs.push_front(CurrCycleInstr); 216 EmittedInstrs.resize(MaxLookAhead); 217 } 218 CurrCycleInstr = nullptr; 219 } 220 221 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) { 222 IsHazardRecognizerMode = false; 223 return PreEmitNoopsCommon(SU->getInstr()); 224 } 225 226 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 227 IsHazardRecognizerMode = true; 228 CurrCycleInstr = MI; 229 unsigned W = PreEmitNoopsCommon(MI); 230 fixHazards(MI); 231 CurrCycleInstr = nullptr; 232 return W; 233 } 234 235 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 236 if (MI->isBundle()) 237 return 0; 238 239 int WaitStates = std::max(0, checkAnyInstHazards(MI)); 240 241 if (SIInstrInfo::isSMRD(*MI)) 242 return std::max(WaitStates, checkSMRDHazards(MI)); 243 244 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 245 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 246 247 if (ST.hasNSAtoVMEMBug()) 248 WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI)); 249 250 if (ST.hasNoDataDepHazard()) 251 return WaitStates; 252 253 if (SIInstrInfo::isVALU(*MI)) 254 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 255 256 if (SIInstrInfo::isDPP(*MI)) 257 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 258 259 if (isDivFMas(MI->getOpcode())) 260 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 261 262 if (isRWLane(MI->getOpcode())) 263 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 264 265 if (MI->isInlineAsm()) 266 return std::max(WaitStates, checkInlineAsmHazards(MI)); 267 268 if (isSGetReg(MI->getOpcode())) 269 return std::max(WaitStates, checkGetRegHazards(MI)); 270 271 if (isSSetReg(MI->getOpcode())) 272 return std::max(WaitStates, checkSetRegHazards(MI)); 273 274 if (isRFE(MI->getOpcode())) 275 return std::max(WaitStates, checkRFEHazards(MI)); 276 277 if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) || 278 isSMovRel(MI->getOpcode()))) 279 return std::max(WaitStates, checkReadM0Hazards(MI)); 280 281 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) 282 return std::max(WaitStates, checkReadM0Hazards(MI)); 283 284 return WaitStates; 285 } 286 287 void GCNHazardRecognizer::EmitNoop() { 288 EmittedInstrs.push_front(nullptr); 289 } 290 291 void GCNHazardRecognizer::AdvanceCycle() { 292 // When the scheduler detects a stall, it will call AdvanceCycle() without 293 // emitting any instructions. 294 if (!CurrCycleInstr) 295 return; 296 297 // Do not track non-instructions which do not affect the wait states. 298 // If included, these instructions can lead to buffer overflow such that 299 // detectable hazards are missed. 300 if (CurrCycleInstr->isImplicitDef() || CurrCycleInstr->isDebugInstr() || 301 CurrCycleInstr->isKill()) 302 return; 303 304 if (CurrCycleInstr->isBundle()) { 305 processBundle(); 306 return; 307 } 308 309 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 310 311 // Keep track of emitted instructions 312 EmittedInstrs.push_front(CurrCycleInstr); 313 314 // Add a nullptr for each additional wait state after the first. Make sure 315 // not to add more than getMaxLookAhead() items to the list, since we 316 // truncate the list to that size right after this loop. 317 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 318 i < e; ++i) { 319 EmittedInstrs.push_front(nullptr); 320 } 321 322 // getMaxLookahead() is the largest number of wait states we will ever need 323 // to insert, so there is no point in keeping track of more than that many 324 // wait states. 325 EmittedInstrs.resize(getMaxLookAhead()); 326 327 CurrCycleInstr = nullptr; 328 } 329 330 void GCNHazardRecognizer::RecedeCycle() { 331 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 332 } 333 334 //===----------------------------------------------------------------------===// 335 // Helper Functions 336 //===----------------------------------------------------------------------===// 337 338 typedef function_ref<bool(MachineInstr *, int WaitStates)> IsExpiredFn; 339 340 // Returns a minimum wait states since \p I walking all predecessors. 