1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "AMDGPUSubtarget.h" 15 #include "SIDefines.h" 16 #include "SIInstrInfo.h" 17 #include "SIRegisterInfo.h" 18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/ScheduleDAG.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <limits> 31 #include <set> 32 #include <vector> 33 34 using namespace llvm; 35 36 //===----------------------------------------------------------------------===// 37 // Hazard Recoginizer Implementation 38 //===----------------------------------------------------------------------===// 39 40 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 41 IsHazardRecognizerMode(false), 42 CurrCycleInstr(nullptr), 43 MF(MF), 44 ST(MF.getSubtarget<GCNSubtarget>()), 45 TII(*ST.getInstrInfo()), 46 TRI(TII.getRegisterInfo()), 47 ClauseUses(TRI.getNumRegUnits()), 48 ClauseDefs(TRI.getNumRegUnits()) { 49 MaxLookAhead = 5; 50 } 51 52 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 53 EmitInstruction(SU->getInstr()); 54 } 55 56 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 57 CurrCycleInstr = MI; 58 } 59 60 static bool isDivFMas(unsigned Opcode) { 61 return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64; 62 } 63 64 static bool isSGetReg(unsigned Opcode) { 65 return Opcode == AMDGPU::S_GETREG_B32; 66 } 67 68 static bool isSSetReg(unsigned Opcode) { 69 return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32; 70 } 71 72 static bool isRWLane(unsigned Opcode) { 73 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 74 } 75 76 static bool isRFE(unsigned Opcode) { 77 return Opcode == AMDGPU::S_RFE_B64; 78 } 79 80 static bool isSMovRel(unsigned Opcode) { 81 switch (Opcode) { 82 case AMDGPU::S_MOVRELS_B32: 83 case AMDGPU::S_MOVRELS_B64: 84 case AMDGPU::S_MOVRELD_B32: 85 case AMDGPU::S_MOVRELD_B64: 86 return true; 87 default: 88 return false; 89 } 90 } 91 92 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 93 const MachineInstr &MI) { 94 if (TII.isAlwaysGDS(MI.getOpcode())) 95 return true; 96 97 switch (MI.getOpcode()) { 98 case AMDGPU::S_SENDMSG: 99 case AMDGPU::S_SENDMSGHALT: 100 case AMDGPU::S_TTRACEDATA: 101 return true; 102 // These DS opcodes don't support GDS. 103 case AMDGPU::DS_NOP: 104 case AMDGPU::DS_PERMUTE_B32: 105 case AMDGPU::DS_BPERMUTE_B32: 106 return false; 107 default: 108 if (TII.isDS(MI.getOpcode())) { 109 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 110 AMDGPU::OpName::gds); 111 if (MI.getOperand(GDS).getImm()) 112 return true; 113 } 114 return false; 115 } 116 } 117 118 static bool isPermlane(const MachineInstr &MI) { 119 unsigned Opcode = MI.getOpcode(); 120 return Opcode == AMDGPU::V_PERMLANE16_B32 || 121 Opcode == AMDGPU::V_PERMLANEX16_B32; 122 } 123 124 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 125 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 126 AMDGPU::OpName::simm16); 127 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 128 } 129 130 ScheduleHazardRecognizer::HazardType 131 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 132 MachineInstr *MI = SU->getInstr(); 133 if (MI->isBundle()) 134 return NoHazard; 135 136 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 137 return NoopHazard; 138 139 // FIXME: Should flat be considered vmem? 140 if ((SIInstrInfo::isVMEM(*MI) || 141 SIInstrInfo::isFLAT(*MI)) 142 && checkVMEMHazards(MI) > 0) 143 return NoopHazard; 144 145 if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) 146 return NoopHazard; 147 148 if (checkFPAtomicToDenormModeHazard(MI) > 0) 149 return NoopHazard; 150 151 if (ST.hasNoDataDepHazard()) 152 return NoHazard; 153 154 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 155 return NoopHazard; 156 157 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 158 return NoopHazard; 159 160 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 161 return NoopHazard; 162 163 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 164 return NoopHazard; 165 166 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 167 return NoopHazard; 168 169 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 170 return NoopHazard; 171 172 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 173 return NoopHazard; 174 175 if (ST.hasReadM0MovRelInterpHazard() && 176 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) && 177 checkReadM0Hazards(MI) > 0) 178 return NoopHazard; 179 180 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) && 181 checkReadM0Hazards(MI) > 0) 182 return NoopHazard; 183 184 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 185 return NoopHazard; 186 187 if (checkAnyInstHazards(MI) > 0) 188 return NoopHazard; 189 190 return NoHazard; 191 } 192 193 static void insertNoopInBundle(MachineInstr *MI, const SIInstrInfo &TII) { 194 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP)) 195 .addImm(0); 196 } 197 198 void GCNHazardRecognizer::processBundle() { 199 MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator()); 200 MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); 201 // Check bundled MachineInstr's for hazards. 