1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "GCNSubtarget.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "SIMachineFunctionInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/ScheduleDAG.h" 19 #include "llvm/TargetParser/TargetParser.h" 20 21 using namespace llvm; 22 23 namespace { 24 25 struct MFMAPaddingRatioParser : public cl::parser<unsigned> { 26 MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {} 27 28 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 29 if (Arg.getAsInteger(0, Value)) 30 return O.error("'" + Arg + "' value invalid for uint argument!"); 31 32 if (Value > 100) 33 return O.error("'" + Arg + "' value must be in the range [0, 100]!"); 34 35 return false; 36 } 37 }; 38 39 } // end anonymous namespace 40 41 static cl::opt<unsigned, false, MFMAPaddingRatioParser> 42 MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden, 43 cl::desc("Fill a percentage of the latency between " 44 "neighboring MFMA with s_nops.")); 45 46 //===----------------------------------------------------------------------===// 47 // Hazard Recognizer Implementation 48 //===----------------------------------------------------------------------===// 49 50 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 51 const GCNSubtarget &ST); 52 53 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 54 IsHazardRecognizerMode(false), 55 CurrCycleInstr(nullptr), 56 MF(MF), 57 ST(MF.getSubtarget<GCNSubtarget>()), 58 TII(*ST.getInstrInfo()), 59 TRI(TII.getRegisterInfo()), 60 ClauseUses(TRI.getNumRegUnits()), 61 ClauseDefs(TRI.getNumRegUnits()) { 62 MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5; 63 TSchedModel.init(&ST); 64 RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST); 65 } 66 67 void GCNHazardRecognizer::Reset() { 68 EmittedInstrs.clear(); 69 } 70 71 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 72 EmitInstruction(SU->getInstr()); 73 } 74 75 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 76 CurrCycleInstr = MI; 77 } 78 79 static bool isDivFMas(unsigned Opcode) { 80 return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64; 81 } 82 83 static bool isSGetReg(unsigned Opcode) { 84 return Opcode == AMDGPU::S_GETREG_B32; 85 } 86 87 static bool isSSetReg(unsigned Opcode) { 88 switch (Opcode) { 89 case AMDGPU::S_SETREG_B32: 90 case AMDGPU::S_SETREG_B32_mode: 91 case AMDGPU::S_SETREG_IMM32_B32: 92 case AMDGPU::S_SETREG_IMM32_B32_mode: 93 return true; 94 } 95 return false; 96 } 97 98 static bool isRWLane(unsigned Opcode) { 99 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 100 } 101 102 static bool isRFE(unsigned Opcode) { 103 return Opcode == AMDGPU::S_RFE_B64; 104 } 105 106 static bool isSMovRel(unsigned Opcode) { 107 switch (Opcode) { 108 case AMDGPU::S_MOVRELS_B32: 109 case AMDGPU::S_MOVRELS_B64: 110 case AMDGPU::S_MOVRELD_B32: 111 case AMDGPU::S_MOVRELD_B64: 112 return true; 113 default: 114 return false; 115 } 116 } 117 118 static bool isDGEMM(unsigned Opcode) { 119 return AMDGPU::getMAIIsDGEMM(Opcode); 120 } 121 122 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) { 123 unsigned Opcode = MI.getOpcode(); 124 125 if (!SIInstrInfo::isMAI(MI) || 126 isDGEMM(Opcode) || 127 Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 128 Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64) 129 return false; 130 131 if (!ST.hasGFX940Insts()) 132 return true; 133 134 return AMDGPU::getMAIIsGFX940XDL(Opcode); 135 } 136 137 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 138 const MachineInstr &MI) { 139 if (TII.isAlwaysGDS(MI.getOpcode())) 140 return true; 141 142 switch (MI.getOpcode()) { 143 case AMDGPU::S_SENDMSG: 144 case AMDGPU::S_SENDMSGHALT: 145 case AMDGPU::S_TTRACEDATA: 146 return true; 147 // These DS opcodes don't support GDS. 148 case AMDGPU::DS_NOP: 149 case AMDGPU::DS_PERMUTE_B32: 150 case AMDGPU::DS_BPERMUTE_B32: 151 return false; 152 default: 153 if (TII.isDS(MI.getOpcode())) { 154 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 155 AMDGPU::OpName::gds); 156 if (MI.getOperand(GDS).getImm()) 157 return true; 158 } 159 return false; 160 } 161 } 162 163 static bool isPermlane(const MachineInstr &MI) { 164 unsigned Opcode = MI.getOpcode(); 165 return Opcode == AMDGPU::V_PERMLANE16_B32_e64 || 166 Opcode == AMDGPU::V_PERMLANE64_B32 || 167 Opcode == AMDGPU::V_PERMLANEX16_B32_e64 || 168 Opcode == AMDGPU::V_PERMLANE16_VAR_B32_e64 || 169 Opcode == AMDGPU::V_PERMLANEX16_VAR_B32_e64; 170 } 171 172 static bool isLdsDma(const MachineInstr &MI) { 173 return SIInstrInfo::isVALU(MI) && 174 (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)); 175 } 176 177 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 178 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 179 AMDGPU::OpName::simm16); 180 return std::get<0>(AMDGPU::Hwreg::HwregEncoding::decode(RegOp->getImm())); 181 } 182 183 ScheduleHazardRecognizer::HazardType 184 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 185 MachineInstr *MI = SU->getInstr(); 186 // If we are not in "HazardRecognizerMode" and therefore not being run from 187 // the scheduler, track possible stalls from hazards but don't insert noops. 188 auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard; 189 190 if (MI->isBundle()) 191 return NoHazard; 192 193 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 194 return HazardType; 195 196 if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) 197 return HazardType; 198 199 if (checkFPAtomicToDenormModeHazard(MI) > 0) 200 return HazardType; 201 202 if (ST.hasNoDataDepHazard()) 203 return NoHazard; 204 205 // FIXME: Should flat be considered vmem? 206 if ((SIInstrInfo::isVMEM(*MI) || 207 SIInstrInfo::isFLAT(*MI)) 208 && checkVMEMHazards(MI) > 0) 209 return HazardType; 210 211 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 212 return HazardType; 213 214 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 215 return HazardType; 216 217 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 218 return HazardType; 219 220 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 221 return HazardType; 222 223 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 224 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 225 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 226 return HazardType; 227 228 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 229 return HazardType; 230 231 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 232 return HazardType; 233 234 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 235 return HazardType; 236 237 if (((ST.hasReadM0MovRelInterpHazard() && 238 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 239 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 240 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 241 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 242 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 243 (ST.hasReadM0LdsDirectHazard() && 244 MI->readsRegister(AMDGPU::LDS_DIRECT, /*TRI=*/nullptr))) && 245 checkReadM0Hazards(MI) > 0) 246 return HazardType; 247 248 if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0) 249 return HazardType; 250 251 if ((SIInstrInfo::isVMEM(*MI) || 252 SIInstrInfo::isFLAT(*MI) || 253 SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0) 254 return HazardType; 255 256 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 257 return HazardType; 258 259 return NoHazard; 260 } 261 262 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII, 263 unsigned Quantity) { 264 while (Quantity > 0) { 265 unsigned Arg = std::min(Quantity, 8u); 266 Quantity -= Arg; 267 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP)) 268 .addImm(Arg - 1); 269 } 270 } 271 272 unsigned 273 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const { 274 const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI); 275 assert(TSchedModel.getWriteProcResBegin(SC) != 276 TSchedModel.getWriteProcResEnd(SC)); 277 return TSchedModel.getWriteProcResBegin(SC)->ReleaseAtCycle; 278 } 279 280 void GCNHazardRecognizer::processBundle() { 281 MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator()); 282 MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); 283 // Check bundled MachineInstr's for hazards. 284 for (; MI != E && MI->isInsideBundle(); ++MI) { 285 CurrCycleInstr = &*MI; 286 unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); 287 288 if (IsHazardRecognizerMode) { 289 fixHazards(CurrCycleInstr); 290 291 insertNoopsInBundle(CurrCycleInstr, TII, WaitStates); 292 } 293 294 // It’s unnecessary to track more than MaxLookAhead instructions. Since we 295 // include the bundled MI directly after, only add a maximum of 296 // (MaxLookAhead - 1) noops to EmittedInstrs. 297 for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i) 298 EmittedInstrs.push_front(nullptr); 299 300 EmittedInstrs.push_front(CurrCycleInstr); 301 EmittedInstrs.resize(MaxLookAhead); 302 } 303 CurrCycleInstr = nullptr; 304 } 305 306 void GCNHazardRecognizer::runOnInstruction(MachineInstr *MI) { 307 assert(IsHazardRecognizerMode); 308 309 unsigned NumPreNoops = PreEmitNoops(MI); 310 EmitNoops(NumPreNoops); 311 if (MI->isInsideBundle()) 312 insertNoopsInBundle(MI, TII, NumPreNoops); 313 else 314 TII.insertNoops(*MI->getParent(), MachineBasicBlock::iterator(MI), 315 NumPreNoops); 316 EmitInstruction(MI); 317 AdvanceCycle(); 318 } 319 320 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 321 IsHazardRecognizerMode = true; 322 CurrCycleInstr = MI; 323 unsigned W = PreEmitNoopsCommon(MI); 324 fixHazards(MI); 325 CurrCycleInstr = nullptr; 326 return W; 327 } 328 329 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 330 if (MI->isBundle()) 331 return 0; 332 333 int WaitStates = 0; 334 335 if (SIInstrInfo::isSMRD(*MI)) 336 return std::max(WaitStates, checkSMRDHazards(MI)); 337 338 if (ST.hasNSAtoVMEMBug()) 339 WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI)); 340 341 WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI)); 342 343 if (ST.hasNoDataDepHazard()) 344 return WaitStates; 345 346 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 347 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 348 349 if (SIInstrInfo::isVALU(*MI)) 350 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 351 352 if (SIInstrInfo::isDPP(*MI)) 353 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 354 355 if (isDivFMas(MI->getOpcode())) 356 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 357 358 if (isRWLane(MI->getOpcode())) 359 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 360 361 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 362 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 363 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 364 WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI)); 365 366 if (MI->isInlineAsm()) 367 return std::max(WaitStates, checkInlineAsmHazards(MI)); 368 369 if (isSGetReg(MI->getOpcode())) 370 return std::max(WaitStates, checkGetRegHazards(MI)); 371 372 if (isSSetReg(MI->getOpcode())) 373 return std::max(WaitStates, checkSetRegHazards(MI)); 374 375 if (isRFE(MI->getOpcode())) 376 return std::max(WaitStates, checkRFEHazards(MI)); 377 378 if ((ST.hasReadM0MovRelInterpHazard() && 379 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 380 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 381 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 382 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 383 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 384 (ST.hasReadM0LdsDirectHazard() && 385 MI->readsRegister(AMDGPU::LDS_DIRECT, /*TRI=*/nullptr))) 386 return std::max(WaitStates, checkReadM0Hazards(MI)); 387 388 if (SIInstrInfo::isMAI(*MI)) 389 return std::max(WaitStates, checkMAIHazards(MI)); 390 391 if (SIInstrInfo::isVMEM(*MI) || 392 SIInstrInfo::isFLAT(*MI) || 393 SIInstrInfo::isDS(*MI)) 394 return std::max(WaitStates, checkMAILdStHazards(MI)); 395 396 return WaitStates; 397 } 398 399 void GCNHazardRecognizer::EmitNoop() { 400 EmittedInstrs.push_front(nullptr); 401 } 402 403 void GCNHazardRecognizer::AdvanceCycle() { 404 // When the scheduler detects a stall, it will call AdvanceCycle() without 405 // emitting any instructions. 