xref: /llvm-project/llvm/lib/Target/AMDGPU/GCNHazardRecognizer.cpp (revision d3f4c05aea3781a40b8048e5192eaad3c30d165a)
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements hazard recognizers for scheduling on GCN processors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "GCNHazardRecognizer.h"
15 #include "AMDGPUSubtarget.h"
16 #include "SIInstrInfo.h"
17 #include "llvm/CodeGen/ScheduleDAG.h"
18 #include "llvm/Support/Debug.h"
19 
20 using namespace llvm;
21 
22 //===----------------------------------------------------------------------===//
23 // Hazard Recoginizer Implementation
24 //===----------------------------------------------------------------------===//
25 
26 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
27   CurrCycleInstr(nullptr),
28   MF(MF) {
29   MaxLookAhead = 5;
30 }
31 
32 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
33   EmitInstruction(SU->getInstr());
34 }
35 
36 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
37   CurrCycleInstr = MI;
38 }
39 
40 ScheduleHazardRecognizer::HazardType
41 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
42   MachineInstr *MI = SU->getInstr();
43 
44   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
45     return NoopHazard;
46 
47   if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0)
48     return NoopHazard;
49 
50   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
51     return NoopHazard;
52 
53   return NoHazard;
54 }
55 
56 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
57   return PreEmitNoops(SU->getInstr());
58 }
59 
60 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
61   if (SIInstrInfo::isSMRD(*MI))
62     return std::max(0, checkSMRDHazards(MI));
63 
64   if (SIInstrInfo::isVMEM(*MI))
65     return std::max(0, checkVMEMHazards(MI));
66 
67   if (SIInstrInfo::isDPP(*MI))
68     return std::max(0, checkDPPHazards(MI));
69 
70   return 0;
71 }
72 
73 void GCNHazardRecognizer::EmitNoop() {
74   EmittedInstrs.push_front(nullptr);
75 }
76 
77 void GCNHazardRecognizer::AdvanceCycle() {
78 
79   // When the scheduler detects a stall, it will call AdvanceCycle() without
80   // emitting any instructions.
81   if (!CurrCycleInstr)
82     return;
83 
84   const SIInstrInfo *TII =
85       static_cast<const SIInstrInfo*>(MF.getSubtarget().getInstrInfo());
86   unsigned NumWaitStates = TII->getNumWaitStates(*CurrCycleInstr);
87 
88   // Keep track of emitted instructions
89   EmittedInstrs.push_front(CurrCycleInstr);
90 
91   // Add a nullptr for each additional wait state after the first.  Make sure
92   // not to add more than getMaxLookAhead() items to the list, since we
93   // truncate the list to that size right after this loop.
94   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
95        i < e; ++i) {
96     EmittedInstrs.push_front(nullptr);
97   }
98 
99   // getMaxLookahead() is the largest number of wait states we will ever need
100   // to insert, so there is no point in keeping track of more than that many
101   // wait states.
102   EmittedInstrs.resize(getMaxLookAhead());
103 
104   CurrCycleInstr = nullptr;
105 }
106 
107 void GCNHazardRecognizer::RecedeCycle() {
108   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
109 }
110 
111 //===----------------------------------------------------------------------===//
112 // Helper Functions
113 //===----------------------------------------------------------------------===//
114 
115 int GCNHazardRecognizer::getWaitStatesSinceDef(
116     unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) {
117   const TargetRegisterInfo *TRI =
118       MF.getSubtarget<AMDGPUSubtarget>().getRegisterInfo();
119 
120   int WaitStates = -1;
121   for (MachineInstr *MI : EmittedInstrs) {
122     ++WaitStates;
123     if (!MI || !IsHazardDef(MI))
124       continue;
125     if (MI->modifiesRegister(Reg, TRI))
126       return WaitStates;
127   }
128   return std::numeric_limits<int>::max();
129 }
130 
131 //===----------------------------------------------------------------------===//
132 // No-op Hazard Detection
133 //===----------------------------------------------------------------------===//
134 
135 static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops,
136                          std::set<unsigned> &Set) {
137   for (const MachineOperand &Op : Ops) {
138     if (Op.isReg())
139       Set.insert(Op.getReg());
140   }
141 }
142 
143 int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) {
144   const AMDGPUSubtarget &ST = MF.getSubtarget<AMDGPUSubtarget>();
145 
146   // SMEM soft clause are only present on VI+
147   if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
148     return 0;
149 
150   // A soft-clause is any group of consecutive SMEM instructions.  The
151   // instructions in this group may return out of order and/or may be
152   // replayed (i.e. the same instruction issued more than once).