202 for (; MI != E && MI->isInsideBundle(); ++MI) { 203 CurrCycleInstr = &*MI; 204 unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); 205 206 if (IsHazardRecognizerMode) 207 fixHazards(CurrCycleInstr); 208 209 for (unsigned i = 0; i < WaitStates; ++i) 210 insertNoopInBundle(CurrCycleInstr, TII); 211 212 // It’s unnecessary to track more than MaxLookAhead instructions. Since we 213 // include the bundled MI directly after, only add a maximum of 214 // (MaxLookAhead - 1) noops to EmittedInstrs. 215 for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i) 216 EmittedInstrs.push_front(nullptr); 217 218 EmittedInstrs.push_front(CurrCycleInstr); 219 EmittedInstrs.resize(MaxLookAhead); 220 } 221 CurrCycleInstr = nullptr; 222 } 223 224 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) { 225 IsHazardRecognizerMode = false; 226 return PreEmitNoopsCommon(SU->getInstr()); 227 } 228 229 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 230 IsHazardRecognizerMode = true; 231 CurrCycleInstr = MI; 232 unsigned W = PreEmitNoopsCommon(MI); 233 fixHazards(MI); 234 CurrCycleInstr = nullptr; 235 return W; 236 } 237 238 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 239 if (MI->isBundle()) 240 return 0; 241 242 int WaitStates = std::max(0, checkAnyInstHazards(MI)); 243 244 if (SIInstrInfo::isSMRD(*MI)) 245 return std::max(WaitStates, checkSMRDHazards(MI)); 246 247 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 248 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 249 250 if (ST.hasNSAtoVMEMBug()) 251 WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI)); 252 253 WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI)); 254 255 if (ST.hasNoDataDepHazard()) 256 return WaitStates; 257 258 if (SIInstrInfo::isVALU(*MI)) 259 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 260 261 if (SIInstrInfo::isDPP(*MI)) 262 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 263 264 if (isDivFMas(MI->getOpcode())) 265 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 266 267 if (isRWLane(MI->getOpcode())) 268 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 269 270 if (MI->isInlineAsm()) 271 return std::max(WaitStates, checkInlineAsmHazards(MI)); 272 273 if (isSGetReg(MI->getOpcode())) 274 return std::max(WaitStates, checkGetRegHazards(MI)); 275 276 if (isSSetReg(MI->getOpcode())) 277 return std::max(WaitStates, checkSetRegHazards(MI)); 278 279 if (isRFE(MI->getOpcode())) 280 return std::max(WaitStates, checkRFEHazards(MI)); 281 282 if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) || 283 isSMovRel(MI->getOpcode()))) 284 return std::max(WaitStates, checkReadM0Hazards(MI)); 285 286 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) 287 return std::max(WaitStates, checkReadM0Hazards(MI)); 288 289 return WaitStates; 290 } 291 292 void GCNHazardRecognizer::EmitNoop() { 293 EmittedInstrs.push_front(nullptr); 294 } 295 296 void GCNHazardRecognizer::AdvanceCycle() { 297 // When the scheduler detects a stall, it will call AdvanceCycle() without 298 // emitting any instructions. 299 if (!CurrCycleInstr) 300 return; 301 302 // Do not track non-instructions which do not affect the wait states. 303 // If included, these instructions can lead to buffer overflow such that 304 // detectable hazards are missed. 305 if (CurrCycleInstr->isImplicitDef() || CurrCycleInstr->isDebugInstr() || 306 CurrCycleInstr->isKill()) 307 return; 308 309 if (CurrCycleInstr->isBundle()) { 310 processBundle(); 311 return; 312 } 313 314 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 315 316 // Keep track of emitted instructions 317 EmittedInstrs.push_front(CurrCycleInstr); 318 319 // Add a nullptr for each additional wait state after the first. Make sure 320 // not to add more than getMaxLookAhead() items to the list, since we 321 // truncate the list to that size right after this loop. 322 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 323 i < e; ++i) { 324 EmittedInstrs.push_front(nullptr); 325 } 326 327 // getMaxLookahead() is the largest number of wait states we will ever need 328 // to insert, so there is no point in keeping track of more than that many 329 // wait states. 