xref: /llvm-project/llvm/lib/Target/AMDGPU/GCNHazardRecognizer.cpp (revision aeafdc21d29793fdb6bfb19b919ea3ad56226cf4)
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements hazard recognizers for scheduling on GCN processors.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "GCNHazardRecognizer.h"
14 #include "GCNSubtarget.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "SIMachineFunctionInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/ScheduleDAG.h"
19 #include "llvm/TargetParser/TargetParser.h"
20 
21 using namespace llvm;
22 
23 namespace {
24 
25 struct MFMAPaddingRatioParser : public cl::parser<unsigned> {
26   MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {}
27 
28   bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) {
29     if (Arg.getAsInteger(0, Value))
30       return O.error("'" + Arg + "' value invalid for uint argument!");
31 
32     if (Value > 100)
33       return O.error("'" + Arg + "' value must be in the range [0, 100]!");
34 
35     return false;
36   }
37 };
38 
39 } // end anonymous namespace
40 
41 static cl::opt<unsigned, false, MFMAPaddingRatioParser>
42     MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden,
43                      cl::desc("Fill a percentage of the latency between "
44                               "neighboring MFMA with s_nops."));
45 
46 //===----------------------------------------------------------------------===//
47 // Hazard Recognizer Implementation
48 //===----------------------------------------------------------------------===//
49 
50 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
51                                                  const GCNSubtarget &ST);
52 
53 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
54   IsHazardRecognizerMode(false),
55   CurrCycleInstr(nullptr),
56   MF(MF),
57   ST(MF.getSubtarget<GCNSubtarget>()),
58   TII(*ST.getInstrInfo()),
59   TRI(TII.getRegisterInfo()),
60   ClauseUses(TRI.getNumRegUnits()),
61   ClauseDefs(TRI.getNumRegUnits()) {
62   MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5;
63   TSchedModel.init(&ST);
64   RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST);
65 }
66 
67 void GCNHazardRecognizer::Reset() {
68   EmittedInstrs.clear();
69 }
70 
71 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
72   EmitInstruction(SU->getInstr());
73 }
74 
75 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
76   CurrCycleInstr = MI;
77 }
78 
79 static bool isDivFMas(unsigned Opcode) {
80   return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64;
81 }
82 
83 static bool isSGetReg(unsigned Opcode) {
84   return Opcode == AMDGPU::S_GETREG_B32;
85 }
86 
87 static bool isSSetReg(unsigned Opcode) {
88   switch (Opcode) {
89   case AMDGPU::S_SETREG_B32:
90   case AMDGPU::S_SETREG_B32_mode:
91   case AMDGPU::S_SETREG_IMM32_B32:
92   case AMDGPU::S_SETREG_IMM32_B32_mode:
93     return true;
94   }
95   return false;
96 }
97 
98 static bool isRWLane(unsigned Opcode) {
99   return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
100 }
101 
102 static bool isRFE(unsigned Opcode) {
103   return Opcode == AMDGPU::S_RFE_B64;
104 }
105 
106 static bool isSMovRel(unsigned Opcode) {
107   switch (Opcode) {
108   case AMDGPU::S_MOVRELS_B32:
109   case AMDGPU::S_MOVRELS_B64:
110   case AMDGPU::S_MOVRELD_B32:
111   case AMDGPU::S_MOVRELD_B64:
112     return true;
113   default:
114     return false;
115   }
116 }
117 
118 static bool isDGEMM(unsigned Opcode) {
119   return AMDGPU::getMAIIsDGEMM(Opcode);
120 }
121 
122 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) {
123   unsigned Opcode = MI.getOpcode();
124 
125   if (!SIInstrInfo::isMAI(MI) ||
126       isDGEMM(Opcode) ||
127       Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
128       Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64)
129     return false;
130 
131   if (!ST.hasGFX940Insts())
132     return true;
133 
134   return AMDGPU::getMAIIsGFX940XDL(Opcode);
135 }
136 
137 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII,
138                                     const MachineInstr &MI) {
139   if (TII.isAlwaysGDS(MI.getOpcode()))
140     return true;
141 
142   switch (MI.getOpcode()) {
143   case AMDGPU::S_SENDMSG:
144   case AMDGPU::S_SENDMSGHALT:
145   case AMDGPU::S_TTRACEDATA:
146     return true;
147   // These DS opcodes don't support GDS.
148   case AMDGPU::DS_NOP:
149   case AMDGPU::DS_PERMUTE_B32:
150   case AMDGPU::DS_BPERMUTE_B32:
151     return false;
152   default:
153     if (TII.isDS(MI.getOpcode())) {
154       int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
155                                            AMDGPU::OpName::gds);
156       if (MI.getOperand(GDS).getImm())
157         return true;
158     }
159     return false;
160   }
161 }
162 
163 static bool isPermlane(const MachineInstr &MI) {
164   unsigned Opcode = MI.getOpcode();
165   return Opcode == AMDGPU::V_PERMLANE16_B32_e64 ||
166          Opcode == AMDGPU::V_PERMLANE64_B32 ||
167          Opcode == AMDGPU::V_PERMLANEX16_B32_e64 ||
168          Opcode == AMDGPU::V_PERMLANE16_VAR_B32_e64 ||
169          Opcode == AMDGPU::V_PERMLANEX16_VAR_B32_e64;
170 }
171 
172 static bool isLdsDma(const MachineInstr &MI) {
173   return SIInstrInfo::isVALU(MI) &&
174          (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI));
175 }
176 
177 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
178   const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
179                                                      AMDGPU::OpName::simm16);
180   return std::get<0>(AMDGPU::Hwreg::HwregEncoding::decode(RegOp->getImm()));
181 }
182 
183 ScheduleHazardRecognizer::HazardType
184 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
185   MachineInstr *MI = SU->getInstr();
186   // If we are not in "HazardRecognizerMode" and therefore not being run from
187   // the scheduler, track possible stalls from hazards but don't insert noops.
188   auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard;
189 
190   if (MI->isBundle())
191    return NoHazard;
192 
193   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
194     return HazardType;
195 
196   if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0)
197     return HazardType;
198 
199   if (checkFPAtomicToDenormModeHazard(MI) > 0)
200     return HazardType;
201 
202   if (ST.hasNoDataDepHazard())
203     return NoHazard;
204 
205   // FIXME: Should flat be considered vmem?
206   if ((SIInstrInfo::isVMEM(*MI) ||
207        SIInstrInfo::isFLAT(*MI))
208       && checkVMEMHazards(MI) > 0)
209     return HazardType;
210 
211   if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
212     return HazardType;
213 
214   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
215     return HazardType;
216 
217   if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
218     return HazardType;
219 
220   if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
221     return HazardType;
222 
223   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
224        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
225        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
226     return HazardType;
227 
228   if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
229     return HazardType;
230 
231   if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
232     return HazardType;
233 
234   if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
235     return HazardType;
236 
237   if (((ST.hasReadM0MovRelInterpHazard() &&
238         (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) ||
239          MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 ||
240          MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) ||
241        (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) ||
242        (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) ||
243        (ST.hasReadM0LdsDirectHazard() &&
244         MI->readsRegister(AMDGPU::LDS_DIRECT, /*TRI=*/nullptr))) &&
245       checkReadM0Hazards(MI) > 0)
246     return HazardType;
247 
248   if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0)
249     return HazardType;
250 
251   if ((SIInstrInfo::isVMEM(*MI) ||
252        SIInstrInfo::isFLAT(*MI) ||
253        SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0)
254     return HazardType;
255 
256   if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
257     return HazardType;
258 
259   return NoHazard;
260 }
261 
262 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII,
263                                 unsigned Quantity) {
264   while (Quantity > 0) {
265     unsigned Arg = std::min(Quantity, 8u);
266     Quantity -= Arg;
267     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP))
268         .addImm(Arg - 1);
269   }
270 }
271 
272 unsigned
273 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const {
274   const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI);
275   assert(TSchedModel.getWriteProcResBegin(SC) !=
276          TSchedModel.getWriteProcResEnd(SC));
277   return TSchedModel.getWriteProcResBegin(SC)->ReleaseAtCycle;
278 }
279 
280 void GCNHazardRecognizer::processBundle() {
281   MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator());
282   MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end();
283   // Check bundled MachineInstr's for hazards.
284   for (; MI != E && MI->isInsideBundle(); ++MI) {
285     CurrCycleInstr = &*MI;
286     unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr);
287 
288     if (IsHazardRecognizerMode) {
289       fixHazards(CurrCycleInstr);
290 
291       insertNoopsInBundle(CurrCycleInstr, TII, WaitStates);
292     }
293 
294     // It’s unnecessary to track more than MaxLookAhead instructions. Since we
295     // include the bundled MI directly after, only add a maximum of
296     // (MaxLookAhead - 1) noops to EmittedInstrs.
297     for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i)
298       EmittedInstrs.push_front(nullptr);
299 
300     EmittedInstrs.push_front(CurrCycleInstr);
301     EmittedInstrs.resize(MaxLookAhead);
302   }
303   CurrCycleInstr = nullptr;
304 }
305 
306 void GCNHazardRecognizer::runOnInstruction(MachineInstr *MI) {
307   assert(IsHazardRecognizerMode);
308 
309   unsigned NumPreNoops = PreEmitNoops(MI);
310   EmitNoops(NumPreNoops);
311   if (MI->isInsideBundle())
312     insertNoopsInBundle(MI, TII, NumPreNoops);
313   else
314     TII.insertNoops(*MI->getParent(), MachineBasicBlock::iterator(MI),
315                     NumPreNoops);
316   EmitInstruction(MI);
317   AdvanceCycle();
318 }
319 
320 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
321   IsHazardRecognizerMode = true;
322   CurrCycleInstr = MI;
323   unsigned W = PreEmitNoopsCommon(MI);
324   fixHazards(MI);
325   CurrCycleInstr = nullptr;
326   return W;
327 }
328 
329 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) {
330   if (MI->isBundle())
331     return 0;
332 
333   int WaitStates = 0;
334 
335   if (SIInstrInfo::isSMRD(*MI))
336     return std::max(WaitStates, checkSMRDHazards(MI));
337 
338   if (ST.hasNSAtoVMEMBug())
339     WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI));
340 
341   WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI));
342 
343   if (ST.hasNoDataDepHazard())
344     return WaitStates;
345 
346   if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
347     WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
348 
349   if (SIInstrInfo::isVALU(*MI))
350     WaitStates = std::max(WaitStates, checkVALUHazards(MI));
351 
352   if (SIInstrInfo::isDPP(*MI))
353     WaitStates = std::max(WaitStates, checkDPPHazards(MI));
354 
355   if (isDivFMas(MI->getOpcode()))
356     WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
357 
358   if (isRWLane(MI->getOpcode()))
359     WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
360 
361   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
362        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
363        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
364     WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI));
365 
366   if (MI->isInlineAsm())
367     return std::max(WaitStates, checkInlineAsmHazards(MI));
368 
369   if (isSGetReg(MI->getOpcode()))
370     return std::max(WaitStates, checkGetRegHazards(MI));
371 
372   if (isSSetReg(MI->getOpcode()))
373     return std::max(WaitStates, checkSetRegHazards(MI));
374 
375   if (isRFE(MI->getOpcode()))
376     return std::max(WaitStates, checkRFEHazards(MI));
377 
378   if ((ST.hasReadM0MovRelInterpHazard() &&
379        (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) ||
380         MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 ||
381         MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) ||
382       (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) ||
383       (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) ||
384       (ST.hasReadM0LdsDirectHazard() &&
385        MI->readsRegister(AMDGPU::LDS_DIRECT, /*TRI=*/nullptr)))
386     return std::max(WaitStates, checkReadM0Hazards(MI));
387 
388   if (SIInstrInfo::isMAI(*MI))
389     return std::max(WaitStates, checkMAIHazards(MI));
390 
391   if (SIInstrInfo::isVMEM(*MI) ||
392       SIInstrInfo::isFLAT(*MI) ||
393       SIInstrInfo::isDS(*MI))
394     return std::max(WaitStates, checkMAILdStHazards(MI));
395 
396   return WaitStates;
397 }
398 
399 void GCNHazardRecognizer::EmitNoop() {
400   EmittedInstrs.push_front(nullptr);
401 }
402 
403 void GCNHazardRecognizer::AdvanceCycle() {
404   // When the scheduler detects a stall, it will call AdvanceCycle() without
405   // emitting any instructions.