341 // Only scans until \p IsExpired does not return true. 342 // Can only be run in a hazard recognizer mode. 343 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 344 MachineBasicBlock *MBB, 345 MachineBasicBlock::reverse_instr_iterator I, 346 int WaitStates, 347 IsExpiredFn IsExpired, 348 DenseSet<const MachineBasicBlock *> &Visited) { 349 for (auto E = MBB->instr_rend(); I != E; ++I) { 350 // Don't add WaitStates for parent BUNDLE instructions. 351 if (I->isBundle()) 352 continue; 353 354 if (IsHazard(&*I)) 355 return WaitStates; 356 357 if (I->isInlineAsm() || I->isImplicitDef() || I->isDebugInstr()) 358 continue; 359 360 WaitStates += SIInstrInfo::getNumWaitStates(*I); 361 362 if (IsExpired(&*I, WaitStates)) 363 return std::numeric_limits<int>::max(); 364 } 365 366 int MinWaitStates = WaitStates; 367 bool Found = false; 368 for (MachineBasicBlock *Pred : MBB->predecessors()) { 369 if (!Visited.insert(Pred).second) 370 continue; 371 372 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), 373 WaitStates, IsExpired, Visited); 374 375 if (W == std::numeric_limits<int>::max()) 376 continue; 377 378 MinWaitStates = Found ? std::min(MinWaitStates, W) : W; 379 if (IsExpired(nullptr, MinWaitStates)) 380 return MinWaitStates; 381 382 Found = true; 383 } 384 385 if (Found) 386 return MinWaitStates; 387 388 return std::numeric_limits<int>::max(); 389 } 390 391 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 392 MachineInstr *MI, 393 IsExpiredFn IsExpired) { 394 DenseSet<const MachineBasicBlock *> Visited; 395 return getWaitStatesSince(IsHazard, MI->getParent(), 396 std::next(MI->getReverseIterator()), 397 0, IsExpired, Visited); 398 } 399 400 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 401 if (IsHazardRecognizerMode) { 402 auto IsExpiredFn = [Limit] (MachineInstr *, int WaitStates) { 403 return WaitStates >= Limit; 404 }; 405 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 406 } 407 408 int WaitStates = 0; 409 for (MachineInstr *MI : EmittedInstrs) { 410 if (MI) { 411 if (IsHazard(MI)) 412 return WaitStates; 413 414 if (MI->isInlineAsm()) 415 continue; 416 } 417 ++WaitStates; 418 419 if (WaitStates >= Limit) 420 break; 421 } 422 return std::numeric_limits<int>::max(); 423 } 424 425 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 426 IsHazardFn IsHazardDef, 427 int Limit) { 428 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 429 430 auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) { 431 return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI); 432 }; 433 434 return getWaitStatesSince(IsHazardFn, Limit); 435 } 436 437 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 438 int Limit) { 439 auto IsHazardFn = [IsHazard] (MachineInstr *MI) { 440 return isSSetReg(MI->getOpcode()) && IsHazard(MI); 441 }; 442 443 return getWaitStatesSince(IsHazardFn, Limit); 444 } 445 446 //===----------------------------------------------------------------------===// 447 // No-op Hazard Detection 448 //===----------------------------------------------------------------------===// 449 450 static void addRegUnits(const SIRegisterInfo &TRI, 451 BitVector &BV, unsigned Reg) { 452 for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI) 453 BV.set(*RUI); 454 } 455 456 static void addRegsToSet(const SIRegisterInfo &TRI, 457 iterator_range<MachineInstr::const_mop_iterator> Ops, 458 BitVector &Set) { 459 for (const MachineOperand &Op : Ops) { 460 if (Op.isReg()) 461 addRegUnits(TRI, Set, Op.getReg()); 462 } 463 } 464 465 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 466 // XXX: Do we need to worry about implicit operands 467 addRegsToSet(TRI, MI.defs(), ClauseDefs); 468 addRegsToSet(TRI, MI.uses(), ClauseUses); 469 } 470 471 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 472 // SMEM soft clause are only present on VI+, and only matter if xnack is 473 // enabled. 474 if (!ST.isXNACKEnabled()) 475 return 0; 476 477 bool IsSMRD = TII.isSMRD(*MEM); 478 479 resetClause(); 480 481 // A soft-clause is any group of consecutive SMEM instructions. The 482 // instructions in this group may return out of order and/or may be 483 // replayed (i.e. the same instruction issued more than once). 484 // 485 // In order to handle these situations correctly we need to make sure that 486 // when a clause has more than one instruction, no instruction in the clause 487 // writes to a register that is read by another instruction in the clause 488 // (including itself). If we encounter this situaion, we need to break the 489 // clause by inserting a non SMEM instruction. 