330 EmittedInstrs.resize(getMaxLookAhead()); 331 332 CurrCycleInstr = nullptr; 333 } 334 335 void GCNHazardRecognizer::RecedeCycle() { 336 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 337 } 338 339 //===----------------------------------------------------------------------===// 340 // Helper Functions 341 //===----------------------------------------------------------------------===// 342 343 typedef function_ref<bool(MachineInstr *, int WaitStates)> IsExpiredFn; 344 345 // Returns a minimum wait states since \p I walking all predecessors. 346 // Only scans until \p IsExpired does not return true. 347 // Can only be run in a hazard recognizer mode. 348 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 349 MachineBasicBlock *MBB, 350 MachineBasicBlock::reverse_instr_iterator I, 351 int WaitStates, 352 IsExpiredFn IsExpired, 353 DenseSet<const MachineBasicBlock *> &Visited) { 354 for (auto E = MBB->instr_rend(); I != E; ++I) { 355 // Don't add WaitStates for parent BUNDLE instructions. 356 if (I->isBundle()) 357 continue; 358 359 if (IsHazard(&*I)) 360 return WaitStates; 361 362 if (I->isInlineAsm() || I->isImplicitDef() || I->isDebugInstr()) 363 continue; 364 365 WaitStates += SIInstrInfo::getNumWaitStates(*I); 366 367 if (IsExpired(&*I, WaitStates)) 368 return std::numeric_limits<int>::max(); 369 } 370 371 int MinWaitStates = WaitStates; 372 bool Found = false; 373 for (MachineBasicBlock *Pred : MBB->predecessors()) { 374 if (!Visited.insert(Pred).second) 375 continue; 376 377 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), 378 WaitStates, IsExpired, Visited); 379 380 if (W == std::numeric_limits<int>::max()) 381 continue; 382 383 MinWaitStates = Found ? std::min(MinWaitStates, W) : W; 384 if (IsExpired(nullptr, MinWaitStates)) 385 return MinWaitStates; 386 387 Found = true; 388 } 389 390 if (Found) 391 return MinWaitStates; 392 393 return std::numeric_limits<int>::max(); 394 } 395 396 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 397 MachineInstr *MI, 398 IsExpiredFn IsExpired) { 399 DenseSet<const MachineBasicBlock *> Visited; 400 return getWaitStatesSince(IsHazard, MI->getParent(), 401 std::next(MI->getReverseIterator()), 402 0, IsExpired, Visited); 403 } 404 405 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 406 if (IsHazardRecognizerMode) { 407 auto IsExpiredFn = [Limit] (MachineInstr *, int WaitStates) { 408 return WaitStates >= Limit; 409 }; 410 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 411 } 412 413 int WaitStates = 0; 414 for (MachineInstr *MI : EmittedInstrs) { 415 if (MI) { 416 if (IsHazard(MI)) 417 return WaitStates; 418 419 if (MI->isInlineAsm()) 420 continue; 421 } 422 ++WaitStates; 423 424 if (WaitStates >= Limit) 425 break; 426 } 427 return std::numeric_limits<int>::max(); 428 } 429 430 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 431 IsHazardFn IsHazardDef, 432 int Limit) { 433 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 434 435 auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) { 436 return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI); 437 }; 438 439 return getWaitStatesSince(IsHazardFn, Limit); 440 } 441 442 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 443 int Limit) { 444 auto IsHazardFn = [IsHazard] (MachineInstr *MI) { 445 return isSSetReg(MI->getOpcode()) && IsHazard(MI); 446 }; 447 448 return getWaitStatesSince(IsHazardFn, Limit); 449 } 450 451 //===----------------------------------------------------------------------===// 452 // No-op Hazard Detection 453 //===----------------------------------------------------------------------===// 454 455 static void addRegUnits(const SIRegisterInfo &TRI, 456 BitVector &BV, unsigned Reg) { 457 for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI) 458 BV.set(*RUI); 459 } 460 461 static void addRegsToSet(const SIRegisterInfo &TRI, 462 iterator_range<MachineInstr::const_mop_iterator> Ops, 463 BitVector &Set) { 464 for (const MachineOperand &Op : Ops) { 465 if (Op.isReg()) 466 addRegUnits(TRI, Set, Op.getReg()); 467 } 468 } 469 470 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 471 // XXX: Do we need to worry about implicit operands 472 addRegsToSet(TRI, MI.defs(), ClauseDefs); 473 addRegsToSet(TRI, MI.uses(), ClauseUses); 474 } 475 476 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 477 // SMEM soft clause are only present on VI+, and only matter if xnack is 478 // enabled. 