406 if (!CurrCycleInstr) { 407 EmittedInstrs.push_front(nullptr); 408 return; 409 } 410 411 if (CurrCycleInstr->isBundle()) { 412 processBundle(); 413 return; 414 } 415 416 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 417 if (!NumWaitStates) { 418 CurrCycleInstr = nullptr; 419 return; 420 } 421 422 // Keep track of emitted instructions 423 EmittedInstrs.push_front(CurrCycleInstr); 424 425 // Add a nullptr for each additional wait state after the first. Make sure 426 // not to add more than getMaxLookAhead() items to the list, since we 427 // truncate the list to that size right after this loop. 428 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 429 i < e; ++i) { 430 EmittedInstrs.push_front(nullptr); 431 } 432 433 // getMaxLookahead() is the largest number of wait states we will ever need 434 // to insert, so there is no point in keeping track of more than that many 435 // wait states. 436 EmittedInstrs.resize(getMaxLookAhead()); 437 438 CurrCycleInstr = nullptr; 439 } 440 441 void GCNHazardRecognizer::RecedeCycle() { 442 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 443 } 444 445 //===----------------------------------------------------------------------===// 446 // Helper Functions 447 //===----------------------------------------------------------------------===// 448 449 using HazardFnResult = enum { HazardFound, HazardExpired, NoHazardFound }; 450 451 using IsExpiredFn = function_ref<bool(const MachineInstr &, int WaitStates)>; 452 using GetNumWaitStatesFn = function_ref<unsigned int(const MachineInstr &)>; 453 454 // Search for a hazard in a block and its predecessors. 455 template <typename StateT> 456 static bool 457 hasHazard(StateT State, 458 function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard, 459 function_ref<void(StateT &, const MachineInstr &)> UpdateState, 460 const MachineBasicBlock *MBB, 461 MachineBasicBlock::const_reverse_instr_iterator I, 462 DenseSet<const MachineBasicBlock *> &Visited) { 463 for (auto E = MBB->instr_rend(); I != E; ++I) { 464 // No need to look at parent BUNDLE instructions. 465 if (I->isBundle()) 466 continue; 467 468 switch (IsHazard(State, *I)) { 469 case HazardFound: 470 return true; 471 case HazardExpired: 472 return false; 473 default: 474 // Continue search 475 break; 476 } 477 478 if (I->isInlineAsm() || I->isMetaInstruction()) 479 continue; 480 481 UpdateState(State, *I); 482 } 483 484 for (MachineBasicBlock *Pred : MBB->predecessors()) { 485 if (!Visited.insert(Pred).second) 486 continue; 487 488 if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(), 489 Visited)) 490 return true; 491 } 492 493 return false; 494 } 495 496 // Returns a minimum wait states since \p I walking all predecessors. 497 // Only scans until \p IsExpired does not return true. 498 // Can only be run in a hazard recognizer mode. 499 static int getWaitStatesSince( 500 GCNHazardRecognizer::IsHazardFn IsHazard, const MachineBasicBlock *MBB, 501 MachineBasicBlock::const_reverse_instr_iterator I, int WaitStates, 502 IsExpiredFn IsExpired, DenseSet<const MachineBasicBlock *> &Visited, 503 GetNumWaitStatesFn GetNumWaitStates = SIInstrInfo::getNumWaitStates) { 504 for (auto E = MBB->instr_rend(); I != E; ++I) { 505 // Don't add WaitStates for parent BUNDLE instructions. 506 if (I->isBundle()) 507 continue; 508 509 if (IsHazard(*I)) 510 return WaitStates; 511 512 if (I->isInlineAsm()) 513 continue; 514 515 WaitStates += GetNumWaitStates(*I); 516 517 if (IsExpired(*I, WaitStates)) 518 return std::numeric_limits<int>::max(); 519 } 520 521 int MinWaitStates = std::numeric_limits<int>::max(); 522 for (MachineBasicBlock *Pred : MBB->predecessors()) { 523 if (!Visited.insert(Pred).second) 524 continue; 525 526 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), WaitStates, 527 IsExpired, Visited, GetNumWaitStates); 528 529 MinWaitStates = std::min(MinWaitStates, W); 530 } 531 532 return MinWaitStates; 533 } 534 535 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 536 const MachineInstr *MI, IsExpiredFn IsExpired) { 537 DenseSet<const MachineBasicBlock *> Visited; 538 return getWaitStatesSince(IsHazard, MI->getParent(), 539 std::next(MI->getReverseIterator()), 540 0, IsExpired, Visited); 541 } 542 543 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 544 if (IsHazardRecognizerMode) { 545 auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) { 546 return WaitStates >= Limit; 547 }; 548 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 549 } 550 551 int WaitStates = 0; 552 for (MachineInstr *MI : EmittedInstrs) { 553 if (MI) { 554 if (IsHazard(*MI)) 555 return WaitStates; 556 557 if (MI->isInlineAsm()) 558 continue; 559 } 560 ++WaitStates; 561 562 if (WaitStates >= Limit) 563 break; 564 } 565 return std::numeric_limits<int>::max(); 566 } 567 568 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 569 IsHazardFn IsHazardDef, 570 int Limit) { 571 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 572 573 auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) { 574 return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI); 575 }; 576 577 return getWaitStatesSince(IsHazardFn, Limit); 578 } 579 580 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 581 int Limit) { 582 auto IsHazardFn = [IsHazard](const MachineInstr &MI) { 583 return isSSetReg(MI.getOpcode()) && IsHazard(MI); 584 }; 585 586 return getWaitStatesSince(IsHazardFn, Limit); 587 } 588 589 //===----------------------------------------------------------------------===// 590 // No-op Hazard Detection 591 //===----------------------------------------------------------------------===// 592 593 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV, 594 MCRegister Reg) { 595 for (MCRegUnit Unit : TRI.regunits(Reg)) 596 BV.set(Unit); 597 } 598 599 static void addRegsToSet(const SIRegisterInfo &TRI, 600 iterator_range<MachineInstr::const_mop_iterator> Ops, 601 BitVector &DefSet, BitVector &UseSet) { 602 for (const MachineOperand &Op : Ops) { 603 if (Op.isReg()) 604 addRegUnits(TRI, Op.isDef() ? DefSet : UseSet, Op.getReg().asMCReg()); 605 } 606 } 607 608 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 609 addRegsToSet(TRI, MI.operands(), ClauseDefs, ClauseUses); 610 } 611 612 static bool breaksSMEMSoftClause(MachineInstr *MI) { 613 return !SIInstrInfo::isSMRD(*MI); 614 } 615 616 static bool breaksVMEMSoftClause(MachineInstr *MI) { 617 return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI); 618 } 619 620 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 621 // SMEM soft clause are only present on VI+, and only matter if xnack is 622 // enabled. 623 if (!ST.isXNACKEnabled()) 624 return 0; 625 626 bool IsSMRD = TII.isSMRD(*MEM); 627 628 resetClause(); 629 630 // A soft-clause is any group of consecutive SMEM instructions. The 631 // instructions in this group may return out of order and/or may be 632 // replayed (i.e. the same instruction issued more than once). 633 // 634 // In order to handle these situations correctly we need to make sure that 635 // when a clause has more than one instruction, no instruction in the clause 636 // writes to a register that is read by another instruction in the clause 637 // (including itself). If we encounter this situation, we need to break the 638 // clause by inserting a non SMEM instruction. 639 640 for (MachineInstr *MI : EmittedInstrs) { 641 // When we hit a non-SMEM instruction then we have passed the start of the 642 // clause and we can stop. 643 if (!MI) 644 break; 645 646 if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI)) 647 break; 648 649 addClauseInst(*MI); 650 } 651 652 if (ClauseDefs.none()) 653 return 0; 654 655 // We need to make sure not to put loads and stores in the same clause if they 656 // use the same address. For now, just start a new clause whenever we see a 657 // store. 658 if (MEM->mayStore()) 659 return 1; 660 661 addClauseInst(*MEM); 662 663 // If the set of defs and uses intersect then we cannot add this instruction 664 // to the clause, so we have a hazard. 665 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 666 } 667 668 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 669 int WaitStatesNeeded = 0; 670 671 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 672 673 // This SMRD hazard only affects SI. 674 if (!ST.hasSMRDReadVALUDefHazard()) 675 return WaitStatesNeeded; 676 677 // A read of an SGPR by SMRD instruction requires 4 wait states when the 678 // SGPR was written by a VALU instruction. 679 int SmrdSgprWaitStates = 4; 680 auto IsHazardDefFn = [this](const MachineInstr &MI) { 681 return TII.isVALU(MI); 682 }; 683 auto IsBufferHazardDefFn = [this](const MachineInstr &MI) { 684 return TII.isSALU(MI); 685 }; 686 687 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 688 689 for (const MachineOperand &Use : SMRD->uses()) { 690 if (!Use.isReg()) 691 continue; 692 int WaitStatesNeededForUse = 693 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 694 SmrdSgprWaitStates); 695 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 696 697 // This fixes what appears to be undocumented hardware behavior in SI where 698 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 699 // needs some number of nops in between. We don't know how many we need, but 700 // let's use 4. This wasn't discovered before probably because the only 701 // case when this happens is when we expand a 64-bit pointer into a full 702 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 703 // probably never encountered in the closed-source land. 704 if (IsBufferSMRD) { 705 int WaitStatesNeededForUse = 706 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 707 IsBufferHazardDefFn, 708 SmrdSgprWaitStates); 709 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 710 } 711 } 712 713 return WaitStatesNeeded; 714 } 715 716 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 717 if (!ST.hasVMEMReadSGPRVALUDefHazard()) 718 return 0; 719 720 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 721 722 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 723 // SGPR was written by a VALU Instruction. 724 const int VmemSgprWaitStates = 5; 725 auto IsHazardDefFn = [this](const MachineInstr &MI) { 726 return TII.isVALU(MI); 727 }; 728 for (const MachineOperand &Use : VMEM->uses()) { 729 if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg())) 730 continue; 731 732 int WaitStatesNeededForUse = 733 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 734 VmemSgprWaitStates); 735 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 736 } 737 return WaitStatesNeeded; 738 } 739 740 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 741 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 742 const SIInstrInfo *TII = ST.getInstrInfo(); 743 744 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 745 int DppVgprWaitStates = 2; 746 int DppExecWaitStates = 5; 747 int WaitStatesNeeded = 0; 748 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 749 return TII->isVALU(MI); 750 }; 751 752 for (const MachineOperand &Use : DPP->uses()) { 753 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 754 continue; 755 int WaitStatesNeededForUse = 756 DppVgprWaitStates - getWaitStatesSinceDef( 757 Use.getReg(), 758 [](const MachineInstr &) { return true; }, 759 DppVgprWaitStates); 760 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 761 } 762 763 WaitStatesNeeded = std::max( 764 WaitStatesNeeded, 765 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 766 DppExecWaitStates)); 767 768 return WaitStatesNeeded; 769 } 770 771 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 772 const SIInstrInfo *TII = ST.getInstrInfo(); 773 774 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 775 // instruction. 