490 491 for (MachineInstr *MI : EmittedInstrs) { 492 // When we hit a non-SMEM instruction then we have passed the start of the 493 // clause and we can stop. 494 if (!MI) 495 break; 496 497 if (IsSMRD != SIInstrInfo::isSMRD(*MI)) 498 break; 499 500 addClauseInst(*MI); 501 } 502 503 if (ClauseDefs.none()) 504 return 0; 505 506 // We need to make sure not to put loads and stores in the same clause if they 507 // use the same address. For now, just start a new clause whenever we see a 508 // store. 509 if (MEM->mayStore()) 510 return 1; 511 512 addClauseInst(*MEM); 513 514 // If the set of defs and uses intersect then we cannot add this instruction 515 // to the clause, so we have a hazard. 516 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 517 } 518 519 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 520 int WaitStatesNeeded = 0; 521 522 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 523 524 // This SMRD hazard only affects SI. 525 if (!ST.hasSMRDReadVALUDefHazard()) 526 return WaitStatesNeeded; 527 528 // A read of an SGPR by SMRD instruction requires 4 wait states when the 529 // SGPR was written by a VALU instruction. 530 int SmrdSgprWaitStates = 4; 531 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 532 auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); }; 533 534 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 535 536 for (const MachineOperand &Use : SMRD->uses()) { 537 if (!Use.isReg()) 538 continue; 539 int WaitStatesNeededForUse = 540 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 541 SmrdSgprWaitStates); 542 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 543 544 // This fixes what appears to be undocumented hardware behavior in SI where 545 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 546 // needs some number of nops in between. We don't know how many we need, but 547 // let's use 4. This wasn't discovered before probably because the only 548 // case when this happens is when we expand a 64-bit pointer into a full 549 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 550 // probably never encountered in the closed-source land. 551 if (IsBufferSMRD) { 552 int WaitStatesNeededForUse = 553 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 554 IsBufferHazardDefFn, 555 SmrdSgprWaitStates); 556 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 557 } 558 } 559 560 return WaitStatesNeeded; 561 } 562 563 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 564 if (!ST.hasVMEMReadSGPRVALUDefHazard()) 565 return 0; 566 567 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 568 569 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 570 // SGPR was written by a VALU Instruction. 571 const int VmemSgprWaitStates = 5; 572 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 573 for (const MachineOperand &Use : VMEM->uses()) { 574 if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 575 continue; 576 577 int WaitStatesNeededForUse = 578 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 579 VmemSgprWaitStates); 580 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 581 } 582 return WaitStatesNeeded; 583 } 584 585 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 586 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 587 const SIInstrInfo *TII = ST.getInstrInfo(); 588 589 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 590 int DppVgprWaitStates = 2; 591 int DppExecWaitStates = 5; 592 int WaitStatesNeeded = 0; 593 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 594 595 for (const MachineOperand &Use : DPP->uses()) { 596 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 597 continue; 598 int WaitStatesNeededForUse = 599 DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 600 [](MachineInstr *) { return true; }, 601 DppVgprWaitStates); 602 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 603 } 604 605 WaitStatesNeeded = std::max( 606 WaitStatesNeeded, 607 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 608 DppExecWaitStates)); 609 610 return WaitStatesNeeded; 611 } 612 613 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 614 const SIInstrInfo *TII = ST.getInstrInfo(); 615 616 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 617 // instruction. 