479 if (!ST.isXNACKEnabled()) 480 return 0; 481 482 bool IsSMRD = TII.isSMRD(*MEM); 483 484 resetClause(); 485 486 // A soft-clause is any group of consecutive SMEM instructions. The 487 // instructions in this group may return out of order and/or may be 488 // replayed (i.e. the same instruction issued more than once). 489 // 490 // In order to handle these situations correctly we need to make sure that 491 // when a clause has more than one instruction, no instruction in the clause 492 // writes to a register that is read by another instruction in the clause 493 // (including itself). If we encounter this situaion, we need to break the 494 // clause by inserting a non SMEM instruction. 495 496 for (MachineInstr *MI : EmittedInstrs) { 497 // When we hit a non-SMEM instruction then we have passed the start of the 498 // clause and we can stop. 499 if (!MI) 500 break; 501 502 if (IsSMRD != SIInstrInfo::isSMRD(*MI)) 503 break; 504 505 addClauseInst(*MI); 506 } 507 508 if (ClauseDefs.none()) 509 return 0; 510 511 // We need to make sure not to put loads and stores in the same clause if they 512 // use the same address. For now, just start a new clause whenever we see a 513 // store. 514 if (MEM->mayStore()) 515 return 1; 516 517 addClauseInst(*MEM); 518 519 // If the set of defs and uses intersect then we cannot add this instruction 520 // to the clause, so we have a hazard. 521 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 522 } 523 524 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 525 int WaitStatesNeeded = 0; 526 527 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 528 529 // This SMRD hazard only affects SI. 530 if (!ST.hasSMRDReadVALUDefHazard()) 531 return WaitStatesNeeded; 532 533 // A read of an SGPR by SMRD instruction requires 4 wait states when the 534 // SGPR was written by a VALU instruction. 535 int SmrdSgprWaitStates = 4; 536 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 537 auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); }; 538 539 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 540 541 for (const MachineOperand &Use : SMRD->uses()) { 542 if (!Use.isReg()) 543 continue; 544 int WaitStatesNeededForUse = 545 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 546 SmrdSgprWaitStates); 547 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 548 549 // This fixes what appears to be undocumented hardware behavior in SI where 550 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 551 // needs some number of nops in between. We don't know how many we need, but 552 // let's use 4. This wasn't discovered before probably because the only 553 // case when this happens is when we expand a 64-bit pointer into a full 554 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 555 // probably never encountered in the closed-source land. 556 if (IsBufferSMRD) { 557 int WaitStatesNeededForUse = 558 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 559 IsBufferHazardDefFn, 560 SmrdSgprWaitStates); 561 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 562 } 563 } 564 565 return WaitStatesNeeded; 566 } 567 568 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 569 if (!ST.hasVMEMReadSGPRVALUDefHazard()) 570 return 0; 571 572 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 573 574 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 575 // SGPR was written by a VALU Instruction. 576 const int VmemSgprWaitStates = 5; 577 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 578 for (const MachineOperand &Use : VMEM->uses()) { 579 if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 580 continue; 581 582 int WaitStatesNeededForUse = 583 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 584 VmemSgprWaitStates); 585 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 586 } 587 return WaitStatesNeeded; 588 } 589 590 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 591 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 592 const SIInstrInfo *TII = ST.getInstrInfo(); 593 594 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 595 int DppVgprWaitStates = 2; 596 int DppExecWaitStates = 5; 597 int WaitStatesNeeded = 0; 598 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 599 600 for (const MachineOperand &Use : DPP->uses()) { 601 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 602 continue; 603 int WaitStatesNeededForUse = 604 DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 605 [](MachineInstr *) { return true; }, 606 DppVgprWaitStates); 607 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 608 } 609 610 WaitStatesNeeded = std::max( 611 WaitStatesNeeded, 612 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 613 DppExecWaitStates)); 614 615 return WaitStatesNeeded; 616 } 617 618 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 619 const SIInstrInfo *TII = ST.getInstrInfo(); 620 621 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 622 // instruction. 