1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "GCNSubtarget.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "SIMachineFunctionInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/ScheduleDAG.h" 19 #include "llvm/TargetParser/TargetParser.h" 20 21 using namespace llvm; 22 23 namespace { 24 25 struct MFMAPaddingRatioParser : public cl::parser<unsigned> { 26 MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {} 27 28 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 29 if (Arg.getAsInteger(0, Value)) 30 return O.error("'" + Arg + "' value invalid for uint argument!"); 31 32 if (Value > 100) 33 return O.error("'" + Arg + "' value must be in the range [0, 100]!"); 34 35 return false; 36 } 37 }; 38 39 } // end anonymous namespace 40 41 static cl::opt<unsigned, false, MFMAPaddingRatioParser> 42 MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden, 43 cl::desc("Fill a percentage of the latency between " 44 "neighboring MFMA with s_nops.")); 45 46 //===----------------------------------------------------------------------===// 47 // Hazard Recognizer Implementation 48 //===----------------------------------------------------------------------===// 49 50 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 51 const GCNSubtarget &ST); 52 53 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 54 IsHazardRecognizerMode(false), 55 CurrCycleInstr(nullptr), 56 MF(MF), 57 ST(MF.getSubtarget<GCNSubtarget>()), 58 TII(*ST.getInstrInfo()), 59 TRI(TII.getRegisterInfo()), 60 ClauseUses(TRI.getNumRegUnits()), 61 ClauseDefs(TRI.getNumRegUnits()) { 62 MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5; 63 TSchedModel.init(&ST); 64 RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST); 65 } 66 67 void GCNHazardRecognizer::Reset() { 68 EmittedInstrs.clear(); 69 } 70 71 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 72 EmitInstruction(SU->getInstr()); 73 } 74 75 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 76 CurrCycleInstr = MI; 77 } 78 79 static bool isDivFMas(unsigned Opcode) { 80 return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64; 81 } 82 83 static bool isSGetReg(unsigned Opcode) { 84 return Opcode == AMDGPU::S_GETREG_B32; 85 } 86 87 static bool isSSetReg(unsigned Opcode) { 88 switch (Opcode) { 89 case AMDGPU::S_SETREG_B32: 90 case AMDGPU::S_SETREG_B32_mode: 91 case AMDGPU::S_SETREG_IMM32_B32: 92 case AMDGPU::S_SETREG_IMM32_B32_mode: 93 return true; 94 } 95 return false; 96 } 97 98 static bool isRWLane(unsigned Opcode) { 99 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 100 } 101 102 static bool isRFE(unsigned Opcode) { 103 return Opcode == AMDGPU::S_RFE_B64; 104 } 105 106 static bool isSMovRel(unsigned Opcode) { 107 switch (Opcode) { 108 case AMDGPU::S_MOVRELS_B32: 109 case AMDGPU::S_MOVRELS_B64: 110 case AMDGPU::S_MOVRELD_B32: 111 case AMDGPU::S_MOVRELD_B64: 112 return true; 113 default: 114 return false; 115 } 116 } 117 118 static bool isDGEMM(unsigned Opcode) { 119 return AMDGPU::getMAIIsDGEMM(Opcode); 120 } 121 122 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) { 123 unsigned Opcode = MI.getOpcode(); 124 125 if (!SIInstrInfo::isMAI(MI) || 126 isDGEMM(Opcode) || 127 Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 128 Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64) 129 return false; 130 131 if (!ST.hasGFX940Insts()) 132 return true; 133 134 return AMDGPU::getMAIIsGFX940XDL(Opcode); 135 } 136 137 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 138 const MachineInstr &MI) { 139 if (TII.isAlwaysGDS(MI.getOpcode())) 140 return true; 141 142 switch (MI.getOpcode()) { 143 case AMDGPU::S_SENDMSG: 144 case AMDGPU::S_SENDMSGHALT: 145 case AMDGPU::S_TTRACEDATA: 146 return true; 147 // These DS opcodes don't support GDS. 148 case AMDGPU::DS_NOP: 149 case AMDGPU::DS_PERMUTE_B32: 150 case AMDGPU::DS_BPERMUTE_B32: 151 return false; 152 default: 153 if (TII.isDS(MI.getOpcode())) { 154 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 155 AMDGPU::OpName::gds); 156 if (MI.getOperand(GDS).getImm()) 157 return true; 158 } 159 return false; 160 } 161 } 162 163 static bool isPermlane(const MachineInstr &MI) { 164 unsigned Opcode = MI.getOpcode(); 165 return Opcode == AMDGPU::V_PERMLANE16_B32_e64 || 166 Opcode == AMDGPU::V_PERMLANE64_B32 || 167 Opcode == AMDGPU::V_PERMLANEX16_B32_e64 || 168 Opcode == AMDGPU::V_PERMLANE16_VAR_B32_e64 || 169 Opcode == AMDGPU::V_PERMLANEX16_VAR_B32_e64; 170 } 171 172 static bool isLdsDma(const MachineInstr &MI) { 173 return SIInstrInfo::isVALU(MI) && 174 (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)); 175 } 176 177 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 178 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 179 AMDGPU::OpName::simm16); 180 return std::get<0>(AMDGPU::Hwreg::HwregEncoding::decode(RegOp->getImm())); 181 } 182 183 ScheduleHazardRecognizer::HazardType 184 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 185 MachineInstr *MI = SU->getInstr(); 186 // If we are not in "HazardRecognizerMode" and therefore not being run from 187 // the scheduler, track possible stalls from hazards but don't insert noops. 188 auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard; 189 190 if (MI->isBundle()) 191 return NoHazard; 192 193 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 194 return HazardType; 195 196 if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) 197 return HazardType; 198 199 if (checkFPAtomicToDenormModeHazard(MI) > 0) 200 return HazardType; 201 202 if (ST.hasNoDataDepHazard()) 203 return NoHazard; 204 205 // FIXME: Should flat be considered vmem? 206 if ((SIInstrInfo::isVMEM(*MI) || 207 SIInstrInfo::isFLAT(*MI)) 208 && checkVMEMHazards(MI) > 0) 209 return HazardType; 210 211 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 212 return HazardType; 213 214 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 215 return HazardType; 216 217 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 218 return HazardType; 219 220 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 221 return HazardType; 222 223 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 224 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 225 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 226 return HazardType; 227 228 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 229 return HazardType; 230 231 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 232 return HazardType; 233 234 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 235 return HazardType; 236 237 if (((ST.hasReadM0MovRelInterpHazard() && 238 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 239 