1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements hazard recognizers for scheduling on GCN processors. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "GCNHazardRecognizer.h" 15 #include "AMDGPUSubtarget.h" 16 #include "SIDefines.h" 17 #include "SIInstrInfo.h" 18 #include "SIRegisterInfo.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "Utils/AMDGPUBaseInfo.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/ScheduleDAG.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <limits> 31 #include <set> 32 #include <vector> 33 34 using namespace llvm; 35 36 //===----------------------------------------------------------------------===// 37 // Hazard Recoginizer Implementation 38 //===----------------------------------------------------------------------===// 39 40 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 41 CurrCycleInstr(nullptr), 42 MF(MF), 43 ST(MF.getSubtarget<GCNSubtarget>()), 44 TII(*ST.getInstrInfo()), 45 TRI(TII.getRegisterInfo()), 46 ClauseUses(TRI.getNumRegUnits()), 47 ClauseDefs(TRI.getNumRegUnits()) { 48 MaxLookAhead = 5; 49 } 50 51 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 52 EmitInstruction(SU->getInstr()); 53 } 54 55 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 56 CurrCycleInstr = MI; 57 } 58 59 static bool isDivFMas(unsigned Opcode) { 60 return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64; 61 } 62 63 static bool isSGetReg(unsigned Opcode) { 64 return Opcode == AMDGPU::S_GETREG_B32; 65 } 66 67 static bool isSSetReg(unsigned Opcode) { 68 return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32; 69 } 70 71 static bool isRWLane(unsigned Opcode) { 72 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 73 } 74 75 static bool isRFE(unsigned Opcode) { 76 return Opcode == AMDGPU::S_RFE_B64; 77 } 78 79 static bool isSMovRel(unsigned Opcode) { 80 switch (Opcode) { 81 case AMDGPU::S_MOVRELS_B32: 82 case AMDGPU::S_MOVRELS_B64: 83 case AMDGPU::S_MOVRELD_B32: 84 case AMDGPU::S_MOVRELD_B64: 85 return true; 86 default: 87 return false; 88 } 89 } 90 91 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 92 const MachineInstr &MI) { 93 if (TII.isAlwaysGDS(MI.getOpcode())) 94 return true; 95 96 switch (MI.getOpcode()) { 97 case AMDGPU::S_SENDMSG: 98 case AMDGPU::S_SENDMSGHALT: 99 case AMDGPU::S_TTRACEDATA: 100 return true; 101 // These DS opcodes don't support GDS. 102 case AMDGPU::DS_NOP: 103 case AMDGPU::DS_PERMUTE_B32: 104 case AMDGPU::DS_BPERMUTE_B32: 105 return false; 106 default: 107 if (TII.isDS(MI.getOpcode())) { 108 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 109 AMDGPU::OpName::gds); 110 if (MI.getOperand(GDS).getImm()) 111 return true; 112 } 113 return false; 114 } 115 } 116 117 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 118 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 119 AMDGPU::OpName::simm16); 120 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 121 } 122 123 ScheduleHazardRecognizer::HazardType 124 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 125 MachineInstr *MI = SU->getInstr(); 126 127 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 128 return NoopHazard; 129 130 // FIXME: Should flat be considered vmem? 131 if ((SIInstrInfo::isVMEM(*MI) || 132 SIInstrInfo::isFLAT(*MI)) 133 && checkVMEMHazards(MI) > 0) 134 return NoopHazard; 135 136 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 137 return NoopHazard; 138 139 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 140 return NoopHazard; 141 142 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 143 return NoopHazard; 144 145 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 146 return NoopHazard; 147 148 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 149 return NoopHazard; 150 151 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 152 return NoopHazard; 153 154 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 155 return NoopHazard; 156 157 if (ST.hasReadM0MovRelInterpHazard() && 158 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) && 159 checkReadM0Hazards(MI) > 0) 160 return NoopHazard; 161 162 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) && 163 checkReadM0Hazards(MI) > 0) 164 return NoopHazard; 165 166 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 167 return NoopHazard; 168 169 if (checkAnyInstHazards(MI) > 0) 170 return NoopHazard; 171 172 return NoHazard; 173 } 174 