406   if (!CurrCycleInstr) {
407     EmittedInstrs.push_front(nullptr);
408     return;
409   }
410 
411   if (CurrCycleInstr->isBundle()) {
412     processBundle();
413     return;
414   }
415 
416   unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
417   if (!NumWaitStates) {
418     CurrCycleInstr = nullptr;
419     return;
420   }
421 
422   // Keep track of emitted instructions
423   EmittedInstrs.push_front(CurrCycleInstr);
424 
425   // Add a nullptr for each additional wait state after the first.  Make sure
426   // not to add more than getMaxLookAhead() items to the list, since we
427   // truncate the list to that size right after this loop.
428   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
429        i < e; ++i) {
430     EmittedInstrs.push_front(nullptr);
431   }
432 
433   // getMaxLookahead() is the largest number of wait states we will ever need
434   // to insert, so there is no point in keeping track of more than that many
435   // wait states.
436   EmittedInstrs.resize(getMaxLookAhead());
437 
438   CurrCycleInstr = nullptr;
439 }
440 
441 void GCNHazardRecognizer::RecedeCycle() {
442   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
443 }
444 
445 //===----------------------------------------------------------------------===//
446 // Helper Functions
447 //===----------------------------------------------------------------------===//
448 
449 using HazardFnResult = enum { HazardFound, HazardExpired, NoHazardFound };
450 
451 using IsExpiredFn = function_ref<bool(const MachineInstr &, int WaitStates)>;
452 using GetNumWaitStatesFn = function_ref<unsigned int(const MachineInstr &)>;
453 
454 // Search for a hazard in a block and its predecessors.
455 template <typename StateT>
456 static bool
457 hasHazard(StateT State,
458           function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard,
459           function_ref<void(StateT &, const MachineInstr &)> UpdateState,
460           const MachineBasicBlock *MBB,
461           MachineBasicBlock::const_reverse_instr_iterator I,
462           DenseSet<const MachineBasicBlock *> &Visited) {
463   for (auto E = MBB->instr_rend(); I != E; ++I) {
464     // No need to look at parent BUNDLE instructions.
465     if (I->isBundle())
466       continue;
467 
468     switch (IsHazard(State, *I)) {
469     case HazardFound:
470       return true;
471     case HazardExpired:
472       return false;
473     default:
474       // Continue search
475       break;
476     }
477 
478     if (I->isInlineAsm() || I->isMetaInstruction())
479       continue;
480 
481     UpdateState(State, *I);
482   }
483 
484   for (MachineBasicBlock *Pred : MBB->predecessors()) {
485     if (!Visited.insert(Pred).second)
486       continue;
487 
488     if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(),
489                   Visited))
490       return true;
491   }
492 
493   return false;
494 }
495 
496 // Returns a minimum wait states since \p I walking all predecessors.
497 // Only scans until \p IsExpired does not return true.
498 // Can only be run in a hazard recognizer mode.
499 static int getWaitStatesSince(
500     GCNHazardRecognizer::IsHazardFn IsHazard, const MachineBasicBlock *MBB,
501     MachineBasicBlock::const_reverse_instr_iterator I, int WaitStates,
502     IsExpiredFn IsExpired, DenseSet<const MachineBasicBlock *> &Visited,
503     GetNumWaitStatesFn GetNumWaitStates = SIInstrInfo::getNumWaitStates) {
504   for (auto E = MBB->instr_rend(); I != E; ++I) {
505     // Don't add WaitStates for parent BUNDLE instructions.
506     if (I->isBundle())
507       continue;
508 
509     if (IsHazard(*I))
510       return WaitStates;
511 
512     if (I->isInlineAsm())
513       continue;
514 
515     WaitStates += GetNumWaitStates(*I);
516 
517     if (IsExpired(*I, WaitStates))
518       return std::numeric_limits<int>::max();
519   }
520 
521   int MinWaitStates = std::numeric_limits<int>::max();
522   for (MachineBasicBlock *Pred : MBB->predecessors()) {
523     if (!Visited.insert(Pred).second)
524       continue;
525 
526     int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), WaitStates,
527                                IsExpired, Visited, GetNumWaitStates);
528 
529     MinWaitStates = std::min(MinWaitStates, W);
530   }
531 
532   return MinWaitStates;
533 }
534 
535 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
536                               const MachineInstr *MI, IsExpiredFn IsExpired) {
537   DenseSet<const MachineBasicBlock *> Visited;
538   return getWaitStatesSince(IsHazard, MI->getParent(),
539                             std::next(MI->getReverseIterator()),
540                             0, IsExpired, Visited);
541 }
542 
543 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) {
544   if (IsHazardRecognizerMode) {
545     auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) {
546       return WaitStates >= Limit;
547     };
548     return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn);
549   }
550 
551   int WaitStates = 0;
552   for (MachineInstr *MI : EmittedInstrs) {
553     if (MI) {
554       if (IsHazard(*MI))
555         return WaitStates;
556 
557       if (MI->isInlineAsm())
558         continue;
559     }
560     ++WaitStates;
561 
562     if (WaitStates >= Limit)
563       break;
564   }
565   return std::numeric_limits<int>::max();
566 }
567 
568 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg,
569                                                IsHazardFn IsHazardDef,
570                                                int Limit) {
571   const SIRegisterInfo *TRI = ST.getRegisterInfo();
572 
573   auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) {
574     return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI);
575   };
576 
577   return getWaitStatesSince(IsHazardFn, Limit);
578 }
579 
580 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard,
581                                                   int Limit) {
582   auto IsHazardFn = [IsHazard](const MachineInstr &MI) {
583     return isSSetReg(MI.getOpcode()) && IsHazard(MI);
584   };
585 
586   return getWaitStatesSince(IsHazardFn, Limit);
587 }
588 
589 //===----------------------------------------------------------------------===//
590 // No-op Hazard Detection
591 //===----------------------------------------------------------------------===//
592 
593 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV,
594                         MCRegister Reg) {
595   for (MCRegUnit Unit : TRI.regunits(Reg))
596     BV.set(Unit);
597 }
598 
599 static void addRegsToSet(const SIRegisterInfo &TRI,
600                          iterator_range<MachineInstr::const_mop_iterator> Ops,
601                          BitVector &DefSet, BitVector &UseSet) {
602   for (const MachineOperand &Op : Ops) {
603     if (Op.isReg())
604       addRegUnits(TRI, Op.isDef() ? DefSet : UseSet, Op.getReg().asMCReg());
605   }
606 }
607 
608 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
609   addRegsToSet(TRI, MI.operands(), ClauseDefs, ClauseUses);
610 }
611 
612 static bool breaksSMEMSoftClause(MachineInstr *MI) {
613   return !SIInstrInfo::isSMRD(*MI);
614 }
615 
616 static bool breaksVMEMSoftClause(MachineInstr *MI) {
617   return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI);
618 }
619 
620 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
621   // SMEM soft clause are only present on VI+, and only matter if xnack is
622   // enabled.
623   if (!ST.isXNACKEnabled())
624     return 0;
625 
626   bool IsSMRD = TII.isSMRD(*MEM);
627 
628   resetClause();
629 
630   // A soft-clause is any group of consecutive SMEM instructions.  The
631   // instructions in this group may return out of order and/or may be
632   // replayed (i.e. the same instruction issued more than once).
633   //
634   // In order to handle these situations correctly we need to make sure that
635   // when a clause has more than one instruction, no instruction in the clause
636   // writes to a register that is read by another instruction in the clause
637   // (including itself). If we encounter this situation, we need to break the
638   // clause by inserting a non SMEM instruction.
639 
640   for (MachineInstr *MI : EmittedInstrs) {
641     // When we hit a non-SMEM instruction then we have passed the start of the
642     // clause and we can stop.
643     if (!MI)
644       break;
645 
646     if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI))
647       break;
648 
649     addClauseInst(*MI);
650   }
651 
652   if (ClauseDefs.none())
653     return 0;
654 
655   // We need to make sure not to put loads and stores in the same clause if they
656   // use the same address. For now, just start a new clause whenever we see a
657   // store.
658   if (MEM->mayStore())
659     return 1;
660 
661   addClauseInst(*MEM);
662 
663   // If the set of defs and uses intersect then we cannot add this instruction
664   // to the clause, so we have a hazard.
665   return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
666 }
667 
668 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
669   int WaitStatesNeeded = 0;
670 
671   WaitStatesNeeded = checkSoftClauseHazards(SMRD);
672 
673   // This SMRD hazard only affects SI.
674   if (!ST.hasSMRDReadVALUDefHazard())
675     return WaitStatesNeeded;
676 
677   // A read of an SGPR by SMRD instruction requires 4 wait states when the
678   // SGPR was written by a VALU instruction.
679   int SmrdSgprWaitStates = 4;
680   auto IsHazardDefFn = [this](const MachineInstr &MI) {
681     return TII.isVALU(MI);
682   };
683   auto IsBufferHazardDefFn = [this](const MachineInstr &MI) {
684     return TII.isSALU(MI);
685   };
686 
687   bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);
688 
689   for (const MachineOperand &Use : SMRD->uses()) {
690     if (!Use.isReg())
691       continue;
692     int WaitStatesNeededForUse =
693         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
694                                                    SmrdSgprWaitStates);
695     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
696 
697     // This fixes what appears to be undocumented hardware behavior in SI where
698     // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
699     // needs some number of nops in between. We don't know how many we need, but
700     // let's use 4. This wasn't discovered before probably because the only
701     // case when this happens is when we expand a 64-bit pointer into a full
702     // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
703     // probably never encountered in the closed-source land.
704     if (IsBufferSMRD) {
705       int WaitStatesNeededForUse =
706         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
707                                                    IsBufferHazardDefFn,
708                                                    SmrdSgprWaitStates);
709       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
710     }
711   }
712 
713   return WaitStatesNeeded;
714 }
715 
716 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
717   if (!ST.hasVMEMReadSGPRVALUDefHazard())
718     return 0;
719 
720   int WaitStatesNeeded = checkSoftClauseHazards(VMEM);
721 
722   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
723   // SGPR was written by a VALU Instruction.
724   const int VmemSgprWaitStates = 5;
725   auto IsHazardDefFn = [this](const MachineInstr &MI) {
726     return TII.isVALU(MI);
727   };
728   for (const MachineOperand &Use : VMEM->uses()) {
729     if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg()))
730       continue;
731 
732     int WaitStatesNeededForUse =
733         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
734                                                    VmemSgprWaitStates);
735     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
736   }
737   return WaitStatesNeeded;
738 }
739 
740 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
741   const SIRegisterInfo *TRI = ST.getRegisterInfo();
742   const SIInstrInfo *TII = ST.getInstrInfo();
743 
744   // Check for DPP VGPR read after VALU VGPR write and EXEC write.
745   int DppVgprWaitStates = 2;
746   int DppExecWaitStates = 5;
747   int WaitStatesNeeded = 0;
748   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
749     return TII->isVALU(MI);
750   };
751 
752   for (const MachineOperand &Use : DPP->uses()) {
753     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
754       continue;
755     int WaitStatesNeededForUse =
756         DppVgprWaitStates - getWaitStatesSinceDef(
757                                 Use.getReg(),
758                                 [](const MachineInstr &) { return true; },
759                                 DppVgprWaitStates);
760     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
761   }
762 
763   WaitStatesNeeded = std::max(
764       WaitStatesNeeded,
765       DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn,
766                                                 DppExecWaitStates));
767 
768   return WaitStatesNeeded;
769 }
770 
771 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
772   const SIInstrInfo *TII = ST.getInstrInfo();
773 
774   // v_div_fmas requires 4 wait states after a write to vcc from a VALU
775   // instruction.
