1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "GCNSubtarget.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "SIMachineFunctionInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/ScheduleDAG.h" 19 #include "llvm/TargetParser/TargetParser.h" 20 21 using namespace llvm; 22 23 namespace { 24 25 struct MFMAPaddingRatioParser : public cl::parser<unsigned> { 26 MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {} 27 28 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 29 if (Arg.getAsInteger(0, Value)) 30 return O.error("'" + Arg + "' value invalid for uint argument!"); 31 32 if (Value > 100) 33 return O.error("'" + Arg + "' value must be in the range [0, 100]!"); 34 35 return false; 36 } 37 }; 38 39 } // end anonymous namespace 40 41 static cl::opt<unsigned, false, MFMAPaddingRatioParser> 42 MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden, 43 cl::desc("Fill a percentage of the latency between " 44 "neighboring MFMA with s_nops.")); 45 46 //===----------------------------------------------------------------------===// 47 // Hazard Recognizer Implementation 48 //===----------------------------------------------------------------------===// 49 50 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 51 const GCNSubtarget &ST); 52 53 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 54 IsHazardRecognizerMode(false), 55 CurrCycleInstr(nullptr), 56 MF(MF), 57 ST(MF.getSubtarget<GCNSubtarget>()), 58 TII(*ST.getInstrInfo()), 59 TRI(TII.getRegisterInfo()), 60 ClauseUses(TRI.getNumRegUnits()), 61 ClauseDefs(TRI.getNumRegUnits()) { 62 MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5; 63 TSchedModel.init(&ST); 64 RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST); 65 } 66 67 void GCNHazardRecognizer::Reset() { 68 EmittedInstrs.clear(); 69 } 70 71 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 72 EmitInstruction(SU->getInstr()); 73 } 74 75 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 76 CurrCycleInstr = MI; 77 } 78 79 static bool isDivFMas(unsigned Opcode) { 80 return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64; 81 } 82 83 static bool isSGetReg(unsigned Opcode) { 84 return Opcode == AMDGPU::S_GETREG_B32; 85 } 86 87 static bool isSSetReg(unsigned Opcode) { 88 switch (Opcode) { 89 case AMDGPU::S_SETREG_B32: 90 case AMDGPU::S_SETREG_B32_mode: 91 case AMDGPU::S_SETREG_IMM32_B32: 92 case AMDGPU::S_SETREG_IMM32_B32_mode: 93 return true; 94 } 95 return false; 96 } 97 98 static bool isRWLane(unsigned Opcode) { 99 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 100 } 101 102 static bool isRFE(unsigned Opcode) { 103 return Opcode == AMDGPU::S_RFE_B64; 104 } 105 106 static bool isSMovRel(unsigned Opcode) { 107 switch (Opcode) { 108 case AMDGPU::S_MOVRELS_B32: 109 case AMDGPU::S_MOVRELS_B64: 110 case AMDGPU::S_MOVRELD_B32: 111 case AMDGPU::S_MOVRELD_B64: 112 return true; 113 default: 114 return false; 115 } 116 } 117 118 static bool isDGEMM(unsigned Opcode) { 119 return AMDGPU::getMAIIsDGEMM(Opcode); 120 } 121 122 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) { 123 unsigned Opcode = MI.getOpcode(); 124 125 if (!SIInstrInfo::isMAI(MI) || 126 isDGEMM(Opcode) || 127 Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 128 Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64) 129 return false; 130 131 if (!ST.hasGFX940Insts()) 132 return true; 133 134 return AMDGPU::getMAIIsGFX940XDL(Opcode); 135 } 136 137 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 138 const MachineInstr &MI) { 139 if (TII.isAlwaysGDS(MI.getOpcode())) 140 return true; 141 142 switch (MI.getOpcode()) { 143 case AMDGPU::S_SENDMSG: 144 case AMDGPU::S_SENDMSGHALT: 145 case AMDGPU::S_TTRACEDATA: 146 return true; 147 // These DS opcodes don't support GDS. 148 case AMDGPU::DS_NOP: 149 case AMDGPU::DS_PERMUTE_B32: 150 case AMDGPU::DS_BPERMUTE_B32: 151 return false; 152 default: 153 if (TII.isDS(MI.getOpcode())) { 154 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 155 AMDGPU::OpName::gds); 156 if (MI.getOperand(GDS).getImm()) 157 return true; 158 } 159 return false; 160 } 161 } 162 163 static bool isPermlane(const MachineInstr &MI) { 164 unsigned Opcode = MI.getOpcode(); 165 return Opcode == AMDGPU::V_PERMLANE16_B32_e64 || 166 Opcode == AMDGPU::V_PERMLANEX16_B32_e64 || 167 Opcode == AMDGPU::V_PERMLANE16_VAR_B32_e64 || 168 Opcode == AMDGPU::V_PERMLANEX16_VAR_B32_e64; 169 } 170 171 static bool isLdsDma(const MachineInstr &MI) { 172 return SIInstrInfo::isVALU(MI) && 173 (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)); 174 } 175 176 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 177 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 178 AMDGPU::OpName::simm16); 179 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 180 } 181 182 ScheduleHazardRecognizer::HazardType 183 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 184 MachineInstr *MI = SU->getInstr(); 185 // If we are not in "HazardRecognizerMode" and therefore not being run from 186 // the scheduler, track possible stalls from hazards but don't insert noops. 187 auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard; 188 189 if (MI->isBundle()) 190 return NoHazard; 191 192 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 193 return HazardType; 194 195 if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) 196 return HazardType; 197 198 if (checkFPAtomicToDenormModeHazard(MI) > 0) 199 return HazardType; 200 201 if (ST.hasNoDataDepHazard()) 202 return NoHazard; 203 204 // FIXME: Should flat be considered vmem? 205 if ((SIInstrInfo::isVMEM(*MI) || 206 SIInstrInfo::isFLAT(*MI)) 207 && checkVMEMHazards(MI) > 0) 208 return HazardType; 209 210 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 211 return HazardType; 212 213 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 214 return HazardType; 215 216 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 217 return HazardType; 218 219 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 220 return HazardType; 221 222 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 223 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 224 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 225 return HazardType; 226 227 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 228 return HazardType; 229 230 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 231 return HazardType; 232 233 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 234 return HazardType; 235 236 if (((ST.hasReadM0MovRelInterpHazard() && 237 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 238 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 239 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 240 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 241 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 242 (ST.hasReadM0LdsDirectHazard() && 243 MI->readsRegister(AMDGPU::LDS_DIRECT))) && 244 checkReadM0Hazards(MI) > 0) 245 return HazardType; 246 247 if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0) 248 return HazardType; 249 250 if ((SIInstrInfo::isVMEM(*MI) || 251 SIInstrInfo::isFLAT(*MI) || 252 SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0) 253 return HazardType; 254 255 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 256 return HazardType; 257 258 return NoHazard; 259 } 260 261 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII, 262 unsigned Quantity) { 263 while (Quantity > 0) { 264 unsigned Arg = std::min(Quantity, 8u); 265 Quantity -= Arg; 266 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP)) 267 .addImm(Arg - 1); 268 } 269 } 270 271 unsigned 272 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const { 273 const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI); 274 assert(TSchedModel.getWriteProcResBegin(SC) != 275 TSchedModel.getWriteProcResEnd(SC)); 276 return TSchedModel.getWriteProcResBegin(SC)->ReleaseAtCycle; 277 } 278 279 void GCNHazardRecognizer::processBundle() { 280 MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator()); 281 MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); 282 // Check bundled MachineInstr's for hazards. 283 for (; MI != E && MI->isInsideBundle(); ++MI) { 284 CurrCycleInstr = &*MI; 285 unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); 286 287 if (IsHazardRecognizerMode) { 288 fixHazards(CurrCycleInstr); 289 290 insertNoopsInBundle(CurrCycleInstr, TII, WaitStates); 291 } 292 293 // It’s unnecessary to track more than MaxLookAhead instructions. Since we 294 // include the bundled MI directly after, only add a maximum of 295 // (MaxLookAhead - 1) noops to EmittedInstrs. 296 for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i) 297 EmittedInstrs.push_front(nullptr); 298 299 EmittedInstrs.push_front(CurrCycleInstr); 300 EmittedInstrs.resize(MaxLookAhead); 301 } 302 CurrCycleInstr = nullptr; 303 } 304 305 void GCNHazardRecognizer::runOnInstruction(MachineInstr *MI) { 306 assert(IsHazardRecognizerMode); 307 308 unsigned NumPreNoops = PreEmitNoops(MI); 309 EmitNoops(NumPreNoops); 310 if (MI->isInsideBundle()) 311 insertNoopsInBundle(MI, TII, NumPreNoops); 312 else 313 TII.insertNoops(*MI->getParent(), MachineBasicBlock::iterator(MI), 314 NumPreNoops); 315 EmitInstruction(MI); 316 AdvanceCycle(); 317 } 318 319 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 320 IsHazardRecognizerMode = true; 321 CurrCycleInstr = MI; 322 unsigned W = PreEmitNoopsCommon(MI); 323 fixHazards(MI); 324 CurrCycleInstr = nullptr; 325 return W; 326 } 327 328 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 329 if (MI->isBundle()) 330 return 0; 331 332 int WaitStates = 0; 333 334 if (SIInstrInfo::isSMRD(*MI)) 335 return std::max(WaitStates, checkSMRDHazards(MI)); 336 337 if (ST.hasNSAtoVMEMBug()) 338 WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI)); 339 340 WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI)); 341 342 if (ST.hasNoDataDepHazard()) 343 return WaitStates; 344 345 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 346 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 347 348 if (SIInstrInfo::isVALU(*MI)) 349 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 350 351 if (SIInstrInfo::isDPP(*MI)) 352 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 353 354 if (isDivFMas(MI->getOpcode())) 355 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 356 357 if (isRWLane(MI->getOpcode())) 358 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 359 360 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 361 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 362 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 363 WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI)); 364 365 if (MI->isInlineAsm()) 366 return std::max(WaitStates, checkInlineAsmHazards(MI)); 367 368 if (isSGetReg(MI->getOpcode())) 369 return std::max(WaitStates, checkGetRegHazards(MI)); 370 371 if (isSSetReg(MI->getOpcode())) 372 return std::max(WaitStates, checkSetRegHazards(MI)); 373 374 if (isRFE(MI->getOpcode())) 375 return std::max(WaitStates, checkRFEHazards(MI)); 376 377 if ((ST.hasReadM0MovRelInterpHazard() && 378 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 379 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 380 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 381 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 382 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 383 (ST.hasReadM0LdsDirectHazard() && MI->readsRegister(AMDGPU::LDS_DIRECT))) 384 return std::max(WaitStates, checkReadM0Hazards(MI)); 385 386 if (SIInstrInfo::isMAI(*MI)) 387 return std::max(WaitStates, checkMAIHazards(MI)); 388 389 if (SIInstrInfo::isVMEM(*MI) || 390 SIInstrInfo::isFLAT(*MI) || 391 SIInstrInfo::isDS(*MI)) 392 return std::max(WaitStates, checkMAILdStHazards(MI)); 393 394 return WaitStates; 395 } 396 397 void GCNHazardRecognizer::EmitNoop() { 398 EmittedInstrs.push_front(nullptr); 399 } 400 401 void GCNHazardRecognizer::AdvanceCycle() { 402 // When the scheduler detects a stall, it will call AdvanceCycle() without 403 // emitting any instructions. 