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 240 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 241 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 242 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 243 (ST.hasReadM0LdsDirectHazard() && 244 MI->readsRegister(AMDGPU::LDS_DIRECT))) && 245 checkReadM0Hazards(MI) > 0) 246 return HazardType; 247 248 if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0) 249 return HazardType; 250 251 if ((SIInstrInfo::isVMEM(*MI) || 252 SIInstrInfo::isFLAT(*MI) || 253 SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0) 254 return HazardType; 255 256 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 257 return HazardType; 258 259 return NoHazard; 260 } 261 262 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII, 263 unsigned Quantity) { 264 while (Quantity > 0) { 265 unsigned Arg = std::min(Quantity, 8u); 266 Quantity -= Arg; 267 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP)) 268 .addImm(Arg - 1); 269 } 270 } 271 272 unsigned 273 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const { 274 const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI); 275 assert(TSchedModel.getWriteProcResBegin(SC) != 276 TSchedModel.getWriteProcResEnd(SC)); 277 return TSchedModel.getWriteProcResBegin(SC)->ReleaseAtCycle; 278 } 279 280 void GCNHazardRecognizer::processBundle() { 281 MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator()); 282 MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); 283 // Check bundled MachineInstr's for hazards. 284 for (; MI != E && MI->isInsideBundle(); ++MI) { 285 CurrCycleInstr = &*MI; 286 unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); 287 288 if (IsHazardRecognizerMode) { 289 fixHazards(CurrCycleInstr); 290 291 insertNoopsInBundle(CurrCycleInstr, TII, WaitStates); 292 } 293 294 // It’s unnecessary to track more than MaxLookAhead instructions. Since we 295 // include the bundled MI directly after, only add a maximum of 296 // (MaxLookAhead - 1) noops to EmittedInstrs. 297 for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i) 298 EmittedInstrs.push_front(nullptr); 299 300 EmittedInstrs.push_front(CurrCycleInstr); 301 EmittedInstrs.resize(MaxLookAhead); 302 } 303 CurrCycleInstr = nullptr; 304 } 305 306 void GCNHazardRecognizer::runOnInstruction(MachineInstr *MI) { 307 assert(IsHazardRecognizerMode); 308 309 unsigned NumPreNoops = PreEmitNoops(MI); 310 EmitNoops(NumPreNoops); 311 if (MI->isInsideBundle()) 312 insertNoopsInBundle(MI, TII, NumPreNoops); 313 else 314 TII.insertNoops(*MI->getParent(), MachineBasicBlock::iterator(MI), 315 NumPreNoops); 316 EmitInstruction(MI); 317 AdvanceCycle(); 318 } 319 320 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 321 IsHazardRecognizerMode = true; 322 CurrCycleInstr = MI; 323 unsigned W = PreEmitNoopsCommon(MI); 324 fixHazards(MI); 325 CurrCycleInstr = nullptr; 326 return W; 327 } 328 329 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 330 if (MI->isBundle()) 331 return 0; 332 333 int WaitStates = 0; 334 335 if (SIInstrInfo::isSMRD(*MI)) 336 return std::max(WaitStates, checkSMRDHazards(MI)); 337 338 if (ST.hasNSAtoVMEMBug()) 339 WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI)); 340 341 WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI)); 342 343 if (ST.hasNoDataDepHazard()) 344 return WaitStates; 345 346 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 347 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 348 349 if (SIInstrInfo::isVALU(*MI)) 350 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 351 352 if (SIInstrInfo::isDPP(*MI)) 353 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 354 355 if (isDivFMas(MI->getOpcode())) 356 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 357 358 if (isRWLane(MI->getOpcode())) 359 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 360 361 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 362 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 363 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 364 WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI)); 365 366 if (MI->isInlineAsm()) 367 return std::max(WaitStates, checkInlineAsmHazards(MI)); 368 369 if (isSGetReg(MI->getOpcode())) 370 return std::max(WaitStates, checkGetRegHazards(MI)); 371 372 if (isSSetReg(MI->getOpcode())) 373 return std::max(WaitStates, checkSetRegHazards(MI)); 374 375 if (isRFE(MI->getOpcode())) 376 return std::max(WaitStates, checkRFEHazards(MI)); 377 378 if ((ST.hasReadM0MovRelInterpHazard() && 379 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 380 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 381 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 382 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 383 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 384 (ST.hasReadM0LdsDirectHazard() && MI->readsRegister(AMDGPU::LDS_DIRECT))) 385 return std::max(WaitStates, checkReadM0Hazards(MI)); 386 387 if (SIInstrInfo::isMAI(*MI)) 388 return std::max(WaitStates, checkMAIHazards(MI)); 389 390 if (SIInstrInfo::isVMEM(*MI) || 391 SIInstrInfo::isFLAT(*MI) || 392 SIInstrInfo::isDS(*MI)) 393 return std::max(WaitStates, checkMAILdStHazards(MI)); 394 395 return WaitStates; 396 } 397 398 void GCNHazardRecognizer::EmitNoop() { 399 EmittedInstrs.push_front(nullptr); 400 } 401 402 void GCNHazardRecognizer::AdvanceCycle() { 403 // When the scheduler detects a stall, it will call AdvanceCycle() without 404 // emitting any instructions. 405 if (!CurrCycleInstr) { 406 EmittedInstrs.push_front(nullptr); 407 return; 408 } 409 410 if (CurrCycleInstr->isBundle()) { 411 processBundle(); 412 return; 413 } 414 415 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 416 if (!NumWaitStates) { 417 CurrCycleInstr = nullptr; 418 return; 419 } 420 421 // Keep track of emitted instructions 422 EmittedInstrs.push_front(CurrCycleInstr); 423 424 // Add a nullptr for each additional wait state after the first. Make sure 425 // not to add more than getMaxLookAhead() items to the list, since we 426 // truncate the list to that size right after this loop. 427 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 428 i < e; ++i) { 429 EmittedInstrs.push_front(nullptr); 430 } 431 432 // getMaxLookahead() is the largest number of wait states we will ever need 433 // to insert, so there is no point in keeping track of more than that many 434 // wait states. 