776   const int DivFMasWaitStates = 4;
777   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
778     return TII->isVALU(MI);
779   };
780   int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn,
781                                                DivFMasWaitStates);
782 
783   return DivFMasWaitStates - WaitStatesNeeded;
784 }
785 
786 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
787   const SIInstrInfo *TII = ST.getInstrInfo();
788   unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
789 
790   const int GetRegWaitStates = 2;
791   auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) {
792     return GetRegHWReg == getHWReg(TII, MI);
793   };
794   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates);
795 
796   return GetRegWaitStates - WaitStatesNeeded;
797 }
798 
799 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
800   const SIInstrInfo *TII = ST.getInstrInfo();
801   unsigned HWReg = getHWReg(TII, *SetRegInstr);
802 
803   const int SetRegWaitStates = ST.getSetRegWaitStates();
804   auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) {
805     return HWReg == getHWReg(TII, MI);
806   };
807   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates);
808   return SetRegWaitStates - WaitStatesNeeded;
809 }
810 
811 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
812   if (!MI.mayStore())
813     return -1;
814 
815   const SIInstrInfo *TII = ST.getInstrInfo();
816   unsigned Opcode = MI.getOpcode();
817   const MCInstrDesc &Desc = MI.getDesc();
818 
819   int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
820   int VDataRCID = -1;
821   if (VDataIdx != -1)
822     VDataRCID = Desc.operands()[VDataIdx].RegClass;
823 
824   if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
825     // There is no hazard if the instruction does not use vector regs
826     // (like wbinvl1)
827     if (VDataIdx == -1)
828       return -1;
829     // For MUBUF/MTBUF instructions this hazard only exists if the
830     // instruction is not using a register in the soffset field.
831     const MachineOperand *SOffset =
832         TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
833     // If we have no soffset operand, then assume this field has been
834     // hardcoded to zero.
835     if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
836         (!SOffset || !SOffset->isReg()))
837       return VDataIdx;
838   }
839 
840   // MIMG instructions create a hazard if they don't use a 256-bit T# and
841   // the store size is greater than 8 bytes and they have more than two bits
842   // of their dmask set.
843   // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
844   if (TII->isMIMG(MI)) {
845     int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
846     assert(SRsrcIdx != -1 &&
847            AMDGPU::getRegBitWidth(Desc.operands()[SRsrcIdx].RegClass) == 256);
848     (void)SRsrcIdx;
849   }
850 
851   if (TII->isFLAT(MI)) {
852     int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
853     if (AMDGPU::getRegBitWidth(Desc.operands()[DataIdx].RegClass) > 64)
854       return DataIdx;
855   }
856 
857   return -1;
858 }
859 
860 int
861 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
862                                             const MachineRegisterInfo &MRI) {
863   // Helper to check for the hazard where VMEM instructions that store more than
864   // 8 bytes can have there store data over written by the next instruction.
865   const SIRegisterInfo *TRI = ST.getRegisterInfo();
866 
867   const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1;
868   int WaitStatesNeeded = 0;
869 
870   if (!TRI->isVectorRegister(MRI, Def.getReg()))
871     return WaitStatesNeeded;
872   Register Reg = Def.getReg();
873   auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) {
874     int DataIdx = createsVALUHazard(MI);
875     return DataIdx >= 0 &&
876            TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg);
877   };
878   int WaitStatesNeededForDef =
879     VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates);
880   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
881 
882   return WaitStatesNeeded;
883 }
884 
885 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
886   int WaitStatesNeeded = 0;
887 
888   if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) {
889     const int TransDefWaitstates = 1;
890 
891     auto IsTransDefFn = [this, VALU](const MachineInstr &MI) {
892       if (!SIInstrInfo::isTRANS(MI))
893         return false;
894       const SIRegisterInfo *TRI = ST.getRegisterInfo();
895       const SIInstrInfo *TII = ST.getInstrInfo();
896       Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg();
897 
898       for (const MachineOperand &Use : VALU->explicit_uses()) {
899         if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg()))
900           return true;
901       }
902 
903       return false;
904     };
905 
906     int WaitStatesNeededForDef =
907         TransDefWaitstates -
908         getWaitStatesSince(IsTransDefFn, TransDefWaitstates);
909     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
910   }
911 
912   if (ST.hasDstSelForwardingHazard()) {
913     const int Shift16DefWaitstates = 1;
914 
915     auto IsShift16BitDefFn = [this, VALU](const MachineInstr &MI) {
916       if (!SIInstrInfo::isVALU(MI))
917         return false;
918       const SIInstrInfo *TII = ST.getInstrInfo();
919       if (SIInstrInfo::isSDWA(MI)) {
920         if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel))
921           if (DstSel->getImm() == AMDGPU::SDWA::DWORD)
922             return false;
923       } else {
924         if (!AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::op_sel) ||
925             !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)
926                   ->getImm() &
927               SISrcMods::DST_OP_SEL))
928           return false;
929       }
930       const SIRegisterInfo *TRI = ST.getRegisterInfo();
931       if (auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) {
932         Register Def = Dst->getReg();
933 
934         for (const MachineOperand &Use : VALU->explicit_uses()) {
935           if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg()))
936             return true;
937         }
938       }
939 
940       return false;
941     };
942 
943     int WaitStatesNeededForDef =
944         Shift16DefWaitstates -
945         getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates);
946     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
947   }
948 
949   if (ST.hasVDecCoExecHazard()) {
950     const int VALUWriteSGPRVALUReadWaitstates = 2;
951     const int VALUWriteEXECRWLane = 4;
952     const int VALUWriteVGPRReadlaneRead = 1;
953 
954     const SIRegisterInfo *TRI = ST.getRegisterInfo();
955     const MachineRegisterInfo &MRI = MF.getRegInfo();
956     Register UseReg;
957     auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) {
958       if (!SIInstrInfo::isVALU(MI))
959         return false;
960       return MI.modifiesRegister(UseReg, TRI);
961     };
962 
963     for (const MachineOperand &Use : VALU->explicit_uses()) {
964       if (!Use.isReg())
965         continue;
966 
967       UseReg = Use.getReg();
968       if (TRI->isSGPRReg(MRI, UseReg)) {
969         int WaitStatesNeededForDef =
970             VALUWriteSGPRVALUReadWaitstates -
971             getWaitStatesSince(IsVALUDefSGPRFn,
972                                VALUWriteSGPRVALUReadWaitstates);
973         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
974       }
975     }
976 
977     if (VALU->readsRegister(AMDGPU::VCC, TRI)) {
978       UseReg = AMDGPU::VCC;
979       int WaitStatesNeededForDef =
980           VALUWriteSGPRVALUReadWaitstates -
981           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates);
982       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
983     }
984 
985     switch (VALU->getOpcode()) {
986     case AMDGPU::V_READLANE_B32:
987     case AMDGPU::V_READFIRSTLANE_B32: {
988       MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0);
989       UseReg = Src->getReg();
990       int WaitStatesNeededForDef =
991           VALUWriteVGPRReadlaneRead -
992           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead);
993       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
994     }
995       [[fallthrough]];
996     case AMDGPU::V_WRITELANE_B32: {
997       UseReg = AMDGPU::EXEC;
998       int WaitStatesNeededForDef =
999           VALUWriteEXECRWLane -
1000           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane);
1001       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
1002       break;
1003     }
1004     default:
1005       break;
1006     }
1007   }
1008 
1009   // This checks for the hazard where VMEM instructions that store more than
1010   // 8 bytes can have there store data over written by the next instruction.
1011   if (!ST.has12DWordStoreHazard())
1012     return WaitStatesNeeded;
1013 
1014   const MachineRegisterInfo &MRI = MF.getRegInfo();
1015 
1016   for (const MachineOperand &Def : VALU->defs()) {
1017     WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
1018   }
1019 
1020   return WaitStatesNeeded;
1021 }
1022 
1023 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
1024   // This checks for hazards associated with inline asm statements.
1025   // Since inline asms can contain just about anything, we use this
1026   // to call/leverage other check*Hazard routines. Note that
1027   // this function doesn't attempt to address all possible inline asm
1028   // hazards (good luck), but is a collection of what has been
1029   // problematic thus far.
1030 
1031   // see checkVALUHazards()
1032   if (!ST.has12DWordStoreHazard())
1033     return 0;
1034 
1035   const MachineRegisterInfo &MRI = MF.getRegInfo();
1036   int WaitStatesNeeded = 0;
1037 
1038   for (const MachineOperand &Op :
1039        llvm::drop_begin(IA->operands(), InlineAsm::MIOp_FirstOperand)) {
1040     if (Op.isReg() && Op.isDef()) {
1041       WaitStatesNeeded =
1042           std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
1043     }
1044   }
1045 
1046   return WaitStatesNeeded;
1047 }
1048 
1049 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
1050   const SIInstrInfo *TII = ST.getInstrInfo();
1051   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1052   const MachineRegisterInfo &MRI = MF.getRegInfo();
1053 
1054   const MachineOperand *LaneSelectOp =
1055       TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
1056 
1057   if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
1058     return 0;
1059 
1060   Register LaneSelectReg = LaneSelectOp->getReg();
1061   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); };
1062 
1063   const int RWLaneWaitStates = 4;
1064   int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn,
1065                                               RWLaneWaitStates);
1066   return RWLaneWaitStates - WaitStatesSince;
1067 }
1068 
1069 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
1070   if (!ST.hasRFEHazards())
1071     return 0;
1072 
1073   const SIInstrInfo *TII = ST.getInstrInfo();
1074 
1075   const int RFEWaitStates = 1;
1076 
1077   auto IsHazardFn = [TII](const MachineInstr &MI) {
1078     return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS;
1079   };
1080   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates);
1081   return RFEWaitStates - WaitStatesNeeded;
1082 }
1083 
1084 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
1085   const SIInstrInfo *TII = ST.getInstrInfo();
1086   const int ReadM0WaitStates = 1;
1087   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); };
1088   return ReadM0WaitStates -
1089          getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, ReadM0WaitStates);
1090 }
1091 
1092 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) {
1093   fixVMEMtoScalarWriteHazards(MI);
1094   fixVcmpxPermlaneHazards(MI);
1095   fixSMEMtoVectorWriteHazards(MI);
1096   fixVcmpxExecWARHazard(MI);
1097   fixLdsBranchVmemWARHazard(MI);
1098   if (ST.hasLdsDirect()) {
1099     fixLdsDirectVALUHazard(MI);
1100     fixLdsDirectVMEMHazard(MI);
1101   }
1102   fixVALUPartialForwardingHazard(MI);
1103   fixVALUTransUseHazard(MI);
1104   fixWMMAHazards(MI);
1105   fixShift64HighRegBug(MI);
1106   fixVALUMaskWriteHazard(MI);
1107 }
1108 
1109 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) {
1110   if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI))
1111     return false;
1112 
1113   const SIInstrInfo *TII = ST.getInstrInfo();
1114   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1115   auto IsHazardFn = [TII, TRI](const MachineInstr &MI) {
1116     return (TII->isVOPC(MI) ||
1117             ((TII->isVOP3(MI) || TII->isSDWA(MI)) && MI.isCompare())) &&
1118            MI.modifiesRegister(AMDGPU::EXEC, TRI);
1119   };
1120 
1121   auto IsExpiredFn = [](const MachineInstr &MI, int) {
1122     unsigned Opc = MI.getOpcode();
1123     return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 &&
1124            Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa;
1125   };
1126 
1127   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1128       std::numeric_limits<int>::max())
1129     return false;
1130 
1131   // V_NOP will be discarded by SQ.
1132   // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE*
1133   // which is always a VGPR and available.