404 if (!CurrCycleInstr) { 405 EmittedInstrs.push_front(nullptr); 406 return; 407 } 408 409 if (CurrCycleInstr->isBundle()) { 410 processBundle(); 411 return; 412 } 413 414 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 415 if (!NumWaitStates) { 416 CurrCycleInstr = nullptr; 417 return; 418 } 419 420 // Keep track of emitted instructions 421 EmittedInstrs.push_front(CurrCycleInstr); 422 423 // Add a nullptr for each additional wait state after the first. Make sure 424 // not to add more than getMaxLookAhead() items to the list, since we 425 // truncate the list to that size right after this loop. 426 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 427 i < e; ++i) { 428 EmittedInstrs.push_front(nullptr); 429 } 430 431 // getMaxLookahead() is the largest number of wait states we will ever need 432 // to insert, so there is no point in keeping track of more than that many 433 // wait states. 434 EmittedInstrs.resize(getMaxLookAhead()); 435 436 CurrCycleInstr = nullptr; 437 } 438 439 void GCNHazardRecognizer::RecedeCycle() { 440 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 441 } 442 443 //===----------------------------------------------------------------------===// 444 // Helper Functions 445 //===----------------------------------------------------------------------===// 446 447 typedef enum { HazardFound, HazardExpired, NoHazardFound } HazardFnResult; 448 449 typedef function_ref<bool(const MachineInstr &, int WaitStates)> IsExpiredFn; 450 typedef function_ref<unsigned int(const MachineInstr &)> GetNumWaitStatesFn; 451 452 // Search for a hazard in a block and its predecessors. 453 template <typename StateT> 454 static bool 455 hasHazard(StateT State, 456 function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard, 457 function_ref<void(StateT &, const MachineInstr &)> UpdateState, 458 const MachineBasicBlock *MBB, 459 MachineBasicBlock::const_reverse_instr_iterator I, 460 DenseSet<const MachineBasicBlock *> &Visited) { 461 for (auto E = MBB->instr_rend(); I != E; ++I) { 462 // No need to look at parent BUNDLE instructions. 463 if (I->isBundle()) 464 continue; 465 466 switch (IsHazard(State, *I)) { 467 case HazardFound: 468 return true; 469 case HazardExpired: 470 return false; 471 default: 472 // Continue search 473 break; 474 } 475 476 if (I->isInlineAsm() || I->isMetaInstruction()) 477 continue; 478 479 UpdateState(State, *I); 480 } 481 482 for (MachineBasicBlock *Pred : MBB->predecessors()) { 483 if (!Visited.insert(Pred).second) 484 continue; 485 486 if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(), 487 Visited)) 488 return true; 489 } 490 491 return false; 492 } 493 494 // Returns a minimum wait states since \p I walking all predecessors. 495 // Only scans until \p IsExpired does not return true. 496 // Can only be run in a hazard recognizer mode. 497 static int getWaitStatesSince( 498 GCNHazardRecognizer::IsHazardFn IsHazard, const MachineBasicBlock *MBB, 499 MachineBasicBlock::const_reverse_instr_iterator I, int WaitStates, 500 IsExpiredFn IsExpired, DenseSet<const MachineBasicBlock *> &Visited, 501 GetNumWaitStatesFn GetNumWaitStates = SIInstrInfo::getNumWaitStates) { 502 for (auto E = MBB->instr_rend(); I != E; ++I) { 503 // Don't add WaitStates for parent BUNDLE instructions. 504 if (I->isBundle()) 505 continue; 506 507 if (IsHazard(*I)) 508 return WaitStates; 509 510 if (I->isInlineAsm()) 511 continue; 512 513 WaitStates += GetNumWaitStates(*I); 514 515 if (IsExpired(*I, WaitStates)) 516 return std::numeric_limits<int>::max(); 517 } 518 519 int MinWaitStates = std::numeric_limits<int>::max(); 520 for (MachineBasicBlock *Pred : MBB->predecessors()) { 521 if (!Visited.insert(Pred).second) 522 continue; 523 524 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), WaitStates, 525 IsExpired, Visited, GetNumWaitStates); 526 527 MinWaitStates = std::min(MinWaitStates, W); 528 } 529 530 return MinWaitStates; 531 } 532 533 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 534 const MachineInstr *MI, IsExpiredFn IsExpired) { 535 DenseSet<const MachineBasicBlock *> Visited; 536 return getWaitStatesSince(IsHazard, MI->getParent(), 537 std::next(MI->getReverseIterator()), 538 0, IsExpired, Visited); 539 } 540 541 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 542 if (IsHazardRecognizerMode) { 543 auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) { 544 return WaitStates >= Limit; 545 }; 546 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 547 } 548 549 int WaitStates = 0; 550 for (MachineInstr *MI : EmittedInstrs) { 551 if (MI) { 552 if (IsHazard(*MI)) 553 return WaitStates; 554 555 if (MI->isInlineAsm()) 556 continue; 557 } 558 ++WaitStates; 559 560 if (WaitStates >= Limit) 561 break; 562 } 563 return std::numeric_limits<int>::max(); 564 } 565 566 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 567 IsHazardFn IsHazardDef, 568 int Limit) { 569 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 570 571 auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) { 572 return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI); 573 }; 574 575 return getWaitStatesSince(IsHazardFn, Limit); 576 } 577 578 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 579 int Limit) { 580 auto IsHazardFn = [IsHazard](const MachineInstr &MI) { 581 return isSSetReg(MI.getOpcode()) && IsHazard(MI); 582 }; 583 584 return getWaitStatesSince(IsHazardFn, Limit); 585 } 586 587 //===----------------------------------------------------------------------===// 588 // No-op Hazard Detection 589 //===----------------------------------------------------------------------===// 590 591 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV, 592 MCRegister Reg) { 593 for (MCRegUnit Unit : TRI.regunits(Reg)) 594 BV.set(Unit); 595 } 596 597 static void addRegsToSet(const SIRegisterInfo &TRI, 598 iterator_range<MachineInstr::const_mop_iterator> Ops, 599 BitVector &DefSet, BitVector &UseSet) { 600 for (const MachineOperand &Op : Ops) { 601 if (Op.isReg()) 602 addRegUnits(TRI, Op.isDef() ? DefSet : UseSet, Op.getReg().asMCReg()); 603 } 604 } 605 606 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 607 addRegsToSet(TRI, MI.operands(), ClauseDefs, ClauseUses); 608 } 609 610 static bool breaksSMEMSoftClause(MachineInstr *MI) { 611 return !SIInstrInfo::isSMRD(*MI); 612 } 613 614 static bool breaksVMEMSoftClause(MachineInstr *MI) { 615 return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI); 616 } 617 618 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 619 // SMEM soft clause are only present on VI+, and only matter if xnack is 620 // enabled. 621 if (!ST.isXNACKEnabled()) 622 return 0; 623 624 bool IsSMRD = TII.isSMRD(*MEM); 625 626 resetClause(); 627 628 // A soft-clause is any group of consecutive SMEM instructions. The 629 // instructions in this group may return out of order and/or may be 630 // replayed (i.e. the same instruction issued more than once). 631 // 632 // In order to handle these situations correctly we need to make sure that 633 // when a clause has more than one instruction, no instruction in the clause 634 // writes to a register that is read by another instruction in the clause 635 // (including itself). If we encounter this situation, we need to break the 636 // clause by inserting a non SMEM instruction. 637 638 for (MachineInstr *MI : EmittedInstrs) { 639 // When we hit a non-SMEM instruction then we have passed the start of the 640 // clause and we can stop. 641 if (!MI) 642 break; 643 644 if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI)) 645 break; 646 647 addClauseInst(*MI); 648 } 649 650 if (ClauseDefs.none()) 651 return 0; 652 653 // We need to make sure not to put loads and stores in the same clause if they 654 // use the same address. For now, just start a new clause whenever we see a 655 // store. 656 if (MEM->mayStore()) 657 return 1; 658 659 addClauseInst(*MEM); 660 661 // If the set of defs and uses intersect then we cannot add this instruction 662 // to the clause, so we have a hazard. 663 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 664 } 665 666 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 667 int WaitStatesNeeded = 0; 668 669 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 670 671 // This SMRD hazard only affects SI. 672 if (!ST.hasSMRDReadVALUDefHazard()) 673 return WaitStatesNeeded; 674 675 // A read of an SGPR by SMRD instruction requires 4 wait states when the 676 // SGPR was written by a VALU instruction. 677 int SmrdSgprWaitStates = 4; 678 auto IsHazardDefFn = [this](const MachineInstr &MI) { 679 return TII.isVALU(MI); 680 }; 681 auto IsBufferHazardDefFn = [this](const MachineInstr &MI) { 682 return TII.isSALU(MI); 683 }; 684 685 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 686 687 for (const MachineOperand &Use : SMRD->uses()) { 688 if (!Use.isReg()) 689 continue; 690 int WaitStatesNeededForUse = 691 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 692 SmrdSgprWaitStates); 693 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 694 695 // This fixes what appears to be undocumented hardware behavior in SI where 696 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 697 // needs some number of nops in between. We don't know how many we need, but 698 // let's use 4. This wasn't discovered before probably because the only 699 // case when this happens is when we expand a 64-bit pointer into a full 700 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 701 // probably never encountered in the closed-source land. 702 if (IsBufferSMRD) { 703 int WaitStatesNeededForUse = 704 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 705 IsBufferHazardDefFn, 706 SmrdSgprWaitStates); 707 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 708 } 709 } 710 711 return WaitStatesNeeded; 712 } 713 714 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 715 if (!ST.hasVMEMReadSGPRVALUDefHazard()) 716 return 0; 717 718 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 719 720 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 721 // SGPR was written by a VALU Instruction. 722 const int VmemSgprWaitStates = 5; 723 auto IsHazardDefFn = [this](const MachineInstr &MI) { 724 return TII.isVALU(MI); 725 }; 726 for (const MachineOperand &Use : VMEM->uses()) { 727 if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg())) 728 continue; 729 730 int WaitStatesNeededForUse = 731 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 732 VmemSgprWaitStates); 733 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 734 } 735 return WaitStatesNeeded; 736 } 737 738 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 739 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 740 const SIInstrInfo *TII = ST.getInstrInfo(); 741 742 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 743 int DppVgprWaitStates = 2; 744 int DppExecWaitStates = 5; 745 int WaitStatesNeeded = 0; 746 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 747 return TII->isVALU(MI); 748 }; 749 750 for (const MachineOperand &Use : DPP->uses()) { 751 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 752 continue; 753 int WaitStatesNeededForUse = 754 DppVgprWaitStates - getWaitStatesSinceDef( 755 Use.getReg(), 756 [](const MachineInstr &) { return true; }, 757 DppVgprWaitStates); 758 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 759 } 760 761 WaitStatesNeeded = std::max( 762 WaitStatesNeeded, 763 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 764 DppExecWaitStates)); 765 766 return WaitStatesNeeded; 767 } 768 769 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 770 const SIInstrInfo *TII = ST.getInstrInfo(); 771 772 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 773 // instruction. 