623 const int DivFMasWaitStates = 4; 624 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 625 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 626 DivFMasWaitStates); 627 628 return DivFMasWaitStates - WaitStatesNeeded; 629 } 630 631 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 632 const SIInstrInfo *TII = ST.getInstrInfo(); 633 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 634 635 const int GetRegWaitStates = 2; 636 auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) { 637 return GetRegHWReg == getHWReg(TII, *MI); 638 }; 639 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 640 641 return GetRegWaitStates - WaitStatesNeeded; 642 } 643 644 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 645 const SIInstrInfo *TII = ST.getInstrInfo(); 646 unsigned HWReg = getHWReg(TII, *SetRegInstr); 647 648 const int SetRegWaitStates = ST.getSetRegWaitStates(); 649 auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) { 650 return HWReg == getHWReg(TII, *MI); 651 }; 652 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 653 return SetRegWaitStates - WaitStatesNeeded; 654 } 655 656 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 657 if (!MI.mayStore()) 658 return -1; 659 660 const SIInstrInfo *TII = ST.getInstrInfo(); 661 unsigned Opcode = MI.getOpcode(); 662 const MCInstrDesc &Desc = MI.getDesc(); 663 664 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 665 int VDataRCID = -1; 666 if (VDataIdx != -1) 667 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 668 669 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 670 // There is no hazard if the instruction does not use vector regs 671 // (like wbinvl1) 672 if (VDataIdx == -1) 673 return -1; 674 // For MUBUF/MTBUF instructions this hazard only exists if the 675 // instruction is not using a register in the soffset field. 676 const MachineOperand *SOffset = 677 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 678 // If we have no soffset operand, then assume this field has been 679 // hardcoded to zero. 680 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 681 (!SOffset || !SOffset->isReg())) 682 return VDataIdx; 683 } 684 685 // MIMG instructions create a hazard if they don't use a 256-bit T# and 686 // the store size is greater than 8 bytes and they have more than two bits 687 // of their dmask set. 688 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 689 if (TII->isMIMG(MI)) { 690 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 691 assert(SRsrcIdx != -1 && 692 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 693 (void)SRsrcIdx; 694 } 695 696 if (TII->isFLAT(MI)) { 697 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 698 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 699 return DataIdx; 700 } 701 702 return -1; 703 } 704 705 int GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 706 const MachineRegisterInfo &MRI) { 707 // Helper to check for the hazard where VMEM instructions that store more than 708 // 8 bytes can have there store data over written by the next instruction. 709 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 710 711 const int VALUWaitStates = 1; 712 int WaitStatesNeeded = 0; 713 714 if (!TRI->isVGPR(MRI, Def.getReg())) 715 return WaitStatesNeeded; 716 unsigned Reg = Def.getReg(); 717 auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) { 718 int DataIdx = createsVALUHazard(*MI); 719 return DataIdx >= 0 && 720 TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg); 721 }; 722 int WaitStatesNeededForDef = 723 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 724 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 725 726 return WaitStatesNeeded; 727 } 728 729 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 730 // This checks for the hazard where VMEM instructions that store more than 731 // 8 bytes can have there store data over written by the next instruction. 