1134   auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
1135   Register Reg = Src0->getReg();
1136   bool IsUndef = Src0->isUndef();
1137   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1138           TII->get(AMDGPU::V_MOV_B32_e32))
1139     .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0))
1140     .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill);
1141 
1142   return true;
1143 }
1144 
1145 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) {
1146   if (!ST.hasVMEMtoScalarWriteHazard())
1147     return false;
1148   assert(!ST.hasExtendedWaitCounts());
1149 
1150   if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI))
1151     return false;
1152 
1153   if (MI->getNumDefs() == 0)
1154     return false;
1155 
1156   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1157 
1158   auto IsHazardFn = [TRI, MI](const MachineInstr &I) {
1159     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) &&
1160         !SIInstrInfo::isFLAT(I))
1161       return false;
1162 
1163     for (const MachineOperand &Def : MI->defs()) {
1164       const MachineOperand *Op =
1165           I.findRegisterUseOperand(Def.getReg(), TRI, false);
1166       if (!Op)
1167         continue;
1168       return true;
1169     }
1170     return false;
1171   };
1172 
1173   auto IsExpiredFn = [](const MachineInstr &MI, int) {
1174     return SIInstrInfo::isVALU(MI) ||
1175            (MI.getOpcode() == AMDGPU::S_WAITCNT &&
1176             !MI.getOperand(0).getImm()) ||
1177            (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1178             AMDGPU::DepCtr::decodeFieldVmVsrc(MI.getOperand(0).getImm()) == 0);
1179   };
1180 
1181   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1182       std::numeric_limits<int>::max())
1183     return false;
1184 
1185   const SIInstrInfo *TII = ST.getInstrInfo();
1186   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1187           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
1188       .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0));
1189   return true;
1190 }
1191 
1192 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) {
1193   if (!ST.hasSMEMtoVectorWriteHazard())
1194     return false;
1195   assert(!ST.hasExtendedWaitCounts());
1196 
1197   if (!SIInstrInfo::isVALU(*MI))
1198     return false;
1199 
1200   unsigned SDSTName;
1201   switch (MI->getOpcode()) {
1202   case AMDGPU::V_READLANE_B32:
1203   case AMDGPU::V_READFIRSTLANE_B32:
1204     SDSTName = AMDGPU::OpName::vdst;
1205     break;
1206   default:
1207     SDSTName = AMDGPU::OpName::sdst;
1208     break;
1209   }
1210 
1211   const SIInstrInfo *TII = ST.getInstrInfo();
1212   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1213   const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU());
1214   const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName);
1215   if (!SDST) {
1216     for (const auto &MO : MI->implicit_operands()) {
1217       if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) {
1218         SDST = &MO;
1219         break;
1220       }
1221     }
1222   }
1223 
1224   if (!SDST)
1225     return false;
1226 
1227   const Register SDSTReg = SDST->getReg();
1228   auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) {
1229     return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI);
1230   };
1231 
1232   auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) {
1233     if (TII->isSALU(MI)) {
1234       switch (MI.getOpcode()) {
1235       case AMDGPU::S_SETVSKIP:
1236       case AMDGPU::S_VERSION:
1237       case AMDGPU::S_WAITCNT_VSCNT:
1238       case AMDGPU::S_WAITCNT_VMCNT:
1239       case AMDGPU::S_WAITCNT_EXPCNT:
1240         // These instructions cannot not mitigate the hazard.
1241         return false;
1242       case AMDGPU::S_WAITCNT_LGKMCNT:
1243         // Reducing lgkmcnt count to 0 always mitigates the hazard.
1244         return (MI.getOperand(1).getImm() == 0) &&
1245                (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1246       case AMDGPU::S_WAITCNT: {
1247         const int64_t Imm = MI.getOperand(0).getImm();
1248         AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm);
1249         // DsCnt corresponds to LGKMCnt here.
1250         return (Decoded.DsCnt == 0);
1251       }
1252       default:
1253         // SOPP instructions cannot mitigate the hazard.
1254         if (TII->isSOPP(MI))
1255           return false;
1256         // At this point the SALU can be assumed to mitigate the hazard
1257         // because either:
1258         // (a) it is independent of the at risk SMEM (breaking chain),
1259         // or
1260         // (b) it is dependent on the SMEM, in which case an appropriate
1261         //     s_waitcnt lgkmcnt _must_ exist between it and the at risk
1262         //     SMEM instruction.
1263         return true;
1264       }
1265     }
1266     return false;
1267   };
1268 
1269   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1270       std::numeric_limits<int>::max())
1271     return false;
1272 
1273   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1274           TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL)
1275       .addImm(0);
1276   return true;
1277 }
1278 
1279 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) {
1280   if (!ST.hasVcmpxExecWARHazard())
1281     return false;
1282   assert(!ST.hasExtendedWaitCounts());
1283 
1284   if (!SIInstrInfo::isVALU(*MI))
1285     return false;
1286 
1287   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1288   if (!MI->modifiesRegister(AMDGPU::EXEC, TRI))
1289     return false;
1290 
1291   auto IsHazardFn = [TRI](const MachineInstr &I) {
1292     if (SIInstrInfo::isVALU(I))
1293       return false;
1294     return I.readsRegister(AMDGPU::EXEC, TRI);
1295   };
1296 
1297   const SIInstrInfo *TII = ST.getInstrInfo();
1298   auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) {
1299     if (SIInstrInfo::isVALU(MI)) {
1300       if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst))
1301         return true;
1302       for (auto MO : MI.implicit_operands())
1303         if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg())))
1304           return true;
1305     }
1306     if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1307         AMDGPU::DepCtr::decodeFieldSaSdst(MI.getOperand(0).getImm()) == 0)
1308       return true;
1309     return false;
1310   };
1311 
1312   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1313       std::numeric_limits<int>::max())
1314     return false;
1315 
1316   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1317           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
1318       .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0));
1319   return true;
1320 }
1321 
1322 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
1323                                                  const GCNSubtarget &ST) {
1324   if (!ST.hasLdsBranchVmemWARHazard())
1325     return false;
1326 
1327   // Check if the necessary condition for the hazard is met: both LDS and VMEM
1328   // instructions need to appear in the same function.
1329   bool HasLds = false;
1330   bool HasVmem = false;
1331   for (auto &MBB : MF) {
1332     for (auto &MI : MBB) {
1333       HasLds |= SIInstrInfo::isDS(MI);
1334       HasVmem |=
1335           SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI);
1336       if (HasLds && HasVmem)
1337         return true;
1338     }
1339   }
1340   return false;
1341 }
1342 
1343 static bool isStoreCountWaitZero(const MachineInstr &I) {
1344   return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1345          I.getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
1346          !I.getOperand(1).getImm();
1347 }
1348 
1349 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) {
1350   if (!RunLdsBranchVmemWARHazardFixup)
1351     return false;
1352 
1353   assert(ST.hasLdsBranchVmemWARHazard());
1354   assert(!ST.hasExtendedWaitCounts());
1355 
1356   auto IsHazardInst = [](const MachineInstr &MI) {
1357     if (SIInstrInfo::isDS(MI))
1358       return 1;
1359     if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI))
1360       return 2;
1361     return 0;
1362   };
1363 
1364   auto InstType = IsHazardInst(*MI);
1365   if (!InstType)
1366     return false;
1367 
1368   auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) {
1369     return IsHazardInst(I) || isStoreCountWaitZero(I);
1370   };
1371 
1372   auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) {
1373     if (!I.isBranch())
1374       return false;
1375 
1376     auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) {
1377       auto InstType2 = IsHazardInst(I);
1378       return InstType2 && InstType != InstType2;
1379     };
1380 
1381     auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) {
1382       auto InstType2 = IsHazardInst(I);
1383       if (InstType == InstType2)
1384         return true;
1385 
1386       return isStoreCountWaitZero(I);
1387     };
1388 
1389     return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) !=
1390            std::numeric_limits<int>::max();
1391   };
1392 
1393   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1394       std::numeric_limits<int>::max())
1395     return false;
1396 
1397   const SIInstrInfo *TII = ST.getInstrInfo();
1398   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1399           TII->get(AMDGPU::S_WAITCNT_VSCNT))
1400     .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1401     .addImm(0);
1402 
1403   return true;
1404 }
1405 
1406 bool GCNHazardRecognizer::fixLdsDirectVALUHazard(MachineInstr *MI) {
1407   if (!SIInstrInfo::isLDSDIR(*MI))
1408     return false;
1409 
1410   const int NoHazardWaitStates = 15;
1411   const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst);
1412   const Register VDSTReg = VDST->getReg();
1413 
1414   bool VisitedTrans = false;
1415   auto IsHazardFn = [this, VDSTReg, &VisitedTrans](const MachineInstr &I) {
1416     if (!SIInstrInfo::isVALU(I))
1417       return false;
1418     VisitedTrans = VisitedTrans || SIInstrInfo::isTRANS(I);
1419     // Cover both WAR and WAW
1420     return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI);
1421   };
1422   auto IsExpiredFn = [&](const MachineInstr &I, int WaitStates) {
1423     if (WaitStates >= NoHazardWaitStates)
1424       return true;
1425     // Instructions which cause va_vdst==0 expire hazard
1426     return SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1427            SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I);
1428   };
1429   auto GetWaitStatesFn = [](const MachineInstr &MI) {
1430     return SIInstrInfo::isVALU(MI) ? 1 : 0;
1431   };
1432 
1433   DenseSet<const MachineBasicBlock *> Visited;
1434   auto Count = ::getWaitStatesSince(IsHazardFn, MI->getParent(),
1435                                     std::next(MI->getReverseIterator()), 0,
1436                                     IsExpiredFn, Visited, GetWaitStatesFn);
1437 
1438   // Transcendentals can execute in parallel to other VALUs.
1439   // This makes va_vdst count unusable with a mixture of VALU and TRANS.
1440   if (VisitedTrans)
1441     Count = 0;
1442 
1443   MachineOperand *WaitVdstOp =
1444       TII.getNamedOperand(*MI, AMDGPU::OpName::waitvdst);
1445   WaitVdstOp->setImm(std::min(Count, NoHazardWaitStates));
1446 
1447   return true;
1448 }
1449 
1450 bool GCNHazardRecognizer::fixLdsDirectVMEMHazard(MachineInstr *MI) {
1451   if (!SIInstrInfo::isLDSDIR(*MI))
1452     return false;
1453 
1454   const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst);
1455   const Register VDSTReg = VDST->getReg();
1456 
1457   auto IsHazardFn = [this, VDSTReg](const MachineInstr &I) {
1458     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I) &&
1459         !SIInstrInfo::isDS(I))
1460       return false;
1461     return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI);
1462   };
1463   bool LdsdirCanWait = ST.hasLdsWaitVMSRC();
1464   // TODO: On GFX12 the hazard should expire on S_WAIT_LOADCNT/SAMPLECNT/BVHCNT
1465   // according to the type of VMEM instruction.
1466   auto IsExpiredFn = [this, LdsdirCanWait](const MachineInstr &I, int) {
1467     return SIInstrInfo::isVALU(I) || SIInstrInfo::isEXP(I) ||
1468            (I.getOpcode() == AMDGPU::S_WAITCNT && !I.getOperand(0).getImm()) ||
1469            (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1470             AMDGPU::DepCtr::decodeFieldVmVsrc(I.getOperand(0).getImm()) == 0) ||
1471            (LdsdirCanWait && SIInstrInfo::isLDSDIR(I) &&
1472             !TII.getNamedOperand(I, AMDGPU::OpName::waitvsrc)->getImm());
1473   };
1474 
1475   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1476       std::numeric_limits<int>::max())
1477     return false;
1478 
1479   if (LdsdirCanWait) {
1480     TII.getNamedOperand(*MI, AMDGPU::OpName::waitvsrc)->setImm(0);
1481   } else {
1482     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1483             TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1484         .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0));
1485   }
1486 
1487   return true;
1488 }
1489 
1490 bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) {
1491   if (!ST.hasVALUPartialForwardingHazard())
1492     return false;
1493   assert(!ST.hasExtendedWaitCounts());
1494 
1495   if (!ST.isWave64() || !SIInstrInfo::isVALU(*MI))
1496     return false;
1497 
1498   SmallSetVector<Register, 4> SrcVGPRs;
1499 
1500   for (const MachineOperand &Use : MI->explicit_uses()) {
1501     if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1502       SrcVGPRs.insert(Use.getReg());
1503   }
1504 
1505   // Only applies with >= 2 unique VGPR sources
1506   if (SrcVGPRs.size() <= 1)
1507     return false;
1508 
1509   // Look for the following pattern:
1510   //   Va <- VALU [PreExecPos]
1511   //   intv1
1512   //   Exec <- SALU [ExecPos]
1513   //   intv2
1514   //   Vb <- VALU [PostExecPos]
1515   //   intv3
1516   //   MI Va, Vb (WaitState = 0)
1517   //
1518   // Where:
1519   // intv1 + intv2 <= 2 VALUs
1520   // intv3 <= 4 VALUs
1521   //
1522   // If found, insert an appropriate S_WAITCNT_DEPCTR before MI.