153   //
154   // In order to handle these situations correctly we need to make sure
155   // that when a clause has more than one instruction, no instruction in the
156   // clause writes to a register that is read another instruction in the clause
157   // (including itself). If we encounter this situaion, we need to break the
158   // clause by inserting a non SMEM instruction.
159 
160   std::set<unsigned> ClauseDefs;
161   std::set<unsigned> ClauseUses;
162 
163   for (MachineInstr *MI : EmittedInstrs) {
164 
165     // When we hit a non-SMEM instruction then we have passed the start of the
166     // clause and we can stop.
167     if (!MI || !SIInstrInfo::isSMRD(*MI))
168       break;
169 
170     addRegsToSet(MI->defs(), ClauseDefs);
171     addRegsToSet(MI->uses(), ClauseUses);
172   }
173 
174   if (ClauseDefs.empty())
175     return 0;
176 
177   // FIXME: When we support stores, we need to make sure not to put loads and
178   // stores in the same clause if they use the same address.  For now, just
179   // start a new clause whenever we see a store.
180   if (SMEM->mayStore())
181     return 1;
182 
183   addRegsToSet(SMEM->defs(), ClauseDefs);
184   addRegsToSet(SMEM->uses(), ClauseUses);
185 
186   std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size()));
187   std::vector<unsigned>::iterator End;
188 
189   End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(),
190                               ClauseUses.begin(), ClauseUses.end(), Result.begin());
191 
192   // If the set of defs and uses intersect then we cannot add this instruction
193   // to the clause, so we have a hazard.
194   if (End != Result.begin())
195     return 1;
196 
197   return 0;
198 }
199 
200 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
201   const AMDGPUSubtarget &ST = MF.getSubtarget<AMDGPUSubtarget>();
202   const SIInstrInfo *TII = static_cast<const SIInstrInfo*>(ST.getInstrInfo());
203   int WaitStatesNeeded = 0;
204 
205   WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD);
206 
207   // This SMRD hazard only affects SI.
208   if (ST.getGeneration() != AMDGPUSubtarget::SOUTHERN_ISLANDS)
209     return WaitStatesNeeded;
210 
211   // A read of an SGPR by SMRD instruction requires 4 wait states when the
212   // SGPR was written by a VALU instruction.
213   int SmrdSgprWaitStates = 4;
214   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
215 
216   for (const MachineOperand &Use : SMRD->uses()) {
217     if (!Use.isReg())
218       continue;
219     int WaitStatesNeededForUse =
220         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
221     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
222   }
223   return WaitStatesNeeded;
224 }
225 
226 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
227   const AMDGPUSubtarget &ST = MF.getSubtarget<AMDGPUSubtarget>();
228   const SIInstrInfo *TII = static_cast<const SIInstrInfo*>(ST.getInstrInfo());
229 
230   if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
231     return 0;
232 
233   const SIRegisterInfo &TRI = TII->getRegisterInfo();
234 
235   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
236   // SGPR was written by a VALU Instruction.
237   int VmemSgprWaitStates = 5;
238   int WaitStatesNeeded = 0;
239   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
240 
241   for (const MachineOperand &Use : VMEM->uses()) {
242     if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
243       continue;
244 
245     int WaitStatesNeededForUse =
246         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
247     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
248   }
249   return WaitStatesNeeded;
250 }
251 
252 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
253   const AMDGPUSubtarget &ST = MF.getSubtarget<AMDGPUSubtarget>();
254   const SIRegisterInfo *TRI =
255       static_cast<const SIRegisterInfo*>(ST.getRegisterInfo());
256 
257   // Check for DPP VGPR read after VALU VGPR write.
258   int DppVgprWaitStates = 2;
259   int WaitStatesNeeded = 0;
260 
261   for (const MachineOperand &Use : DPP->uses()) {
262     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
263       continue;
264     int WaitStatesNeededForUse =
265         DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg());
266     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
267   }
268 
269   return WaitStatesNeeded;
270 }
271