618 const int DivFMasWaitStates = 4; 619 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 620 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 621 DivFMasWaitStates); 622 623 return DivFMasWaitStates - WaitStatesNeeded; 624 } 625 626 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 627 const SIInstrInfo *TII = ST.getInstrInfo(); 628 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 629 630 const int GetRegWaitStates = 2; 631 auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) { 632 return GetRegHWReg == getHWReg(TII, *MI); 633 }; 634 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 635 636 return GetRegWaitStates - WaitStatesNeeded; 637 } 638 639 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 640 const SIInstrInfo *TII = ST.getInstrInfo(); 641 unsigned HWReg = getHWReg(TII, *SetRegInstr); 642 643 const int SetRegWaitStates = ST.getSetRegWaitStates(); 644 auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) { 645 return HWReg == getHWReg(TII, *MI); 646 }; 647 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 648 return SetRegWaitStates - WaitStatesNeeded; 649 } 650 651 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 652 if (!MI.mayStore()) 653 return -1; 654 655 const SIInstrInfo *TII = ST.getInstrInfo(); 656 unsigned Opcode = MI.getOpcode(); 657 const MCInstrDesc &Desc = MI.getDesc(); 658 659 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 660 int VDataRCID = -1; 661 if (VDataIdx != -1) 662 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 663 664 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 665 // There is no hazard if the instruction does not use vector regs 666 // (like wbinvl1) 667 if (VDataIdx == -1) 668 return -1; 669 // For MUBUF/MTBUF instructions this hazard only exists if the 670 // instruction is not using a register in the soffset field. 671 const MachineOperand *SOffset = 672 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 673 // If we have no soffset operand, then assume this field has been 674 // hardcoded to zero. 675 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 676 (!SOffset || !SOffset->isReg())) 677 return VDataIdx; 678 } 679 680 // MIMG instructions create a hazard if they don't use a 256-bit T# and 681 // the store size is greater than 8 bytes and they have more than two bits 682 // of their dmask set. 683 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 684 if (TII->isMIMG(MI)) { 685 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 686 assert(SRsrcIdx != -1 && 687 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 688 (void)SRsrcIdx; 689 } 690 691 if (TII->isFLAT(MI)) { 692 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 693 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 694 return DataIdx; 695 } 696 697 return -1; 698 } 699 700 int GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 701 const MachineRegisterInfo &MRI) { 702 // Helper to check for the hazard where VMEM instructions that store more than 703 // 8 bytes can have there store data over written by the next instruction. 704 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 705 706 const int VALUWaitStates = 1; 707 int WaitStatesNeeded = 0; 708 709 if (!TRI->isVGPR(MRI, Def.getReg())) 710 return WaitStatesNeeded; 711 unsigned Reg = Def.getReg(); 712 auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) { 713 int DataIdx = createsVALUHazard(*MI); 714 return DataIdx >= 0 && 715 TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg); 716 }; 717 int WaitStatesNeededForDef = 718 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 719 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 720 721 return WaitStatesNeeded; 722 } 723 724 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 725 // This checks for the hazard where VMEM instructions that store more than 726 // 8 bytes can have there store data over written by the next instruction. 