1523 
1524   const int Intv1plus2MaxVALUs = 2;
1525   const int Intv3MaxVALUs = 4;
1526   const int IntvMaxVALUs = 6;
1527   const int NoHazardVALUWaitStates = IntvMaxVALUs + 2;
1528 
1529   struct StateType {
1530     SmallDenseMap<Register, int, 4> DefPos;
1531     int ExecPos = std::numeric_limits<int>::max();
1532     int VALUs = 0;
1533   };
1534 
1535   StateType State;
1536 
1537   // This overloads expiry testing with all the hazard detection
1538   auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) {
1539     // Too many VALU states have passed
1540     if (State.VALUs > NoHazardVALUWaitStates)
1541       return HazardExpired;
1542 
1543     // Instructions which cause va_vdst==0 expire hazard
1544     if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1545         SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) ||
1546         (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1547          AMDGPU::DepCtr::decodeFieldVaVdst(I.getOperand(0).getImm()) == 0))
1548       return HazardExpired;
1549 
1550     // Track registers writes
1551     bool Changed = false;
1552     if (SIInstrInfo::isVALU(I)) {
1553       for (Register Src : SrcVGPRs) {
1554         if (!State.DefPos.count(Src) && I.modifiesRegister(Src, &TRI)) {
1555           State.DefPos[Src] = State.VALUs;
1556           Changed = true;
1557         }
1558       }
1559     } else if (SIInstrInfo::isSALU(I)) {
1560       if (State.ExecPos == std::numeric_limits<int>::max()) {
1561         if (!State.DefPos.empty() && I.modifiesRegister(AMDGPU::EXEC, &TRI)) {
1562           State.ExecPos = State.VALUs;
1563           Changed = true;
1564         }
1565       }
1566     }
1567 
1568     // Early expiration: too many VALUs in intv3
1569     if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty())
1570       return HazardExpired;
1571 
1572     // Only evaluate state if something changed
1573     if (!Changed)
1574       return NoHazardFound;
1575 
1576     // Determine positions of VALUs pre/post exec change
1577     if (State.ExecPos == std::numeric_limits<int>::max())
1578       return NoHazardFound;
1579 
1580     int PreExecPos = std::numeric_limits<int>::max();
1581     int PostExecPos = std::numeric_limits<int>::max();
1582 
1583     for (auto Entry : State.DefPos) {
1584       int DefVALUs = Entry.second;
1585       if (DefVALUs != std::numeric_limits<int>::max()) {
1586         if (DefVALUs >= State.ExecPos)
1587           PreExecPos = std::min(PreExecPos, DefVALUs);
1588         else
1589           PostExecPos = std::min(PostExecPos, DefVALUs);
1590       }
1591     }
1592 
1593     // Need a VALUs post exec change
1594     if (PostExecPos == std::numeric_limits<int>::max())
1595       return NoHazardFound;
1596 
1597     // Too many VALUs in intv3?
1598     int Intv3VALUs = PostExecPos;
1599     if (Intv3VALUs > Intv3MaxVALUs)
1600       return HazardExpired;
1601 
1602     // Too many VALUs in intv2?
1603     int Intv2VALUs = (State.ExecPos - PostExecPos) - 1;
1604     if (Intv2VALUs > Intv1plus2MaxVALUs)
1605       return HazardExpired;
1606 
1607     // Need a VALUs pre exec change
1608     if (PreExecPos == std::numeric_limits<int>::max())
1609       return NoHazardFound;
1610 
1611     // Too many VALUs in intv1?
1612     int Intv1VALUs = PreExecPos - State.ExecPos;
1613     if (Intv1VALUs > Intv1plus2MaxVALUs)
1614       return HazardExpired;
1615 
1616     // Too many VALUs in intv1 + intv2
1617     if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs)
1618       return HazardExpired;
1619 
1620     return HazardFound;
1621   };
1622   auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) {
1623     if (SIInstrInfo::isVALU(MI))
1624       State.VALUs += 1;
1625   };
1626 
1627   DenseSet<const MachineBasicBlock *> Visited;
1628   if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(),
1629                             std::next(MI->getReverseIterator()), Visited))
1630     return false;
1631 
1632   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1633           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1634       .addImm(0x0fff);
1635 
1636   return true;
1637 }
1638 
1639 bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) {
1640   if (!ST.hasVALUTransUseHazard())
1641     return false;
1642   assert(!ST.hasExtendedWaitCounts());
1643 
1644   if (!SIInstrInfo::isVALU(*MI))
1645     return false;
1646 
1647   SmallSet<Register, 4> SrcVGPRs;
1648 
1649   for (const MachineOperand &Use : MI->explicit_uses()) {
1650     if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1651       SrcVGPRs.insert(Use.getReg());
1652   }
1653 
1654   // Look for the following pattern:
1655   //   Va <- TRANS VALU
1656   //   intv
1657   //   MI Va (WaitState = 0)
1658   //
1659   // Where:
1660   // intv <= 5 VALUs / 1 TRANS
1661   //
1662   // If found, insert an appropriate S_WAITCNT_DEPCTR before MI.
1663 
1664   const int IntvMaxVALUs = 5;
1665   const int IntvMaxTRANS = 1;
1666 
1667   struct StateType {
1668     int VALUs = 0;
1669     int TRANS = 0;
1670   };
1671 
1672   StateType State;
1673 
1674   // This overloads expiry testing with all the hazard detection
1675   auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) {
1676     // Too many VALU states have passed
1677     if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS)
1678       return HazardExpired;
1679 
1680     // Instructions which cause va_vdst==0 expire hazard
1681     if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1682         SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) ||
1683         (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1684          I.getOperand(0).getImm() == 0x0fff))
1685       return HazardExpired;
1686 
1687     // Track registers writes
1688     if (SIInstrInfo::isTRANS(I)) {
1689       for (Register Src : SrcVGPRs) {
1690         if (I.modifiesRegister(Src, &TRI)) {
1691           return HazardFound;
1692         }
1693       }
1694     }
1695 
1696     return NoHazardFound;
1697   };
1698   auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) {
1699     if (SIInstrInfo::isVALU(MI))
1700       State.VALUs += 1;
1701     if (SIInstrInfo::isTRANS(MI))
1702       State.TRANS += 1;
1703   };
1704 
1705   DenseSet<const MachineBasicBlock *> Visited;
1706   if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(),
1707                             std::next(MI->getReverseIterator()), Visited))
1708     return false;
1709 
1710   // Hazard is observed - insert a wait on va_dst counter to ensure hazard is
1711   // avoided.
1712   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1713           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1714       .addImm(AMDGPU::DepCtr::encodeFieldVaVdst(0));
1715 
1716   return true;
1717 }
1718 
1719 bool GCNHazardRecognizer::fixWMMAHazards(MachineInstr *MI) {
1720   if (!SIInstrInfo::isWMMA(*MI) && !SIInstrInfo::isSWMMAC(*MI))
1721     return false;
1722 
1723   const SIInstrInfo *TII = ST.getInstrInfo();
1724   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1725 
1726   auto IsHazardFn = [MI, TII, TRI, this](const MachineInstr &I) {
1727     if (!SIInstrInfo::isWMMA(I) && !SIInstrInfo::isSWMMAC(I))
1728       return false;
1729 
1730     // Src0(matrix A) or Src1(matrix B) of the current wmma instruction overlaps
1731     // with the dest(matrix D) of the previous wmma.
1732     const Register CurSrc0Reg =
1733         TII->getNamedOperand(*MI, AMDGPU::OpName::src0)->getReg();
1734     const Register CurSrc1Reg =
1735         TII->getNamedOperand(*MI, AMDGPU::OpName::src1)->getReg();
1736 
1737     const Register PrevDstReg =
1738         TII->getNamedOperand(I, AMDGPU::OpName::vdst)->getReg();
1739 
1740     if (TRI->regsOverlap(PrevDstReg, CurSrc0Reg) ||
1741         TRI->regsOverlap(PrevDstReg, CurSrc1Reg)) {
1742       return true;
1743     }
1744 
1745     // GFX12+ allows overlap of matrix C with PrevDstReg (hardware will stall)
1746     // but Index can't overlap with PrevDstReg.
1747     if (AMDGPU::isGFX12Plus(ST)) {
1748       if (SIInstrInfo::isSWMMAC(*MI)) {
1749         const Register CurIndex =
1750             TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->getReg();
1751         if (TRI->regsOverlap(PrevDstReg, CurIndex))
1752           return true;
1753       }
1754       return false;
1755     }
1756 
1757     return false;
1758   };
1759 
1760   auto IsExpiredFn = [](const MachineInstr &I, int) {
1761     return SIInstrInfo::isVALU(I);
1762   };
1763 
1764   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1765       std::numeric_limits<int>::max())
1766     return false;
1767 
1768   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32));
1769 
1770   return true;
1771 }
1772 
1773 bool GCNHazardRecognizer::fixShift64HighRegBug(MachineInstr *MI) {
1774   if (!ST.hasShift64HighRegBug())
1775     return false;
1776   assert(!ST.hasExtendedWaitCounts());
1777 
1778   switch (MI->getOpcode()) {
1779   default:
1780     return false;
1781   case AMDGPU::V_LSHLREV_B64_e64:
1782   case AMDGPU::V_LSHRREV_B64_e64:
1783   case AMDGPU::V_ASHRREV_I64_e64:
1784     break;
1785   }
1786 
1787   MachineOperand *Amt = TII.getNamedOperand(*MI, AMDGPU::OpName::src0);
1788   if (!Amt->isReg())
1789     return false;
1790 
1791   Register AmtReg = Amt->getReg();
1792   const MachineRegisterInfo &MRI = MF.getRegInfo();
1793   // Check if this is a last VGPR in the allocation block.
1794   if (!TRI.isVGPR(MRI, AmtReg) || ((AmtReg - AMDGPU::VGPR0) & 7) != 7)
1795     return false;
1796 
1797   if (AmtReg != AMDGPU::VGPR255 && MRI.isPhysRegUsed(AmtReg + 1))
1798     return false;
1799 
1800   MachineOperand *Src1 = TII.getNamedOperand(*MI, AMDGPU::OpName::src1);
1801   bool OverlappedSrc = Src1->isReg() && TRI.regsOverlap(Src1->getReg(), AmtReg);
1802   bool OverlappedDst = MI->modifiesRegister(AmtReg, &TRI);
1803   bool Overlapped = OverlappedSrc || OverlappedDst;
1804 
1805   assert(!OverlappedDst || !OverlappedSrc ||
1806          Src1->getReg() == MI->getOperand(0).getReg());
1807   assert(ST.needsAlignedVGPRs());
1808   static_assert(AMDGPU::VGPR0 + 1 == AMDGPU::VGPR1);
1809 
1810   Register NewReg;
1811   for (MCRegister Reg : Overlapped ? AMDGPU::VReg_64_Align2RegClass
1812                                    : AMDGPU::VGPR_32RegClass) {
1813     if (!MI->modifiesRegister(Reg, &TRI) && !MI->readsRegister(Reg, &TRI)) {
1814       NewReg = Reg;
1815       break;
1816     }
1817   }
1818 
1819   Register NewAmt = Overlapped ? (Register)TRI.getSubReg(NewReg, AMDGPU::sub1)
1820                                : NewReg;
1821   Register NewAmtLo;
1822 
1823   if (Overlapped)
1824     NewAmtLo = TRI.getSubReg(NewReg, AMDGPU::sub0);
1825 
1826   DebugLoc DL = MI->getDebugLoc();
1827   MachineBasicBlock *MBB = MI->getParent();
1828   // Insert a full wait count because found register might be pending a wait.