435 EmittedInstrs.resize(getMaxLookAhead()); 436 437 CurrCycleInstr = nullptr; 438 } 439 440 void GCNHazardRecognizer::RecedeCycle() { 441 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 442 } 443 444 //===----------------------------------------------------------------------===// 445 // Helper Functions 446 //===----------------------------------------------------------------------===// 447 448 typedef enum { HazardFound, HazardExpired, NoHazardFound } HazardFnResult; 449 450 typedef function_ref<bool(const MachineInstr &, int WaitStates)> IsExpiredFn; 451 typedef function_ref<unsigned int(const MachineInstr &)> GetNumWaitStatesFn; 452 453 // Search for a hazard in a block and its predecessors. 454 template <typename StateT> 455 static bool 456 hasHazard(StateT State, 457 function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard, 458 function_ref<void(StateT &, const MachineInstr &)> UpdateState, 459 const MachineBasicBlock *MBB, 460 MachineBasicBlock::const_reverse_instr_iterator I, 461 DenseSet<const MachineBasicBlock *> &Visited) { 462 for (auto E = MBB->instr_rend(); I != E; ++I) { 463 // No need to look at parent BUNDLE instructions. 464 if (I->isBundle()) 465 continue; 466 467 switch (IsHazard(State, *I)) { 468 case HazardFound: 469 return true; 470 case HazardExpired: 471 return false; 472 default: 473 // Continue search 474 break; 475 } 476 477 if (I->isInlineAsm() || I->isMetaInstruction()) 478 continue; 479 480 UpdateState(State, *I); 481 } 482 483 for (MachineBasicBlock *Pred : MBB->predecessors()) { 484 if (!Visited.insert(Pred).second) 485 continue; 486 487 if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(), 488 Visited)) 489 return true; 490 } 491 492 return false; 493 } 494 495 // Returns a minimum wait states since \p I walking all predecessors. 496 // Only scans until \p IsExpired does not return true. 497 // Can only be run in a hazard recognizer mode. 498 static int getWaitStatesSince( 499 GCNHazardRecognizer::IsHazardFn IsHazard, const MachineBasicBlock *MBB, 500 MachineBasicBlock::const_reverse_instr_iterator I, int WaitStates, 501 IsExpiredFn IsExpired, DenseSet<const MachineBasicBlock *> &Visited, 502 GetNumWaitStatesFn GetNumWaitStates = SIInstrInfo::getNumWaitStates) { 503 for (auto E = MBB->instr_rend(); I != E; ++I) { 504 // Don't add WaitStates for parent BUNDLE instructions. 505 if (I->isBundle()) 506 continue; 507 508 if (IsHazard(*I)) 509 return WaitStates; 510 511 if (I->isInlineAsm()) 512 continue; 513 514 WaitStates += GetNumWaitStates(*I); 515 516 if (IsExpired(*I, WaitStates)) 517 return std::numeric_limits<int>::max(); 518 } 519 520 int MinWaitStates = std::numeric_limits<int>::max(); 521 for (MachineBasicBlock *Pred : MBB->predecessors()) { 522 if (!Visited.insert(Pred).second) 523 continue; 524 525 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), WaitStates, 526 IsExpired, Visited, GetNumWaitStates); 527 528 MinWaitStates = std::min(MinWaitStates, W); 529 } 530 531 return MinWaitStates; 532 } 533 534 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 535 const MachineInstr *MI, IsExpiredFn IsExpired) { 536 DenseSet<const MachineBasicBlock *> Visited; 537 return getWaitStatesSince(IsHazard, MI->getParent(), 538 std::next(MI->getReverseIterator()), 539 0, IsExpired, Visited); 540 } 541 542 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 543 if (IsHazardRecognizerMode) { 544 auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) { 545 return WaitStates >= Limit; 546 }; 547 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 548 } 549 550 int WaitStates = 0; 551 for (MachineInstr *MI : EmittedInstrs) { 552 if (MI) { 553 if (IsHazard(*MI)) 554 return WaitStates; 555 556 if (MI->isInlineAsm()) 557 continue; 558 } 559 ++WaitStates; 560 561 if (WaitStates >= Limit) 562 break; 563 } 564 return std::numeric_limits<int>::max(); 565 } 566 567 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 568 IsHazardFn IsHazardDef, 569 int Limit) { 570 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 571 572 auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) { 573 return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI); 574 }; 575 576 return getWaitStatesSince(IsHazardFn, Limit); 577 } 578 579 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 580 int Limit) { 581 auto IsHazardFn = [IsHazard](const MachineInstr &MI) { 582 return isSSetReg(MI.getOpcode()) && IsHazard(MI); 583 }; 584 585 return getWaitStatesSince(IsHazardFn, Limit); 586 } 587 588 //===----------------------------------------------------------------------===// 589 // No-op Hazard Detection 590 //===----------------------------------------------------------------------===// 591 592 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV, 593 MCRegister Reg) { 594 for (MCRegUnit Unit : TRI.regunits(Reg)) 595 BV.set(Unit); 596 } 597 598 static void addRegsToSet(const SIRegisterInfo &TRI, 599 iterator_range<MachineInstr::const_mop_iterator> Ops, 600 BitVector &DefSet, BitVector &UseSet) { 601 for (const MachineOperand &Op : Ops) { 602 if (Op.isReg()) 603 addRegUnits(TRI, Op.isDef() ? DefSet : UseSet, Op.getReg().asMCReg()); 604 } 605 } 606 607 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 608 addRegsToSet(TRI, MI.operands(), ClauseDefs, ClauseUses); 609 } 610 611 static bool breaksSMEMSoftClause(MachineInstr *MI) { 612 return !SIInstrInfo::isSMRD(*MI); 613 } 614 615 static bool breaksVMEMSoftClause(MachineInstr *MI) { 616 return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI); 617 } 618 619 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 620 // SMEM soft clause are only present on VI+, and only matter if xnack is 621 // enabled. 622 if (!ST.isXNACKEnabled()) 623 return 0; 624 625 bool IsSMRD = TII.isSMRD(*MEM); 626 627 resetClause(); 628 629 // A soft-clause is any group of consecutive SMEM instructions. The 630 // instructions in this group may return out of order and/or may be 631 // replayed (i.e. the same instruction issued more than once). 632 // 633 // In order to handle these situations correctly we need to make sure that 634 // when a clause has more than one instruction, no instruction in the clause 635 // writes to a register that is read by another instruction in the clause 636 // (including itself). If we encounter this situation, we need to break the 637 // clause by inserting a non SMEM instruction. 638 639 for (MachineInstr *MI : EmittedInstrs) { 640 // When we hit a non-SMEM instruction then we have passed the start of the 641 // clause and we can stop. 642 if (!MI) 643 break; 644 645 if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI)) 646 break; 647 648 addClauseInst(*MI); 649 } 650 651 if (ClauseDefs.none()) 652 return 0; 653 654 // We need to make sure not to put loads and stores in the same clause if they 655 // use the same address. For now, just start a new clause whenever we see a 656 // store. 