774 const int DivFMasWaitStates = 4; 775 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 776 return TII->isVALU(MI); 777 }; 778 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 779 DivFMasWaitStates); 780 781 return DivFMasWaitStates - WaitStatesNeeded; 782 } 783 784 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 785 const SIInstrInfo *TII = ST.getInstrInfo(); 786 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 787 788 const int GetRegWaitStates = 2; 789 auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) { 790 return GetRegHWReg == getHWReg(TII, MI); 791 }; 792 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 793 794 return GetRegWaitStates - WaitStatesNeeded; 795 } 796 797 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 798 const SIInstrInfo *TII = ST.getInstrInfo(); 799 unsigned HWReg = getHWReg(TII, *SetRegInstr); 800 801 const int SetRegWaitStates = ST.getSetRegWaitStates(); 802 auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) { 803 return HWReg == getHWReg(TII, MI); 804 }; 805 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 806 return SetRegWaitStates - WaitStatesNeeded; 807 } 808 809 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 810 if (!MI.mayStore()) 811 return -1; 812 813 const SIInstrInfo *TII = ST.getInstrInfo(); 814 unsigned Opcode = MI.getOpcode(); 815 const MCInstrDesc &Desc = MI.getDesc(); 816 817 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 818 int VDataRCID = -1; 819 if (VDataIdx != -1) 820 VDataRCID = Desc.operands()[VDataIdx].RegClass; 821 822 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 823 // There is no hazard if the instruction does not use vector regs 824 // (like wbinvl1) 825 if (VDataIdx == -1) 826 return -1; 827 // For MUBUF/MTBUF instructions this hazard only exists if the 828 // instruction is not using a register in the soffset field. 829 const MachineOperand *SOffset = 830 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 831 // If we have no soffset operand, then assume this field has been 832 // hardcoded to zero. 833 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 834 (!SOffset || !SOffset->isReg())) 835 return VDataIdx; 836 } 837 838 // MIMG instructions create a hazard if they don't use a 256-bit T# and 839 // the store size is greater than 8 bytes and they have more than two bits 840 // of their dmask set. 841 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 842 if (TII->isMIMG(MI)) { 843 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 844 assert(SRsrcIdx != -1 && 845 AMDGPU::getRegBitWidth(Desc.operands()[SRsrcIdx].RegClass) == 256); 846 (void)SRsrcIdx; 847 } 848 849 if (TII->isFLAT(MI)) { 850 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 851 if (AMDGPU::getRegBitWidth(Desc.operands()[DataIdx].RegClass) > 64) 852 return DataIdx; 853 } 854 855 return -1; 856 } 857 858 int 859 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 860 const MachineRegisterInfo &MRI) { 861 // Helper to check for the hazard where VMEM instructions that store more than 862 // 8 bytes can have there store data over written by the next instruction. 863 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 864 865 const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1; 866 int WaitStatesNeeded = 0; 867 868 if (!TRI->isVectorRegister(MRI, Def.getReg())) 869 return WaitStatesNeeded; 870 Register Reg = Def.getReg(); 871 auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) { 872 int DataIdx = createsVALUHazard(MI); 873 return DataIdx >= 0 && 874 TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg); 875 }; 876 int WaitStatesNeededForDef = 877 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 878 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 879 880 return WaitStatesNeeded; 881 } 882 883 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 884 int WaitStatesNeeded = 0; 885 886 if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) { 887 const int TransDefWaitstates = 1; 888 889 auto IsTransDefFn = [this, VALU](const MachineInstr &MI) { 890 if (!SIInstrInfo::isTRANS(MI)) 891 return false; 892 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 893 const SIInstrInfo *TII = ST.getInstrInfo(); 894 Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg(); 895 896 for (const MachineOperand &Use : VALU->explicit_uses()) { 897 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 898 return true; 899 } 900 901 return false; 902 }; 903 904 int WaitStatesNeededForDef = 905 TransDefWaitstates - 906 getWaitStatesSince(IsTransDefFn, TransDefWaitstates); 907 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 908 } 909 910 if (ST.hasDstSelForwardingHazard()) { 911 const int Shift16DefWaitstates = 1; 912 913 auto IsShift16BitDefFn = [this, VALU](const MachineInstr &MI) { 914 if (!SIInstrInfo::isVALU(MI)) 915 return false; 916 const SIInstrInfo *TII = ST.getInstrInfo(); 917 if (SIInstrInfo::isSDWA(MI)) { 918 if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel)) 919 if (DstSel->getImm() == AMDGPU::SDWA::DWORD) 920 return false; 921 } else { 922 if (!AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::op_sel) || 923 !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers) 924 ->getImm() & 925 SISrcMods::DST_OP_SEL)) 926 return false; 927 } 928 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 929 if (auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) { 930 Register Def = Dst->getReg(); 931 932 for (const MachineOperand &Use : VALU->explicit_uses()) { 933 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 934 return true; 935 } 936 } 937 938 return false; 939 }; 940 941 int WaitStatesNeededForDef = 942 Shift16DefWaitstates - 943 getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates); 944 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 945 } 946 947 if (ST.hasVDecCoExecHazard()) { 948 const int VALUWriteSGPRVALUReadWaitstates = 2; 949 const int VALUWriteEXECRWLane = 4; 950 const int VALUWriteVGPRReadlaneRead = 1; 951 952 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 953 const MachineRegisterInfo &MRI = MF.getRegInfo(); 954 Register UseReg; 955 auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) { 956 if (!SIInstrInfo::isVALU(MI)) 957 return false; 958 return MI.modifiesRegister(UseReg, TRI); 959 }; 960 961 for (const MachineOperand &Use : VALU->explicit_uses()) { 962 if (!Use.isReg()) 963 continue; 964 965 UseReg = Use.getReg(); 966 if (TRI->isSGPRReg(MRI, UseReg)) { 967 int WaitStatesNeededForDef = 968 VALUWriteSGPRVALUReadWaitstates - 969 getWaitStatesSince(IsVALUDefSGPRFn, 970 VALUWriteSGPRVALUReadWaitstates); 971 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 972 } 973 } 974 975 if (VALU->readsRegister(AMDGPU::VCC, TRI)) { 976 UseReg = AMDGPU::VCC; 977 int WaitStatesNeededForDef = 978 VALUWriteSGPRVALUReadWaitstates - 979 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates); 980 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 981 } 982 983 switch (VALU->getOpcode()) { 984 case AMDGPU::V_READLANE_B32: 985 case AMDGPU::V_READFIRSTLANE_B32: { 986 MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0); 987 UseReg = Src->getReg(); 988 int WaitStatesNeededForDef = 989 VALUWriteVGPRReadlaneRead - 990 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead); 991 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 992 } 993 [[fallthrough]]; 994 case AMDGPU::V_WRITELANE_B32: { 995 UseReg = AMDGPU::EXEC; 996 int WaitStatesNeededForDef = 997 VALUWriteEXECRWLane - 998 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane); 999 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 1000 break; 1001 } 1002 default: 1003 break; 1004 } 1005 } 1006 1007 // This checks for the hazard where VMEM instructions that store more than 1008 // 8 bytes can have there store data over written by the next instruction. 1009 if (!ST.has12DWordStoreHazard()) 1010 return WaitStatesNeeded; 1011 1012 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1013 1014 for (const MachineOperand &Def : VALU->defs()) { 1015 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 1016 } 1017 1018 return WaitStatesNeeded; 1019 } 1020 1021 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 1022 // This checks for hazards associated with inline asm statements. 1023 // Since inline asms can contain just about anything, we use this 1024 // to call/leverage other check*Hazard routines. Note that 1025 // this function doesn't attempt to address all possible inline asm 1026 // hazards (good luck), but is a collection of what has been 1027 // problematic thus far. 1028 1029 // see checkVALUHazards() 1030 if (!ST.has12DWordStoreHazard()) 1031 return 0; 1032 1033 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1034 int WaitStatesNeeded = 0; 1035 1036 for (const MachineOperand &Op : 1037 llvm::drop_begin(IA->operands(), InlineAsm::MIOp_FirstOperand)) { 1038 if (Op.isReg() && Op.isDef()) { 1039 WaitStatesNeeded = 1040 std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 1041 } 1042 } 1043 1044 return WaitStatesNeeded; 1045 } 1046 1047 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 1048 const SIInstrInfo *TII = ST.getInstrInfo(); 1049 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1050 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1051 1052 const MachineOperand *LaneSelectOp = 1053 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 1054 1055 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 1056 return 0; 1057 1058 Register LaneSelectReg = LaneSelectOp->getReg(); 1059 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); }; 1060 1061 const int RWLaneWaitStates = 4; 1062 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 1063 RWLaneWaitStates); 1064 return RWLaneWaitStates - WaitStatesSince; 1065 } 1066 1067 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 1068 if (!ST.hasRFEHazards()) 1069 return 0; 1070 1071 const SIInstrInfo *TII = ST.getInstrInfo(); 1072 1073 const int RFEWaitStates = 1; 1074 1075 auto IsHazardFn = [TII](const MachineInstr &MI) { 1076 return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS; 1077 }; 1078 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 1079 return RFEWaitStates - WaitStatesNeeded; 1080 } 1081 1082 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 1083 const SIInstrInfo *TII = ST.getInstrInfo(); 1084 const int ReadM0WaitStates = 1; 1085 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); }; 1086 return ReadM0WaitStates - 1087 getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, ReadM0WaitStates); 1088 } 1089 1090 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { 1091 fixVMEMtoScalarWriteHazards(MI); 1092 fixVcmpxPermlaneHazards(MI); 1093 fixSMEMtoVectorWriteHazards(MI); 1094 fixVcmpxExecWARHazard(MI); 1095 fixLdsBranchVmemWARHazard(MI); 1096 if (ST.hasLdsDirect()) { 1097 fixLdsDirectVALUHazard(MI); 1098 fixLdsDirectVMEMHazard(MI); 1099 } 1100 fixVALUPartialForwardingHazard(MI); 1101 fixVALUTransUseHazard(MI); 1102 fixWMMAHazards(MI); 1103 fixShift64HighRegBug(MI); 1104 fixVALUMaskWriteHazard(MI); 1105 } 1106 1107 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) { 1108 if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI)) 1109 return false; 1110 1111 const SIInstrInfo *TII = ST.getInstrInfo(); 1112 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1113 auto IsHazardFn = [TII, TRI](const MachineInstr &MI) { 1114 return (TII->isVOPC(MI) || 1115 ((TII->isVOP3(MI) || TII->isSDWA(MI)) && MI.isCompare())) && 1116 MI.modifiesRegister(AMDGPU::EXEC, TRI); 1117 }; 1118 1119 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1120 unsigned Opc = MI.getOpcode(); 1121 return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 && 1122 Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa; 1123 }; 1124 1125 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1126 std::numeric_limits<int>::max()) 1127 return false; 1128 1129 // V_NOP will be discarded by SQ. 1130 // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE* 1131 // which is always a VGPR and available. 