1829   BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_WAITCNT))
1830       .addImm(0);
1831 
1832   // Insert V_SWAP_B32 instruction(s) and run hazard recognizer on them.
1833   if (Overlapped)
1834     runOnInstruction(
1835         BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmtLo)
1836             .addDef(AmtReg - 1)
1837             .addReg(AmtReg - 1, RegState::Undef)
1838             .addReg(NewAmtLo, RegState::Undef));
1839   runOnInstruction(BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmt)
1840                        .addDef(AmtReg)
1841                        .addReg(AmtReg, RegState::Undef)
1842                        .addReg(NewAmt, RegState::Undef));
1843 
1844   // Instructions emitted after the current instruction will be processed by the
1845   // parent loop of the hazard recognizer in a natural way.
1846   BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32),
1847           AmtReg)
1848       .addDef(NewAmt)
1849       .addReg(NewAmt)
1850       .addReg(AmtReg);
1851   if (Overlapped)
1852     BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32),
1853             AmtReg - 1)
1854         .addDef(NewAmtLo)
1855         .addReg(NewAmtLo)
1856         .addReg(AmtReg - 1);
1857 
1858   // Re-running hazard recognizer on the modified instruction is not necessary,
1859   // inserted V_SWAP_B32 has already both read and write new registers so
1860   // hazards related to these register has already been handled.
1861   Amt->setReg(NewAmt);
1862   Amt->setIsKill(false);
1863   // We do not update liveness, so verifier may see it as undef.
1864   Amt->setIsUndef();
1865   if (OverlappedDst)
1866     MI->getOperand(0).setReg(NewReg);
1867   if (OverlappedSrc) {
1868     Src1->setReg(NewReg);
1869     Src1->setIsKill(false);
1870     Src1->setIsUndef();
1871   }
1872 
1873   return true;
1874 }
1875 
1876 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) {
1877   int NSAtoVMEMWaitStates = 1;
1878 
1879   if (!ST.hasNSAtoVMEMBug())
1880     return 0;
1881 
1882   if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI))
1883     return 0;
1884 
1885   const SIInstrInfo *TII = ST.getInstrInfo();
1886   const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset);
1887   if (!Offset || (Offset->getImm() & 6) == 0)
1888     return 0;
1889 
1890   auto IsHazardFn = [TII](const MachineInstr &I) {
1891     if (!SIInstrInfo::isMIMG(I))
1892       return false;
1893     const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode());
1894     return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA &&
1895            TII->getInstSizeInBytes(I) >= 16;
1896   };
1897 
1898   return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1);
1899 }
1900 
1901 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) {
1902   int FPAtomicToDenormModeWaitStates = 3;
1903 
1904   if (!ST.hasFPAtomicToDenormModeHazard())
1905     return 0;
1906   assert(!ST.hasExtendedWaitCounts());
1907 
1908   if (MI->getOpcode() != AMDGPU::S_DENORM_MODE)
1909     return 0;
1910 
1911   auto IsHazardFn = [](const MachineInstr &I) {
1912     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I))
1913       return false;
1914     return SIInstrInfo::isFPAtomic(I);
1915   };
1916 
1917   auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) {
1918     if (WaitStates >= 3 || SIInstrInfo::isVALU(MI))
1919       return true;
1920 
1921     switch (MI.getOpcode()) {
1922     case AMDGPU::S_WAITCNT:
1923     case AMDGPU::S_WAITCNT_VSCNT:
1924     case AMDGPU::S_WAITCNT_VMCNT:
1925     case AMDGPU::S_WAITCNT_EXPCNT:
1926     case AMDGPU::S_WAITCNT_LGKMCNT:
1927     case AMDGPU::S_WAIT_IDLE:
1928       return true;
1929     default:
1930       break;
1931     }
1932 
1933     return false;
1934   };
1935 
1936   return FPAtomicToDenormModeWaitStates -
1937          ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn);
1938 }
1939 
1940 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) {
1941   assert(SIInstrInfo::isMAI(*MI));
1942 
1943   return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI);
1944 }
1945 
1946 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) {
1947   // Early exit if no padding is requested.
1948   if (MFMAPaddingRatio == 0)
1949     return 0;
1950 
1951   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1952   if (!SIInstrInfo::isMFMA(*MI) || MFI->getOccupancy() < 2)
1953     return 0;
1954 
1955   int NeighborMFMALatency = 0;
1956   auto IsNeighboringMFMA = [&NeighborMFMALatency,
1957                             this](const MachineInstr &MI) {
1958     if (!SIInstrInfo::isMFMA(MI))
1959       return false;
1960 
1961     NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI);
1962     return true;
1963   };
1964 
1965   const int MaxMFMAPipelineWaitStates = 16;
1966   int WaitStatesSinceNeighborMFMA =
1967       getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates);
1968 
1969   int NeighborMFMAPaddingNeeded =
1970       (NeighborMFMALatency * MFMAPaddingRatio / 100) -
1971       WaitStatesSinceNeighborMFMA;
1972 
1973   return std::max(0, NeighborMFMAPaddingNeeded);
1974 }
1975 
1976 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) {
1977   int WaitStatesNeeded = 0;
1978   unsigned Opc = MI->getOpcode();
1979 
1980   auto IsVALUFn = [](const MachineInstr &MI) {
1981     return SIInstrInfo::isVALU(MI) || MI.isInlineAsm();
1982   };
1983 
1984   if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write
1985     const int LegacyVALUWritesVGPRWaitStates = 2;
1986     const int VALUWritesExecWaitStates = 4;
1987     const int MaxWaitStates = 4;
1988 
1989     int WaitStatesNeededForUse = VALUWritesExecWaitStates -
1990       getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates);
1991     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1992 
1993     if (WaitStatesNeeded < MaxWaitStates) {
1994       for (const MachineOperand &Use : MI->explicit_uses()) {
1995         const int MaxWaitStates = 2;
1996 
1997         if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1998           continue;
1999 
2000         int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates -
2001           getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates);
2002         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2003 
2004         if (WaitStatesNeeded == MaxWaitStates)
2005           break;
2006       }
2007     }
2008   }
2009 
2010   for (const MachineOperand &Op : MI->explicit_operands()) {
2011     if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg()))
2012       continue;
2013 
2014     if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
2015       continue;
2016 
2017     const int MFMAWritesAGPROverlappedSrcABWaitStates = 4;
2018     const int MFMAWritesAGPROverlappedSrcCWaitStates = 2;
2019     const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4;
2020     const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10;
2021     const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18;
2022     const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1;
2023     const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7;
2024     const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15;
2025     const int MaxWaitStates = 18;
2026     Register Reg = Op.getReg();
2027     unsigned HazardDefLatency = 0;
2028 
2029     auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency,
2030                                this](const MachineInstr &MI) {
2031       if (!SIInstrInfo::isMFMA(MI))
2032         return false;
2033       Register DstReg = MI.getOperand(0).getReg();
2034       if (DstReg == Reg)
2035         return false;
2036       HazardDefLatency =
2037           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
2038       return TRI.regsOverlap(DstReg, Reg);
2039     };
2040 
2041     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn,
2042                                                    MaxWaitStates);
2043     int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates;
2044     int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
2045     int OpNo = Op.getOperandNo();
2046     if (OpNo == SrcCIdx) {
2047       NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates;
2048     } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) {
2049       switch (HazardDefLatency) {
2050       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates;
2051                break;
2052       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates;
2053                break;
2054       case 16: [[fallthrough]];
2055       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates;
2056                break;
2057       }
2058     } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
2059       switch (HazardDefLatency) {
2060       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates;
2061                break;
2062       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates;
2063                break;
2064       case 16: [[fallthrough]];
2065       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates;
2066                break;
2067       }
2068     }
2069 
2070     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2071     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2072 
2073     if (WaitStatesNeeded == MaxWaitStates)
2074       return WaitStatesNeeded; // Early exit.
2075 
2076     auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) {
2077       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
2078         return false;
2079       Register DstReg = MI.getOperand(0).getReg();
2080       return TRI.regsOverlap(Reg, DstReg);
2081     };
2082 
2083     const int AccVGPRWriteMFMAReadSrcCWaitStates = 1;
2084     const int AccVGPRWriteMFMAReadSrcABWaitStates = 3;
2085     const int AccVGPRWriteAccVgprReadWaitStates = 3;
2086     NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates;
2087     if (OpNo == SrcCIdx)
2088       NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates;
2089     else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64)
2090       NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates;
2091 
2092     WaitStatesNeededForUse = NeedWaitStates -
2093       getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates);
2094     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2095 
2096     if (WaitStatesNeeded == MaxWaitStates)
2097       return WaitStatesNeeded; // Early exit.
2098   }
2099 
2100   if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
2101     const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0;
2102     const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5;
2103     const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13;
2104     const int MaxWaitStates = 13;
2105     Register DstReg = MI->getOperand(0).getReg();
2106     unsigned HazardDefLatency = 0;
2107 
2108     auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency,
2109                          this](const MachineInstr &MI) {
2110       if (!SIInstrInfo::isMFMA(MI))
2111         return false;
2112       Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg();
2113       HazardDefLatency =
2114           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
2115       return TRI.regsOverlap(Reg, DstReg);
2116     };
2117 
2118     int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates);
2119     int NeedWaitStates;
2120     switch (HazardDefLatency) {
2121     case 2:  NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates;
2122              break;
2123     case 8:  NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates;
2124              break;
2125     case 16: [[fallthrough]];
2126     default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates;
2127              break;
2128     }
2129 
2130     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince;
2131     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2132   }
2133 
2134   // Pad neighboring MFMA with noops for better inter-wave performance.
2135   WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI));
2136 
2137   return WaitStatesNeeded;
2138 }
2139 
2140 static int
2141 GFX940_XDL_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(int NumPasses) {
2142   // 2 pass -> 3
2143   // 4 pass -> 5
2144   // 8 pass -> 9
2145   // 16 pass -> 17
2146   return NumPasses + 1;
2147 }
2148 
2149 static int
2150 GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(int NumPasses) {
2151   // 2 pass -> 2
2152   // 4 pass -> 4
2153   // 8 pass -> 8
2154   // 16 pass -> 16
2155   return NumPasses;
2156 }
2157 
2158 static int
2159 GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses) {
2160   // 2 pass -> 4
2161   // 4 pass -> 6
2162   // 8 pass -> 10
2163   // 16 pass -> 18
2164   return NumPasses + 2;
2165 }
2166 
2167 static int GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses) {
2168   // 2 pass -> 5
2169   // 4 pass -> 7
2170   // 8 pass -> 11
2171   // 16 pass -> 19
2172   return NumPasses + 3;
2173 }
2174 
2175 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) {
2176   int WaitStatesNeeded = 0;
2177   unsigned Opc = MI->getOpcode();
2178 
2179   auto IsLegacyVALUFn = [](const MachineInstr &MI) {
2180     return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI);
2181   };
2182 
2183   auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) {
2184     return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) &&
2185            !SIInstrInfo::isDOT(MI);
2186   };
2187 
2188   if (!SIInstrInfo::isMFMA(*MI))
2189     return WaitStatesNeeded;
2190 
2191   const int VALUWritesExecWaitStates = 4;
2192   int WaitStatesNeededForUse = VALUWritesExecWaitStates -
2193     getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn,
2194                           VALUWritesExecWaitStates);
2195   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2196 
2197   int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
2198 
2199   // Loop for both DGEMM and S/HGEMM 2nd instruction.