727 if (!ST.has12DWordStoreHazard()) 728 return 0; 729 730 const MachineRegisterInfo &MRI = MF.getRegInfo(); 731 int WaitStatesNeeded = 0; 732 733 for (const MachineOperand &Def : VALU->defs()) { 734 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 735 } 736 737 return WaitStatesNeeded; 738 } 739 740 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 741 // This checks for hazards associated with inline asm statements. 742 // Since inline asms can contain just about anything, we use this 743 // to call/leverage other check*Hazard routines. Note that 744 // this function doesn't attempt to address all possible inline asm 745 // hazards (good luck), but is a collection of what has been 746 // problematic thus far. 747 748 // see checkVALUHazards() 749 if (!ST.has12DWordStoreHazard()) 750 return 0; 751 752 const MachineRegisterInfo &MRI = MF.getRegInfo(); 753 int WaitStatesNeeded = 0; 754 755 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands(); 756 I != E; ++I) { 757 const MachineOperand &Op = IA->getOperand(I); 758 if (Op.isReg() && Op.isDef()) { 759 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 760 } 761 } 762 763 return WaitStatesNeeded; 764 } 765 766 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 767 const SIInstrInfo *TII = ST.getInstrInfo(); 768 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 769 const MachineRegisterInfo &MRI = MF.getRegInfo(); 770 771 const MachineOperand *LaneSelectOp = 772 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 773 774 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 775 return 0; 776 777 unsigned LaneSelectReg = LaneSelectOp->getReg(); 778 auto IsHazardFn = [TII] (MachineInstr *MI) { 779 return TII->isVALU(*MI); 780 }; 781 782 const int RWLaneWaitStates = 4; 783 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 784 RWLaneWaitStates); 785 return RWLaneWaitStates - WaitStatesSince; 786 } 787 788 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 789 if (!ST.hasRFEHazards()) 790 return 0; 791 792 const SIInstrInfo *TII = ST.getInstrInfo(); 793 794 const int RFEWaitStates = 1; 795 796 auto IsHazardFn = [TII] (MachineInstr *MI) { 797 return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS; 798 }; 799 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 800 return RFEWaitStates - WaitStatesNeeded; 801 } 802 803 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) { 804 if (MI->isDebugInstr()) 805 return 0; 806 807 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 808 if (!ST.hasSMovFedHazard()) 809 return 0; 810 811 // Check for any instruction reading an SGPR after a write from 812 // s_mov_fed_b32. 813 int MovFedWaitStates = 1; 814 int WaitStatesNeeded = 0; 815 816 for (const MachineOperand &Use : MI->uses()) { 817 if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 818 continue; 819 auto IsHazardFn = [] (MachineInstr *MI) { 820 return MI->getOpcode() == AMDGPU::S_MOV_FED_B32; 821 }; 822 int WaitStatesNeededForUse = 823 MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn, 824 MovFedWaitStates); 825 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 826 } 827 828 return WaitStatesNeeded; 829 } 830 831 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 832 const SIInstrInfo *TII = ST.getInstrInfo(); 833 const int SMovRelWaitStates = 1; 834 auto IsHazardFn = [TII] (MachineInstr *MI) { 835 return TII->isSALU(*MI); 836 }; 837 return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, 838 SMovRelWaitStates); 839 } 840 841 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { 842 fixVMEMtoScalarWriteHazards(MI); 843 fixVcmpxPermlaneHazards(MI); 844 fixSMEMtoVectorWriteHazards(MI); 845 fixVcmpxExecWARHazard(MI); 846 fixLdsBranchVmemWARHazard(MI); 847 } 848 849 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) { 850 if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI)) 851 return false; 852 853 const SIInstrInfo *TII = ST.getInstrInfo(); 854 auto IsHazardFn = [TII] (MachineInstr *MI) { 855 return TII->isVOPC(*MI); 856 }; 857 858 auto IsExpiredFn = [] (MachineInstr *MI, int) { 859 if (!MI) 860 return false; 861 unsigned Opc = MI->getOpcode(); 862 return SIInstrInfo::isVALU(*MI) && 863 Opc != AMDGPU::V_NOP_e32 && 864 Opc != AMDGPU::V_NOP_e64 && 865 Opc != AMDGPU::V_NOP_sdwa; 866 }; 867 868 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 869 std::numeric_limits<int>::max()) 870 return false; 871 872 // V_NOP will be discarded by SQ. 873 // Use V_MOB_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE* 874 // which is always a VGPR and available. 