1132 auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1133 Register Reg = Src0->getReg(); 1134 bool IsUndef = Src0->isUndef(); 1135 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1136 TII->get(AMDGPU::V_MOV_B32_e32)) 1137 .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0)) 1138 .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill); 1139 1140 return true; 1141 } 1142 1143 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { 1144 if (!ST.hasVMEMtoScalarWriteHazard()) 1145 return false; 1146 1147 if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI)) 1148 return false; 1149 1150 if (MI->getNumDefs() == 0) 1151 return false; 1152 1153 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1154 1155 auto IsHazardFn = [TRI, MI](const MachineInstr &I) { 1156 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) && 1157 !SIInstrInfo::isFLAT(I)) 1158 return false; 1159 1160 for (const MachineOperand &Def : MI->defs()) { 1161 const MachineOperand *Op = 1162 I.findRegisterUseOperand(Def.getReg(), false, TRI); 1163 if (!Op) 1164 continue; 1165 return true; 1166 } 1167 return false; 1168 }; 1169 1170 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1171 return SIInstrInfo::isVALU(MI) || 1172 (MI.getOpcode() == AMDGPU::S_WAITCNT && 1173 !MI.getOperand(0).getImm()) || 1174 (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1175 AMDGPU::DepCtr::decodeFieldVmVsrc(MI.getOperand(0).getImm()) == 0); 1176 }; 1177 1178 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1179 std::numeric_limits<int>::max()) 1180 return false; 1181 1182 const SIInstrInfo *TII = ST.getInstrInfo(); 1183 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1184 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1185 .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0)); 1186 return true; 1187 } 1188 1189 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { 1190 if (!ST.hasSMEMtoVectorWriteHazard()) 1191 return false; 1192 1193 if (!SIInstrInfo::isVALU(*MI)) 1194 return false; 1195 1196 unsigned SDSTName; 1197 switch (MI->getOpcode()) { 1198 case AMDGPU::V_READLANE_B32: 1199 case AMDGPU::V_READFIRSTLANE_B32: 1200 SDSTName = AMDGPU::OpName::vdst; 1201 break; 1202 default: 1203 SDSTName = AMDGPU::OpName::sdst; 1204 break; 1205 } 1206 1207 const SIInstrInfo *TII = ST.getInstrInfo(); 1208 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1209 const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU()); 1210 const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName); 1211 if (!SDST) { 1212 for (const auto &MO : MI->implicit_operands()) { 1213 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) { 1214 SDST = &MO; 1215 break; 1216 } 1217 } 1218 } 1219 1220 if (!SDST) 1221 return false; 1222 1223 const Register SDSTReg = SDST->getReg(); 1224 auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) { 1225 return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI); 1226 }; 1227 1228 auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) { 1229 if (TII->isSALU(MI)) { 1230 switch (MI.getOpcode()) { 1231 case AMDGPU::S_SETVSKIP: 1232 case AMDGPU::S_VERSION: 1233 case AMDGPU::S_WAITCNT_VSCNT: 1234 case AMDGPU::S_WAITCNT_VMCNT: 1235 case AMDGPU::S_WAITCNT_EXPCNT: 1236 // These instructions cannot not mitigate the hazard. 1237 return false; 1238 case AMDGPU::S_WAITCNT_LGKMCNT: 1239 // Reducing lgkmcnt count to 0 always mitigates the hazard. 1240 return (MI.getOperand(1).getImm() == 0) && 1241 (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1242 case AMDGPU::S_WAITCNT: { 1243 const int64_t Imm = MI.getOperand(0).getImm(); 1244 AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm); 1245 // DsCnt corresponds to LGKMCnt here. 1246 return (Decoded.DsCnt == 0); 1247 } 1248 default: 1249 // SOPP instructions cannot mitigate the hazard. 1250 if (TII->isSOPP(MI)) 1251 return false; 1252 // At this point the SALU can be assumed to mitigate the hazard 1253 // because either: 1254 // (a) it is independent of the at risk SMEM (breaking chain), 1255 // or 1256 // (b) it is dependent on the SMEM, in which case an appropriate 1257 // s_waitcnt lgkmcnt _must_ exist between it and the at risk 1258 // SMEM instruction. 1259 return true; 1260 } 1261 } 1262 return false; 1263 }; 1264 1265 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1266 std::numeric_limits<int>::max()) 1267 return false; 1268 1269 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1270 TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL) 1271 .addImm(0); 1272 return true; 1273 } 1274 1275 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { 1276 if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI)) 1277 return false; 1278 1279 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1280 if (!MI->modifiesRegister(AMDGPU::EXEC, TRI)) 1281 return false; 1282 1283 auto IsHazardFn = [TRI](const MachineInstr &I) { 1284 if (SIInstrInfo::isVALU(I)) 1285 return false; 1286 return I.readsRegister(AMDGPU::EXEC, TRI); 1287 }; 1288 1289 const SIInstrInfo *TII = ST.getInstrInfo(); 1290 auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) { 1291 if (SIInstrInfo::isVALU(MI)) { 1292 if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst)) 1293 return true; 1294 for (auto MO : MI.implicit_operands()) 1295 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) 1296 return true; 1297 } 1298 if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1299 AMDGPU::DepCtr::decodeFieldSaSdst(MI.getOperand(0).getImm()) == 0) 1300 return true; 1301 return false; 1302 }; 1303 1304 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1305 std::numeric_limits<int>::max()) 1306 return false; 1307 1308 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1309 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1310 .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0)); 1311 return true; 1312 } 1313 1314 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 1315 const GCNSubtarget &ST) { 1316 if (!ST.hasLdsBranchVmemWARHazard()) 1317 return false; 1318 1319 // Check if the necessary condition for the hazard is met: both LDS and VMEM 1320 // instructions need to appear in the same function. 1321 bool HasLds = false; 1322 bool HasVmem = false; 1323 for (auto &MBB : MF) { 1324 for (auto &MI : MBB) { 1325 HasLds |= SIInstrInfo::isDS(MI); 1326 HasVmem |= 1327 SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI); 1328 if (HasLds && HasVmem) 1329 return true; 1330 } 1331 } 1332 return false; 1333 } 1334 1335 static bool isStoreCountWaitZero(const MachineInstr &I) { 1336 return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1337 I.getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1338 !I.getOperand(1).getImm(); 1339 } 1340 1341 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { 1342 if (!RunLdsBranchVmemWARHazardFixup) 1343 return false; 1344 1345 assert(ST.hasLdsBranchVmemWARHazard()); 1346 1347 auto IsHazardInst = [](const MachineInstr &MI) { 1348 if (SIInstrInfo::isDS(MI)) 1349 return 1; 1350 if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI)) 1351 return 2; 1352 return 0; 1353 }; 1354 1355 auto InstType = IsHazardInst(*MI); 1356 if (!InstType) 1357 return false; 1358 1359 auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) { 1360 return IsHazardInst(I) || isStoreCountWaitZero(I); 1361 }; 1362 1363 auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) { 1364 if (!I.isBranch()) 1365 return false; 1366 1367 auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) { 1368 auto InstType2 = IsHazardInst(I); 1369 return InstType2 && InstType != InstType2; 1370 }; 1371 1372 auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) { 1373 auto InstType2 = IsHazardInst(I); 1374 if (InstType == InstType2) 1375 return true; 1376 1377 return isStoreCountWaitZero(I); 1378 }; 1379 1380 return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) != 1381 std::numeric_limits<int>::max(); 1382 }; 1383 1384 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1385 std::numeric_limits<int>::max()) 1386 return false; 1387 1388 const SIInstrInfo *TII = ST.getInstrInfo(); 1389 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1390 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1391 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1392 .addImm(0); 1393 1394 return true; 1395 } 1396 1397 bool GCNHazardRecognizer::fixLdsDirectVALUHazard(MachineInstr *MI) { 1398 if (!SIInstrInfo::isLDSDIR(*MI)) 1399 return false; 1400 1401 const int NoHazardWaitStates = 15; 1402 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1403 const Register VDSTReg = VDST->getReg(); 1404 1405 bool VisitedTrans = false; 1406 auto IsHazardFn = [this, VDSTReg, &VisitedTrans](const MachineInstr &I) { 1407 if (!SIInstrInfo::isVALU(I)) 1408 return false; 1409 VisitedTrans = VisitedTrans || SIInstrInfo::isTRANS(I); 1410 // Cover both WAR and WAW 1411 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1412 }; 1413 auto IsExpiredFn = [&](const MachineInstr &I, int WaitStates) { 1414 if (WaitStates >= NoHazardWaitStates) 1415 return true; 1416 // Instructions which cause va_vdst==0 expire hazard 1417 return SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1418 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I); 1419 }; 1420 auto GetWaitStatesFn = [](const MachineInstr &MI) { 1421 return SIInstrInfo::isVALU(MI) ? 1 : 0; 1422 }; 1423 1424 DenseSet<const MachineBasicBlock *> Visited; 1425 auto Count = ::getWaitStatesSince(IsHazardFn, MI->getParent(), 1426 std::next(MI->getReverseIterator()), 0, 1427 IsExpiredFn, Visited, GetWaitStatesFn); 1428 1429 // Transcendentals can execute in parallel to other VALUs. 1430 // This makes va_vdst count unusable with a mixture of VALU and TRANS. 1431 if (VisitedTrans) 1432 Count = 0; 1433 1434 MachineOperand *WaitVdstOp = 1435 TII.getNamedOperand(*MI, AMDGPU::OpName::waitvdst); 1436 WaitVdstOp->setImm(std::min(Count, NoHazardWaitStates)); 1437 1438 return true; 1439 } 1440 1441 bool GCNHazardRecognizer::fixLdsDirectVMEMHazard(MachineInstr *MI) { 1442 if (!SIInstrInfo::isLDSDIR(*MI)) 1443 return false; 1444 1445 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1446 const Register VDSTReg = VDST->getReg(); 1447 1448 auto IsHazardFn = [this, VDSTReg](const MachineInstr &I) { 1449 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I) && 1450 !SIInstrInfo::isDS(I)) 1451 return false; 1452 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1453 }; 1454 bool LdsdirCanWait = ST.hasLdsWaitVMSRC(); 1455 auto IsExpiredFn = [this, LdsdirCanWait](const MachineInstr &I, int) { 1456 return SIInstrInfo::isVALU(I) || SIInstrInfo::isEXP(I) || 1457 (I.getOpcode() == AMDGPU::S_WAITCNT && !I.getOperand(0).getImm()) || 1458 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1459 AMDGPU::DepCtr::decodeFieldVmVsrc(I.getOperand(0).getImm()) == 0) || 1460 (LdsdirCanWait && SIInstrInfo::isLDSDIR(I) && 1461 !TII.getNamedOperand(I, AMDGPU::OpName::waitvsrc)->getImm()); 1462 }; 1463 1464 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1465 std::numeric_limits<int>::max()) 1466 return false; 1467 1468 if (LdsdirCanWait) { 1469 TII.getNamedOperand(*MI, AMDGPU::OpName::waitvsrc)->setImm(0); 1470 } else { 1471 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1472 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1473 .