776 const int DivFMasWaitStates = 4; 777 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 778 return TII->isVALU(MI); 779 }; 780 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 781 DivFMasWaitStates); 782 783 return DivFMasWaitStates - WaitStatesNeeded; 784 } 785 786 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 787 const SIInstrInfo *TII = ST.getInstrInfo(); 788 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 789 790 const int GetRegWaitStates = 2; 791 auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) { 792 return GetRegHWReg == getHWReg(TII, MI); 793 }; 794 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 795 796 return GetRegWaitStates - WaitStatesNeeded; 797 } 798 799 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 800 const SIInstrInfo *TII = ST.getInstrInfo(); 801 unsigned HWReg = getHWReg(TII, *SetRegInstr); 802 803 const int SetRegWaitStates = ST.getSetRegWaitStates(); 804 auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) { 805 return HWReg == getHWReg(TII, MI); 806 }; 807 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 808 return SetRegWaitStates - WaitStatesNeeded; 809 } 810 811 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 812 if (!MI.mayStore()) 813 return -1; 814 815 const SIInstrInfo *TII = ST.getInstrInfo(); 816 unsigned Opcode = MI.getOpcode(); 817 const MCInstrDesc &Desc = MI.getDesc(); 818 819 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 820 int VDataRCID = -1; 821 if (VDataIdx != -1) 822 VDataRCID = Desc.operands()[VDataIdx].RegClass; 823 824 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 825 // There is no hazard if the instruction does not use vector regs 826 // (like wbinvl1) 827 if (VDataIdx == -1) 828 return -1; 829 // For MUBUF/MTBUF instructions this hazard only exists if the 830 // instruction is not using a register in the soffset field. 831 const MachineOperand *SOffset = 832 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 833 // If we have no soffset operand, then assume this field has been 834 // hardcoded to zero. 835 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 836 (!SOffset || !SOffset->isReg())) 837 return VDataIdx; 838 } 839 840 // MIMG instructions create a hazard if they don't use a 256-bit T# and 841 // the store size is greater than 8 bytes and they have more than two bits 842 // of their dmask set. 843 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 844 if (TII->isMIMG(MI)) { 845 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 846 assert(SRsrcIdx != -1 && 847 AMDGPU::getRegBitWidth(Desc.operands()[SRsrcIdx].RegClass) == 256); 848 (void)SRsrcIdx; 849 } 850 851 if (TII->isFLAT(MI)) { 852 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 853 if (AMDGPU::getRegBitWidth(Desc.operands()[DataIdx].RegClass) > 64) 854 return DataIdx; 855 } 856 857 return -1; 858 } 859 860 int 861 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 862 const MachineRegisterInfo &MRI) { 863 // Helper to check for the hazard where VMEM instructions that store more than 864 // 8 bytes can have there store data over written by the next instruction. 865 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 866 867 const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1; 868 int WaitStatesNeeded = 0; 869 870 if (!TRI->isVectorRegister(MRI, Def.getReg())) 871 return WaitStatesNeeded; 872 Register Reg = Def.getReg(); 873 auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) { 874 int DataIdx = createsVALUHazard(MI); 875 return DataIdx >= 0 && 876 TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg); 877 }; 878 int WaitStatesNeededForDef = 879 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 880 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 881 882 return WaitStatesNeeded; 883 } 884 885 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 886 int WaitStatesNeeded = 0; 887 888 if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) { 889 const int TransDefWaitstates = 1; 890 891 auto IsTransDefFn = [this, VALU](const MachineInstr &MI) { 892 if (!SIInstrInfo::isTRANS(MI)) 893 return false; 894 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 895 const SIInstrInfo *TII = ST.getInstrInfo(); 896 Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg(); 897 898 for (const MachineOperand &Use : VALU->explicit_uses()) { 899 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 900 return true; 901 } 902 903 return false; 904 }; 905 906 int WaitStatesNeededForDef = 907 TransDefWaitstates - 908 getWaitStatesSince(IsTransDefFn, TransDefWaitstates); 909 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 910 } 911 912 if (ST.hasDstSelForwardingHazard()) { 913 const int Shift16DefWaitstates = 1; 914 915 auto IsShift16BitDefFn = [this, VALU](const MachineInstr &MI) { 916 if (!SIInstrInfo::isVALU(MI)) 917 return false; 918 const SIInstrInfo *TII = ST.getInstrInfo(); 919 if (SIInstrInfo::isSDWA(MI)) { 920 if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel)) 921 if (DstSel->getImm() == AMDGPU::SDWA::DWORD) 922 return false; 923 } else { 924 if (!AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::op_sel) || 925 !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers) 926 ->getImm() & 927 SISrcMods::DST_OP_SEL)) 928 return false; 929 } 930 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 931 if (auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) { 932 Register Def = Dst->getReg(); 933 934 for (const MachineOperand &Use : VALU->explicit_uses()) { 935 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 936 return true; 937 } 938 } 939 940 return false; 941 }; 942 943 int WaitStatesNeededForDef = 944 Shift16DefWaitstates - 945 getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates); 946 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 947 } 948 949 if (ST.hasVDecCoExecHazard()) { 950 const int VALUWriteSGPRVALUReadWaitstates = 2; 951 const int VALUWriteEXECRWLane = 4; 952 const int VALUWriteVGPRReadlaneRead = 1; 953 954 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 955 const MachineRegisterInfo &MRI = MF.getRegInfo(); 956 Register UseReg; 957 auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) { 958 if (!SIInstrInfo::isVALU(MI)) 959 return false; 960 return MI.modifiesRegister(UseReg, TRI); 961 }; 962 963 for (const MachineOperand &Use : VALU->explicit_uses()) { 964 if (!Use.isReg()) 965 continue; 966 967 UseReg = Use.getReg(); 968 if (TRI->isSGPRReg(MRI, UseReg)) { 969 int WaitStatesNeededForDef = 970 VALUWriteSGPRVALUReadWaitstates - 971 getWaitStatesSince(IsVALUDefSGPRFn, 972 VALUWriteSGPRVALUReadWaitstates); 973 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 974 } 975 } 976 977 if (VALU->readsRegister(AMDGPU::VCC, TRI)) { 978 UseReg = AMDGPU::VCC; 979 int WaitStatesNeededForDef = 980 VALUWriteSGPRVALUReadWaitstates - 981 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates); 982 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 983 } 984 985 switch (VALU->getOpcode()) { 986 case AMDGPU::V_READLANE_B32: 987 case AMDGPU::V_READFIRSTLANE_B32: { 988 MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0); 989 UseReg = Src->getReg(); 990 int WaitStatesNeededForDef = 991 VALUWriteVGPRReadlaneRead - 992 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead); 993 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 994 } 995 [[fallthrough]]; 996 case AMDGPU::V_WRITELANE_B32: { 997 UseReg = AMDGPU::EXEC; 998 int WaitStatesNeededForDef = 999 VALUWriteEXECRWLane - 1000 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane); 1001 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 1002 break; 1003 } 1004 default: 1005 break; 1006 } 1007 } 1008 1009 // This checks for the hazard where VMEM instructions that store more than 1010 // 8 bytes can have there store data over written by the next instruction. 1011 if (!ST.has12DWordStoreHazard()) 1012 return WaitStatesNeeded; 1013 1014 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1015 1016 for (const MachineOperand &Def : VALU->defs()) { 1017 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 1018 } 1019 1020 return WaitStatesNeeded; 1021 } 1022 1023 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 1024 // This checks for hazards associated with inline asm statements. 1025 // Since inline asms can contain just about anything, we use this 1026 // to call/leverage other check*Hazard routines. Note that 1027 // this function doesn't attempt to address all possible inline asm 1028 // hazards (good luck), but is a collection of what has been 1029 // problematic thus far. 1030 1031 // see checkVALUHazards() 1032 if (!ST.has12DWordStoreHazard()) 1033 return 0; 1034 1035 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1036 int WaitStatesNeeded = 0; 1037 1038 for (const MachineOperand &Op : 1039 llvm::drop_begin(IA->operands(), InlineAsm::MIOp_FirstOperand)) { 1040 if (Op.isReg() && Op.isDef()) { 1041 WaitStatesNeeded = 1042 std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 1043 } 1044 } 1045 1046 return WaitStatesNeeded; 1047 } 1048 1049 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 1050 const SIInstrInfo *TII = ST.getInstrInfo(); 1051 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1052 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1053 1054 const MachineOperand *LaneSelectOp = 1055 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 1056 1057 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 1058 return 0; 1059 1060 Register LaneSelectReg = LaneSelectOp->getReg(); 1061 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); }; 1062 1063 const int RWLaneWaitStates = 4; 1064 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 1065 RWLaneWaitStates); 1066 return RWLaneWaitStates - WaitStatesSince; 1067 } 1068 1069 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 1070 if (!ST.hasRFEHazards()) 1071 return 0; 1072 1073 const SIInstrInfo *TII = ST.getInstrInfo(); 1074 1075 const int RFEWaitStates = 1; 1076 1077 auto IsHazardFn = [TII](const MachineInstr &MI) { 1078 return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS; 1079 }; 1080 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 1081 return RFEWaitStates - WaitStatesNeeded; 1082 } 1083 1084 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 1085 const SIInstrInfo *TII = ST.getInstrInfo(); 1086 const int ReadM0WaitStates = 1; 1087 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); }; 1088 return ReadM0WaitStates - 1089 getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, ReadM0WaitStates); 1090 } 1091 1092 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { 1093 fixVMEMtoScalarWriteHazards(MI); 1094 fixVcmpxPermlaneHazards(MI); 1095 fixSMEMtoVectorWriteHazards(MI); 1096 fixVcmpxExecWARHazard(MI); 1097 fixLdsBranchVmemWARHazard(MI); 1098 if (ST.hasLdsDirect()) { 1099 fixLdsDirectVALUHazard(MI); 1100 fixLdsDirectVMEMHazard(MI); 1101 } 1102 fixVALUPartialForwardingHazard(MI); 1103 fixVALUTransUseHazard(MI); 1104 fixWMMAHazards(MI); 1105 fixShift64HighRegBug(MI); 1106 fixVALUMaskWriteHazard(MI); 1107 } 1108 1109 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) { 1110 if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI)) 1111 return false; 1112 1113 const SIInstrInfo *TII = ST.getInstrInfo(); 1114 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1115 auto IsHazardFn = [TII, TRI](const MachineInstr &MI) { 1116 return (TII->isVOPC(MI) || 1117 ((TII->isVOP3(MI) || TII->isSDWA(MI)) && MI.isCompare())) && 1118 MI.modifiesRegister(AMDGPU::EXEC, TRI); 1119 }; 1120 1121 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1122 unsigned Opc = MI.getOpcode(); 1123 return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 && 1124 Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa; 1125 }; 1126 1127 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1128 std::numeric_limits<int>::max()) 1129 return false; 1130 1131 // V_NOP will be discarded by SQ. 1132 // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE* 1133 // which is always a VGPR and available. 