657 if (MEM->mayStore()) 658 return 1; 659 660 addClauseInst(*MEM); 661 662 // If the set of defs and uses intersect then we cannot add this instruction 663 // to the clause, so we have a hazard. 664 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 665 } 666 667 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 668 int WaitStatesNeeded = 0; 669 670 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 671 672 // This SMRD hazard only affects SI. 673 if (!ST.hasSMRDReadVALUDefHazard()) 674 return WaitStatesNeeded; 675 676 // A read of an SGPR by SMRD instruction requires 4 wait states when the 677 // SGPR was written by a VALU instruction. 678 int SmrdSgprWaitStates = 4; 679 auto IsHazardDefFn = [this](const MachineInstr &MI) { 680 return TII.isVALU(MI); 681 }; 682 auto IsBufferHazardDefFn = [this](const MachineInstr &MI) { 683 return TII.isSALU(MI); 684 }; 685 686 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 687 688 for (const MachineOperand &Use : SMRD->uses()) { 689 if (!Use.isReg()) 690 continue; 691 int WaitStatesNeededForUse = 692 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 693 SmrdSgprWaitStates); 694 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 695 696 // This fixes what appears to be undocumented hardware behavior in SI where 697 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 698 // needs some number of nops in between. We don't know how many we need, but 699 // let's use 4. This wasn't discovered before probably because the only 700 // case when this happens is when we expand a 64-bit pointer into a full 701 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 702 // probably never encountered in the closed-source land. 703 if (IsBufferSMRD) { 704 int WaitStatesNeededForUse = 705 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 706 IsBufferHazardDefFn, 707 SmrdSgprWaitStates); 708 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 709 } 710 } 711 712 return WaitStatesNeeded; 713 } 714 715 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 716 if (!ST.hasVMEMReadSGPRVALUDefHazard()) 717 return 0; 718 719 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 720 721 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 722 // SGPR was written by a VALU Instruction. 723 const int VmemSgprWaitStates = 5; 724 auto IsHazardDefFn = [this](const MachineInstr &MI) { 725 return TII.isVALU(MI); 726 }; 727 for (const MachineOperand &Use : VMEM->uses()) { 728 if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg())) 729 continue; 730 731 int WaitStatesNeededForUse = 732 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 733 VmemSgprWaitStates); 734 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 735 } 736 return WaitStatesNeeded; 737 } 738 739 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 740 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 741 const SIInstrInfo *TII = ST.getInstrInfo(); 742 743 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 744 int DppVgprWaitStates = 2; 745 int DppExecWaitStates = 5; 746 int WaitStatesNeeded = 0; 747 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 748 return TII->isVALU(MI); 749 }; 750 751 for (const MachineOperand &Use : DPP->uses()) { 752 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 753 continue; 754 int WaitStatesNeededForUse = 755 DppVgprWaitStates - getWaitStatesSinceDef( 756 Use.getReg(), 757 [](const MachineInstr &) { return true; }, 758 DppVgprWaitStates); 759 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 760 } 761 762 WaitStatesNeeded = std::max( 763 WaitStatesNeeded, 764 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 765 DppExecWaitStates)); 766 767 return WaitStatesNeeded; 768 } 769 770 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 771 const SIInstrInfo *TII = ST.getInstrInfo(); 772 773 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 774 // instruction. 775 const int DivFMasWaitStates = 4; 776 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 777 return TII->isVALU(MI); 778 }; 779 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 780 DivFMasWaitStates); 781 782 return DivFMasWaitStates - WaitStatesNeeded; 783 } 784 785 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 786 const SIInstrInfo *TII = ST.getInstrInfo(); 787 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 788 789 const int GetRegWaitStates = 2; 790 auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) { 791 return GetRegHWReg == getHWReg(TII, MI); 792 }; 793 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 794 795 return GetRegWaitStates - WaitStatesNeeded; 796 } 797 798 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 799 const SIInstrInfo *TII = ST.getInstrInfo(); 800 unsigned HWReg = getHWReg(TII, *SetRegInstr); 801 802 const int SetRegWaitStates = ST.getSetRegWaitStates(); 803 auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) { 804 return HWReg == getHWReg(TII, MI); 805 }; 806 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 807 return SetRegWaitStates - WaitStatesNeeded; 808 } 809 810 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 811 if (!MI.mayStore()) 812 return -1; 813 814 const SIInstrInfo *TII = ST.getInstrInfo(); 815 unsigned Opcode = MI.getOpcode(); 816 const MCInstrDesc &Desc = MI.getDesc(); 817 818 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 819 int VDataRCID = -1; 820 if (VDataIdx != -1) 821 VDataRCID = Desc.operands()[VDataIdx].RegClass; 822 823 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 824 // There is no hazard if the instruction does not use vector regs 825 // (like wbinvl1) 826 if (VDataIdx == -1) 827 return -1; 828 // For MUBUF/MTBUF instructions this hazard only exists if the 829 // instruction is not using a register in the soffset field. 830 const MachineOperand *SOffset = 831 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 832 // If we have no soffset operand, then assume this field has been 833 // hardcoded to zero. 834 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 835 (!SOffset || !SOffset->isReg())) 836 return VDataIdx; 837 } 838 839 // MIMG instructions create a hazard if they don't use a 256-bit T# and 840 // the store size is greater than 8 bytes and they have more than two bits 841 // of their dmask set. 842 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 843 if (TII->isMIMG(MI)) { 844 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 845 assert(SRsrcIdx != -1 && 846 AMDGPU::getRegBitWidth(Desc.operands()[SRsrcIdx].RegClass) == 256); 847 (void)SRsrcIdx; 848 } 849 850 if (TII->isFLAT(MI)) { 851 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 852 if (AMDGPU::getRegBitWidth(Desc.operands()[DataIdx].RegClass) > 64) 853 return DataIdx; 854 } 855 856 return -1; 857 } 858 859 int 860 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 861 const MachineRegisterInfo &MRI) { 862 // Helper to check for the hazard where VMEM instructions that store more than 863 // 8 bytes can have there store data over written by the next instruction. 