875 auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 876 unsigned Reg = Src0->getReg(); 877 bool IsUndef = Src0->isUndef(); 878 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 879 TII->get(AMDGPU::V_MOV_B32_e32)) 880 .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0)) 881 .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill); 882 883 return true; 884 } 885 886 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { 887 if (!ST.hasVMEMtoScalarWriteHazard()) 888 return false; 889 890 if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI)) 891 return false; 892 893 if (MI->getNumDefs() == 0) 894 return false; 895 896 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 897 898 auto IsHazardFn = [TRI, MI] (MachineInstr *I) { 899 if (!SIInstrInfo::isVMEM(*I) && !SIInstrInfo::isDS(*I) && 900 !SIInstrInfo::isFLAT(*I)) 901 return false; 902 903 for (const MachineOperand &Def : MI->defs()) { 904 MachineOperand *Op = I->findRegisterUseOperand(Def.getReg(), false, TRI); 905 if (!Op || (Op->isImplicit() && Op->getReg() == AMDGPU::EXEC)) 906 continue; 907 return true; 908 } 909 return false; 910 }; 911 912 auto IsExpiredFn = [] (MachineInstr *MI, int) { 913 return MI && (SIInstrInfo::isVALU(*MI) || 914 (MI->getOpcode() == AMDGPU::S_WAITCNT && 915 !MI->getOperand(0).getImm())); 916 }; 917 918 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 919 std::numeric_limits<int>::max()) 920 return false; 921 922 const SIInstrInfo *TII = ST.getInstrInfo(); 923 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32)); 924 return true; 925 } 926 927 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { 928 if (!ST.hasSMEMtoVectorWriteHazard()) 929 return false; 930 931 if (!SIInstrInfo::isVALU(*MI)) 932 return false; 933 934 unsigned SDSTName; 935 switch (MI->getOpcode()) { 936 case AMDGPU::V_READLANE_B32: 937 case AMDGPU::V_READFIRSTLANE_B32: 938 SDSTName = AMDGPU::OpName::vdst; 939 break; 940 default: 941 SDSTName = AMDGPU::OpName::sdst; 942 break; 943 } 944 945 const SIInstrInfo *TII = ST.getInstrInfo(); 946 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 947 const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU()); 948 const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName); 949 if (!SDST) { 950 for (const auto &MO : MI->implicit_operands()) { 951 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) { 952 SDST = &MO; 953 break; 954 } 955 } 956 } 957 958 if (!SDST) 959 return false; 960 961 const unsigned SDSTReg = SDST->getReg(); 962 auto IsHazardFn = [SDSTReg, TRI] (MachineInstr *I) { 963 return SIInstrInfo::isSMRD(*I) && I->readsRegister(SDSTReg, TRI); 964 }; 965 966 auto IsExpiredFn = [TII, IV] (MachineInstr *MI, int) { 967 if (MI) { 968 if (TII->isSALU(*MI)) { 969 switch (MI->getOpcode()) { 970 case AMDGPU::S_SETVSKIP: 971 case AMDGPU::S_VERSION: 972 case AMDGPU::S_WAITCNT_VSCNT: 973 case AMDGPU::S_WAITCNT_VMCNT: 974 case AMDGPU::S_WAITCNT_EXPCNT: 975 // These instructions cannot not mitigate the hazard. 976 return false; 977 case AMDGPU::S_WAITCNT_LGKMCNT: 978 // Reducing lgkmcnt count to 0 always mitigates the hazard. 979 return (MI->getOperand(1).getImm() == 0) && 980 (MI->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 981 case AMDGPU::S_WAITCNT: { 982 const int64_t Imm = MI->getOperand(0).getImm(); 983 AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm); 984 return (Decoded.LgkmCnt == 0); 985 } 986 default: 987 // SOPP instructions cannot mitigate the hazard. 988 if (TII->isSOPP(*MI)) 989 return false; 990 // At this point the SALU can be assumed to mitigate the hazard 991 // because either: 992 // (a) it is independent of the at risk SMEM (breaking chain), 993 // or 994 // (b) it is dependent on the SMEM, in which case an appropriate 995 // s_waitcnt lgkmcnt _must_ exist between it and the at risk 996 // SMEM instruction. 