1134 auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1135 Register Reg = Src0->getReg(); 1136 bool IsUndef = Src0->isUndef(); 1137 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1138 TII->get(AMDGPU::V_MOV_B32_e32)) 1139 .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0)) 1140 .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill); 1141 1142 return true; 1143 } 1144 1145 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { 1146 if (!ST.hasVMEMtoScalarWriteHazard()) 1147 return false; 1148 assert(!ST.hasExtendedWaitCounts()); 1149 1150 if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI)) 1151 return false; 1152 1153 if (MI->getNumDefs() == 0) 1154 return false; 1155 1156 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1157 1158 auto IsHazardFn = [TRI, MI](const MachineInstr &I) { 1159 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) && 1160 !SIInstrInfo::isFLAT(I)) 1161 return false; 1162 1163 for (const MachineOperand &Def : MI->defs()) { 1164 const MachineOperand *Op = 1165 I.findRegisterUseOperand(Def.getReg(), TRI, false); 1166 if (!Op) 1167 continue; 1168 return true; 1169 } 1170 return false; 1171 }; 1172 1173 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1174 return SIInstrInfo::isVALU(MI) || 1175 (MI.getOpcode() == AMDGPU::S_WAITCNT && 1176 !MI.getOperand(0).getImm()) || 1177 (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1178 AMDGPU::DepCtr::decodeFieldVmVsrc(MI.getOperand(0).getImm()) == 0); 1179 }; 1180 1181 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1182 std::numeric_limits<int>::max()) 1183 return false; 1184 1185 const SIInstrInfo *TII = ST.getInstrInfo(); 1186 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1187 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1188 .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0)); 1189 return true; 1190 } 1191 1192 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { 1193 if (!ST.hasSMEMtoVectorWriteHazard()) 1194 return false; 1195 assert(!ST.hasExtendedWaitCounts()); 1196 1197 if (!SIInstrInfo::isVALU(*MI)) 1198 return false; 1199 1200 unsigned SDSTName; 1201 switch (MI->getOpcode()) { 1202 case AMDGPU::V_READLANE_B32: 1203 case AMDGPU::V_READFIRSTLANE_B32: 1204 SDSTName = AMDGPU::OpName::vdst; 1205 break; 1206 default: 1207 SDSTName = AMDGPU::OpName::sdst; 1208 break; 1209 } 1210 1211 const SIInstrInfo *TII = ST.getInstrInfo(); 1212 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1213 const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU()); 1214 const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName); 1215 if (!SDST) { 1216 for (const auto &MO : MI->implicit_operands()) { 1217 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) { 1218 SDST = &MO; 1219 break; 1220 } 1221 } 1222 } 1223 1224 if (!SDST) 1225 return false; 1226 1227 const Register SDSTReg = SDST->getReg(); 1228 auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) { 1229 return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI); 1230 }; 1231 1232 auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) { 1233 if (TII->isSALU(MI)) { 1234 switch (MI.getOpcode()) { 1235 case AMDGPU::S_SETVSKIP: 1236 case AMDGPU::S_VERSION: 1237 case AMDGPU::S_WAITCNT_VSCNT: 1238 case AMDGPU::S_WAITCNT_VMCNT: 1239 case AMDGPU::S_WAITCNT_EXPCNT: 1240 // These instructions cannot not mitigate the hazard. 1241 return false; 1242 case AMDGPU::S_WAITCNT_LGKMCNT: 1243 // Reducing lgkmcnt count to 0 always mitigates the hazard. 1244 return (MI.getOperand(1).getImm() == 0) && 1245 (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1246 case AMDGPU::S_WAITCNT: { 1247 const int64_t Imm = MI.getOperand(0).getImm(); 1248 AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm); 1249 // DsCnt corresponds to LGKMCnt here. 1250 return (Decoded.DsCnt == 0); 1251 } 1252 default: 1253 // SOPP instructions cannot mitigate the hazard. 1254 if (TII->isSOPP(MI)) 1255 return false; 1256 // At this point the SALU can be assumed to mitigate the hazard 1257 // because either: 1258 // (a) it is independent of the at risk SMEM (breaking chain), 1259 // or 1260 // (b) it is dependent on the SMEM, in which case an appropriate 1261 // s_waitcnt lgkmcnt _must_ exist between it and the at risk 1262 // SMEM instruction. 1263 return true; 1264 } 1265 } 1266 return false; 1267 }; 1268 1269 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1270 std::numeric_limits<int>::max()) 1271 return false; 1272 1273 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1274 TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL) 1275 .addImm(0); 1276 return true; 1277 } 1278 1279 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { 1280 if (!ST.hasVcmpxExecWARHazard()) 1281 return false; 1282 assert(!ST.hasExtendedWaitCounts()); 1283 1284 if (!SIInstrInfo::isVALU(*MI)) 1285 return false; 1286 1287 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1288 if (!MI->modifiesRegister(AMDGPU::EXEC, TRI)) 1289 return false; 1290 1291 auto IsHazardFn = [TRI](const MachineInstr &I) { 1292 if (SIInstrInfo::isVALU(I)) 1293 return false; 1294 return I.readsRegister(AMDGPU::EXEC, TRI); 1295 }; 1296 1297 const SIInstrInfo *TII = ST.getInstrInfo(); 1298 auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) { 1299 if (SIInstrInfo::isVALU(MI)) { 1300 if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst)) 1301 return true; 1302 for (auto MO : MI.implicit_operands()) 1303 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) 1304 return true; 1305 } 1306 if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1307 AMDGPU::DepCtr::decodeFieldSaSdst(MI.getOperand(0).getImm()) == 0) 1308 return true; 1309 return false; 1310 }; 1311 1312 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1313 std::numeric_limits<int>::max()) 1314 return false; 1315 1316 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1317 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1318 .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0)); 1319 return true; 1320 } 1321 1322 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 1323 const GCNSubtarget &ST) { 1324 if (!ST.hasLdsBranchVmemWARHazard()) 1325 return false; 1326 1327 // Check if the necessary condition for the hazard is met: both LDS and VMEM 1328 // instructions need to appear in the same function. 1329 bool HasLds = false; 1330 bool HasVmem = false; 1331 for (auto &MBB : MF) { 1332 for (auto &MI : MBB) { 1333 HasLds |= SIInstrInfo::isDS(MI); 1334 HasVmem |= 1335 SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI); 1336 if (HasLds && HasVmem) 1337 return true; 1338 } 1339 } 1340 return false; 1341 } 1342 1343 static bool isStoreCountWaitZero(const MachineInstr &I) { 1344 return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1345 I.getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1346 !I.getOperand(1).getImm(); 1347 } 1348 1349 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { 1350 if (!RunLdsBranchVmemWARHazardFixup) 1351 return false; 1352 1353 assert(ST.hasLdsBranchVmemWARHazard()); 1354 assert(!ST.hasExtendedWaitCounts()); 1355 1356 auto IsHazardInst = [](const MachineInstr &MI) { 1357 if (SIInstrInfo::isDS(MI)) 1358 return 1; 1359 if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI)) 1360 return 2; 1361 return 0; 1362 }; 1363 1364 auto InstType = IsHazardInst(*MI); 1365 if (!InstType) 1366 return false; 1367 1368 auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) { 1369 return IsHazardInst(I) || isStoreCountWaitZero(I); 1370 }; 1371 1372 auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) { 1373 if (!I.isBranch()) 1374 return false; 1375 1376 auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) { 1377 auto InstType2 = IsHazardInst(I); 1378 return InstType2 && InstType != InstType2; 1379 }; 1380 1381 auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) { 1382 auto InstType2 = IsHazardInst(I); 1383 if (InstType == InstType2) 1384 return true; 1385 1386 return isStoreCountWaitZero(I); 1387 }; 1388 1389 return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) != 1390 std::numeric_limits<int>::max(); 1391 }; 1392 1393 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1394 std::numeric_limits<int>::max()) 1395 return false; 1396 1397 const SIInstrInfo *TII = ST.getInstrInfo(); 1398 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1399 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1400 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1401 .addImm(0); 1402 1403 return true; 1404 } 1405 1406 bool GCNHazardRecognizer::fixLdsDirectVALUHazard(MachineInstr *MI) { 1407 if (!SIInstrInfo::isLDSDIR(*MI)) 1408 return false; 1409 1410 const int NoHazardWaitStates = 15; 1411 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1412 const Register VDSTReg = VDST->getReg(); 1413 1414 bool VisitedTrans = false; 1415 auto IsHazardFn = [this, VDSTReg, &VisitedTrans](const MachineInstr &I) { 1416 if (!SIInstrInfo::isVALU(I)) 1417 return false; 1418 VisitedTrans = VisitedTrans || SIInstrInfo::isTRANS(I); 1419 // Cover both WAR and WAW 1420 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1421 }; 1422 auto IsExpiredFn = [&](const MachineInstr &I, int WaitStates) { 1423 if (WaitStates >= NoHazardWaitStates) 1424 return true; 1425 // Instructions which cause va_vdst==0 expire hazard 1426 return SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1427 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I); 1428 }; 1429 auto GetWaitStatesFn = [](const MachineInstr &MI) { 1430 return SIInstrInfo::isVALU(MI) ? 1 : 0; 1431 }; 1432 1433 DenseSet<const MachineBasicBlock *> Visited; 1434 auto Count = ::getWaitStatesSince(IsHazardFn, MI->getParent(), 1435 std::next(MI->getReverseIterator()), 0, 1436 IsExpiredFn, Visited, GetWaitStatesFn); 1437 1438 // Transcendentals can execute in parallel to other VALUs. 1439 // This makes va_vdst count unusable with a mixture of VALU and TRANS. 1440 if (VisitedTrans) 1441 Count = 0; 1442 1443 MachineOperand *WaitVdstOp = 1444 TII.getNamedOperand(*MI, AMDGPU::OpName::waitvdst); 1445 WaitVdstOp->setImm(std::min(Count, NoHazardWaitStates)); 1446 1447 return true; 1448 } 1449 1450 bool GCNHazardRecognizer::fixLdsDirectVMEMHazard(MachineInstr *MI) { 1451 if (!SIInstrInfo::isLDSDIR(*MI)) 1452 return false; 1453 1454 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1455 const Register VDSTReg = VDST->getReg(); 1456 1457 auto IsHazardFn = [this, VDSTReg](const MachineInstr &I) { 1458 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I) && 1459 !SIInstrInfo::isDS(I)) 1460 return false; 1461 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1462 }; 1463 bool LdsdirCanWait = ST.hasLdsWaitVMSRC(); 1464 // TODO: On GFX12 the hazard should expire on S_WAIT_LOADCNT/SAMPLECNT/BVHCNT 1465 // according to the type of VMEM instruction. 