175 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) { 176 return PreEmitNoops(SU->getInstr()); 177 } 178 179 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 180 int WaitStates = std::max(0, checkAnyInstHazards(MI)); 181 182 if (SIInstrInfo::isSMRD(*MI)) 183 return std::max(WaitStates, checkSMRDHazards(MI)); 184 185 if (SIInstrInfo::isVALU(*MI)) 186 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 187 188 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 189 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 190 191 if (SIInstrInfo::isDPP(*MI)) 192 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 193 194 if (isDivFMas(MI->getOpcode())) 195 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 196 197 if (isRWLane(MI->getOpcode())) 198 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 199 200 if (MI->isInlineAsm()) 201 return std::max(WaitStates, checkInlineAsmHazards(MI)); 202 203 if (isSGetReg(MI->getOpcode())) 204 return std::max(WaitStates, checkGetRegHazards(MI)); 205 206 if (isSSetReg(MI->getOpcode())) 207 return std::max(WaitStates, checkSetRegHazards(MI)); 208 209 if (isRFE(MI->getOpcode())) 210 return std::max(WaitStates, checkRFEHazards(MI)); 211 212 if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) || 213 isSMovRel(MI->getOpcode()))) 214 return std::max(WaitStates, checkReadM0Hazards(MI)); 215 216 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) 217 return std::max(WaitStates, checkReadM0Hazards(MI)); 218 219 return WaitStates; 220 } 221 222 void GCNHazardRecognizer::EmitNoop() { 223 EmittedInstrs.push_front(nullptr); 224 } 225 226 void GCNHazardRecognizer::AdvanceCycle() { 227 // When the scheduler detects a stall, it will call AdvanceCycle() without 228 // emitting any instructions. 229 if (!CurrCycleInstr) 230 return; 231 232 // Do not track non-instructions which do not affect the wait states. 233 // If included, these instructions can lead to buffer overflow such that 234 // detectable hazards are missed. 235 if (CurrCycleInstr->getOpcode() == AMDGPU::IMPLICIT_DEF) 236 return; 237 else if (CurrCycleInstr->isDebugInstr()) 238 return; 239 240 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 241 242 // Keep track of emitted instructions 243 EmittedInstrs.push_front(CurrCycleInstr); 244 245 // Add a nullptr for each additional wait state after the first. Make sure 246 // not to add more than getMaxLookAhead() items to the list, since we 247 // truncate the list to that size right after this loop. 248 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 249 i < e; ++i) { 250 EmittedInstrs.push_front(nullptr); 251 } 252 253 // getMaxLookahead() is the largest number of wait states we will ever need 254 // to insert, so there is no point in keeping track of more than that many 255 // wait states. 256 EmittedInstrs.resize(getMaxLookAhead()); 257 258 CurrCycleInstr = nullptr; 259 } 260 261 void GCNHazardRecognizer::RecedeCycle() { 262 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 263 } 264 265 //===----------------------------------------------------------------------===// 266 // Helper Functions 267 //===----------------------------------------------------------------------===// 268 269 int GCNHazardRecognizer::getWaitStatesSince( 270 function_ref<bool(MachineInstr *)> IsHazard) { 271 int WaitStates = 0; 272 for (MachineInstr *MI : EmittedInstrs) { 273 if (MI) { 274 if (IsHazard(MI)) 275 return WaitStates; 276 277 unsigned Opcode = MI->getOpcode(); 278 if (Opcode == AMDGPU::INLINEASM) 279 continue; 280 } 281 ++WaitStates; 282 } 283 return std::numeric_limits<int>::max(); 284 } 285 286 int GCNHazardRecognizer::getWaitStatesSinceDef( 287 unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) { 288 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 289 290 auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) { 291 return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI); 292 }; 293 294 return getWaitStatesSince(IsHazardFn); 295 } 296 297 int GCNHazardRecognizer::getWaitStatesSinceSetReg( 298 function_ref<bool(MachineInstr *)> IsHazard) { 299 auto IsHazardFn = [IsHazard] (MachineInstr *MI) { 300 return isSSetReg(MI->getOpcode()) && IsHazard(MI); 301 }; 302 303 return getWaitStatesSince(IsHazardFn); 304 } 305 306 //===----------------------------------------------------------------------===// 307 // No-op Hazard Detection 308 //===----------------------------------------------------------------------===// 309 310 static void addRegUnits(const SIRegisterInfo &TRI, 311 BitVector &BV, unsigned Reg) { 312 for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI) 313 BV.set(*RUI); 314 } 315 316 static void addRegsToSet(const SIRegisterInfo &TRI, 317 iterator_range<MachineInstr::const_mop_iterator> Ops, 318 BitVector &Set) { 319 for (const MachineOperand &Op : Ops) { 320 if (Op.isReg()) 321 addRegUnits(TRI, Set, Op.getReg()); 322 } 323 } 324 325 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 326 // XXX: Do we need to worry about implicit operands 327 addRegsToSet(TRI, MI.defs(), ClauseDefs); 328 addRegsToSet(TRI, MI.uses(), ClauseUses); 329 } 330 331 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 332 // SMEM soft clause are only present on VI+, and only matter if xnack is 333 // enabled. 334 if (!ST.isXNACKEnabled()) 335 return 0; 336 337 bool IsSMRD = TII.isSMRD(*MEM); 338 339 resetClause(); 340 341 // A soft-clause is any group of consecutive SMEM instructions. The 342 // instructions in this group may return out of order and/or may be 343 // replayed (i.e. the same instruction issued more than once). 344 // 345 // In order to handle these situations correctly we need to make sure 346 // that when a clause has more than one instruction, no instruction in the 347 // clause writes to a register that is read another instruction in the clause 348 // (including itself). If we encounter this situaion, we need to break the 349 // clause by inserting a non SMEM instruction. 350 351 for (MachineInstr *MI : EmittedInstrs) { 352 // When we hit a non-SMEM instruction then we have passed the start of the 353 // clause and we can stop. 354 if (!MI) 355 break; 356 357 if (IsSMRD != SIInstrInfo::isSMRD(*MI)) 358 break; 359 360 addClauseInst(*MI); 361 } 362 363 if (ClauseDefs.none()) 364 return 0; 365 366 // We need to make sure not to put loads and stores in the same clause if they 367 // use the same address. For now, just start a new clause whenever we see a 368 // store. 369 if (MEM->mayStore()) 370 return 1; 371 372 addClauseInst(*MEM); 373 374 // If the set of defs and uses intersect then we cannot add this instruction 375 // to the clause, so we have a hazard. 376 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 377 } 378 379 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 380 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 381 int WaitStatesNeeded = 0; 382 383 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 384 385 // This SMRD hazard only affects SI. 386 if (ST.getGeneration() != AMDGPUSubtarget::SOUTHERN_ISLANDS) 387 return WaitStatesNeeded; 388 389 // A read of an SGPR by SMRD instruction requires 4 wait states when the 390 // SGPR was written by a VALU instruction. 391 int SmrdSgprWaitStates = 4; 392 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 393 auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); }; 394 395 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 396 397 for (const MachineOperand &Use : SMRD->uses()) { 398 if (!Use.isReg()) 399 continue; 400 int WaitStatesNeededForUse = 401 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); 402 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 403 404 // This fixes what appears to be undocumented hardware behavior in SI where 405 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 406 // needs some number of nops in between. We don't know how many we need, but 407 // let's use 4. This wasn't discovered before probably because the only 408 // case when this happens is when we expand a 64-bit pointer into a full 409 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 410 // probably never encountered in the closed-source land. 411 if (IsBufferSMRD) { 412 int WaitStatesNeededForUse = 413 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 414 IsBufferHazardDefFn); 415 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 416 } 417 } 418 419 return WaitStatesNeeded; 420 } 421 422 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 423 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 424 return 0; 425 426 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 427 428 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 429 // SGPR was written by a VALU Instruction. 