864 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 865 866 const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1; 867 int WaitStatesNeeded = 0; 868 869 if (!TRI->isVectorRegister(MRI, Def.getReg())) 870 return WaitStatesNeeded; 871 Register Reg = Def.getReg(); 872 auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) { 873 int DataIdx = createsVALUHazard(MI); 874 return DataIdx >= 0 && 875 TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg); 876 }; 877 int WaitStatesNeededForDef = 878 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 879 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 880 881 return WaitStatesNeeded; 882 } 883 884 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 885 int WaitStatesNeeded = 0; 886 887 if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) { 888 const int TransDefWaitstates = 1; 889 890 auto IsTransDefFn = [this, VALU](const MachineInstr &MI) { 891 if (!SIInstrInfo::isTRANS(MI)) 892 return false; 893 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 894 const SIInstrInfo *TII = ST.getInstrInfo(); 895 Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg(); 896 897 for (const MachineOperand &Use : VALU->explicit_uses()) { 898 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 899 return true; 900 } 901 902 return false; 903 }; 904 905 int WaitStatesNeededForDef = 906 TransDefWaitstates - 907 getWaitStatesSince(IsTransDefFn, TransDefWaitstates); 908 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 909 } 910 911 if (ST.hasDstSelForwardingHazard()) { 912 const int Shift16DefWaitstates = 1; 913 914 auto IsShift16BitDefFn = [this, VALU](const MachineInstr &MI) { 915 if (!SIInstrInfo::isVALU(MI)) 916 return false; 917 const SIInstrInfo *TII = ST.getInstrInfo(); 918 if (SIInstrInfo::isSDWA(MI)) { 919 if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel)) 920 if (DstSel->getImm() == AMDGPU::SDWA::DWORD) 921 return false; 922 } else { 923 if (!AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::op_sel) || 924 !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers) 925 ->getImm() & 926 SISrcMods::DST_OP_SEL)) 927 return false; 928 } 929 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 930 if (auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) { 931 Register Def = Dst->getReg(); 932 933 for (const MachineOperand &Use : VALU->explicit_uses()) { 934 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 935 return true; 936 } 937 } 938 939 return false; 940 }; 941 942 int WaitStatesNeededForDef = 943 Shift16DefWaitstates - 944 getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates); 945 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 946 } 947 948 if (ST.hasVDecCoExecHazard()) { 949 const int VALUWriteSGPRVALUReadWaitstates = 2; 950 const int VALUWriteEXECRWLane = 4; 951 const int VALUWriteVGPRReadlaneRead = 1; 952 953 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 954 const MachineRegisterInfo &MRI = MF.getRegInfo(); 955 Register UseReg; 956 auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) { 957 if (!SIInstrInfo::isVALU(MI)) 958 return false; 959 return MI.modifiesRegister(UseReg, TRI); 960 }; 961 962 for (const MachineOperand &Use : VALU->explicit_uses()) { 963 if (!Use.isReg()) 964 continue; 965 966 UseReg = Use.getReg(); 967 if (TRI->isSGPRReg(MRI, UseReg)) { 968 int WaitStatesNeededForDef = 969 VALUWriteSGPRVALUReadWaitstates - 970 getWaitStatesSince(IsVALUDefSGPRFn, 971 VALUWriteSGPRVALUReadWaitstates); 972 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 973 } 974 } 975 976 if (VALU->readsRegister(AMDGPU::VCC, TRI)) { 977 UseReg = AMDGPU::VCC; 978 int WaitStatesNeededForDef = 979 VALUWriteSGPRVALUReadWaitstates - 980 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates); 981 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 982 } 983 984 switch (VALU->getOpcode()) { 985 case AMDGPU::V_READLANE_B32: 986 case AMDGPU::V_READFIRSTLANE_B32: { 987 MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0); 988 UseReg = Src->getReg(); 989 int WaitStatesNeededForDef = 990 VALUWriteVGPRReadlaneRead - 991 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead); 992 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 993 } 994 [[fallthrough]]; 995 case AMDGPU::V_WRITELANE_B32: { 996 UseReg = AMDGPU::EXEC; 997 int WaitStatesNeededForDef = 998 VALUWriteEXECRWLane - 999 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane); 1000 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 1001 break; 1002 } 1003 default: 1004 break; 1005 } 1006 } 1007 1008 // This checks for the hazard where VMEM instructions that store more than 1009 // 8 bytes can have there store data over written by the next instruction. 1010 if (!ST.has12DWordStoreHazard()) 1011 return WaitStatesNeeded; 1012 1013 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1014 1015 for (const MachineOperand &Def : VALU->defs()) { 1016 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 1017 } 1018 1019 return WaitStatesNeeded; 1020 } 1021 1022 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 1023 // This checks for hazards associated with inline asm statements. 1024 // Since inline asms can contain just about anything, we use this 1025 // to call/leverage other check*Hazard routines. Note that 1026 // this function doesn't attempt to address all possible inline asm 1027 // hazards (good luck), but is a collection of what has been 1028 // problematic thus far. 1029 1030 // see checkVALUHazards() 1031 if (!ST.has12DWordStoreHazard()) 1032 return 0; 1033 1034 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1035 int WaitStatesNeeded = 0; 1036 1037 for (const MachineOperand &Op : 1038 llvm::drop_begin(IA->operands(), InlineAsm::MIOp_FirstOperand)) { 1039 if (Op.isReg() && Op.isDef()) { 1040 WaitStatesNeeded = 1041 std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 1042 } 1043 } 1044 1045 return WaitStatesNeeded; 1046 } 1047 1048 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 1049 const SIInstrInfo *TII = ST.getInstrInfo(); 1050 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1051 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1052 1053 const MachineOperand *LaneSelectOp = 1054 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 1055 1056 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 1057 return 0; 1058 1059 Register LaneSelectReg = LaneSelectOp->getReg(); 1060 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); }; 1061 1062 const int RWLaneWaitStates = 4; 1063 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 1064 RWLaneWaitStates); 1065 return RWLaneWaitStates - WaitStatesSince; 1066 } 1067 1068 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 1069 if (!ST.hasRFEHazards()) 1070 return 0; 1071 1072 const SIInstrInfo *TII = ST.getInstrInfo(); 1073 1074 const int RFEWaitStates = 1; 1075 1076 auto IsHazardFn = [TII](const MachineInstr &MI) { 1077 return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS; 1078 }; 1079 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 1080 return RFEWaitStates - WaitStatesNeeded; 1081 } 1082 1083 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 1084 const SIInstrInfo *TII = ST.getInstrInfo(); 1085 const int ReadM0WaitStates = 1; 1086 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); }; 1087 return ReadM0WaitStates - 1088 getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, ReadM0WaitStates); 1089 } 1090 1091 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { 1092 fixVMEMtoScalarWriteHazards(MI); 1093 fixVcmpxPermlaneHazards(MI); 1094 fixSMEMtoVectorWriteHazards(MI); 1095 fixVcmpxExecWARHazard(MI); 1096 fixLdsBranchVmemWARHazard(MI); 1097 if (ST.hasLdsDirect()) { 1098 fixLdsDirectVALUHazard(MI); 1099 fixLdsDirectVMEMHazard(MI); 1100 } 1101 fixVALUPartialForwardingHazard(MI); 1102 fixVALUTransUseHazard(MI); 1103 fixWMMAHazards(MI); 1104 fixShift64HighRegBug(MI); 1105 fixVALUMaskWriteHazard(MI); 1106 } 1107 1108 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) { 1109 if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI)) 1110 return false; 1111 1112 const SIInstrInfo *TII = ST.getInstrInfo(); 1113 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1114 auto IsHazardFn = [TII, TRI](const MachineInstr &MI) { 1115 return (TII->isVOPC(MI) || 1116 ((TII->isVOP3(MI) || TII->isSDWA(MI)) && MI.isCompare())) && 1117 MI.modifiesRegister(AMDGPU::EXEC, TRI); 1118 }; 1119 1120 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1121 unsigned Opc = MI.getOpcode(); 1122 return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 && 1123 Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa; 1124 }; 1125 1126 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1127 std::numeric_limits<int>::max()) 1128 return false; 1129 1130 // V_NOP will be discarded by SQ. 1131 // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE* 1132 // which is always a VGPR and available. 1133 auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1134 Register Reg = Src0->getReg(); 1135 bool IsUndef = Src0->isUndef(); 1136 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1137 TII->get(AMDGPU::V_MOV_B32_e32)) 1138 .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0)) 1139 .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill); 1140 1141 return true; 1142 } 1143 1144 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { 1145 if (!ST.hasVMEMtoScalarWriteHazard()) 1146 return false; 1147 assert(!ST.hasExtendedWaitCounts()); 1148 1149 if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI)) 1150 return false; 1151 1152 if (MI->getNumDefs() == 0) 1153 return false; 1154 1155 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1156 1157 auto IsHazardFn = [TRI, MI](const MachineInstr &I) { 1158 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) && 1159 !SIInstrInfo::isFLAT(I)) 1160 return false; 1161 1162 for (const MachineOperand &Def : MI->defs()) { 1163 const MachineOperand *Op = 1164 I.findRegisterUseOperand(Def.getReg(), false, TRI); 1165 if (!Op) 1166 continue; 1167 return true; 1168 } 1169 return false; 1170 }; 1171 1172 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1173 return SIInstrInfo::isVALU(MI) || 1174 (MI.getOpcode() == AMDGPU::S_WAITCNT && 1175 !MI.getOperand(0).getImm()) || 1176 (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1177 AMDGPU::DepCtr::decodeFieldVmVsrc(MI.getOperand(0).getImm()) == 0); 1178 }; 1179 1180 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1181 std::numeric_limits<int>::max()) 1182 return false; 1183 1184 const SIInstrInfo *TII = ST.getInstrInfo(); 1185 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1186 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1187 .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0)); 1188 return true; 1189 } 1190 1191 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { 1192 if (!ST.hasSMEMtoVectorWriteHazard()) 1193 return false; 1194 assert(!ST.hasExtendedWaitCounts()); 1195 1196 if (!SIInstrInfo::isVALU(*MI)) 1197 return false; 1198 1199 unsigned SDSTName; 1200 switch (MI->getOpcode()) { 1201 case AMDGPU::V_READLANE_B32: 1202 case AMDGPU::V_READFIRSTLANE_B32: 1203 SDSTName = AMDGPU::OpName::vdst; 1204 break; 1205 default: 1206 SDSTName = AMDGPU::OpName::sdst; 1207 break; 1208 } 1209 1210 const SIInstrInfo *TII = ST.getInstrInfo(); 1211 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1212 const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU()); 1213 const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName); 1214 if (!SDST) { 1215 for (const auto &MO : MI->implicit_operands()) { 1216 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) { 1217 SDST = &MO; 1218 break; 1219 } 1220 } 1221 } 1222 1223 if (!SDST) 1224 return false; 1225 1226 const Register SDSTReg = SDST->getReg(); 1227 auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) { 1228 return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI); 1229 }; 1230 1231 auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) { 1232 if (TII->isSALU(MI)) { 1233 switch (MI.getOpcode()) { 1234 case AMDGPU::S_SETVSKIP: 1235 case AMDGPU::S_VERSION: 1236 case AMDGPU::S_WAITCNT_VSCNT: 1237 case AMDGPU::S_WAITCNT_VMCNT: 1238 case AMDGPU::S_WAITCNT_EXPCNT: 1239 // These instructions cannot not mitigate the hazard. 1240 return false; 1241 case AMDGPU::S_WAITCNT_LGKMCNT: 1242 // Reducing lgkmcnt count to 0 always mitigates the hazard. 1243 return (MI.getOperand(1).getImm() == 0) && 1244 (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1245 case AMDGPU::S_WAITCNT: { 1246 const int64_t Imm = MI.getOperand(0).getImm(); 1247 AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm); 1248 // DsCnt corresponds to LGKMCnt here. 1249 return (Decoded.DsCnt == 0); 1250 } 1251 default: 1252 // SOPP instructions cannot mitigate the hazard. 