1466 auto IsExpiredFn = [this, LdsdirCanWait](const MachineInstr &I, int) { 1467 return SIInstrInfo::isVALU(I) || SIInstrInfo::isEXP(I) || 1468 (I.getOpcode() == AMDGPU::S_WAITCNT && !I.getOperand(0).getImm()) || 1469 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1470 AMDGPU::DepCtr::decodeFieldVmVsrc(I.getOperand(0).getImm()) == 0) || 1471 (LdsdirCanWait && SIInstrInfo::isLDSDIR(I) && 1472 !TII.getNamedOperand(I, AMDGPU::OpName::waitvsrc)->getImm()); 1473 }; 1474 1475 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1476 std::numeric_limits<int>::max()) 1477 return false; 1478 1479 if (LdsdirCanWait) { 1480 TII.getNamedOperand(*MI, AMDGPU::OpName::waitvsrc)->setImm(0); 1481 } else { 1482 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1483 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1484 .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0)); 1485 } 1486 1487 return true; 1488 } 1489 1490 bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) { 1491 if (!ST.hasVALUPartialForwardingHazard()) 1492 return false; 1493 assert(!ST.hasExtendedWaitCounts()); 1494 1495 if (!ST.isWave64() || !SIInstrInfo::isVALU(*MI)) 1496 return false; 1497 1498 SmallSetVector<Register, 4> SrcVGPRs; 1499 1500 for (const MachineOperand &Use : MI->explicit_uses()) { 1501 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1502 SrcVGPRs.insert(Use.getReg()); 1503 } 1504 1505 // Only applies with >= 2 unique VGPR sources 1506 if (SrcVGPRs.size() <= 1) 1507 return false; 1508 1509 // Look for the following pattern: 1510 // Va <- VALU [PreExecPos] 1511 // intv1 1512 // Exec <- SALU [ExecPos] 1513 // intv2 1514 // Vb <- VALU [PostExecPos] 1515 // intv3 1516 // MI Va, Vb (WaitState = 0) 1517 // 1518 // Where: 1519 // intv1 + intv2 <= 2 VALUs 1520 // intv3 <= 4 VALUs 1521 // 1522 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1523 1524 const int Intv1plus2MaxVALUs = 2; 1525 const int Intv3MaxVALUs = 4; 1526 const int IntvMaxVALUs = 6; 1527 const int NoHazardVALUWaitStates = IntvMaxVALUs + 2; 1528 1529 struct StateType { 1530 SmallDenseMap<Register, int, 4> DefPos; 1531 int ExecPos = std::numeric_limits<int>::max(); 1532 int VALUs = 0; 1533 }; 1534 1535 StateType State; 1536 1537 // This overloads expiry testing with all the hazard detection 1538 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1539 // Too many VALU states have passed 1540 if (State.VALUs > NoHazardVALUWaitStates) 1541 return HazardExpired; 1542 1543 // Instructions which cause va_vdst==0 expire hazard 1544 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1545 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1546 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1547 AMDGPU::DepCtr::decodeFieldVaVdst(I.getOperand(0).getImm()) == 0)) 1548 return HazardExpired; 1549 1550 // Track registers writes 1551 bool Changed = false; 1552 if (SIInstrInfo::isVALU(I)) { 1553 for (Register Src : SrcVGPRs) { 1554 if (!State.DefPos.count(Src) && I.modifiesRegister(Src, &TRI)) { 1555 State.DefPos[Src] = State.VALUs; 1556 Changed = true; 1557 } 1558 } 1559 } else if (SIInstrInfo::isSALU(I)) { 1560 if (State.ExecPos == std::numeric_limits<int>::max()) { 1561 if (!State.DefPos.empty() && I.modifiesRegister(AMDGPU::EXEC, &TRI)) { 1562 State.ExecPos = State.VALUs; 1563 Changed = true; 1564 } 1565 } 1566 } 1567 1568 // Early expiration: too many VALUs in intv3 1569 if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty()) 1570 return HazardExpired; 1571 1572 // Only evaluate state if something changed 1573 if (!Changed) 1574 return NoHazardFound; 1575 1576 // Determine positions of VALUs pre/post exec change 1577 if (State.ExecPos == std::numeric_limits<int>::max()) 1578 return NoHazardFound; 1579 1580 int PreExecPos = std::numeric_limits<int>::max(); 1581 int PostExecPos = std::numeric_limits<int>::max(); 1582 1583 for (auto Entry : State.DefPos) { 1584 int DefVALUs = Entry.second; 1585 if (DefVALUs != std::numeric_limits<int>::max()) { 1586 if (DefVALUs >= State.ExecPos) 1587 PreExecPos = std::min(PreExecPos, DefVALUs); 1588 else 1589 PostExecPos = std::min(PostExecPos, DefVALUs); 1590 } 1591 } 1592 1593 // Need a VALUs post exec change 1594 if (PostExecPos == std::numeric_limits<int>::max()) 1595 return NoHazardFound; 1596 1597 // Too many VALUs in intv3? 1598 int Intv3VALUs = PostExecPos; 1599 if (Intv3VALUs > Intv3MaxVALUs) 1600 return HazardExpired; 1601 1602 // Too many VALUs in intv2? 1603 int Intv2VALUs = (State.ExecPos - PostExecPos) - 1; 1604 if (Intv2VALUs > Intv1plus2MaxVALUs) 1605 return HazardExpired; 1606 1607 // Need a VALUs pre exec change 1608 if (PreExecPos == std::numeric_limits<int>::max()) 1609 return NoHazardFound; 1610 1611 // Too many VALUs in intv1? 1612 int Intv1VALUs = PreExecPos - State.ExecPos; 1613 if (Intv1VALUs > Intv1plus2MaxVALUs) 1614 return HazardExpired; 1615 1616 // Too many VALUs in intv1 + intv2 1617 if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs) 1618 return HazardExpired; 1619 1620 return HazardFound; 1621 }; 1622 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1623 if (SIInstrInfo::isVALU(MI)) 1624 State.VALUs += 1; 1625 }; 1626 1627 DenseSet<const MachineBasicBlock *> Visited; 1628 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1629 std::next(MI->getReverseIterator()), Visited)) 1630 return false; 1631 1632 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1633 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1634 .addImm(0x0fff); 1635 1636 return true; 1637 } 1638 1639 bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) { 1640 if (!ST.hasVALUTransUseHazard()) 1641 return false; 1642 assert(!ST.hasExtendedWaitCounts()); 1643 1644 if (!SIInstrInfo::isVALU(*MI)) 1645 return false; 1646 1647 SmallSet<Register, 4> SrcVGPRs; 1648 1649 for (const MachineOperand &Use : MI->explicit_uses()) { 1650 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1651 SrcVGPRs.insert(Use.getReg()); 1652 } 1653 1654 // Look for the following pattern: 1655 // Va <- TRANS VALU 1656 // intv 1657 // MI Va (WaitState = 0) 1658 // 1659 // Where: 1660 // intv <= 5 VALUs / 1 TRANS 1661 // 1662 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1663 1664 const int IntvMaxVALUs = 5; 1665 const int IntvMaxTRANS = 1; 1666 1667 struct StateType { 1668 int VALUs = 0; 1669 int TRANS = 0; 1670 }; 1671 1672 StateType State; 1673 1674 // This overloads expiry testing with all the hazard detection 1675 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1676 // Too many VALU states have passed 1677 if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS) 1678 return HazardExpired; 1679 1680 // Instructions which cause va_vdst==0 expire hazard 1681 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1682 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1683 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1684 I.getOperand(0).getImm() == 0x0fff)) 1685 return HazardExpired; 1686 1687 // Track registers writes 1688 if (SIInstrInfo::isTRANS(I)) { 1689 for (Register Src : SrcVGPRs) { 1690 if (I.modifiesRegister(Src, &TRI)) { 1691 return HazardFound; 1692 } 1693 } 1694 } 1695 1696 return NoHazardFound; 1697 }; 1698 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1699 if (SIInstrInfo::isVALU(MI)) 1700 State.VALUs += 1; 1701 if (SIInstrInfo::isTRANS(MI)) 1702 State.TRANS += 1; 1703 }; 1704 1705 DenseSet<const MachineBasicBlock *> Visited; 1706 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1707 std::next(MI->getReverseIterator()), Visited)) 1708 return false; 1709 1710 // Hazard is observed - insert a wait on va_dst counter to ensure hazard is 1711 // avoided. 1712 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1713 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1714 .addImm(AMDGPU::DepCtr::encodeFieldVaVdst(0)); 1715 1716 return true; 1717 } 1718 1719 bool GCNHazardRecognizer::fixWMMAHazards(MachineInstr *MI) { 1720 if (!SIInstrInfo::isWMMA(*MI) && !SIInstrInfo::isSWMMAC(*MI)) 1721 return false; 1722 1723 const SIInstrInfo *TII = ST.getInstrInfo(); 1724 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1725 1726 auto IsHazardFn = [MI, TII, TRI, this](const MachineInstr &I) { 1727 if (!SIInstrInfo::isWMMA(I) && !SIInstrInfo::isSWMMAC(I)) 1728 return false; 1729 1730 // Src0(matrix A) or Src1(matrix B) of the current wmma instruction overlaps 1731 // with the dest(matrix D) of the previous wmma. 1732 const Register CurSrc0Reg = 1733 TII->getNamedOperand(*MI, AMDGPU::OpName::src0)->getReg(); 1734 const Register CurSrc1Reg = 1735 TII->getNamedOperand(*MI, AMDGPU::OpName::src1)->getReg(); 1736 1737 const Register PrevDstReg = 1738 TII->getNamedOperand(I, AMDGPU::OpName::vdst)->getReg(); 1739 1740 if (TRI->regsOverlap(PrevDstReg, CurSrc0Reg) || 1741 TRI->regsOverlap(PrevDstReg, CurSrc1Reg)) { 1742 return true; 1743 } 1744 1745 // GFX12+ allows overlap of matrix C with PrevDstReg (hardware will stall) 1746 // but Index can't overlap with PrevDstReg. 1747 if (AMDGPU::isGFX12Plus(ST)) { 1748 if (SIInstrInfo::isSWMMAC(*MI)) { 1749 const Register CurIndex = 1750 TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->getReg(); 1751 if (TRI->regsOverlap(PrevDstReg, CurIndex)) 1752 return true; 1753 } 1754 return false; 1755 } 1756 1757 return false; 1758 }; 1759 1760 auto IsExpiredFn = [](const MachineInstr &I, int) { 1761 return SIInstrInfo::isVALU(I); 1762 }; 1763 1764 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1765 std::numeric_limits<int>::max()) 1766 return false; 1767 1768 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32)); 1769 1770 return true; 1771 } 1772 1773 bool GCNHazardRecognizer::fixShift64HighRegBug(MachineInstr *MI) { 1774 if (!ST.hasShift64HighRegBug()) 1775 return false; 1776 assert(!ST.hasExtendedWaitCounts()); 1777 1778 switch (MI->getOpcode()) { 1779 default: 1780 return false; 1781 case AMDGPU::V_LSHLREV_B64_e64: 1782 case AMDGPU::V_LSHRREV_B64_e64: 1783 case AMDGPU::V_ASHRREV_I64_e64: 1784 break; 1785 } 1786 1787 MachineOperand *Amt = TII.getNamedOperand(*MI, AMDGPU::OpName::src0); 1788 if (!Amt->isReg()) 1789 return false; 1790 1791 Register AmtReg = Amt->getReg(); 1792 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1793 // Check if this is a last VGPR in the allocation block. 1794 if (!TRI.isVGPR(MRI, AmtReg) || ((AmtReg - AMDGPU::VGPR0) & 7) != 7) 1795 return false; 1796 1797 if (AmtReg != AMDGPU::VGPR255 && MRI.isPhysRegUsed(AmtReg + 1)) 1798 return false; 1799 1800 MachineOperand *Src1 = TII.getNamedOperand(*MI, AMDGPU::OpName::src1); 1801 bool OverlappedSrc = Src1->isReg() && TRI.regsOverlap(Src1->getReg(), AmtReg); 1802 bool OverlappedDst = MI->modifiesRegister(AmtReg, &TRI); 1803 bool Overlapped = OverlappedSrc || OverlappedDst; 1804 1805 assert(!OverlappedDst || !OverlappedSrc || 1806 Src1->getReg() == MI->getOperand(0).getReg()); 1807 assert(ST.needsAlignedVGPRs()); 1808 static_assert(AMDGPU::VGPR0 + 1 == AMDGPU::VGPR1); 1809 1810 Register NewReg; 1811 for (MCRegister Reg : Overlapped ? AMDGPU::VReg_64_Align2RegClass 1812 : AMDGPU::VGPR_32RegClass) { 1813 if (!MI->modifiesRegister(Reg, &TRI) && !MI->readsRegister(Reg, &TRI)) { 1814 NewReg = Reg; 1815 break; 1816 } 1817 } 1818 1819 Register NewAmt = Overlapped ? (Register)TRI.getSubReg(NewReg, AMDGPU::sub1) 1820 : NewReg; 1821 Register NewAmtLo; 1822 1823 if (Overlapped) 1824 NewAmtLo = TRI.getSubReg(NewReg, AMDGPU::sub0); 1825 1826 DebugLoc DL = MI->getDebugLoc(); 1827 MachineBasicBlock *MBB = MI->getParent(); 1828 // Insert a full wait count because found register might be pending a wait. 1829 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_WAITCNT)) 1830 .addImm(0); 1831 1832 // Insert V_SWAP_B32 instruction(s) and run hazard recognizer on them. 1833 if (Overlapped) 1834 runOnInstruction( 1835 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmtLo) 1836 .addDef(AmtReg - 1) 1837 .addReg(AmtReg - 1, RegState::Undef) 1838 .addReg(NewAmtLo, RegState::Undef)); 1839 runOnInstruction(BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmt) 1840 .addDef(AmtReg) 1841 .addReg(AmtReg, RegState::Undef) 1842 .addReg(NewAmt, RegState::Undef)); 1843 1844 // Instructions emitted after the current instruction will be processed by the 1845 // parent loop of the hazard recognizer in a natural way. 1846 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1847 AmtReg) 1848 .addDef(NewAmt) 1849 .addReg(NewAmt) 1850 .addReg(AmtReg); 1851 if (Overlapped) 1852 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1853 AmtReg - 1) 1854 .addDef(NewAmtLo) 1855 .addReg(NewAmtLo) 1856 .addReg(AmtReg - 1); 1857 1858 // Re-running hazard recognizer on the modified instruction is not necessary, 1859 // inserted V_SWAP_B32 has already both read and write new registers so 1860 // hazards related to these register has already been handled. 