732 if (!ST.has12DWordStoreHazard()) 733 return 0; 734 735 const MachineRegisterInfo &MRI = MF.getRegInfo(); 736 int WaitStatesNeeded = 0; 737 738 for (const MachineOperand &Def : VALU->defs()) { 739 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 740 } 741 742 return WaitStatesNeeded; 743 } 744 745 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 746 // This checks for hazards associated with inline asm statements. 747 // Since inline asms can contain just about anything, we use this 748 // to call/leverage other check*Hazard routines. Note that 749 // this function doesn't attempt to address all possible inline asm 750 // hazards (good luck), but is a collection of what has been 751 // problematic thus far. 752 753 // see checkVALUHazards() 754 if (!ST.has12DWordStoreHazard()) 755 return 0; 756 757 const MachineRegisterInfo &MRI = MF.getRegInfo(); 758 int WaitStatesNeeded = 0; 759 760 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands(); 761 I != E; ++I) { 762 const MachineOperand &Op = IA->getOperand(I); 763 if (Op.isReg() && Op.isDef()) { 764 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 765 } 766 } 767 768 return WaitStatesNeeded; 769 } 770 771 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 772 const SIInstrInfo *TII = ST.getInstrInfo(); 773 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 774 const MachineRegisterInfo &MRI = MF.getRegInfo(); 775 776 const MachineOperand *LaneSelectOp = 777 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 778 779 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 780 return 0; 781 782 unsigned LaneSelectReg = LaneSelectOp->getReg(); 783 auto IsHazardFn = [TII] (MachineInstr *MI) { 784 return TII->isVALU(*MI); 785 }; 786 787 const int RWLaneWaitStates = 4; 788 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 789 RWLaneWaitStates); 790 return RWLaneWaitStates - WaitStatesSince; 791 } 792 793 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 794 if (!ST.hasRFEHazards()) 795 return 0; 796 797 const SIInstrInfo *TII = ST.getInstrInfo(); 798 799 const int RFEWaitStates = 1; 800 801 auto IsHazardFn = [TII] (MachineInstr *MI) { 802 return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS; 803 }; 804 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 805 return RFEWaitStates - WaitStatesNeeded; 806 } 807 808 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) { 809 if (MI->isDebugInstr()) 810 return 0; 811 812 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 813 if (!ST.hasSMovFedHazard()) 814 return 0; 815 816 // Check for any instruction reading an SGPR after a write from 817 // s_mov_fed_b32. 818 int MovFedWaitStates = 1; 819 int WaitStatesNeeded = 0; 820 821 for (const MachineOperand &Use : MI->uses()) { 822 if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 823 continue; 824 auto IsHazardFn = [] (MachineInstr *MI) { 825 return MI->getOpcode() == AMDGPU::S_MOV_FED_B32; 826 }; 827 int WaitStatesNeededForUse = 828 MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn, 829 MovFedWaitStates); 830 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 831 } 832 833 return WaitStatesNeeded; 834 } 835 836 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 837 const SIInstrInfo *TII = ST.getInstrInfo(); 838 const int SMovRelWaitStates = 1; 839 auto IsHazardFn = [TII] (MachineInstr *MI) { 840 return TII->isSALU(*MI); 841 }; 842 return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, 843 SMovRelWaitStates); 844 } 845 846 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { 847 fixVMEMtoScalarWriteHazards(MI); 848 fixVcmpxPermlaneHazards(MI); 849 fixSMEMtoVectorWriteHazards(MI); 850 fixVcmpxExecWARHazard(MI); 851 fixLdsBranchVmemWARHazard(MI); 852 } 853 854 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) { 855 if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI)) 856 return false; 857 858 const SIInstrInfo *TII = ST.getInstrInfo(); 859 auto IsHazardFn = [TII] (MachineInstr *MI) { 860 return TII->isVOPC(*MI); 861 }; 862 863 auto IsExpiredFn = [] (MachineInstr *MI, int) { 864 if (!MI) 865 return false; 866 unsigned Opc = MI->getOpcode(); 867 return SIInstrInfo::isVALU(*MI) && 868 Opc != AMDGPU::V_NOP_e32 && 869 Opc != AMDGPU::V_NOP_e64 && 870 Opc != AMDGPU::V_NOP_sdwa; 871 }; 872 873 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 874 std::numeric_limits<int>::max()) 875 return false; 876 877 // V_NOP will be discarded by SQ. 878 // Use V_MOB_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE* 879 // which is always a VGPR and available. 