1253 if (TII->isSOPP(MI)) 1254 return false; 1255 // At this point the SALU can be assumed to mitigate the hazard 1256 // because either: 1257 // (a) it is independent of the at risk SMEM (breaking chain), 1258 // or 1259 // (b) it is dependent on the SMEM, in which case an appropriate 1260 // s_waitcnt lgkmcnt _must_ exist between it and the at risk 1261 // SMEM instruction. 1262 return true; 1263 } 1264 } 1265 return false; 1266 }; 1267 1268 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1269 std::numeric_limits<int>::max()) 1270 return false; 1271 1272 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1273 TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL) 1274 .addImm(0); 1275 return true; 1276 } 1277 1278 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { 1279 if (!ST.hasVcmpxExecWARHazard()) 1280 return false; 1281 assert(!ST.hasExtendedWaitCounts()); 1282 1283 if (!SIInstrInfo::isVALU(*MI)) 1284 return false; 1285 1286 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1287 if (!MI->modifiesRegister(AMDGPU::EXEC, TRI)) 1288 return false; 1289 1290 auto IsHazardFn = [TRI](const MachineInstr &I) { 1291 if (SIInstrInfo::isVALU(I)) 1292 return false; 1293 return I.readsRegister(AMDGPU::EXEC, TRI); 1294 }; 1295 1296 const SIInstrInfo *TII = ST.getInstrInfo(); 1297 auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) { 1298 if (SIInstrInfo::isVALU(MI)) { 1299 if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst)) 1300 return true; 1301 for (auto MO : MI.implicit_operands()) 1302 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) 1303 return true; 1304 } 1305 if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1306 AMDGPU::DepCtr::decodeFieldSaSdst(MI.getOperand(0).getImm()) == 0) 1307 return true; 1308 return false; 1309 }; 1310 1311 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1312 std::numeric_limits<int>::max()) 1313 return false; 1314 1315 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1316 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1317 .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0)); 1318 return true; 1319 } 1320 1321 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 1322 const GCNSubtarget &ST) { 1323 if (!ST.hasLdsBranchVmemWARHazard()) 1324 return false; 1325 1326 // Check if the necessary condition for the hazard is met: both LDS and VMEM 1327 // instructions need to appear in the same function. 1328 bool HasLds = false; 1329 bool HasVmem = false; 1330 for (auto &MBB : MF) { 1331 for (auto &MI : MBB) { 1332 HasLds |= SIInstrInfo::isDS(MI); 1333 HasVmem |= 1334 SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI); 1335 if (HasLds && HasVmem) 1336 return true; 1337 } 1338 } 1339 return false; 1340 } 1341 1342 static bool isStoreCountWaitZero(const MachineInstr &I) { 1343 return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1344 I.getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1345 !I.getOperand(1).getImm(); 1346 } 1347 1348 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { 1349 if (!RunLdsBranchVmemWARHazardFixup) 1350 return false; 1351 1352 assert(ST.hasLdsBranchVmemWARHazard()); 1353 assert(!ST.hasExtendedWaitCounts()); 1354 1355 auto IsHazardInst = [](const MachineInstr &MI) { 1356 if (SIInstrInfo::isDS(MI)) 1357 return 1; 1358 if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI)) 1359 return 2; 1360 return 0; 1361 }; 1362 1363 auto InstType = IsHazardInst(*MI); 1364 if (!InstType) 1365 return false; 1366 1367 auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) { 1368 return IsHazardInst(I) || isStoreCountWaitZero(I); 1369 }; 1370 1371 auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) { 1372 if (!I.isBranch()) 1373 return false; 1374 1375 auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) { 1376 auto InstType2 = IsHazardInst(I); 1377 return InstType2 && InstType != InstType2; 1378 }; 1379 1380 auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) { 1381 auto InstType2 = IsHazardInst(I); 1382 if (InstType == InstType2) 1383 return true; 1384 1385 return isStoreCountWaitZero(I); 1386 }; 1387 1388 return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) != 1389 std::numeric_limits<int>::max(); 1390 }; 1391 1392 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1393 std::numeric_limits<int>::max()) 1394 return false; 1395 1396 const SIInstrInfo *TII = ST.getInstrInfo(); 1397 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1398 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1399 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1400 .addImm(0); 1401 1402 return true; 1403 } 1404 1405 bool GCNHazardRecognizer::fixLdsDirectVALUHazard(MachineInstr *MI) { 1406 if (!SIInstrInfo::isLDSDIR(*MI)) 1407 return false; 1408 1409 const int NoHazardWaitStates = 15; 1410 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1411 const Register VDSTReg = VDST->getReg(); 1412 1413 bool VisitedTrans = false; 1414 auto IsHazardFn = [this, VDSTReg, &VisitedTrans](const MachineInstr &I) { 1415 if (!SIInstrInfo::isVALU(I)) 1416 return false; 1417 VisitedTrans = VisitedTrans || SIInstrInfo::isTRANS(I); 1418 // Cover both WAR and WAW 1419 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1420 }; 1421 auto IsExpiredFn = [&](const MachineInstr &I, int WaitStates) { 1422 if (WaitStates >= NoHazardWaitStates) 1423 return true; 1424 // Instructions which cause va_vdst==0 expire hazard 1425 return SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1426 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I); 1427 }; 1428 auto GetWaitStatesFn = [](const MachineInstr &MI) { 1429 return SIInstrInfo::isVALU(MI) ? 1 : 0; 1430 }; 1431 1432 DenseSet<const MachineBasicBlock *> Visited; 1433 auto Count = ::getWaitStatesSince(IsHazardFn, MI->getParent(), 1434 std::next(MI->getReverseIterator()), 0, 1435 IsExpiredFn, Visited, GetWaitStatesFn); 1436 1437 // Transcendentals can execute in parallel to other VALUs. 1438 // This makes va_vdst count unusable with a mixture of VALU and TRANS. 1439 if (VisitedTrans) 1440 Count = 0; 1441 1442 MachineOperand *WaitVdstOp = 1443 TII.getNamedOperand(*MI, AMDGPU::OpName::waitvdst); 1444 WaitVdstOp->setImm(std::min(Count, NoHazardWaitStates)); 1445 1446 return true; 1447 } 1448 1449 bool GCNHazardRecognizer::fixLdsDirectVMEMHazard(MachineInstr *MI) { 1450 if (!SIInstrInfo::isLDSDIR(*MI)) 1451 return false; 1452 1453 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1454 const Register VDSTReg = VDST->getReg(); 1455 1456 auto IsHazardFn = [this, VDSTReg](const MachineInstr &I) { 1457 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I) && 1458 !SIInstrInfo::isDS(I)) 1459 return false; 1460 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1461 }; 1462 bool LdsdirCanWait = ST.hasLdsWaitVMSRC(); 1463 // TODO: On GFX12 the hazard should expire on S_WAIT_LOADCNT/SAMPLECNT/BVHCNT 1464 // according to the type of VMEM instruction. 