1861 Amt->setReg(NewAmt); 1862 Amt->setIsKill(false); 1863 // We do not update liveness, so verifier may see it as undef. 1864 Amt->setIsUndef(); 1865 if (OverlappedDst) 1866 MI->getOperand(0).setReg(NewReg); 1867 if (OverlappedSrc) { 1868 Src1->setReg(NewReg); 1869 Src1->setIsKill(false); 1870 Src1->setIsUndef(); 1871 } 1872 1873 return true; 1874 } 1875 1876 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { 1877 int NSAtoVMEMWaitStates = 1; 1878 1879 if (!ST.hasNSAtoVMEMBug()) 1880 return 0; 1881 1882 if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI)) 1883 return 0; 1884 1885 const SIInstrInfo *TII = ST.getInstrInfo(); 1886 const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset); 1887 if (!Offset || (Offset->getImm() & 6) == 0) 1888 return 0; 1889 1890 auto IsHazardFn = [TII](const MachineInstr &I) { 1891 if (!SIInstrInfo::isMIMG(I)) 1892 return false; 1893 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode()); 1894 return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && 1895 TII->getInstSizeInBytes(I) >= 16; 1896 }; 1897 1898 return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1); 1899 } 1900 1901 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) { 1902 int FPAtomicToDenormModeWaitStates = 3; 1903 1904 if (!ST.hasFPAtomicToDenormModeHazard()) 1905 return 0; 1906 assert(!ST.hasExtendedWaitCounts()); 1907 1908 if (MI->getOpcode() != AMDGPU::S_DENORM_MODE) 1909 return 0; 1910 1911 auto IsHazardFn = [](const MachineInstr &I) { 1912 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I)) 1913 return false; 1914 return SIInstrInfo::isFPAtomic(I); 1915 }; 1916 1917 auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) { 1918 if (WaitStates >= 3 || SIInstrInfo::isVALU(MI)) 1919 return true; 1920 1921 switch (MI.getOpcode()) { 1922 case AMDGPU::S_WAITCNT: 1923 case AMDGPU::S_WAITCNT_VSCNT: 1924 case AMDGPU::S_WAITCNT_VMCNT: 1925 case AMDGPU::S_WAITCNT_EXPCNT: 1926 case AMDGPU::S_WAITCNT_LGKMCNT: 1927 case AMDGPU::S_WAIT_IDLE: 1928 return true; 1929 default: 1930 break; 1931 } 1932 1933 return false; 1934 }; 1935 1936 return FPAtomicToDenormModeWaitStates - 1937 ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn); 1938 } 1939 1940 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) { 1941 assert(SIInstrInfo::isMAI(*MI)); 1942 1943 return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI); 1944 } 1945 1946 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) { 1947 // Early exit if no padding is requested. 1948 if (MFMAPaddingRatio == 0) 1949 return 0; 1950 1951 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1952 if (!SIInstrInfo::isMFMA(*MI) || MFI->getOccupancy() < 2) 1953 return 0; 1954 1955 int NeighborMFMALatency = 0; 1956 auto IsNeighboringMFMA = [&NeighborMFMALatency, 1957 this](const MachineInstr &MI) { 1958 if (!SIInstrInfo::isMFMA(MI)) 1959 return false; 1960 1961 NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI); 1962 return true; 1963 }; 1964 1965 const int MaxMFMAPipelineWaitStates = 16; 1966 int WaitStatesSinceNeighborMFMA = 1967 getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates); 1968 1969 int NeighborMFMAPaddingNeeded = 1970 (NeighborMFMALatency * MFMAPaddingRatio / 100) - 1971 WaitStatesSinceNeighborMFMA; 1972 1973 return std::max(0, NeighborMFMAPaddingNeeded); 1974 } 1975 1976 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) { 1977 int WaitStatesNeeded = 0; 1978 unsigned Opc = MI->getOpcode(); 1979 1980 auto IsVALUFn = [](const MachineInstr &MI) { 1981 return SIInstrInfo::isVALU(MI) || MI.isInlineAsm(); 1982 }; 1983 1984 if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write 1985 const int LegacyVALUWritesVGPRWaitStates = 2; 1986 const int VALUWritesExecWaitStates = 4; 1987 const int MaxWaitStates = 4; 1988 1989 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 1990 getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates); 1991 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1992 1993 if (WaitStatesNeeded < MaxWaitStates) { 1994 for (const MachineOperand &Use : MI->explicit_uses()) { 1995 const int MaxWaitStates = 2; 1996 1997 if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1998 continue; 1999 2000 int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates - 2001 getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates); 2002 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2003 2004 if (WaitStatesNeeded == MaxWaitStates) 2005 break; 2006 } 2007 } 2008 } 2009 2010 for (const MachineOperand &Op : MI->explicit_operands()) { 2011 if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg())) 2012 continue; 2013 2014 if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2015 continue; 2016 2017 const int MFMAWritesAGPROverlappedSrcABWaitStates = 4; 2018 const int MFMAWritesAGPROverlappedSrcCWaitStates = 2; 2019 const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4; 2020 const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10; 2021 const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18; 2022 const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1; 2023 const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7; 2024 const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15; 2025 const int MaxWaitStates = 18; 2026 Register Reg = Op.getReg(); 2027 unsigned HazardDefLatency = 0; 2028 2029 auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency, 2030 this](const MachineInstr &MI) { 2031 if (!SIInstrInfo::isMFMA(MI)) 2032 return false; 2033 Register DstReg = MI.getOperand(0).getReg(); 2034 if (DstReg == Reg) 2035 return false; 2036 HazardDefLatency = 2037 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2038 return TRI.regsOverlap(DstReg, Reg); 2039 }; 2040 2041 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, 2042 MaxWaitStates); 2043 int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates; 2044 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2045 int OpNo = Op.getOperandNo(); 2046 if (OpNo == SrcCIdx) { 2047 NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates; 2048 } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) { 2049 switch (HazardDefLatency) { 2050 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates; 2051 break; 2052 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates; 2053 break; 2054 case 16: [[fallthrough]]; 2055 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates; 2056 break; 2057 } 2058 } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2059 switch (HazardDefLatency) { 2060 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates; 2061 break; 2062 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates; 2063 break; 2064 case 16: [[fallthrough]]; 2065 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates; 2066 break; 2067 } 2068 } 2069 2070 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2071 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2072 2073 if (WaitStatesNeeded == MaxWaitStates) 2074 return WaitStatesNeeded; // Early exit. 2075 2076 auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) { 2077 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2078 return false; 2079 Register DstReg = MI.getOperand(0).getReg(); 2080 return TRI.regsOverlap(Reg, DstReg); 2081 }; 2082 2083 const int AccVGPRWriteMFMAReadSrcCWaitStates = 1; 2084 const int AccVGPRWriteMFMAReadSrcABWaitStates = 3; 2085 const int AccVGPRWriteAccVgprReadWaitStates = 3; 2086 NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates; 2087 if (OpNo == SrcCIdx) 2088 NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates; 2089 else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) 2090 NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates; 2091 2092 WaitStatesNeededForUse = NeedWaitStates - 2093 getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates); 2094 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2095 2096 if (WaitStatesNeeded == MaxWaitStates) 2097 return WaitStatesNeeded; // Early exit. 2098 } 2099 2100 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2101 const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0; 2102 const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5; 2103 const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13; 2104 const int MaxWaitStates = 13; 2105 Register DstReg = MI->getOperand(0).getReg(); 2106 unsigned HazardDefLatency = 0; 2107 2108 auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency, 2109 this](const MachineInstr &MI) { 2110 if (!SIInstrInfo::isMFMA(MI)) 2111 return false; 2112 Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg(); 2113 HazardDefLatency = 2114 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2115 return TRI.regsOverlap(Reg, DstReg); 2116 }; 2117 2118 int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates); 2119 int NeedWaitStates; 2120 switch (HazardDefLatency) { 2121 case 2: NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates; 2122 break; 2123 case 8: NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates; 2124 break; 2125 case 16: [[fallthrough]]; 2126 default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates; 2127 break; 2128 } 2129 2130 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince; 2131 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2132 } 2133 2134 // Pad neighboring MFMA with noops for better inter-wave performance. 2135 WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI)); 2136 2137 return WaitStatesNeeded; 2138 } 2139 2140 static int 2141 GFX940_XDL_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(int NumPasses) { 2142 // 2 pass -> 3 2143 // 4 pass -> 5 2144 // 8 pass -> 9 2145 // 16 pass -> 17 2146 return NumPasses + 1; 2147 } 2148 2149 static int 2150 GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(int NumPasses) { 2151 // 2 pass -> 2 2152 // 4 pass -> 4 2153 // 8 pass -> 8 2154 // 16 pass -> 16 2155 return NumPasses; 2156 } 2157 2158 static int 2159 GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses) { 2160 // 2 pass -> 4 2161 // 4 pass -> 6 2162 // 8 pass -> 10 2163 // 16 pass -> 18 2164 return NumPasses + 2; 2165 } 2166 2167 static int GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses) { 2168 // 2 pass -> 5 2169 // 4 pass -> 7 2170 // 8 pass -> 11 2171 // 16 pass -> 19 2172 return NumPasses + 3; 2173 } 2174 2175 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) { 2176 int WaitStatesNeeded = 0; 2177 unsigned Opc = MI->getOpcode(); 2178 2179 auto IsLegacyVALUFn = [](const MachineInstr &MI) { 2180 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI); 2181 }; 2182 2183 auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) { 2184 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) && 2185 !SIInstrInfo::isDOT(MI); 2186 }; 2187 2188 if (!SIInstrInfo::isMFMA(*MI)) 2189 return WaitStatesNeeded; 2190 2191 const int VALUWritesExecWaitStates = 4; 2192 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 2193 getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn, 2194 VALUWritesExecWaitStates); 2195 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2196 2197 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2198 2199 // Loop for both DGEMM and S/HGEMM 2nd instruction. 