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0)); 1474 } 1475 1476 return true; 1477 } 1478 1479 bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) { 1480 if (!ST.isWave64()) 1481 return false; 1482 if (!ST.hasVALUPartialForwardingHazard()) 1483 return false; 1484 if (!SIInstrInfo::isVALU(*MI)) 1485 return false; 1486 1487 SmallSetVector<Register, 4> SrcVGPRs; 1488 1489 for (const MachineOperand &Use : MI->explicit_uses()) { 1490 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1491 SrcVGPRs.insert(Use.getReg()); 1492 } 1493 1494 // Only applies with >= 2 unique VGPR sources 1495 if (SrcVGPRs.size() <= 1) 1496 return false; 1497 1498 // Look for the following pattern: 1499 // Va <- VALU [PreExecPos] 1500 // intv1 1501 // Exec <- SALU [ExecPos] 1502 // intv2 1503 // Vb <- VALU [PostExecPos] 1504 // intv3 1505 // MI Va, Vb (WaitState = 0) 1506 // 1507 // Where: 1508 // intv1 + intv2 <= 2 VALUs 1509 // intv3 <= 4 VALUs 1510 // 1511 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1512 1513 const int Intv1plus2MaxVALUs = 2; 1514 const int Intv3MaxVALUs = 4; 1515 const int IntvMaxVALUs = 6; 1516 const int NoHazardVALUWaitStates = IntvMaxVALUs + 2; 1517 1518 struct StateType { 1519 SmallDenseMap<Register, int, 4> DefPos; 1520 int ExecPos = std::numeric_limits<int>::max(); 1521 int VALUs = 0; 1522 }; 1523 1524 StateType State; 1525 1526 // This overloads expiry testing with all the hazard detection 1527 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1528 // Too many VALU states have passed 1529 if (State.VALUs > NoHazardVALUWaitStates) 1530 return HazardExpired; 1531 1532 // Instructions which cause va_vdst==0 expire hazard 1533 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1534 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1535 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1536 AMDGPU::DepCtr::decodeFieldVaVdst(I.getOperand(0).getImm()) == 0)) 1537 return HazardExpired; 1538 1539 // Track registers writes 1540 bool Changed = false; 1541 if (SIInstrInfo::isVALU(I)) { 1542 for (Register Src : SrcVGPRs) { 1543 if (!State.DefPos.count(Src) && I.modifiesRegister(Src, &TRI)) { 1544 State.DefPos[Src] = State.VALUs; 1545 Changed = true; 1546 } 1547 } 1548 } else if (SIInstrInfo::isSALU(I)) { 1549 if (State.ExecPos == std::numeric_limits<int>::max()) { 1550 if (!State.DefPos.empty() && I.modifiesRegister(AMDGPU::EXEC, &TRI)) { 1551 State.ExecPos = State.VALUs; 1552 Changed = true; 1553 } 1554 } 1555 } 1556 1557 // Early expiration: too many VALUs in intv3 1558 if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty()) 1559 return HazardExpired; 1560 1561 // Only evaluate state if something changed 1562 if (!Changed) 1563 return NoHazardFound; 1564 1565 // Determine positions of VALUs pre/post exec change 1566 if (State.ExecPos == std::numeric_limits<int>::max()) 1567 return NoHazardFound; 1568 1569 int PreExecPos = std::numeric_limits<int>::max(); 1570 int PostExecPos = std::numeric_limits<int>::max(); 1571 1572 for (auto Entry : State.DefPos) { 1573 int DefVALUs = Entry.second; 1574 if (DefVALUs != std::numeric_limits<int>::max()) { 1575 if (DefVALUs >= State.ExecPos) 1576 PreExecPos = std::min(PreExecPos, DefVALUs); 1577 else if (DefVALUs < State.ExecPos) 1578 PostExecPos = std::min(PostExecPos, DefVALUs); 1579 } 1580 } 1581 1582 // Need a VALUs post exec change 1583 if (PostExecPos == std::numeric_limits<int>::max()) 1584 return NoHazardFound; 1585 1586 // Too many VALUs in intv3? 1587 int Intv3VALUs = PostExecPos; 1588 if (Intv3VALUs > Intv3MaxVALUs) 1589 return HazardExpired; 1590 1591 // Too many VALUs in intv2? 1592 int Intv2VALUs = (State.ExecPos - PostExecPos) - 1; 1593 if (Intv2VALUs > Intv1plus2MaxVALUs) 1594 return HazardExpired; 1595 1596 // Need a VALUs pre exec change 1597 if (PreExecPos == std::numeric_limits<int>::max()) 1598 return NoHazardFound; 1599 1600 // Too many VALUs in intv1? 1601 int Intv1VALUs = PreExecPos - State.ExecPos; 1602 if (Intv1VALUs > Intv1plus2MaxVALUs) 1603 return HazardExpired; 1604 1605 // Too many VALUs in intv1 + intv2 1606 if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs) 1607 return HazardExpired; 1608 1609 return HazardFound; 1610 }; 1611 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1612 if (SIInstrInfo::isVALU(MI)) 1613 State.VALUs += 1; 1614 }; 1615 1616 DenseSet<const MachineBasicBlock *> Visited; 1617 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1618 std::next(MI->getReverseIterator()), Visited)) 1619 return false; 1620 1621 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1622 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1623 .addImm(0x0fff); 1624 1625 return true; 1626 } 1627 1628 bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) { 1629 if (!ST.hasVALUTransUseHazard()) 1630 return false; 1631 if (!SIInstrInfo::isVALU(*MI)) 1632 return false; 1633 1634 SmallSet<Register, 4> SrcVGPRs; 1635 1636 for (const MachineOperand &Use : MI->explicit_uses()) { 1637 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1638 SrcVGPRs.insert(Use.getReg()); 1639 } 1640 1641 // Look for the following pattern: 1642 // Va <- TRANS VALU 1643 // intv 1644 // MI Va (WaitState = 0) 1645 // 1646 // Where: 1647 // intv <= 5 VALUs / 1 TRANS 1648 // 1649 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1650 1651 const int IntvMaxVALUs = 5; 1652 const int IntvMaxTRANS = 1; 1653 1654 struct StateType { 1655 int VALUs = 0; 1656 int TRANS = 0; 1657 }; 1658 1659 StateType State; 1660 1661 // This overloads expiry testing with all the hazard detection 1662 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1663 // Too many VALU states have passed 1664 if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS) 1665 return HazardExpired; 1666 1667 // Instructions which cause va_vdst==0 expire hazard 1668 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1669 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1670 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1671 I.getOperand(0).getImm() == 0x0fff)) 1672 return HazardExpired; 1673 1674 // Track registers writes 1675 if (SIInstrInfo::isTRANS(I)) { 1676 for (Register Src : SrcVGPRs) { 1677 if (I.modifiesRegister(Src, &TRI)) { 1678 return HazardFound; 1679 } 1680 } 1681 } 1682 1683 return NoHazardFound; 1684 }; 1685 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1686 if (SIInstrInfo::isVALU(MI)) 1687 State.VALUs += 1; 1688 if (SIInstrInfo::isTRANS(MI)) 1689 State.TRANS += 1; 1690 }; 1691 1692 DenseSet<const MachineBasicBlock *> Visited; 1693 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1694 std::next(MI->getReverseIterator()), Visited)) 1695 return false; 1696 1697 // Hazard is observed - insert a wait on va_dst counter to ensure hazard is 1698 // avoided. 1699 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1700 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1701 .addImm(AMDGPU::DepCtr::encodeFieldVaVdst(0)); 1702 1703 return true; 1704 } 1705 1706 bool GCNHazardRecognizer::fixWMMAHazards(MachineInstr *MI) { 1707 if (!SIInstrInfo::isWMMA(*MI)) 1708 return false; 1709 1710 const SIInstrInfo *TII = ST.getInstrInfo(); 1711 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1712 1713 auto IsHazardFn = [MI, TII, TRI](const MachineInstr &I) { 1714 if (!SIInstrInfo::isWMMA(I)) 1715 return false; 1716 1717 // Src0 or Src1 of the current wmma instruction overlaps with the dest of 1718 // the previous wmma. 1719 const Register CurSrc0Reg = 1720 TII->getNamedOperand(*MI, AMDGPU::OpName::src0)->getReg(); 1721 const Register CurSrc1Reg = 1722 TII->getNamedOperand(*MI, AMDGPU::OpName::src1)->getReg(); 1723 1724 const Register PrevDstReg = 1725 TII->getNamedOperand(I, AMDGPU::OpName::vdst)->getReg(); 1726 1727 if (TRI->regsOverlap(PrevDstReg, CurSrc0Reg) || 1728 TRI->regsOverlap(PrevDstReg, CurSrc1Reg)) { 1729 return true; 1730 } 1731 1732 // Src2 of the current wmma instruction overlaps with the dest of the 1733 // previous wmma. 1734 const MachineOperand *Src2 = 1735 TII->getNamedOperand(*MI, AMDGPU::OpName::src2); 1736 const Register CurSrc2Reg = Src2->isReg() ? Src2->getReg() : Register(); 1737 1738 if (CurSrc2Reg != AMDGPU::NoRegister && 1739 TRI->regsOverlap(PrevDstReg, CurSrc2Reg)) { 1740 1741 const MachineOperand *Src2Mods = 1742 TII->getNamedOperand(*MI, AMDGPU::OpName::src2_modifiers); 1743 const bool NoSrc2Mods = 1744 (Src2Mods->getImm() & (SISrcMods::NEG | SISrcMods::NEG_HI)) == 0; 1745 // Exception: there is no hazard if the wmma instructions are of the same 1746 // type and there is no input modifier on src2 of the current instruction. 1747 return !(NoSrc2Mods && (TII->pseudoToMCOpcode(I.getOpcode()) == 1748 TII->pseudoToMCOpcode(MI->getOpcode()))); 1749 } 1750 1751 return false; 1752 }; 1753 1754 auto IsExpiredFn = [](const MachineInstr &I, int) { 1755 return SIInstrInfo::isVALU(I); 1756 }; 1757 1758 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1759 std::numeric_limits<int>::max()) 1760 return false; 1761 1762 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32)); 1763 1764 return true; 1765 } 1766 1767 bool GCNHazardRecognizer::fixShift64HighRegBug(MachineInstr *MI) { 1768 if (!ST.hasShift64HighRegBug()) 1769 return false; 1770 1771 switch (MI->getOpcode()) { 1772 default: 1773 return false; 1774 case AMDGPU::V_LSHLREV_B64_e64: 1775 case AMDGPU::V_LSHRREV_B64_e64: 1776 case AMDGPU::V_ASHRREV_I64_e64: 1777 break; 1778 } 1779 1780 MachineOperand *Amt = TII.getNamedOperand(*MI, AMDGPU::OpName::src0); 1781 if (!Amt->isReg()) 1782 return false; 1783 1784 Register AmtReg = Amt->getReg(); 1785 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1786 // Check if this is a last VGPR in the allocation block. 1787 if (!TRI.isVGPR(MRI, AmtReg) || ((AmtReg - AMDGPU::VGPR0) & 7) != 7) 1788 return false; 1789 1790 if (AmtReg != AMDGPU::VGPR255 && MRI.isPhysRegUsed(AmtReg + 1)) 1791 return false; 1792 1793 MachineOperand *Src1 = TII.getNamedOperand(*MI, AMDGPU::OpName::src1); 1794 bool OverlappedSrc = Src1->isReg() && TRI.regsOverlap(Src1->getReg(), AmtReg); 1795 bool OverlappedDst = MI->modifiesRegister(AmtReg, &TRI); 1796 bool Overlapped = OverlappedSrc || OverlappedDst; 1797 1798 assert(!OverlappedDst || !OverlappedSrc || 1799 Src1->getReg() == MI->getOperand(0).getReg()); 1800 assert(ST.needsAlignedVGPRs()); 1801 static_assert(AMDGPU::VGPR0 + 1 == AMDGPU::VGPR1); 1802 1803 Register NewReg; 1804 for (MCRegister Reg : Overlapped ? AMDGPU::VReg_64_Align2RegClass 1805 : AMDGPU::VGPR_32RegClass) { 1806 if (!MI->modifiesRegister(Reg, &TRI) && !MI->readsRegister(Reg, &TRI)) { 1807 NewReg = Reg; 1808 break; 1809 } 1810 } 1811 1812 Register NewAmt = Overlapped ? (Register)TRI.getSubReg(NewReg, AMDGPU::sub1) 1813 : NewReg; 1814 Register NewAmtLo; 1815 1816 if (Overlapped) 1817 NewAmtLo = TRI.getSubReg(NewReg, AMDGPU::sub0); 1818 1819 DebugLoc DL = MI->getDebugLoc(); 1820 MachineBasicBlock *MBB = MI->getParent(); 1821 // Insert a full wait count because found register might be pending a wait. 1822 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_WAITCNT)) 1823 .addImm(0); 1824 1825 // Insert V_SWAP_B32 instruction(s) and run hazard recognizer on them. 1826 if (Overlapped) 1827 runOnInstruction( 1828 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmtLo) 1829 .addDef(AmtReg - 1) 1830 .addReg(AmtReg - 1, RegState::Undef) 1831 .addReg(NewAmtLo, RegState::Undef)); 1832 runOnInstruction(BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmt) 1833 .addDef(AmtReg) 1834 .addReg(AmtReg, RegState::Undef) 1835 .addReg(NewAmt, RegState::Undef)); 1836 1837 // Instructions emitted after the current instruction will be processed by the 1838 // parent loop of the hazard recognizer in a natural way. 1839 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1840 AmtReg) 1841 .addDef(NewAmt) 1842 .addReg(NewAmt) 1843 .addReg(AmtReg); 1844 if (Overlapped) 1845 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1846 AmtReg - 1) 1847 .addDef(NewAmtLo) 1848 .addReg(NewAmtLo) 1849 .addReg(AmtReg - 1); 1850 1851 // Re-running hazard recognizer on the modified instruction is not necessary, 1852 // inserted V_SWAP_B32 has already both read and write new registers so 1853 // hazards related to these register has already been handled. 1854 Amt->setReg(NewAmt); 1855 Amt->setIsKill(false); 1856 // We do not update liveness, so verifier may see it as undef. 