430 const int VmemSgprWaitStates = 5; 431 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 432 433 for (const MachineOperand &Use : VMEM->uses()) { 434 if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 435 continue; 436 437 int WaitStatesNeededForUse = 438 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); 439 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 440 } 441 return WaitStatesNeeded; 442 } 443 444 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 445 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 446 const SIInstrInfo *TII = ST.getInstrInfo(); 447 448 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 449 int DppVgprWaitStates = 2; 450 int DppExecWaitStates = 5; 451 int WaitStatesNeeded = 0; 452 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 453 454 for (const MachineOperand &Use : DPP->uses()) { 455 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 456 continue; 457 int WaitStatesNeededForUse = 458 DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg()); 459 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 460 } 461 462 WaitStatesNeeded = std::max( 463 WaitStatesNeeded, 464 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn)); 465 466 return WaitStatesNeeded; 467 } 468 469 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 470 const SIInstrInfo *TII = ST.getInstrInfo(); 471 472 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 473 // instruction. 474 const int DivFMasWaitStates = 4; 475 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 476 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn); 477 478 return DivFMasWaitStates - WaitStatesNeeded; 479 } 480 481 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 482 const SIInstrInfo *TII = ST.getInstrInfo(); 483 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 484 485 const int GetRegWaitStates = 2; 486 auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) { 487 return GetRegHWReg == getHWReg(TII, *MI); 488 }; 489 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 490 491 return GetRegWaitStates - WaitStatesNeeded; 492 } 493 494 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 495 const SIInstrInfo *TII = ST.getInstrInfo(); 496 unsigned HWReg = getHWReg(TII, *SetRegInstr); 497 498 const int SetRegWaitStates = 499 ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2; 500 auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) { 501 return HWReg == getHWReg(TII, *MI); 502 }; 503 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 504 return SetRegWaitStates - WaitStatesNeeded; 505 } 506 507 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 508 if (!MI.mayStore()) 509 return -1; 510 511 const SIInstrInfo *TII = ST.getInstrInfo(); 512 unsigned Opcode = MI.getOpcode(); 513 const MCInstrDesc &Desc = MI.getDesc(); 514 515 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 516 int VDataRCID = -1; 517 if (VDataIdx != -1) 518 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 519 520 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 521 // There is no hazard if the instruction does not use vector regs 522 // (like wbinvl1) 523 if (VDataIdx == -1) 524 return -1; 525 // For MUBUF/MTBUF instructions this hazard only exists if the 526 // instruction is not using a register in the soffset field. 527 const MachineOperand *SOffset = 528 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 529 // If we have no soffset operand, then assume this field has been 530 // hardcoded to zero. 531 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 532 (!SOffset || !SOffset->isReg())) 533 return VDataIdx; 534 } 535 536 // MIMG instructions create a hazard if they don't use a 256-bit T# and 537 // the store size is greater than 8 bytes and they have more than two bits 538 // of their dmask set. 539 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 540 if (TII->isMIMG(MI)) { 541 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 542 assert(SRsrcIdx != -1 && 543 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 544 (void)SRsrcIdx; 545 } 546 547 if (TII->isFLAT(MI)) { 548 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 549 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 550 return DataIdx; 551 } 552 553 return -1; 554 } 555 556 int GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 557 const MachineRegisterInfo &MRI) { 558 // Helper to check for the hazard where VMEM instructions that store more than 559 // 8 bytes can have there store data over written by the next instruction. 