2200   for (const MachineOperand &Use : MI->explicit_uses()) {
2201     const int LegacyVALUNotDotWritesVGPRWaitStates = 2;
2202     const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2;
2203     const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8;
2204     const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16;
2205     const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3;
2206     const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9;
2207     const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17;
2208     const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9;
2209     const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4;
2210     const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5;
2211     const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11;
2212     const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19;
2213     const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6;
2214     const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11;
2215     const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4;
2216     const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2;
2217     const int MaxWaitStates = 19;
2218 
2219     if (!Use.isReg())
2220       continue;
2221     Register Reg = Use.getReg();
2222     bool FullReg;
2223     const MachineInstr *MI1;
2224 
2225     auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1,
2226                                this](const MachineInstr &MI) {
2227       if (!SIInstrInfo::isMFMA(MI))
2228         return false;
2229       Register DstReg = MI.getOperand(0).getReg();
2230       FullReg = (DstReg == Reg);
2231       MI1 = &MI;
2232       return TRI.regsOverlap(DstReg, Reg);
2233     };
2234 
2235     WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates -
2236       getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates);
2237     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2238 
2239     int NumWaitStates =
2240         getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates);
2241     if (NumWaitStates == std::numeric_limits<int>::max())
2242       continue;
2243 
2244     int OpNo = Use.getOperandNo();
2245     unsigned Opc1 = MI1->getOpcode();
2246     int NeedWaitStates = 0;
2247     if (OpNo == SrcCIdx) {
2248       if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) {
2249         NeedWaitStates = 0;
2250       } else if (FullReg) {
2251         if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
2252              Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) &&
2253             (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
2254              Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64))
2255           NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates;
2256         else if (ST.hasGFX940Insts() &&
2257                  TSchedModel.computeInstrLatency(MI1) == 2)
2258           NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates;
2259       } else {
2260         switch (Opc1) {
2261         case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
2262         case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
2263         case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64:
2264         case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64:
2265           if (!isXDL(ST, *MI))
2266             NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates;
2267           break;
2268         case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
2269         case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
2270           if (!isXDL(ST, *MI))
2271             NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates;
2272           break;
2273         default:
2274           int NumPasses = TSchedModel.computeInstrLatency(MI1);
2275           if (ST.hasGFX940Insts()) {
2276             if (isXDL(ST, *MI) && !isXDL(ST, *MI1))
2277               break;
2278 
2279             NeedWaitStates =
2280                 isXDL(ST, *MI1)
2281                     ? GFX940_XDL_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(
2282                           NumPasses)
2283                     : GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(
2284                           NumPasses);
2285             break;
2286           }
2287 
2288           switch (NumPasses) {
2289           case 2:
2290             NeedWaitStates =
2291                 isDGEMM(Opc) ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates
2292                              : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates;
2293             break;
2294           case 8:
2295             NeedWaitStates =
2296                 isDGEMM(Opc)
2297                     ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates
2298                     : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates;
2299             break;
2300           case 16:
2301             NeedWaitStates =
2302                 isDGEMM(Opc)
2303                     ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates
2304                     : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates;
2305             break;
2306           default:
2307             llvm_unreachable("unexpected number of passes");
2308           }
2309         }
2310       }
2311     } else {
2312       switch (Opc1) {
2313       case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
2314       case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
2315       case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64:
2316       case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64:
2317         NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates;
2318         break;
2319       case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
2320       case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
2321         NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates;
2322         break;
2323       default:
2324         int NumPasses = TSchedModel.computeInstrLatency(MI1);
2325 
2326         if (ST.hasGFX940Insts()) {
2327           NeedWaitStates =
2328               isXDL(ST, *MI1)
2329                   ? GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates(
2330                         NumPasses)
2331                   : GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates(
2332                         NumPasses);
2333           break;
2334         }
2335 
2336         switch (NumPasses) {
2337         case 2:
2338           NeedWaitStates = SMFMA4x4WritesVGPROverlappedSrcABWaitStates;
2339           break;
2340         case 4:
2341           llvm_unreachable("unexpected number of passes for mfma");
2342         case 8:
2343           NeedWaitStates = SMFMA16x16WritesVGPROverlappedSrcABWaitStates;
2344           break;
2345         case 16:
2346         default:
2347           NeedWaitStates = SMFMA32x32WritesVGPROverlappedSrcABWaitStates;
2348         }
2349       }
2350     }
2351     if (WaitStatesNeeded >= NeedWaitStates)
2352       continue;
2353 
2354     WaitStatesNeededForUse = NeedWaitStates - NumWaitStates;
2355     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2356 
2357     if (WaitStatesNeeded == MaxWaitStates)
2358       break;
2359   }
2360 
2361   // Pad neighboring MFMA with noops for better inter-wave performance.
2362   WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI));
2363 
2364   return WaitStatesNeeded;
2365 }
2366 
2367 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) {
2368   // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards()
2369   if (!ST.hasMAIInsts() || ST.hasGFX90AInsts())
2370     return 0;
2371 
2372   int WaitStatesNeeded = 0;
2373 
2374   auto IsAccVgprReadFn = [](const MachineInstr &MI) {
2375     return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64;
2376   };
2377 
2378   for (const MachineOperand &Op : MI->explicit_uses()) {
2379     if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg()))
2380       continue;
2381 
2382     Register Reg = Op.getReg();
2383 
2384     const int AccVgprReadLdStWaitStates = 2;
2385     const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1;
2386     const int MaxWaitStates = 2;
2387 
2388     int WaitStatesNeededForUse = AccVgprReadLdStWaitStates -
2389       getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates);
2390     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2391 
2392     if (WaitStatesNeeded == MaxWaitStates)
2393       return WaitStatesNeeded; // Early exit.
2394 
2395     auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) {
2396       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 &&
2397           MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
2398         return false;
2399       auto IsVALUFn = [](const MachineInstr &MI) {
2400         return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI);
2401       };
2402       return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) <
2403              std::numeric_limits<int>::max();
2404     };
2405 
2406     WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates -
2407       getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates);
2408     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2409   }
2410 
2411   return WaitStatesNeeded;
2412 }
2413 
2414 static int GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(int NumPasses) {
2415   // 2 pass -> 4
2416   // 4 pass -> 6
2417   // 8 pass -> 10
2418   // 16 pass -> 18
2419   return NumPasses + 2;
2420 }
2421 
2422 static int GFX940_XDL_N_PassWriteVgprVALUWawWaitStates(int NumPasses) {
2423   // 2 pass -> 5
2424   // 4 pass -> 7
2425   // 8 pass -> 11
2426   // 16 pass -> 19
2427   return NumPasses + 3;
2428 }
2429 
2430 static int GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses) {
2431   // 2 pass -> 5
2432   // 4 pass -> 7
2433   // 8 pass -> 11
2434   // 16 pass -> 19
2435   return NumPasses + 3;
2436 }
2437 
2438 static int GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses) {
2439   // 2 pass -> 4
2440   // 4 pass -> 6
2441   // 8 pass -> 10
2442   // 16 pass -> 18
2443   return NumPasses + 2;
2444 }
2445 
2446 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) {
2447   if (!ST.hasGFX90AInsts())
2448     return 0;
2449 
2450   auto IsDGEMMFn = [](const MachineInstr &MI) -> bool {
2451     return isDGEMM(MI.getOpcode());
2452   };
2453 
2454   // This is checked in checkMAIHazards90A()
2455   if (SIInstrInfo::isMFMA(*MI))
2456     return 0;
2457 
2458   const MachineRegisterInfo &MRI = MF.getRegInfo();
2459 
2460   int WaitStatesNeeded = 0;
2461 
2462   bool IsMem = SIInstrInfo::isVMEM(*MI) ||
2463                SIInstrInfo::isFLAT(*MI) ||
2464                SIInstrInfo::isDS(*MI);
2465   bool IsMemOrExport = IsMem || SIInstrInfo::isEXP(*MI);
2466   bool IsVALU = SIInstrInfo::isVALU(*MI);
2467 
2468   const MachineInstr *MFMA = nullptr;
2469   unsigned Reg;
2470   auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) {
2471     if (!SIInstrInfo::isMFMA(MI) ||
2472         !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
2473       return false;
2474     MFMA = &MI;
2475     return true;
2476   };
2477 
2478   const MachineInstr *DOT = nullptr;
2479   auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) {
2480     if (!SIInstrInfo::isDOT(MI) ||
2481         !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
2482       return false;
2483     DOT = &MI;
2484     return true;
2485   };
2486 
2487   bool DGEMMAfterVALUWrite = false;
2488   auto IsDGEMMHazard = [&DGEMMAfterVALUWrite, this](const MachineInstr &MI) {
2489     // Found DGEMM on reverse traversal to def.
2490     if (isDGEMM(MI.getOpcode()))
2491       DGEMMAfterVALUWrite = true;
2492 
2493     // Only hazard if register is defined by a VALU and a DGEMM is found after
2494     // after the def.
2495     if (!TII.isVALU(MI) || !DGEMMAfterVALUWrite)
2496       return false;
2497 
2498     return true;
2499   };
2500 
2501   int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
2502                                            AMDGPU::OpName::src2);
2503 
2504   if (IsMemOrExport || IsVALU) {
2505     const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5;
2506     const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11;
2507     const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19;
2508     const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9;
2509     const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18;
2510     const int DMFMA4x4WriteVgprVALUReadWaitStates = 6;
2511     const int DMFMA16x16WriteVgprVALUReadWaitStates = 11;
2512     const int DotWriteSameDotReadSrcAB = 3;
2513     const int DotWriteDifferentVALURead = 3;
2514     const int DMFMABetweenVALUWriteVMEMRead = 2;
2515     const int MaxWaitStates = 19;
2516 
2517     for (const MachineOperand &Use : MI->explicit_uses()) {
2518       if (!Use.isReg())
2519         continue;
2520       Reg = Use.getReg();
2521 
2522       DOT = nullptr;
2523       int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
2524                                                      MaxWaitStates);
2525       if (DOT) {
2526         int NeedWaitStates = 0;
2527         if (DOT->getOpcode() == MI->getOpcode()) {
2528           if (&Use - &MI->getOperand(0) != SrcCIdx)
2529             NeedWaitStates = DotWriteSameDotReadSrcAB;
2530         } else {
2531           NeedWaitStates = DotWriteDifferentVALURead;
2532         }
2533 
2534         int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2535         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2536       }
2537 
2538       // Workaround for HW data hazard bug observed only in GFX90A. When there
2539       // is a DGEMM instruction in-between a VALU and a VMEM instruction it
2540       // causes the SQ to incorrectly not insert two wait states between the two
2541       // instructions needed to avoid data hazard.