1857 Amt->setIsUndef(); 1858 if (OverlappedDst) 1859 MI->getOperand(0).setReg(NewReg); 1860 if (OverlappedSrc) { 1861 Src1->setReg(NewReg); 1862 Src1->setIsKill(false); 1863 Src1->setIsUndef(); 1864 } 1865 1866 return true; 1867 } 1868 1869 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { 1870 int NSAtoVMEMWaitStates = 1; 1871 1872 if (!ST.hasNSAtoVMEMBug()) 1873 return 0; 1874 1875 if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI)) 1876 return 0; 1877 1878 const SIInstrInfo *TII = ST.getInstrInfo(); 1879 const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset); 1880 if (!Offset || (Offset->getImm() & 6) == 0) 1881 return 0; 1882 1883 auto IsHazardFn = [TII](const MachineInstr &I) { 1884 if (!SIInstrInfo::isMIMG(I)) 1885 return false; 1886 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode()); 1887 return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && 1888 TII->getInstSizeInBytes(I) >= 16; 1889 }; 1890 1891 return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1); 1892 } 1893 1894 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) { 1895 int FPAtomicToDenormModeWaitStates = 3; 1896 1897 if (!ST.hasFPAtomicToDenormModeHazard()) 1898 return 0; 1899 1900 if (MI->getOpcode() != AMDGPU::S_DENORM_MODE) 1901 return 0; 1902 1903 auto IsHazardFn = [](const MachineInstr &I) { 1904 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I)) 1905 return false; 1906 return SIInstrInfo::isFPAtomic(I); 1907 }; 1908 1909 auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) { 1910 if (WaitStates >= 3 || SIInstrInfo::isVALU(MI)) 1911 return true; 1912 1913 switch (MI.getOpcode()) { 1914 case AMDGPU::S_WAITCNT: 1915 case AMDGPU::S_WAITCNT_VSCNT: 1916 case AMDGPU::S_WAITCNT_VMCNT: 1917 case AMDGPU::S_WAITCNT_EXPCNT: 1918 case AMDGPU::S_WAITCNT_LGKMCNT: 1919 case AMDGPU::S_WAIT_IDLE: 1920 return true; 1921 default: 1922 break; 1923 } 1924 1925 return false; 1926 }; 1927 1928 return FPAtomicToDenormModeWaitStates - 1929 ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn); 1930 } 1931 1932 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) { 1933 assert(SIInstrInfo::isMAI(*MI)); 1934 1935 return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI); 1936 } 1937 1938 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) { 1939 // Early exit if no padding is requested. 1940 if (MFMAPaddingRatio == 0) 1941 return 0; 1942 1943 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1944 if (!SIInstrInfo::isMFMA(*MI) || MFI->getOccupancy() < 2) 1945 return 0; 1946 1947 int NeighborMFMALatency = 0; 1948 auto IsNeighboringMFMA = [&NeighborMFMALatency, 1949 this](const MachineInstr &MI) { 1950 if (!SIInstrInfo::isMFMA(MI)) 1951 return false; 1952 1953 NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI); 1954 return true; 1955 }; 1956 1957 const int MaxMFMAPipelineWaitStates = 16; 1958 int WaitStatesSinceNeighborMFMA = 1959 getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates); 1960 1961 int NeighborMFMAPaddingNeeded = 1962 (NeighborMFMALatency * MFMAPaddingRatio / 100) - 1963 WaitStatesSinceNeighborMFMA; 1964 1965 return std::max(0, NeighborMFMAPaddingNeeded); 1966 } 1967 1968 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) { 1969 int WaitStatesNeeded = 0; 1970 unsigned Opc = MI->getOpcode(); 1971 1972 auto IsVALUFn = [](const MachineInstr &MI) { 1973 return SIInstrInfo::isVALU(MI) || MI.isInlineAsm(); 1974 }; 1975 1976 if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write 1977 const int LegacyVALUWritesVGPRWaitStates = 2; 1978 const int VALUWritesExecWaitStates = 4; 1979 const int MaxWaitStates = 4; 1980 1981 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 1982 getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates); 1983 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1984 1985 if (WaitStatesNeeded < MaxWaitStates) { 1986 for (const MachineOperand &Use : MI->explicit_uses()) { 1987 const int MaxWaitStates = 2; 1988 1989 if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1990 continue; 1991 1992 int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates - 1993 getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates); 1994 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1995 1996 if (WaitStatesNeeded == MaxWaitStates) 1997 break; 1998 } 1999 } 2000 } 2001 2002 for (const MachineOperand &Op : MI->explicit_operands()) { 2003 if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg())) 2004 continue; 2005 2006 if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2007 continue; 2008 2009 const int MFMAWritesAGPROverlappedSrcABWaitStates = 4; 2010 const int MFMAWritesAGPROverlappedSrcCWaitStates = 2; 2011 const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4; 2012 const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10; 2013 const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18; 2014 const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1; 2015 const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7; 2016 const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15; 2017 const int MaxWaitStates = 18; 2018 Register Reg = Op.getReg(); 2019 unsigned HazardDefLatency = 0; 2020 2021 auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency, 2022 this](const MachineInstr &MI) { 2023 if (!SIInstrInfo::isMFMA(MI)) 2024 return false; 2025 Register DstReg = MI.getOperand(0).getReg(); 2026 if (DstReg == Reg) 2027 return false; 2028 HazardDefLatency = 2029 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2030 return TRI.regsOverlap(DstReg, Reg); 2031 }; 2032 2033 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, 2034 MaxWaitStates); 2035 int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates; 2036 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2037 int OpNo = Op.getOperandNo(); 2038 if (OpNo == SrcCIdx) { 2039 NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates; 2040 } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) { 2041 switch (HazardDefLatency) { 2042 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates; 2043 break; 2044 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates; 2045 break; 2046 case 16: [[fallthrough]]; 2047 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates; 2048 break; 2049 } 2050 } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2051 switch (HazardDefLatency) { 2052 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates; 2053 break; 2054 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates; 2055 break; 2056 case 16: [[fallthrough]]; 2057 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates; 2058 break; 2059 } 2060 } 2061 2062 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2063 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2064 2065 if (WaitStatesNeeded == MaxWaitStates) 2066 return WaitStatesNeeded; // Early exit. 2067 2068 auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) { 2069 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2070 return false; 2071 Register DstReg = MI.getOperand(0).getReg(); 2072 return TRI.regsOverlap(Reg, DstReg); 2073 }; 2074 2075 const int AccVGPRWriteMFMAReadSrcCWaitStates = 1; 2076 const int AccVGPRWriteMFMAReadSrcABWaitStates = 3; 2077 const int AccVGPRWriteAccVgprReadWaitStates = 3; 2078 NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates; 2079 if (OpNo == SrcCIdx) 2080 NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates; 2081 else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) 2082 NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates; 2083 2084 WaitStatesNeededForUse = NeedWaitStates - 2085 getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates); 2086 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2087 2088 if (WaitStatesNeeded == MaxWaitStates) 2089 return WaitStatesNeeded; // Early exit. 2090 } 2091 2092 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2093 const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0; 2094 const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5; 2095 const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13; 2096 const int MaxWaitStates = 13; 2097 Register DstReg = MI->getOperand(0).getReg(); 2098 unsigned HazardDefLatency = 0; 2099 2100 auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency, 2101 this](const MachineInstr &MI) { 2102 if (!SIInstrInfo::isMFMA(MI)) 2103 return false; 2104 Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg(); 2105 HazardDefLatency = 2106 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2107 return TRI.regsOverlap(Reg, DstReg); 2108 }; 2109 2110 int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates); 2111 int NeedWaitStates; 2112 switch (HazardDefLatency) { 2113 case 2: NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates; 2114 break; 2115 case 8: NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates; 2116 break; 2117 case 16: [[fallthrough]]; 2118 default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates; 2119 break; 2120 } 2121 2122 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince; 2123 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2124 } 2125 2126 // Pad neighboring MFMA with noops for better inter-wave performance. 2127 WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI)); 2128 2129 return WaitStatesNeeded; 2130 } 2131 2132 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) { 2133 int WaitStatesNeeded = 0; 2134 unsigned Opc = MI->getOpcode(); 2135 2136 auto IsLegacyVALUFn = [](const MachineInstr &MI) { 2137 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI); 2138 }; 2139 2140 auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) { 2141 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) && 2142 !SIInstrInfo::isDOT(MI); 2143 }; 2144 2145 if (!SIInstrInfo::isMFMA(*MI)) 2146 return WaitStatesNeeded; 2147 2148 const int VALUWritesExecWaitStates = 4; 2149 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 2150 getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn, 2151 VALUWritesExecWaitStates); 2152 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2153 2154 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2155 2156 // Loop for both DGEMM and S/HGEMM 2nd instruction. 2157 for (const MachineOperand &Use : MI->explicit_uses()) { 2158 const int LegacyVALUNotDotWritesVGPRWaitStates = 2; 2159 const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2; 2160 const int GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates = 3; 2161 const int GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates = 5; 2162 const int GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates = 4; 2163 const int GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates = 9; 2164 const int GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates = 8; 2165 const int GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates = 17; 2166 const int GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates = 16; 2167 const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8; 2168 const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16; 2169 const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3; 2170 const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9; 2171 const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17; 2172 const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9; 2173 const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4; 2174 const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5; 2175 const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11; 2176 const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19; 2177 const int GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates = 4; 2178 const int GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates = 6; 2179 const int GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates = 10; 2180 const int GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates = 18; 2181 const int GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates = 5; 2182 const int GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates = 7; 2183 const int GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates = 11; 2184 const int GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates = 19; 2185 const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6; 