880 auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 881 unsigned Reg = Src0->getReg(); 882 bool IsUndef = Src0->isUndef(); 883 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 884 TII->get(AMDGPU::V_MOV_B32_e32)) 885 .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0)) 886 .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill); 887 888 return true; 889 } 890 891 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { 892 if (!ST.hasVMEMtoScalarWriteHazard()) 893 return false; 894 895 if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI)) 896 return false; 897 898 if (MI->getNumDefs() == 0) 899 return false; 900 901 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 902 903 auto IsHazardFn = [TRI, MI] (MachineInstr *I) { 904 if (!SIInstrInfo::isVMEM(*I) && !SIInstrInfo::isDS(*I) && 905 !SIInstrInfo::isFLAT(*I)) 906 return false; 907 908 for (const MachineOperand &Def : MI->defs()) { 909 MachineOperand *Op = I->findRegisterUseOperand(Def.getReg(), false, TRI); 910 if (!Op || (Op->isImplicit() && Op->getReg() == AMDGPU::EXEC)) 911 continue; 912 return true; 913 } 914 return false; 915 }; 916 917 auto IsExpiredFn = [] (MachineInstr *MI, int) { 918 return MI && (SIInstrInfo::isVALU(*MI) || 919 (MI->getOpcode() == AMDGPU::S_WAITCNT && 920 !MI->getOperand(0).getImm())); 921 }; 922 923 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 924 std::numeric_limits<int>::max()) 925 return false; 926 927 const SIInstrInfo *TII = ST.getInstrInfo(); 928 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32)); 929 return true; 930 } 931 932 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { 933 if (!ST.hasSMEMtoVectorWriteHazard()) 934 return false; 935 936 if (!SIInstrInfo::isVALU(*MI)) 937 return false; 938 939 unsigned SDSTName; 940 switch (MI->getOpcode()) { 941 case AMDGPU::V_READLANE_B32: 942 case AMDGPU::V_READFIRSTLANE_B32: 943 SDSTName = AMDGPU::OpName::vdst; 944 break; 945 default: 946 SDSTName = AMDGPU::OpName::sdst; 947 break; 948 } 949 950 const SIInstrInfo *TII = ST.getInstrInfo(); 951 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 952 const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU()); 953 const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName); 954 if (!SDST) { 955 for (const auto &MO : MI->implicit_operands()) { 956 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) { 957 SDST = &MO; 958 break; 959 } 960 } 961 } 962 963 if (!SDST) 964 return false; 965 966 const unsigned SDSTReg = SDST->getReg(); 967 auto IsHazardFn = [SDSTReg, TRI] (MachineInstr *I) { 968 return SIInstrInfo::isSMRD(*I) && I->readsRegister(SDSTReg, TRI); 969 }; 970 971 auto IsExpiredFn = [TII, IV] (MachineInstr *MI, int) { 972 if (MI) { 973 if (TII->isSALU(*MI)) { 974 switch (MI->getOpcode()) { 975 case AMDGPU::S_SETVSKIP: 976 case AMDGPU::S_VERSION: 977 case AMDGPU::S_WAITCNT_VSCNT: 978 case AMDGPU::S_WAITCNT_VMCNT: 979 case AMDGPU::S_WAITCNT_EXPCNT: 980 // These instructions cannot not mitigate the hazard. 981 return false; 982 case AMDGPU::S_WAITCNT_LGKMCNT: 983 // Reducing lgkmcnt count to 0 always mitigates the hazard. 984 return (MI->getOperand(1).getImm() == 0) && 985 (MI->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 986 case AMDGPU::S_WAITCNT: { 987 const int64_t Imm = MI->getOperand(0).getImm(); 988 AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm); 989 return (Decoded.LgkmCnt == 0); 990 } 991 default: 992 // SOPP instructions cannot mitigate the hazard. 993 if (TII->isSOPP(*MI)) 994 return false; 995 // At this point the SALU can be assumed to mitigate the hazard 996 // because either: 997 // (a) it is independent of the at risk SMEM (breaking chain), 998 // or 999 // (b) it is dependent on the SMEM, in which case an appropriate 1000 // s_waitcnt lgkmcnt _must_ exist between it and the at risk 1001 // SMEM instruction. 1002 return true; 1003 } 1004 } 1005 } 1006 return false; 1007 }; 1008 1009 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1010 std::numeric_limits<int>::max()) 1011 return false; 1012 1013 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1014 TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL) 1015 .addImm(0); 1016 return true; 1017 } 1018 1019 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { 1020 if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI)) 1021 return false; 1022 1023 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1024 if (!MI->modifiesRegister(AMDGPU::EXEC, TRI)) 1025 return false; 1026 1027 auto IsHazardFn = [TRI] (MachineInstr *I) { 1028 if (SIInstrInfo::isVALU(*I)) 1029 return false; 1030 return I->readsRegister(AMDGPU::EXEC, TRI); 