2542       if (IsMem && ST.hasGFX90AInsts() && !ST.hasGFX940Insts()) {
2543         DGEMMAfterVALUWrite = false;
2544         if (TRI.isVectorRegister(MRI, Reg)) {
2545           int WaitStatesNeededForUse =
2546                 DMFMABetweenVALUWriteVMEMRead -
2547                 getWaitStatesSinceDef(Reg, IsDGEMMHazard,
2548                                       DMFMABetweenVALUWriteVMEMRead);
2549 
2550           WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2551         }
2552       }
2553 
2554       MFMA = nullptr;
2555       WaitStatesSinceDef =
2556           getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates);
2557       if (!MFMA)
2558         continue;
2559 
2560       unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
2561       int NumPasses = HazardDefLatency;
2562       int NeedWaitStates = MaxWaitStates;
2563 
2564       if (isDGEMM(MFMA->getOpcode())) {
2565         switch (HazardDefLatency) {
2566         case 4:
2567           NeedWaitStates = IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates
2568                                          : DMFMA4x4WriteVgprVALUReadWaitStates;
2569           break;
2570         case 8:
2571         case 16:
2572           NeedWaitStates = IsMemOrExport
2573                                ? DMFMA16x16WriteVgprMemExpReadWaitStates
2574                                : DMFMA16x16WriteVgprVALUReadWaitStates;
2575           break;
2576         default:
2577           llvm_unreachable("unexpected dgemm");
2578         }
2579       } else if (ST.hasGFX940Insts()) {
2580         NeedWaitStates =
2581             isXDL(ST, *MFMA)
2582                 ? GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates(NumPasses)
2583                 : GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates(
2584                       NumPasses);
2585       } else {
2586         switch (HazardDefLatency) {
2587         case 2:
2588           NeedWaitStates = SMFMA4x4WriteVgprVALUMemExpReadWaitStates;
2589           break;
2590         case 8:
2591           NeedWaitStates = SMFMA16x16WriteVgprVALUMemExpReadWaitStates;
2592           break;
2593         case 16:
2594           NeedWaitStates = SMFMA32x32WriteVgprVALUMemExpReadWaitStates;
2595           break;
2596         default:
2597           llvm_unreachable("unexpected number of passes for mfma");
2598         }
2599       }
2600 
2601       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2602       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2603 
2604       if (WaitStatesNeeded == MaxWaitStates)
2605         break;
2606     }
2607   }
2608 
2609   unsigned Opc = MI->getOpcode();
2610   const int DMFMAToFMA64WaitStates = 2;
2611   if ((Opc == AMDGPU::V_FMA_F64_e64 ||
2612        Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 ||
2613        Opc == AMDGPU::V_FMAC_F64_dpp) &&
2614       WaitStatesNeeded < DMFMAToFMA64WaitStates) {
2615     int WaitStatesNeededForUse = DMFMAToFMA64WaitStates -
2616       getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates);
2617     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2618   }
2619 
2620   if (!IsVALU && !IsMemOrExport)
2621     return WaitStatesNeeded;
2622 
2623   for (const MachineOperand &Def : MI->defs()) {
2624     const int SMFMA4x4WriteVgprVALUWawWaitStates = 5;
2625     const int SMFMA16x16WriteVgprVALUWawWaitStates = 11;
2626     const int SMFMA32x32WriteVgprVALUWawWaitStates = 19;
2627     const int SMFMA4x4ReadVgprVALUWarWaitStates = 1;
2628     const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3;
2629     const int SMFMA16x16ReadVgprVALUWarWaitStates = 7;
2630     const int SMFMA32x32ReadVgprVALUWarWaitStates = 15;
2631     const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6;
2632     const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11;
2633     const int DotWriteDifferentVALUWrite = 3;
2634     const int MaxWaitStates = 19;
2635     const int MaxWarWaitStates = 15;
2636 
2637     Reg = Def.getReg();
2638 
2639     DOT = nullptr;
2640     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
2641                                                    MaxWaitStates);
2642     if (DOT && DOT->getOpcode() != MI->getOpcode())
2643       WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite -
2644                                                     WaitStatesSinceDef);
2645 
2646     MFMA = nullptr;
2647     WaitStatesSinceDef =
2648         getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates);
2649     if (MFMA) {
2650       int NeedWaitStates = MaxWaitStates;
2651       int NumPasses = TSchedModel.computeInstrLatency(MFMA);
2652 
2653       if (isDGEMM(MFMA->getOpcode())) {
2654         switch (NumPasses) {
2655         case 4:
2656           NeedWaitStates = DMFMA4x4WriteVgprVALUWriteWaitStates;
2657           break;
2658         case 8:
2659         case 16:
2660           NeedWaitStates = DMFMA16x16WriteVgprVALUWriteWaitStates;
2661           break;
2662         default:
2663           llvm_unreachable("unexpected number of cycles for dgemm");
2664         }
2665       } else if (ST.hasGFX940Insts()) {
2666         NeedWaitStates =
2667             isXDL(ST, *MFMA)
2668                 ? GFX940_XDL_N_PassWriteVgprVALUWawWaitStates(NumPasses)
2669                 : GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(NumPasses);
2670       } else {
2671         switch (NumPasses) {
2672         case 2:
2673           NeedWaitStates = SMFMA4x4WriteVgprVALUWawWaitStates;
2674           break;
2675         case 8:
2676           NeedWaitStates = SMFMA16x16WriteVgprVALUWawWaitStates;
2677           break;
2678         case 16:
2679           NeedWaitStates = SMFMA32x32WriteVgprVALUWawWaitStates;
2680           break;
2681         default:
2682           llvm_unreachable("Unexpected number of passes for mfma");
2683         }
2684       }
2685 
2686       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2687       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2688 
2689       if (WaitStatesNeeded == MaxWaitStates)
2690         break;
2691     }
2692 
2693     auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) {
2694       if (!SIInstrInfo::isMFMA(MI) || isDGEMM(MI.getOpcode()) ||
2695           !MI.readsRegister(Reg, &TRI))
2696         return false;
2697 
2698       if (ST.hasGFX940Insts() && !isXDL(ST, MI))
2699         return false;
2700 
2701       const MachineOperand *SrcC =
2702           TII.getNamedOperand(MI, AMDGPU::OpName::src2);
2703       assert(SrcC);
2704       if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg))
2705         return false;
2706 
2707       MFMA = &MI;
2708       return true;
2709     };
2710 
2711     MFMA = nullptr;
2712     int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn,
2713                                                 MaxWarWaitStates);
2714     if (!MFMA)
2715       continue;
2716 
2717     unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
2718     int NeedWaitStates = MaxWaitStates;
2719     switch (HazardDefLatency) {
2720     case 2:  NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates;
2721              break;
2722     case 4:  assert(ST.hasGFX940Insts());
2723              NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates;
2724              break;
2725     case 8:  NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates;
2726              break;
2727     case 16: [[fallthrough]];
2728     default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates;
2729              break;
2730     }
2731 
2732     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse;
2733     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2734   }
2735 
2736   return WaitStatesNeeded;
2737 }
2738 
2739 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) {
2740   if (!SU->isInstr())
2741     return false;
2742 
2743   const MachineInstr *MAI = nullptr;
2744 
2745   auto IsMFMAFn = [&MAI](const MachineInstr &MI) {
2746     MAI = nullptr;
2747     if (SIInstrInfo::isMFMA(MI))
2748       MAI = &MI;
2749     return MAI != nullptr;
2750   };
2751 
2752   MachineInstr *MI = SU->getInstr();
2753   if (IsMFMAFn(*MI)) {
2754     int W = getWaitStatesSince(IsMFMAFn, 16);
2755     if (MAI)
2756       return W < (int)TSchedModel.computeInstrLatency(MAI);
2757   }
2758 
2759   return false;
2760 }
2761 
2762 bool GCNHazardRecognizer::fixVALUMaskWriteHazard(MachineInstr *MI) {
2763   if (!ST.hasVALUMaskWriteHazard())
2764     return false;
2765   assert(!ST.hasExtendedWaitCounts());
2766 
2767   if (!ST.isWave64() || !SIInstrInfo::isSALU(*MI))
2768     return false;
2769 
2770   // The hazard sequence is three instructions:
2771   //   1. VALU reads SGPR as mask
2772   //   2. SALU writes SGPR
2773   //   3. SALU reads SGPR
2774   // The hazard can expire if the distance between 2 and 3 is sufficient.
2775   // In practice this happens <10% of the time, hence this always assumes
2776   // the hazard exists if 1 and 2 are present to avoid searching.
2777 
2778   const MachineOperand *SDSTOp = TII.getNamedOperand(*MI, AMDGPU::OpName::sdst);
2779   if (!SDSTOp || !SDSTOp->isReg())
2780     return false;
2781 
2782   const Register HazardReg = SDSTOp->getReg();
2783   if (HazardReg == AMDGPU::EXEC ||
2784       HazardReg == AMDGPU::EXEC_LO ||
2785       HazardReg == AMDGPU::EXEC_HI ||
2786       HazardReg == AMDGPU::M0)
2787     return false;
2788 
2789   auto IsHazardFn = [HazardReg, this](const MachineInstr &I) {
2790     switch (I.getOpcode()) {
2791     case AMDGPU::V_ADDC_U32_e32:
2792     case AMDGPU::V_ADDC_U32_dpp:
2793     case AMDGPU::V_CNDMASK_B16_e32:
2794     case AMDGPU::V_CNDMASK_B16_dpp:
2795     case AMDGPU::V_CNDMASK_B32_e32:
2796     case AMDGPU::V_CNDMASK_B32_dpp:
2797     case AMDGPU::V_DIV_FMAS_F32_e64:
2798     case AMDGPU::V_DIV_FMAS_F64_e64:
2799     case AMDGPU::V_SUBB_U32_e32:
2800     case AMDGPU::V_SUBB_U32_dpp:
2801     case AMDGPU::V_SUBBREV_U32_e32:
2802     case AMDGPU::V_SUBBREV_U32_dpp:
2803       // These implicitly read VCC as mask source.
2804       return HazardReg == AMDGPU::VCC ||
2805              HazardReg == AMDGPU::VCC_LO ||
2806              HazardReg == AMDGPU::VCC_HI;
2807     case AMDGPU::V_ADDC_U32_e64:
2808     case AMDGPU::V_ADDC_U32_e64_dpp:
2809     case AMDGPU::V_CNDMASK_B16_e64:
2810     case AMDGPU::V_CNDMASK_B16_e64_dpp:
2811     case AMDGPU::V_CNDMASK_B32_e64:
2812     case AMDGPU::V_CNDMASK_B32_e64_dpp:
2813     case AMDGPU::V_SUBB_U32_e64:
2814     case AMDGPU::V_SUBB_U32_e64_dpp:
2815     case AMDGPU::V_SUBBREV_U32_e64:
2816     case AMDGPU::V_SUBBREV_U32_e64_dpp: {
2817       // Only check mask register overlaps.
2818       const MachineOperand *SSRCOp = TII.getNamedOperand(I, AMDGPU::OpName::src2);
2819       assert(SSRCOp);
2820       return TRI.regsOverlap(SSRCOp->getReg(), HazardReg);
2821     }
2822     default:
2823       return false;
2824     }
2825   };
2826 
2827   const MachineRegisterInfo &MRI = MF.getRegInfo();
2828   auto IsExpiredFn = [&MRI, this](const MachineInstr &I, int) {
2829     // s_waitcnt_depctr sa_sdst(0) mitigates hazard.
2830     if (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
2831         AMDGPU::DepCtr::decodeFieldSaSdst(I.getOperand(0).getImm()) == 0)
2832       return true;
2833 
2834     // VALU access to any SGPR or literal constant other than HazardReg
2835     // mitigates hazard. No need to check HazardReg here as this will
2836     // only be called when !IsHazardFn.
2837     if (!SIInstrInfo::isVALU(I))
2838       return false;
2839     for (int OpNo = 0, End = I.getNumOperands(); OpNo < End; ++OpNo) {
2840       const MachineOperand &Op = I.getOperand(OpNo);
2841       if (Op.isReg()) {
2842         Register OpReg = Op.getReg();
2843         // Only consider uses
2844         if (!Op.isUse())
2845           continue;
2846         // Ignore EXEC
2847         if (OpReg == AMDGPU::EXEC ||
2848             OpReg == AMDGPU::EXEC_LO ||
2849             OpReg == AMDGPU::EXEC_HI)
2850           continue;
2851         // Ignore all implicit uses except VCC
2852         if (Op.isImplicit()) {
2853           if (OpReg == AMDGPU::VCC ||
2854               OpReg == AMDGPU::VCC_LO ||
2855               OpReg == AMDGPU::VCC_HI)
2856             return true;
2857           continue;
2858         }
2859         if (TRI.isSGPRReg(MRI, OpReg))
2860           return true;
2861       } else {
2862         const MCInstrDesc &InstDesc = I.getDesc();
2863         const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo];
2864         if (!TII.isInlineConstant(Op, OpInfo))
2865           return true;
2866       }
2867     }
2868     return false;
2869   };
2870 
2871   // Check for hazard
2872   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
2873       std::numeric_limits<int>::max())
2874     return false;
2875 
2876   auto NextMI = std::next(MI->getIterator());
2877 
2878   // Add s_waitcnt_depctr sa_sdst(0) after SALU write.
2879   BuildMI(*MI->getParent(), NextMI, MI->getDebugLoc(),
2880           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
2881       .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0));
2882 
2883   // SALU write may be s_getpc in a bundle.
2884   if (MI->getOpcode() == AMDGPU::S_GETPC_B64) {
2885     // Update offsets of any references in the bundle.
2886     while (NextMI != MI->getParent()->end() &&
2887            NextMI->isBundledWithPred()) {
2888       for (auto &Operand : NextMI->operands()) {
2889         if (Operand.isGlobal())
2890           Operand.setOffset(Operand.getOffset() + 4);
2891       }
2892       NextMI++;
2893     }
2894   }
2895 
2896   return true;
2897 }
2898