2186 const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11; 2187 const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4; 2188 const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2; 2189 const int MaxWaitStates = 19; 2190 2191 if (!Use.isReg()) 2192 continue; 2193 Register Reg = Use.getReg(); 2194 bool FullReg; 2195 const MachineInstr *MI1; 2196 2197 auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1, 2198 this](const MachineInstr &MI) { 2199 if (!SIInstrInfo::isMFMA(MI)) 2200 return false; 2201 Register DstReg = MI.getOperand(0).getReg(); 2202 FullReg = (DstReg == Reg); 2203 MI1 = &MI; 2204 return TRI.regsOverlap(DstReg, Reg); 2205 }; 2206 2207 WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates - 2208 getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates); 2209 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2210 2211 int NumWaitStates = 2212 getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates); 2213 if (NumWaitStates == std::numeric_limits<int>::max()) 2214 continue; 2215 2216 int OpNo = Use.getOperandNo(); 2217 unsigned Opc1 = MI1->getOpcode(); 2218 int NeedWaitStates = 0; 2219 if (OpNo == SrcCIdx) { 2220 if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) { 2221 NeedWaitStates = 0; 2222 } else if (FullReg) { 2223 if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2224 Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) && 2225 (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2226 Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64)) 2227 NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates; 2228 else if (ST.hasGFX940Insts() && 2229 TSchedModel.computeInstrLatency(MI1) == 2) 2230 NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates; 2231 } else { 2232 switch (Opc1) { 2233 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2234 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2235 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2236 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2237 if (!isXDL(ST, *MI)) 2238 NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates; 2239 break; 2240 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2241 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2242 if (!isXDL(ST, *MI)) 2243 NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates; 2244 break; 2245 default: 2246 if (ST.hasGFX940Insts() && isXDL(ST, *MI) && !isXDL(ST, *MI1)) 2247 break; 2248 switch (TSchedModel.computeInstrLatency(MI1)) { 2249 case 2: 2250 NeedWaitStates = ST.hasGFX940Insts() 2251 ? isXDL(ST, *MI1) 2252 ? GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates 2253 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates 2254 : isDGEMM(Opc) 2255 ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates 2256 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates; 2257 break; 2258 case 4: 2259 assert(ST.hasGFX940Insts()); 2260 NeedWaitStates = isXDL(ST, *MI1) 2261 ? GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates 2262 : GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates; 2263 break; 2264 case 8: 2265 NeedWaitStates = ST.hasGFX940Insts() 2266 ? isXDL(ST, *MI1) 2267 ? GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates 2268 : GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates 2269 : isDGEMM(Opc) 2270 ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates 2271 : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates; 2272 break; 2273 case 16: [[fallthrough]]; 2274 default: 2275 NeedWaitStates = ST.hasGFX940Insts() 2276 ? isXDL(ST, *MI1) 2277 ? GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates 2278 : GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates 2279 : isDGEMM(Opc) 2280 ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates 2281 : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates; 2282 } 2283 } 2284 } 2285 } else { 2286 switch (Opc1) { 2287 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2288 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2289 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2290 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2291 NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates; 2292 break; 2293 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2294 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2295 NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates; 2296 break; 2297 default: 2298 switch (TSchedModel.computeInstrLatency(MI1)) { 2299 case 2: 2300 NeedWaitStates = ST.hasGFX940Insts() 2301 ? isXDL(ST, *MI1) 2302 ? GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates 2303 : GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates 2304 : SMFMA4x4WritesVGPROverlappedSrcABWaitStates; 2305 break; 2306 case 4: 2307 assert(ST.hasGFX940Insts()); 2308 NeedWaitStates = isXDL(ST, *MI1) 2309 ? GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates 2310 : GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates; 2311 break; 2312 case 8: 2313 NeedWaitStates = ST.hasGFX940Insts() 2314 ? isXDL(ST, *MI1) 2315 ? GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates 2316 : GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates 2317 : SMFMA16x16WritesVGPROverlappedSrcABWaitStates; 2318 break; 2319 case 16: [[fallthrough]]; 2320 default: 2321 NeedWaitStates = ST.hasGFX940Insts() 2322 ? isXDL(ST, *MI1) 2323 ? GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates 2324 : GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates 2325 : SMFMA32x32WritesVGPROverlappedSrcABWaitStates; 2326 } 2327 } 2328 } 2329 if (WaitStatesNeeded >= NeedWaitStates) 2330 continue; 2331 2332 WaitStatesNeededForUse = NeedWaitStates - NumWaitStates; 2333 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2334 2335 if (WaitStatesNeeded == MaxWaitStates) 2336 break; 2337 } 2338 2339 return WaitStatesNeeded; 2340 } 2341 2342 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) { 2343 // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards() 2344 if (!ST.hasMAIInsts() || ST.hasGFX90AInsts()) 2345 return 0; 2346 2347 int WaitStatesNeeded = 0; 2348 2349 auto IsAccVgprReadFn = [](const MachineInstr &MI) { 2350 return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64; 2351 }; 2352 2353 for (const MachineOperand &Op : MI->explicit_uses()) { 2354 if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg())) 2355 continue; 2356 2357 Register Reg = Op.getReg(); 2358 2359 const int AccVgprReadLdStWaitStates = 2; 2360 const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1; 2361 const int MaxWaitStates = 2; 2362 2363 int WaitStatesNeededForUse = AccVgprReadLdStWaitStates - 2364 getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates); 2365 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2366 2367 if (WaitStatesNeeded == MaxWaitStates) 2368 return WaitStatesNeeded; // Early exit. 2369 2370 auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) { 2371 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 && 2372 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2373 return false; 2374 auto IsVALUFn = [](const MachineInstr &MI) { 2375 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI); 2376 }; 2377 return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) < 2378 std::numeric_limits<int>::max(); 2379 }; 2380 2381 WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates - 2382 getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates); 2383 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2384 } 2385 2386 return WaitStatesNeeded; 2387 } 2388 2389 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) { 2390 if (!ST.hasGFX90AInsts()) 2391 return 0; 2392 2393 auto IsDGEMMFn = [](const MachineInstr &MI) -> bool { 2394 return isDGEMM(MI.getOpcode()); 2395 }; 2396 2397 // This is checked in checkMAIHazards90A() 2398 if (SIInstrInfo::isMFMA(*MI)) 2399 return 0; 2400 2401 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2402 2403 int WaitStatesNeeded = 0; 2404 2405 bool IsMem = SIInstrInfo::isVMEM(*MI) || 2406 SIInstrInfo::isFLAT(*MI) || 2407 SIInstrInfo::isDS(*MI); 2408 bool IsMemOrExport = IsMem || SIInstrInfo::isEXP(*MI); 2409 bool IsVALU = SIInstrInfo::isVALU(*MI); 2410 2411 const MachineInstr *MFMA = nullptr; 2412 unsigned Reg; 2413 auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2414 if (!SIInstrInfo::isMFMA(MI) || 2415 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2416 return false; 2417 MFMA = &MI; 2418 return true; 2419 }; 2420 2421 const MachineInstr *DOT = nullptr; 2422 auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) { 2423 if (!SIInstrInfo::isDOT(MI) || 2424 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2425 return false; 2426 DOT = &MI; 2427 return true; 2428 }; 2429 2430 bool DGEMMAfterVALUWrite = false; 2431 auto IsDGEMMHazard = [&DGEMMAfterVALUWrite, this](const MachineInstr &MI) { 2432 // Found DGEMM on reverse traversal to def. 2433 if (isDGEMM(MI.getOpcode())) 2434 DGEMMAfterVALUWrite = true; 2435 2436 // Only hazard if register is defined by a VALU and a DGEMM is found after 2437 // after the def. 2438 if (!TII.isVALU(MI) || !DGEMMAfterVALUWrite) 2439 return false; 2440 2441 return true; 2442 }; 2443 2444 int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), 2445 AMDGPU::OpName::src2); 2446 2447 if (IsMemOrExport || IsVALU) { 2448 const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5; 2449 const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11; 2450 const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19; 2451 const int GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates = 4; 2452 const int GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates = 6; 2453 const int GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates = 10; 2454 const int GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates = 18; 2455 const int GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates = 5; 2456 const int GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates = 7; 2457 const int GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates = 11; 2458 const int GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates = 19; 2459 const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9; 2460 const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18; 2461 const int DMFMA4x4WriteVgprVALUReadWaitStates = 6; 2462 const int DMFMA16x16WriteVgprVALUReadWaitStates = 11; 2463 const int DotWriteSameDotReadSrcAB = 3; 2464 const int DotWriteDifferentVALURead = 3; 2465 const int DMFMABetweenVALUWriteVMEMRead = 2; 2466 const int MaxWaitStates = 19; 2467 2468 for (const MachineOperand &Use : MI->explicit_uses()) { 2469 if (!Use.isReg()) 2470 continue; 2471 Reg = Use.getReg(); 2472 2473 DOT = nullptr; 2474 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2475 MaxWaitStates); 2476 if (DOT) { 2477 int NeedWaitStates = 0; 2478 if (DOT->getOpcode() == MI->getOpcode()) { 2479 if (&Use - &MI->getOperand(0) != SrcCIdx) 2480 NeedWaitStates = DotWriteSameDotReadSrcAB; 2481 } else { 2482 NeedWaitStates = DotWriteDifferentVALURead; 2483 } 2484 2485 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2486 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2487 } 2488 2489 // Workaround for HW data hazard bug observed only in GFX90A. When there 2490 // is a DGEMM instruction in-between a VALU and a VMEM instruction it 2491 // causes the SQ to incorrectly not insert two wait states between the two 2492 // instructions needed to avoid data hazard. 