2200 for (const MachineOperand &Use : MI->explicit_uses()) { 2201 const int LegacyVALUNotDotWritesVGPRWaitStates = 2; 2202 const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2; 2203 const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8; 2204 const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16; 2205 const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3; 2206 const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9; 2207 const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17; 2208 const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9; 2209 const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4; 2210 const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5; 2211 const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11; 2212 const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19; 2213 const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6; 2214 const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11; 2215 const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4; 2216 const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2; 2217 const int MaxWaitStates = 19; 2218 2219 if (!Use.isReg()) 2220 continue; 2221 Register Reg = Use.getReg(); 2222 bool FullReg; 2223 const MachineInstr *MI1; 2224 2225 auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1, 2226 this](const MachineInstr &MI) { 2227 if (!SIInstrInfo::isMFMA(MI)) 2228 return false; 2229 Register DstReg = MI.getOperand(0).getReg(); 2230 FullReg = (DstReg == Reg); 2231 MI1 = &MI; 2232 return TRI.regsOverlap(DstReg, Reg); 2233 }; 2234 2235 WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates - 2236 getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates); 2237 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2238 2239 int NumWaitStates = 2240 getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates); 2241 if (NumWaitStates == std::numeric_limits<int>::max()) 2242 continue; 2243 2244 int OpNo = Use.getOperandNo(); 2245 unsigned Opc1 = MI1->getOpcode(); 2246 int NeedWaitStates = 0; 2247 if (OpNo == SrcCIdx) { 2248 if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) { 2249 NeedWaitStates = 0; 2250 } else if (FullReg) { 2251 if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2252 Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) && 2253 (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2254 Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64)) 2255 NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates; 2256 else if (ST.hasGFX940Insts() && 2257 TSchedModel.computeInstrLatency(MI1) == 2) 2258 NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates; 2259 } else { 2260 switch (Opc1) { 2261 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2262 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2263 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2264 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2265 if (!isXDL(ST, *MI)) 2266 NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates; 2267 break; 2268 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2269 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2270 if (!isXDL(ST, *MI)) 2271 NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates; 2272 break; 2273 default: 2274 int NumPasses = TSchedModel.computeInstrLatency(MI1); 2275 if (ST.hasGFX940Insts()) { 2276 if (isXDL(ST, *MI) && !isXDL(ST, *MI1)) 2277 break; 2278 2279 NeedWaitStates = 2280 isXDL(ST, *MI1) 2281 ? GFX940_XDL_N_PassWritesVGPROverlappedSMFMASrcCWaitStates( 2282 NumPasses) 2283 : GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates( 2284 NumPasses); 2285 break; 2286 } 2287 2288 switch (NumPasses) { 2289 case 2: 2290 NeedWaitStates = 2291 isDGEMM(Opc) ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates 2292 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates; 2293 break; 2294 case 8: 2295 NeedWaitStates = 2296 isDGEMM(Opc) 2297 ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates 2298 : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates; 2299 break; 2300 case 16: 2301 NeedWaitStates = 2302 isDGEMM(Opc) 2303 ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates 2304 : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates; 2305 break; 2306 default: 2307 llvm_unreachable("unexpected number of passes"); 2308 } 2309 } 2310 } 2311 } else { 2312 switch (Opc1) { 2313 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2314 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2315 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2316 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2317 NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates; 2318 break; 2319 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2320 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2321 NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates; 2322 break; 2323 default: 2324 int NumPasses = TSchedModel.computeInstrLatency(MI1); 2325 2326 if (ST.hasGFX940Insts()) { 2327 NeedWaitStates = 2328 isXDL(ST, *MI1) 2329 ? GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates( 2330 NumPasses) 2331 : GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates( 2332 NumPasses); 2333 break; 2334 } 2335 2336 switch (NumPasses) { 2337 case 2: 2338 NeedWaitStates = SMFMA4x4WritesVGPROverlappedSrcABWaitStates; 2339 break; 2340 case 4: 2341 llvm_unreachable("unexpected number of passes for mfma"); 2342 case 8: 2343 NeedWaitStates = SMFMA16x16WritesVGPROverlappedSrcABWaitStates; 2344 break; 2345 case 16: 2346 default: 2347 NeedWaitStates = SMFMA32x32WritesVGPROverlappedSrcABWaitStates; 2348 } 2349 } 2350 } 2351 if (WaitStatesNeeded >= NeedWaitStates) 2352 continue; 2353 2354 WaitStatesNeededForUse = NeedWaitStates - NumWaitStates; 2355 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2356 2357 if (WaitStatesNeeded == MaxWaitStates) 2358 break; 2359 } 2360 2361 // Pad neighboring MFMA with noops for better inter-wave performance. 2362 WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI)); 2363 2364 return WaitStatesNeeded; 2365 } 2366 2367 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) { 2368 // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards() 2369 if (!ST.hasMAIInsts() || ST.hasGFX90AInsts()) 2370 return 0; 2371 2372 int WaitStatesNeeded = 0; 2373 2374 auto IsAccVgprReadFn = [](const MachineInstr &MI) { 2375 return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64; 2376 }; 2377 2378 for (const MachineOperand &Op : MI->explicit_uses()) { 2379 if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg())) 2380 continue; 2381 2382 Register Reg = Op.getReg(); 2383 2384 const int AccVgprReadLdStWaitStates = 2; 2385 const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1; 2386 const int MaxWaitStates = 2; 2387 2388 int WaitStatesNeededForUse = AccVgprReadLdStWaitStates - 2389 getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates); 2390 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2391 2392 if (WaitStatesNeeded == MaxWaitStates) 2393 return WaitStatesNeeded; // Early exit. 2394 2395 auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) { 2396 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 && 2397 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2398 return false; 2399 auto IsVALUFn = [](const MachineInstr &MI) { 2400 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI); 2401 }; 2402 return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) < 2403 std::numeric_limits<int>::max(); 2404 }; 2405 2406 WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates - 2407 getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates); 2408 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2409 } 2410 2411 return WaitStatesNeeded; 2412 } 2413 2414 static int GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(int NumPasses) { 2415 // 2 pass -> 4 2416 // 4 pass -> 6 2417 // 8 pass -> 10 2418 // 16 pass -> 18 2419 return NumPasses + 2; 2420 } 2421 2422 static int GFX940_XDL_N_PassWriteVgprVALUWawWaitStates(int NumPasses) { 2423 // 2 pass -> 5 2424 // 4 pass -> 7 2425 // 8 pass -> 11 2426 // 16 pass -> 19 2427 return NumPasses + 3; 2428 } 2429 2430 static int GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses) { 2431 // 2 pass -> 5 2432 // 4 pass -> 7 2433 // 8 pass -> 11 2434 // 16 pass -> 19 2435 return NumPasses + 3; 2436 } 2437 2438 static int GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses) { 2439 // 2 pass -> 4 2440 // 4 pass -> 6 2441 // 8 pass -> 10 2442 // 16 pass -> 18 2443 return NumPasses + 2; 2444 } 2445 2446 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) { 2447 if (!ST.hasGFX90AInsts()) 2448 return 0; 2449 2450 auto IsDGEMMFn = [](const MachineInstr &MI) -> bool { 2451 return isDGEMM(MI.getOpcode()); 2452 }; 2453 2454 // This is checked in checkMAIHazards90A() 2455 if (SIInstrInfo::isMFMA(*MI)) 2456 return 0; 2457 2458 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2459 2460 int WaitStatesNeeded = 0; 2461 2462 bool IsMem = SIInstrInfo::isVMEM(*MI) || 2463 SIInstrInfo::isFLAT(*MI) || 2464 SIInstrInfo::isDS(*MI); 2465 bool IsMemOrExport = IsMem || SIInstrInfo::isEXP(*MI); 2466 bool IsVALU = SIInstrInfo::isVALU(*MI); 2467 2468 const MachineInstr *MFMA = nullptr; 2469 unsigned Reg; 2470 auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2471 if (!SIInstrInfo::isMFMA(MI) || 2472 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2473 return false; 2474 MFMA = &MI; 2475 return true; 2476 }; 2477 2478 const MachineInstr *DOT = nullptr; 2479 auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) { 2480 if (!SIInstrInfo::isDOT(MI) || 2481 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2482 return false; 2483 DOT = &MI; 2484 return true; 2485 }; 2486 2487 bool DGEMMAfterVALUWrite = false; 2488 auto IsDGEMMHazard = [&DGEMMAfterVALUWrite, this](const MachineInstr &MI) { 2489 // Found DGEMM on reverse traversal to def. 2490 if (isDGEMM(MI.getOpcode())) 2491 DGEMMAfterVALUWrite = true; 2492 2493 // Only hazard if register is defined by a VALU and a DGEMM is found after 2494 // after the def. 2495 if (!TII.isVALU(MI) || !DGEMMAfterVALUWrite) 2496 return false; 2497 2498 return true; 2499 }; 2500 2501 int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), 2502 AMDGPU::OpName::src2); 2503 2504 if (IsMemOrExport || IsVALU) { 2505 const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5; 2506 const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11; 2507 const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19; 2508 const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9; 2509 const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18; 2510 const int DMFMA4x4WriteVgprVALUReadWaitStates = 6; 2511 const int DMFMA16x16WriteVgprVALUReadWaitStates = 11; 2512 const int DotWriteSameDotReadSrcAB = 3; 2513 const int DotWriteDifferentVALURead = 3; 2514 const int DMFMABetweenVALUWriteVMEMRead = 2; 2515 const int MaxWaitStates = 19; 2516 2517 for (const MachineOperand &Use : MI->explicit_uses()) { 2518 if (!Use.isReg()) 2519 continue; 2520 Reg = Use.getReg(); 2521 2522 DOT = nullptr; 2523 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2524 MaxWaitStates); 2525 if (DOT) { 2526 int NeedWaitStates = 0; 2527 if (DOT->getOpcode() == MI->getOpcode()) { 2528 if (&Use - &MI->getOperand(0) != SrcCIdx) 2529 NeedWaitStates = DotWriteSameDotReadSrcAB; 2530 } else { 2531 NeedWaitStates = DotWriteDifferentVALURead; 2532 } 2533 2534 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2535 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2536 } 2537 2538 // Workaround for HW data hazard bug observed only in GFX90A. When there 2539 // is a DGEMM instruction in-between a VALU and a VMEM instruction it 2540 // causes the SQ to incorrectly not insert two wait states between the two 2541 // instructions needed to avoid data hazard. 