560 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 561 562 const int VALUWaitStates = 1; 563 int WaitStatesNeeded = 0; 564 565 if (!TRI->isVGPR(MRI, Def.getReg())) 566 return WaitStatesNeeded; 567 unsigned Reg = Def.getReg(); 568 auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) { 569 int DataIdx = createsVALUHazard(*MI); 570 return DataIdx >= 0 && 571 TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg); 572 }; 573 int WaitStatesNeededForDef = 574 VALUWaitStates - getWaitStatesSince(IsHazardFn); 575 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 576 577 return WaitStatesNeeded; 578 } 579 580 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 581 // This checks for the hazard where VMEM instructions that store more than 582 // 8 bytes can have there store data over written by the next instruction. 583 if (!ST.has12DWordStoreHazard()) 584 return 0; 585 586 const MachineRegisterInfo &MRI = MF.getRegInfo(); 587 int WaitStatesNeeded = 0; 588 589 for (const MachineOperand &Def : VALU->defs()) { 590 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 591 } 592 593 return WaitStatesNeeded; 594 } 595 596 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 597 // This checks for hazards associated with inline asm statements. 598 // Since inline asms can contain just about anything, we use this 599 // to call/leverage other check*Hazard routines. Note that 600 // this function doesn't attempt to address all possible inline asm 601 // hazards (good luck), but is a collection of what has been 602 // problematic thus far. 603 604 // see checkVALUHazards() 605 if (!ST.has12DWordStoreHazard()) 606 return 0; 607 608 const MachineRegisterInfo &MRI = MF.getRegInfo(); 609 int WaitStatesNeeded = 0; 610 611 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands(); 612 I != E; ++I) { 613 const MachineOperand &Op = IA->getOperand(I); 614 if (Op.isReg() && Op.isDef()) { 615 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 616 } 617 } 618 619 return WaitStatesNeeded; 620 } 621 622 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 623 const SIInstrInfo *TII = ST.getInstrInfo(); 624 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 625 const MachineRegisterInfo &MRI = MF.getRegInfo(); 626 627 const MachineOperand *LaneSelectOp = 628 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 629 630 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 631 return 0; 632 633 unsigned LaneSelectReg = LaneSelectOp->getReg(); 634 auto IsHazardFn = [TII] (MachineInstr *MI) { 635 return TII->isVALU(*MI); 636 }; 637 638 const int RWLaneWaitStates = 4; 639 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn); 640 return RWLaneWaitStates - WaitStatesSince; 641 } 642 643 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 644 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 645 return 0; 646 647 const SIInstrInfo *TII = ST.getInstrInfo(); 648 649 const int RFEWaitStates = 1; 650 651 auto IsHazardFn = [TII] (MachineInstr *MI) { 652 return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS; 653 }; 654 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 655 return RFEWaitStates - WaitStatesNeeded; 656 } 657 658 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) { 659 if (MI->isDebugInstr()) 660 return 0; 661 662 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 663 if (!ST.hasSMovFedHazard()) 664 return 0; 665 666 // Check for any instruction reading an SGPR after a write from 667 // s_mov_fed_b32. 668 int MovFedWaitStates = 1; 669 int WaitStatesNeeded = 0; 670 671 for (const MachineOperand &Use : MI->uses()) { 672 if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 673 continue; 674 auto IsHazardFn = [] (MachineInstr *MI) { 675 return MI->getOpcode() == AMDGPU::S_MOV_FED_B32; 676 }; 677 int WaitStatesNeededForUse = 678 MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn); 679 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 680 } 681 682 return WaitStatesNeeded; 683 } 684 685 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 686 const SIInstrInfo *TII = ST.getInstrInfo(); 687 const int SMovRelWaitStates = 1; 688 auto IsHazardFn = [TII] (MachineInstr *MI) { 689 return TII->isSALU(*MI); 690 }; 691 return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn); 692 } 693