2493 if (IsMem && ST.hasGFX90AInsts() && !ST.hasGFX940Insts()) { 2494 DGEMMAfterVALUWrite = false; 2495 if (TRI.isVectorRegister(MRI, Reg)) { 2496 int WaitStatesNeededForUse = 2497 DMFMABetweenVALUWriteVMEMRead - 2498 getWaitStatesSinceDef(Reg, IsDGEMMHazard, 2499 DMFMABetweenVALUWriteVMEMRead); 2500 2501 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2502 } 2503 } 2504 2505 MFMA = nullptr; 2506 WaitStatesSinceDef = 2507 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2508 if (!MFMA) 2509 continue; 2510 2511 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2512 int NeedWaitStates = MaxWaitStates; 2513 switch (HazardDefLatency) { 2514 case 2: 2515 NeedWaitStates = 2516 ST.hasGFX940Insts() 2517 ? isXDL(ST, *MFMA) 2518 ? GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates 2519 : GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates 2520 : SMFMA4x4WriteVgprVALUMemExpReadWaitStates; 2521 break; 2522 case 4: 2523 assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts()); 2524 NeedWaitStates = 2525 isDGEMM(MFMA->getOpcode()) 2526 ? IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates 2527 : DMFMA4x4WriteVgprVALUReadWaitStates 2528 : isXDL(ST, *MFMA) 2529 ? GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates 2530 : GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates; 2531 break; 2532 case 8: 2533 NeedWaitStates = 2534 ST.hasGFX940Insts() 2535 ? isXDL(ST, *MFMA) 2536 ? GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates 2537 : GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates 2538 : SMFMA16x16WriteVgprVALUMemExpReadWaitStates; 2539 break; 2540 case 16: [[fallthrough]]; 2541 default: 2542 NeedWaitStates = 2543 isDGEMM(MFMA->getOpcode()) 2544 ? IsMemOrExport ? DMFMA16x16WriteVgprMemExpReadWaitStates 2545 : DMFMA16x16WriteVgprVALUReadWaitStates 2546 : ST.hasGFX940Insts() 2547 ? isXDL(ST, *MFMA) 2548 ? GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates 2549 : GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates 2550 : SMFMA32x32WriteVgprVALUMemExpReadWaitStates; 2551 break; 2552 } 2553 2554 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2555 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2556 2557 if (WaitStatesNeeded == MaxWaitStates) 2558 break; 2559 } 2560 } 2561 2562 unsigned Opc = MI->getOpcode(); 2563 const int DMFMAToFMA64WaitStates = 2; 2564 if ((Opc == AMDGPU::V_FMA_F64_e64 || 2565 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 || 2566 Opc == AMDGPU::V_FMAC_F64_dpp) && 2567 WaitStatesNeeded < DMFMAToFMA64WaitStates) { 2568 int WaitStatesNeededForUse = DMFMAToFMA64WaitStates - 2569 getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates); 2570 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2571 } 2572 2573 if (!IsVALU && !IsMemOrExport) 2574 return WaitStatesNeeded; 2575 2576 for (const MachineOperand &Def : MI->defs()) { 2577 const int SMFMA4x4WriteVgprVALUWawWaitStates = 5; 2578 const int SMFMA16x16WriteVgprVALUWawWaitStates = 11; 2579 const int SMFMA32x32WriteVgprVALUWawWaitStates = 19; 2580 const int GFX940_SMFMA2PassWriteVgprVALUWawWaitStates = 4; 2581 const int GFX940_SMFMA4PassWriteVgprVALUWawWaitStates = 6; 2582 const int GFX940_SMFMA8PassWriteVgprVALUWawWaitStates = 10; 2583 const int GFX940_SMFMA16PassWriteVgprVALUWawWaitStates = 18; 2584 const int GFX940_XDL2PassWriteVgprVALUWawWaitStates = 5; 2585 const int GFX940_XDL4PassWriteVgprVALUWawWaitStates = 7; 2586 const int GFX940_XDL8PassWriteVgprVALUWawWaitStates = 11; 2587 const int GFX940_XDL16PassWriteVgprVALUWawWaitStates = 19; 2588 const int SMFMA4x4ReadVgprVALUWarWaitStates = 1; 2589 const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3; 2590 const int SMFMA16x16ReadVgprVALUWarWaitStates = 7; 2591 const int SMFMA32x32ReadVgprVALUWarWaitStates = 15; 2592 const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6; 2593 const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11; 2594 const int DotWriteDifferentVALUWrite = 3; 2595 const int MaxWaitStates = 19; 2596 const int MaxWarWaitStates = 15; 2597 2598 Reg = Def.getReg(); 2599 2600 DOT = nullptr; 2601 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2602 MaxWaitStates); 2603 if (DOT && DOT->getOpcode() != MI->getOpcode()) 2604 WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite - 2605 WaitStatesSinceDef); 2606 2607 MFMA = nullptr; 2608 WaitStatesSinceDef = 2609 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2610 if (MFMA) { 2611 int NeedWaitStates = MaxWaitStates; 2612 switch (TSchedModel.computeInstrLatency(MFMA)) { 2613 case 2: 2614 NeedWaitStates = ST.hasGFX940Insts() 2615 ? isXDL(ST, *MFMA) 2616 ? GFX940_XDL2PassWriteVgprVALUWawWaitStates 2617 : GFX940_SMFMA2PassWriteVgprVALUWawWaitStates 2618 : SMFMA4x4WriteVgprVALUWawWaitStates; 2619 break; 2620 case 4: 2621 assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts()); 2622 NeedWaitStates = isDGEMM(MFMA->getOpcode()) 2623 ? DMFMA4x4WriteVgprVALUWriteWaitStates 2624 : isXDL(ST, *MFMA) 2625 ? GFX940_XDL4PassWriteVgprVALUWawWaitStates 2626 : GFX940_SMFMA4PassWriteVgprVALUWawWaitStates; 2627 break; 2628 case 8: 2629 NeedWaitStates = ST.hasGFX940Insts() 2630 ? isXDL(ST, *MFMA) 2631 ? GFX940_XDL8PassWriteVgprVALUWawWaitStates 2632 : GFX940_SMFMA8PassWriteVgprVALUWawWaitStates 2633 : SMFMA16x16WriteVgprVALUWawWaitStates; 2634 break; 2635 case 16: [[fallthrough]]; 2636 default: 2637 NeedWaitStates = isDGEMM(MFMA->getOpcode()) 2638 ? DMFMA16x16WriteVgprVALUWriteWaitStates 2639 : ST.hasGFX940Insts() 2640 ? isXDL(ST, *MFMA) 2641 ? GFX940_XDL16PassWriteVgprVALUWawWaitStates 2642 : GFX940_SMFMA16PassWriteVgprVALUWawWaitStates 2643 : SMFMA32x32WriteVgprVALUWawWaitStates; 2644 break; 2645 } 2646 2647 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2648 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2649 2650 if (WaitStatesNeeded == MaxWaitStates) 2651 break; 2652 } 2653 2654 auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2655 if (!SIInstrInfo::isMFMA(MI) || isDGEMM(MI.getOpcode()) || 2656 !MI.readsRegister(Reg, &TRI)) 2657 return false; 2658 2659 if (ST.hasGFX940Insts() && !isXDL(ST, MI)) 2660 return false; 2661 2662 const MachineOperand *SrcC = 2663 TII.getNamedOperand(MI, AMDGPU::OpName::src2); 2664 assert(SrcC); 2665 if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg)) 2666 return false; 2667 2668 MFMA = &MI; 2669 return true; 2670 }; 2671 2672 MFMA = nullptr; 2673 int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn, 2674 MaxWarWaitStates); 2675 if (!MFMA) 2676 continue; 2677 2678 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2679 int NeedWaitStates = MaxWaitStates; 2680 switch (HazardDefLatency) { 2681 case 2: NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates; 2682 break; 2683 case 4: assert(ST.hasGFX940Insts()); 2684 NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates; 2685 break; 2686 case 8: NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates; 2687 break; 2688 case 16: [[fallthrough]]; 2689 default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates; 2690 break; 2691 } 2692 2693 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse; 2694 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2695 } 2696 2697 return WaitStatesNeeded; 2698 } 2699 2700 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) { 2701 if (!SU->isInstr()) 2702 return false; 2703 2704 const MachineInstr *MAI = nullptr; 2705 2706 auto IsMFMAFn = [&MAI](const MachineInstr &MI) { 2707 MAI = nullptr; 2708 if (SIInstrInfo::isMFMA(MI)) 2709 MAI = &MI; 2710 return MAI != nullptr; 2711 }; 2712 2713 MachineInstr *MI = SU->getInstr(); 2714 if (IsMFMAFn(*MI)) { 2715 int W = getWaitStatesSince(IsMFMAFn, 16); 2716 if (MAI) 2717 return W < (int)TSchedModel.computeInstrLatency(MAI); 2718 } 2719 2720 return false; 2721 } 2722 2723 bool GCNHazardRecognizer::fixVALUMaskWriteHazard(MachineInstr *MI) { 2724 if (!ST.isWave64()) 2725 return false; 2726 if (!ST.hasVALUMaskWriteHazard()) 2727 return false; 2728 if (!SIInstrInfo::isSALU(*MI)) 2729 return false; 2730 2731 // The hazard sequence is three instructions: 2732 // 1. VALU reads SGPR as mask 2733 // 2. SALU writes SGPR 2734 // 3. SALU reads SGPR 2735 // The hazard can expire if the distance between 2 and 3 is sufficient. 2736 // In practice this happens <10% of the time, hence this always assumes 2737 // the hazard exists if 1 and 2 are present to avoid searching. 2738 2739 const MachineOperand *SDSTOp = TII.getNamedOperand(*MI, AMDGPU::OpName::sdst); 2740 if (!SDSTOp || !SDSTOp->isReg()) 2741 return false; 2742 2743 const Register HazardReg = SDSTOp->getReg(); 2744 if (HazardReg == AMDGPU::EXEC || 2745 HazardReg == AMDGPU::EXEC_LO || 2746 HazardReg == AMDGPU::EXEC_HI || 2747 HazardReg == AMDGPU::M0) 2748 return false; 2749 2750 auto IsHazardFn = [HazardReg, this](const MachineInstr &I) { 2751 switch (I.getOpcode()) { 2752 case AMDGPU::V_ADDC_U32_e32: 2753 case AMDGPU::V_ADDC_U32_dpp: 2754 case AMDGPU::V_CNDMASK_B16_e32: 2755 case AMDGPU::V_CNDMASK_B16_dpp: 2756 case AMDGPU::V_CNDMASK_B32_e32: 2757 case AMDGPU::V_CNDMASK_B32_dpp: 2758 case AMDGPU::V_DIV_FMAS_F32_e64: 2759 case AMDGPU::V_DIV_FMAS_F64_e64: 2760 case AMDGPU::V_SUBB_U32_e32: 2761 case AMDGPU::V_SUBB_U32_dpp: 2762 case AMDGPU::V_SUBBREV_U32_e32: 2763 case AMDGPU::V_SUBBREV_U32_dpp: 2764 // These implicitly read VCC as mask source. 2765 return HazardReg == AMDGPU::VCC || 2766 HazardReg == AMDGPU::VCC_LO || 2767 HazardReg == AMDGPU::VCC_HI; 2768 case AMDGPU::V_ADDC_U32_e64: 2769 case AMDGPU::V_ADDC_U32_e64_dpp: 2770 case AMDGPU::V_CNDMASK_B16_e64: 2771 case AMDGPU::V_CNDMASK_B16_e64_dpp: 2772 case AMDGPU::V_CNDMASK_B32_e64: 2773 case AMDGPU::V_CNDMASK_B32_e64_dpp: 2774 case AMDGPU::V_SUBB_U32_e64: 2775 case AMDGPU::V_SUBB_U32_e64_dpp: 2776 case AMDGPU::V_SUBBREV_U32_e64: 2777 case AMDGPU::V_SUBBREV_U32_e64_dpp: { 2778 // Only check mask register overlaps. 2779 const MachineOperand *SSRCOp = TII.getNamedOperand(I, AMDGPU::OpName::src2); 2780 assert(SSRCOp); 2781 return TRI.regsOverlap(SSRCOp->getReg(), HazardReg); 2782 } 2783 default: 2784 return false; 2785 } 2786 }; 2787 2788 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2789 auto IsExpiredFn = [&MRI, this](const MachineInstr &I, int) { 2790 // s_waitcnt_depctr sa_sdst(0) mitigates hazard. 2791 if (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 2792 AMDGPU::DepCtr::decodeFieldSaSdst(I.getOperand(0).getImm()) == 0) 2793 return true; 2794 2795 // VALU access to any SGPR or literal constant other than HazardReg 2796 // mitigates hazard. No need to check HazardReg here as this will 2797 // only be called when !IsHazardFn. 2798 if (!SIInstrInfo::isVALU(I)) 2799 return false; 2800 for (int OpNo = 0, End = I.getNumOperands(); OpNo < End; ++OpNo) { 2801 const MachineOperand &Op = I.getOperand(OpNo); 2802 if (Op.isReg()) { 2803 Register OpReg = Op.getReg(); 2804 // Only consider uses 2805 if (!Op.isUse()) 2806 continue; 2807 // Ignore EXEC 2808 if (OpReg == AMDGPU::EXEC || 2809 OpReg == AMDGPU::EXEC_LO || 2810 OpReg == AMDGPU::EXEC_HI) 2811 continue; 2812 // Ignore all implicit uses except VCC 2813 if (Op.isImplicit()) { 2814 if (OpReg == AMDGPU::VCC || 2815 OpReg == AMDGPU::VCC_LO || 2816 OpReg == AMDGPU::VCC_HI) 2817 return true; 2818 continue; 2819 } 2820 if (TRI.isSGPRReg(MRI, OpReg)) 2821 return true; 2822 } else { 2823 const MCInstrDesc &InstDesc = I.getDesc(); 2824 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; 2825 if (!TII.isInlineConstant(Op, OpInfo)) 2826 return true; 2827 } 2828 } 2829 return false; 2830 }; 2831 2832 // Check for hazard 2833 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 2834 std::numeric_limits<int>::max()) 2835 return false; 2836 2837 auto NextMI = std::next(MI->getIterator()); 2838 2839 // Add s_waitcnt_depctr sa_sdst(0) after SALU write. 2840 BuildMI(*MI->getParent(), NextMI, MI->getDebugLoc(), 2841 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 2842 .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0)); 2843 2844 // SALU write may be s_getpc in a bundle. 2845 if (MI->getOpcode() == AMDGPU::S_GETPC_B64) { 2846 // Update offsets of any references in the bundle. 2847 while (NextMI != MI->getParent()->end() && 2848 NextMI->isBundledWithPred()) { 2849 for (auto &Operand : NextMI->operands()) { 2850 if (Operand.isGlobal()) 2851 Operand.setOffset(Operand.getOffset() + 4); 2852 } 2853 NextMI++; 2854 } 2855 } 2856 2857 return true; 2858 } 2859