997 return true; 998 } 999 } 1000 } 1001 return false; 1002 }; 1003 1004 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1005 std::numeric_limits<int>::max()) 1006 return false; 1007 1008 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1009 TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL) 1010 .addImm(0); 1011 return true; 1012 } 1013 1014 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { 1015 if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI)) 1016 return false; 1017 1018 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1019 if (!MI->modifiesRegister(AMDGPU::EXEC, TRI)) 1020 return false; 1021 1022 auto IsHazardFn = [TRI] (MachineInstr *I) { 1023 if (SIInstrInfo::isVALU(*I)) 1024 return false; 1025 return I->readsRegister(AMDGPU::EXEC, TRI); 1026 }; 1027 1028 const SIInstrInfo *TII = ST.getInstrInfo(); 1029 auto IsExpiredFn = [TII, TRI] (MachineInstr *MI, int) { 1030 if (!MI) 1031 return false; 1032 if (SIInstrInfo::isVALU(*MI)) { 1033 if (TII->getNamedOperand(*MI, AMDGPU::OpName::sdst)) 1034 return true; 1035 for (auto MO : MI->implicit_operands()) 1036 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) 1037 return true; 1038 } 1039 if (MI->getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1040 (MI->getOperand(0).getImm() & 0xfffe) == 0xfffe) 1041 return true; 1042 return false; 1043 }; 1044 1045 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1046 std::numeric_limits<int>::max()) 1047 return false; 1048 1049 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1050 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1051 .addImm(0xfffe); 1052 return true; 1053 } 1054 1055 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { 1056 if (!ST.hasLdsBranchVmemWARHazard()) 1057 return false; 1058 1059 auto IsHazardInst = [] (const MachineInstr *MI) { 1060 if (SIInstrInfo::isDS(*MI)) 1061 return 1; 1062 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isSegmentSpecificFLAT(*MI)) 1063 return 2; 1064 return 0; 1065 }; 1066 1067 auto InstType = IsHazardInst(MI); 1068 if (!InstType) 1069 return false; 1070 1071 auto IsExpiredFn = [&IsHazardInst] (MachineInstr *I, int) { 1072 return I && (IsHazardInst(I) || 1073 (I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1074 I->getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1075 !I->getOperand(1).getImm())); 1076 }; 1077 1078 auto IsHazardFn = [InstType, &IsHazardInst] (MachineInstr *I) { 1079 if (!I->isBranch()) 1080 return false; 1081 1082 auto IsHazardFn = [InstType, IsHazardInst] (MachineInstr *I) { 1083 auto InstType2 = IsHazardInst(I); 1084 return InstType2 && InstType != InstType2; 1085 }; 1086 1087 auto IsExpiredFn = [InstType, &IsHazardInst] (MachineInstr *I, int) { 1088 if (!I) 1089 return false; 1090 1091 auto InstType2 = IsHazardInst(I); 1092 if (InstType == InstType2) 1093 return true; 1094 1095 return I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1096 I->getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1097 !I->getOperand(1).getImm(); 1098 }; 1099 1100 return ::getWaitStatesSince(IsHazardFn, I, IsExpiredFn) != 1101 std::numeric_limits<int>::max(); 1102 }; 1103 1104 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1105 std::numeric_limits<int>::max()) 1106 return false; 1107 1108 const SIInstrInfo *TII = ST.getInstrInfo(); 1109 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1110 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1111 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1112 .addImm(0); 1113 1114 return true; 1115 } 1116 1117 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { 1118 int NSAtoVMEMWaitStates = 1; 1119 1120 if (!ST.hasNSAtoVMEMBug()) 1121 return 0; 1122 1123 if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI)) 1124 return 0; 1125 1126 const SIInstrInfo *TII = ST.getInstrInfo(); 1127 const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset); 1128 if (!Offset || (Offset->getImm() & 6) == 0) 1129 return 0; 1130 1131 auto IsHazardFn = [TII] (MachineInstr *I) { 1132 if (!SIInstrInfo::isMIMG(*I)) 1133 return false; 1134 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I->getOpcode()); 1135 return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && 1136 TII->getInstSizeInBytes(*I) >= 16; 1137 }; 1138 1139 return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1); 1140 } 1141