1031 }; 1032 1033 const SIInstrInfo *TII = ST.getInstrInfo(); 1034 auto IsExpiredFn = [TII, TRI] (MachineInstr *MI, int) { 1035 if (!MI) 1036 return false; 1037 if (SIInstrInfo::isVALU(*MI)) { 1038 if (TII->getNamedOperand(*MI, AMDGPU::OpName::sdst)) 1039 return true; 1040 for (auto MO : MI->implicit_operands()) 1041 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) 1042 return true; 1043 } 1044 if (MI->getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1045 (MI->getOperand(0).getImm() & 0xfffe) == 0xfffe) 1046 return true; 1047 return false; 1048 }; 1049 1050 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1051 std::numeric_limits<int>::max()) 1052 return false; 1053 1054 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1055 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1056 .addImm(0xfffe); 1057 return true; 1058 } 1059 1060 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { 1061 if (!ST.hasLdsBranchVmemWARHazard()) 1062 return false; 1063 1064 auto IsHazardInst = [] (const MachineInstr *MI) { 1065 if (SIInstrInfo::isDS(*MI)) 1066 return 1; 1067 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isSegmentSpecificFLAT(*MI)) 1068 return 2; 1069 return 0; 1070 }; 1071 1072 auto InstType = IsHazardInst(MI); 1073 if (!InstType) 1074 return false; 1075 1076 auto IsExpiredFn = [&IsHazardInst] (MachineInstr *I, int) { 1077 return I && (IsHazardInst(I) || 1078 (I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1079 I->getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1080 !I->getOperand(1).getImm())); 1081 }; 1082 1083 auto IsHazardFn = [InstType, &IsHazardInst] (MachineInstr *I) { 1084 if (!I->isBranch()) 1085 return false; 1086 1087 auto IsHazardFn = [InstType, IsHazardInst] (MachineInstr *I) { 1088 auto InstType2 = IsHazardInst(I); 1089 return InstType2 && InstType != InstType2; 1090 }; 1091 1092 auto IsExpiredFn = [InstType, &IsHazardInst] (MachineInstr *I, int) { 1093 if (!I) 1094 return false; 1095 1096 auto InstType2 = IsHazardInst(I); 1097 if (InstType == InstType2) 1098 return true; 1099 1100 return I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1101 I->getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1102 !I->getOperand(1).getImm(); 1103 }; 1104 1105 return ::getWaitStatesSince(IsHazardFn, I, IsExpiredFn) != 1106 std::numeric_limits<int>::max(); 1107 }; 1108 1109 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1110 std::numeric_limits<int>::max()) 1111 return false; 1112 1113 const SIInstrInfo *TII = ST.getInstrInfo(); 1114 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1115 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1116 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1117 .addImm(0); 1118 1119 return true; 1120 } 1121 1122 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { 1123 int NSAtoVMEMWaitStates = 1; 1124 1125 if (!ST.hasNSAtoVMEMBug()) 1126 return 0; 1127 1128 if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI)) 1129 return 0; 1130 1131 const SIInstrInfo *TII = ST.getInstrInfo(); 1132 const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset); 1133 if (!Offset || (Offset->getImm() & 6) == 0) 1134 return 0; 1135 1136 auto IsHazardFn = [TII] (MachineInstr *I) { 1137 if (!SIInstrInfo::isMIMG(*I)) 1138 return false; 1139 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I->getOpcode()); 1140 return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && 1141 TII->getInstSizeInBytes(*I) >= 16; 1142 }; 1143 1144 return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1); 1145 } 1146 1147 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) { 1148 int FPAtomicToDenormModeWaitStates = 3; 1149 1150 if (MI->getOpcode() != AMDGPU::S_DENORM_MODE) 1151 return 0; 1152 1153 auto IsHazardFn = [] (MachineInstr *I) { 1154 if (!SIInstrInfo::isVMEM(*I) && !SIInstrInfo::isFLAT(*I)) 1155 return false; 1156 return SIInstrInfo::isFPAtomic(*I); 1157 }; 1158 1159 auto IsExpiredFn = [] (MachineInstr *MI, int WaitStates) { 1160 if (WaitStates >= 3 || SIInstrInfo::isVALU(*MI)) 1161 return true; 1162 1163 switch (MI->getOpcode()) { 1164 case AMDGPU::S_WAITCNT: 1165 case AMDGPU::S_WAITCNT_VSCNT: 1166 case AMDGPU::S_WAITCNT_VMCNT: 1167 case AMDGPU::S_WAITCNT_EXPCNT: 1168 case AMDGPU::S_WAITCNT_LGKMCNT: 1169 case AMDGPU::S_WAITCNT_IDLE: 1170 return true; 1171 default: 1172 break; 1173 } 1174 1175 return false; 1176 }; 1177 1178 1179 return FPAtomicToDenormModeWaitStates - 1180 ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn); 1181 } 1182