2542 if (IsMem && ST.hasGFX90AInsts() && !ST.hasGFX940Insts()) { 2543 DGEMMAfterVALUWrite = false; 2544 if (TRI.isVectorRegister(MRI, Reg)) { 2545 int WaitStatesNeededForUse = 2546 DMFMABetweenVALUWriteVMEMRead - 2547 getWaitStatesSinceDef(Reg, IsDGEMMHazard, 2548 DMFMABetweenVALUWriteVMEMRead); 2549 2550 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2551 } 2552 } 2553 2554 MFMA = nullptr; 2555 WaitStatesSinceDef = 2556 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2557 if (!MFMA) 2558 continue; 2559 2560 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2561 int NumPasses = HazardDefLatency; 2562 int NeedWaitStates = MaxWaitStates; 2563 2564 if (isDGEMM(MFMA->getOpcode())) { 2565 switch (HazardDefLatency) { 2566 case 4: 2567 NeedWaitStates = IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates 2568 : DMFMA4x4WriteVgprVALUReadWaitStates; 2569 break; 2570 case 8: 2571 case 16: 2572 NeedWaitStates = IsMemOrExport 2573 ? DMFMA16x16WriteVgprMemExpReadWaitStates 2574 : DMFMA16x16WriteVgprVALUReadWaitStates; 2575 break; 2576 default: 2577 llvm_unreachable("unexpected dgemm"); 2578 } 2579 } else if (ST.hasGFX940Insts()) { 2580 NeedWaitStates = 2581 isXDL(ST, *MFMA) 2582 ? GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates(NumPasses) 2583 : GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates( 2584 NumPasses); 2585 } else { 2586 switch (HazardDefLatency) { 2587 case 2: 2588 NeedWaitStates = SMFMA4x4WriteVgprVALUMemExpReadWaitStates; 2589 break; 2590 case 8: 2591 NeedWaitStates = SMFMA16x16WriteVgprVALUMemExpReadWaitStates; 2592 break; 2593 case 16: 2594 NeedWaitStates = SMFMA32x32WriteVgprVALUMemExpReadWaitStates; 2595 break; 2596 default: 2597 llvm_unreachable("unexpected number of passes for mfma"); 2598 } 2599 } 2600 2601 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2602 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2603 2604 if (WaitStatesNeeded == MaxWaitStates) 2605 break; 2606 } 2607 } 2608 2609 unsigned Opc = MI->getOpcode(); 2610 const int DMFMAToFMA64WaitStates = 2; 2611 if ((Opc == AMDGPU::V_FMA_F64_e64 || 2612 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 || 2613 Opc == AMDGPU::V_FMAC_F64_dpp) && 2614 WaitStatesNeeded < DMFMAToFMA64WaitStates) { 2615 int WaitStatesNeededForUse = DMFMAToFMA64WaitStates - 2616 getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates); 2617 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2618 } 2619 2620 if (!IsVALU && !IsMemOrExport) 2621 return WaitStatesNeeded; 2622 2623 for (const MachineOperand &Def : MI->defs()) { 2624 const int SMFMA4x4WriteVgprVALUWawWaitStates = 5; 2625 const int SMFMA16x16WriteVgprVALUWawWaitStates = 11; 2626 const int SMFMA32x32WriteVgprVALUWawWaitStates = 19; 2627 const int SMFMA4x4ReadVgprVALUWarWaitStates = 1; 2628 const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3; 2629 const int SMFMA16x16ReadVgprVALUWarWaitStates = 7; 2630 const int SMFMA32x32ReadVgprVALUWarWaitStates = 15; 2631 const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6; 2632 const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11; 2633 const int DotWriteDifferentVALUWrite = 3; 2634 const int MaxWaitStates = 19; 2635 const int MaxWarWaitStates = 15; 2636 2637 Reg = Def.getReg(); 2638 2639 DOT = nullptr; 2640 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2641 MaxWaitStates); 2642 if (DOT && DOT->getOpcode() != MI->getOpcode()) 2643 WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite - 2644 WaitStatesSinceDef); 2645 2646 MFMA = nullptr; 2647 WaitStatesSinceDef = 2648 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2649 if (MFMA) { 2650 int NeedWaitStates = MaxWaitStates; 2651 int NumPasses = TSchedModel.computeInstrLatency(MFMA); 2652 2653 if (isDGEMM(MFMA->getOpcode())) { 2654 switch (NumPasses) { 2655 case 4: 2656 NeedWaitStates = DMFMA4x4WriteVgprVALUWriteWaitStates; 2657 break; 2658 case 8: 2659 case 16: 2660 NeedWaitStates = DMFMA16x16WriteVgprVALUWriteWaitStates; 2661 break; 2662 default: 2663 llvm_unreachable("unexpected number of cycles for dgemm"); 2664 } 2665 } else if (ST.hasGFX940Insts()) { 2666 NeedWaitStates = 2667 isXDL(ST, *MFMA) 2668 ? GFX940_XDL_N_PassWriteVgprVALUWawWaitStates(NumPasses) 2669 : GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(NumPasses); 2670 } else { 2671 switch (NumPasses) { 2672 case 2: 2673 NeedWaitStates = SMFMA4x4WriteVgprVALUWawWaitStates; 2674 break; 2675 case 8: 2676 NeedWaitStates = SMFMA16x16WriteVgprVALUWawWaitStates; 2677 break; 2678 case 16: 2679 NeedWaitStates = SMFMA32x32WriteVgprVALUWawWaitStates; 2680 break; 2681 default: 2682 llvm_unreachable("Unexpected number of passes for mfma"); 2683 } 2684 } 2685 2686 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2687 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2688 2689 if (WaitStatesNeeded == MaxWaitStates) 2690 break; 2691 } 2692 2693 auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2694 if (!SIInstrInfo::isMFMA(MI) || isDGEMM(MI.getOpcode()) || 2695 !MI.readsRegister(Reg, &TRI)) 2696 return false; 2697 2698 if (ST.hasGFX940Insts() && !isXDL(ST, MI)) 2699 return false; 2700 2701 const MachineOperand *SrcC = 2702 TII.getNamedOperand(MI, AMDGPU::OpName::src2); 2703 assert(SrcC); 2704 if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg)) 2705 return false; 2706 2707 MFMA = &MI; 2708 return true; 2709 }; 2710 2711 MFMA = nullptr; 2712 int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn, 2713 MaxWarWaitStates); 2714 if (!MFMA) 2715 continue; 2716 2717 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2718 int NeedWaitStates = MaxWaitStates; 2719 switch (HazardDefLatency) { 2720 case 2: NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates; 2721 break; 2722 case 4: assert(ST.hasGFX940Insts()); 2723 NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates; 2724 break; 2725 case 8: NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates; 2726 break; 2727 case 16: [[fallthrough]]; 2728 default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates; 2729 break; 2730 } 2731 2732 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse; 2733 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2734 } 2735 2736 return WaitStatesNeeded; 2737 } 2738 2739 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) { 2740 if (!SU->isInstr()) 2741 return false; 2742 2743 const MachineInstr *MAI = nullptr; 2744 2745 auto IsMFMAFn = [&MAI](const MachineInstr &MI) { 2746 MAI = nullptr; 2747 if (SIInstrInfo::isMFMA(MI)) 2748 MAI = &MI; 2749 return MAI != nullptr; 2750 }; 2751 2752 MachineInstr *MI = SU->getInstr(); 2753 if (IsMFMAFn(*MI)) { 2754 int W = getWaitStatesSince(IsMFMAFn, 16); 2755 if (MAI) 2756 return W < (int)TSchedModel.computeInstrLatency(MAI); 2757 } 2758 2759 return false; 2760 } 2761 2762 bool GCNHazardRecognizer::fixVALUMaskWriteHazard(MachineInstr *MI) { 2763 if (!ST.hasVALUMaskWriteHazard()) 2764 return false; 2765 assert(!ST.hasExtendedWaitCounts()); 2766 2767 if (!ST.isWave64() || !SIInstrInfo::isSALU(*MI)) 2768 return false; 2769 2770 // The hazard sequence is three instructions: 2771 // 1. VALU reads SGPR as mask 2772 // 2. SALU writes SGPR 2773 // 3. SALU reads SGPR 2774 // The hazard can expire if the distance between 2 and 3 is sufficient. 2775 // In practice this happens <10% of the time, hence this always assumes 2776 // the hazard exists if 1 and 2 are present to avoid searching. 2777 2778 const MachineOperand *SDSTOp = TII.getNamedOperand(*MI, AMDGPU::OpName::sdst); 2779 if (!SDSTOp || !SDSTOp->isReg()) 2780 return false; 2781 2782 const Register HazardReg = SDSTOp->getReg(); 2783 if (HazardReg == AMDGPU::EXEC || 2784 HazardReg == AMDGPU::EXEC_LO || 2785 HazardReg == AMDGPU::EXEC_HI || 2786 HazardReg == AMDGPU::M0) 2787 return false; 2788 2789 auto IsHazardFn = [HazardReg, this](const MachineInstr &I) { 2790 switch (I.getOpcode()) { 2791 case AMDGPU::V_ADDC_U32_e32: 2792 case AMDGPU::V_ADDC_U32_dpp: 2793 case AMDGPU::V_CNDMASK_B16_e32: 2794 case AMDGPU::V_CNDMASK_B16_dpp: 2795 case AMDGPU::V_CNDMASK_B32_e32: 2796 case AMDGPU::V_CNDMASK_B32_dpp: 2797 case AMDGPU::V_DIV_FMAS_F32_e64: 2798 case AMDGPU::V_DIV_FMAS_F64_e64: 2799 case AMDGPU::V_SUBB_U32_e32: 2800 case AMDGPU::V_SUBB_U32_dpp: 2801 case AMDGPU::V_SUBBREV_U32_e32: 2802 case AMDGPU::V_SUBBREV_U32_dpp: 2803 // These implicitly read VCC as mask source. 2804 return HazardReg == AMDGPU::VCC || 2805 HazardReg == AMDGPU::VCC_LO || 2806 HazardReg == AMDGPU::VCC_HI; 2807 case AMDGPU::V_ADDC_U32_e64: 2808 case AMDGPU::V_ADDC_U32_e64_dpp: 2809 case AMDGPU::V_CNDMASK_B16_e64: 2810 case AMDGPU::V_CNDMASK_B16_e64_dpp: 2811 case AMDGPU::V_CNDMASK_B32_e64: 2812 case AMDGPU::V_CNDMASK_B32_e64_dpp: 2813 case AMDGPU::V_SUBB_U32_e64: 2814 case AMDGPU::V_SUBB_U32_e64_dpp: 2815 case AMDGPU::V_SUBBREV_U32_e64: 2816 case AMDGPU::V_SUBBREV_U32_e64_dpp: { 2817 // Only check mask register overlaps. 2818 const MachineOperand *SSRCOp = TII.getNamedOperand(I, AMDGPU::OpName::src2); 2819 assert(SSRCOp); 2820 return TRI.regsOverlap(SSRCOp->getReg(), HazardReg); 2821 } 2822 default: 2823 return false; 2824 } 2825 }; 2826 2827 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2828 auto IsExpiredFn = [&MRI, this](const MachineInstr &I, int) { 2829 // s_waitcnt_depctr sa_sdst(0) mitigates hazard. 2830 if (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 2831 AMDGPU::DepCtr::decodeFieldSaSdst(I.getOperand(0).getImm()) == 0) 2832 return true; 2833 2834 // VALU access to any SGPR or literal constant other than HazardReg 2835 // mitigates hazard. No need to check HazardReg here as this will 2836 // only be called when !IsHazardFn. 2837 if (!SIInstrInfo::isVALU(I)) 2838 return false; 2839 for (int OpNo = 0, End = I.getNumOperands(); OpNo < End; ++OpNo) { 2840 const MachineOperand &Op = I.getOperand(OpNo); 2841 if (Op.isReg()) { 2842 Register OpReg = Op.getReg(); 2843 // Only consider uses 2844 if (!Op.isUse()) 2845 continue; 2846 // Ignore EXEC 2847 if (OpReg == AMDGPU::EXEC || 2848 OpReg == AMDGPU::EXEC_LO || 2849 OpReg == AMDGPU::EXEC_HI) 2850 continue; 2851 // Ignore all implicit uses except VCC 2852 if (Op.isImplicit()) { 2853 if (OpReg == AMDGPU::VCC || 2854 OpReg == AMDGPU::VCC_LO || 2855 OpReg == AMDGPU::VCC_HI) 2856 return true; 2857 continue; 2858 } 2859 if (TRI.isSGPRReg(MRI, OpReg)) 2860 return true; 2861 } else { 2862 const MCInstrDesc &InstDesc = I.getDesc(); 2863 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; 2864 if (!TII.isInlineConstant(Op, OpInfo)) 2865 return true; 2866 } 2867 } 2868 return false; 2869 }; 2870 2871 // Check for hazard 2872 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 2873 std::numeric_limits<int>::max()) 2874 return false; 2875 2876 auto NextMI = std::next(MI->getIterator()); 2877 2878 // Add s_waitcnt_depctr sa_sdst(0) after SALU write. 2879 BuildMI(*MI->getParent(), NextMI, MI->getDebugLoc(), 2880 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 2881 .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0)); 2882 2883 // SALU write may be s_getpc in a bundle. 2884 if (MI->getOpcode() == AMDGPU::S_GETPC_B64) { 2885 // Update offsets of any references in the bundle. 2886 while (NextMI != MI->getParent()->end() && 2887 NextMI->isBundledWithPred()) { 2888 for (auto &Operand : NextMI->operands()) { 2889 if (Operand.isGlobal()) 2890 Operand.setOffset(Operand.getOffset() + 4); 2891 } 2892 NextMI++; 2893 } 2894 } 2895 2896 return true; 2897 } 2898