1465 auto IsExpiredFn = [this, LdsdirCanWait](const MachineInstr &I, int) { 1466 return SIInstrInfo::isVALU(I) || SIInstrInfo::isEXP(I) || 1467 (I.getOpcode() == AMDGPU::S_WAITCNT && !I.getOperand(0).getImm()) || 1468 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1469 AMDGPU::DepCtr::decodeFieldVmVsrc(I.getOperand(0).getImm()) == 0) || 1470 (LdsdirCanWait && SIInstrInfo::isLDSDIR(I) && 1471 !TII.getNamedOperand(I, AMDGPU::OpName::waitvsrc)->getImm()); 1472 }; 1473 1474 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1475 std::numeric_limits<int>::max()) 1476 return false; 1477 1478 if (LdsdirCanWait) { 1479 TII.getNamedOperand(*MI, AMDGPU::OpName::waitvsrc)->setImm(0); 1480 } else { 1481 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1482 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1483 .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0)); 1484 } 1485 1486 return true; 1487 } 1488 1489 bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) { 1490 if (!ST.hasVALUPartialForwardingHazard()) 1491 return false; 1492 assert(!ST.hasExtendedWaitCounts()); 1493 1494 if (!ST.isWave64() || !SIInstrInfo::isVALU(*MI)) 1495 return false; 1496 1497 SmallSetVector<Register, 4> SrcVGPRs; 1498 1499 for (const MachineOperand &Use : MI->explicit_uses()) { 1500 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1501 SrcVGPRs.insert(Use.getReg()); 1502 } 1503 1504 // Only applies with >= 2 unique VGPR sources 1505 if (SrcVGPRs.size() <= 1) 1506 return false; 1507 1508 // Look for the following pattern: 1509 // Va <- VALU [PreExecPos] 1510 // intv1 1511 // Exec <- SALU [ExecPos] 1512 // intv2 1513 // Vb <- VALU [PostExecPos] 1514 // intv3 1515 // MI Va, Vb (WaitState = 0) 1516 // 1517 // Where: 1518 // intv1 + intv2 <= 2 VALUs 1519 // intv3 <= 4 VALUs 1520 // 1521 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1522 1523 const int Intv1plus2MaxVALUs = 2; 1524 const int Intv3MaxVALUs = 4; 1525 const int IntvMaxVALUs = 6; 1526 const int NoHazardVALUWaitStates = IntvMaxVALUs + 2; 1527 1528 struct StateType { 1529 SmallDenseMap<Register, int, 4> DefPos; 1530 int ExecPos = std::numeric_limits<int>::max(); 1531 int VALUs = 0; 1532 }; 1533 1534 StateType State; 1535 1536 // This overloads expiry testing with all the hazard detection 1537 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1538 // Too many VALU states have passed 1539 if (State.VALUs > NoHazardVALUWaitStates) 1540 return HazardExpired; 1541 1542 // Instructions which cause va_vdst==0 expire hazard 1543 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1544 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1545 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1546 AMDGPU::DepCtr::decodeFieldVaVdst(I.getOperand(0).getImm()) == 0)) 1547 return HazardExpired; 1548 1549 // Track registers writes 1550 bool Changed = false; 1551 if (SIInstrInfo::isVALU(I)) { 1552 for (Register Src : SrcVGPRs) { 1553 if (!State.DefPos.count(Src) && I.modifiesRegister(Src, &TRI)) { 1554 State.DefPos[Src] = State.VALUs; 1555 Changed = true; 1556 } 1557 } 1558 } else if (SIInstrInfo::isSALU(I)) { 1559 if (State.ExecPos == std::numeric_limits<int>::max()) { 1560 if (!State.DefPos.empty() && I.modifiesRegister(AMDGPU::EXEC, &TRI)) { 1561 State.ExecPos = State.VALUs; 1562 Changed = true; 1563 } 1564 } 1565 } 1566 1567 // Early expiration: too many VALUs in intv3 1568 if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty()) 1569 return HazardExpired; 1570 1571 // Only evaluate state if something changed 1572 if (!Changed) 1573 return NoHazardFound; 1574 1575 // Determine positions of VALUs pre/post exec change 1576 if (State.ExecPos == std::numeric_limits<int>::max()) 1577 return NoHazardFound; 1578 1579 int PreExecPos = std::numeric_limits<int>::max(); 1580 int PostExecPos = std::numeric_limits<int>::max(); 1581 1582 for (auto Entry : State.DefPos) { 1583 int DefVALUs = Entry.second; 1584 if (DefVALUs != std::numeric_limits<int>::max()) { 1585 if (DefVALUs >= State.ExecPos) 1586 PreExecPos = std::min(PreExecPos, DefVALUs); 1587 else 1588 PostExecPos = std::min(PostExecPos, DefVALUs); 1589 } 1590 } 1591 1592 // Need a VALUs post exec change 1593 if (PostExecPos == std::numeric_limits<int>::max()) 1594 return NoHazardFound; 1595 1596 // Too many VALUs in intv3? 1597 int Intv3VALUs = PostExecPos; 1598 if (Intv3VALUs > Intv3MaxVALUs) 1599 return HazardExpired; 1600 1601 // Too many VALUs in intv2? 1602 int Intv2VALUs = (State.ExecPos - PostExecPos) - 1; 1603 if (Intv2VALUs > Intv1plus2MaxVALUs) 1604 return HazardExpired; 1605 1606 // Need a VALUs pre exec change 1607 if (PreExecPos == std::numeric_limits<int>::max()) 1608 return NoHazardFound; 1609 1610 // Too many VALUs in intv1? 1611 int Intv1VALUs = PreExecPos - State.ExecPos; 1612 if (Intv1VALUs > Intv1plus2MaxVALUs) 1613 return HazardExpired; 1614 1615 // Too many VALUs in intv1 + intv2 1616 if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs) 1617 return HazardExpired; 1618 1619 return HazardFound; 1620 }; 1621 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1622 if (SIInstrInfo::isVALU(MI)) 1623 State.VALUs += 1; 1624 }; 1625 1626 DenseSet<const MachineBasicBlock *> Visited; 1627 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1628 std::next(MI->getReverseIterator()), Visited)) 1629 return false; 1630 1631 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1632 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1633 .addImm(0x0fff); 1634 1635 return true; 1636 } 1637 1638 bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) { 1639 if (!ST.hasVALUTransUseHazard()) 1640 return false; 1641 assert(!ST.hasExtendedWaitCounts()); 1642 1643 if (!SIInstrInfo::isVALU(*MI)) 1644 return false; 1645 1646 SmallSet<Register, 4> SrcVGPRs; 1647 1648 for (const MachineOperand &Use : MI->explicit_uses()) { 1649 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1650 SrcVGPRs.insert(Use.getReg()); 1651 } 1652 1653 // Look for the following pattern: 1654 // Va <- TRANS VALU 1655 // intv 1656 // MI Va (WaitState = 0) 1657 // 1658 // Where: 1659 // intv <= 5 VALUs / 1 TRANS 1660 // 1661 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1662 1663 const int IntvMaxVALUs = 5; 1664 const int IntvMaxTRANS = 1; 1665 1666 struct StateType { 1667 int VALUs = 0; 1668 int TRANS = 0; 1669 }; 1670 1671 StateType State; 1672 1673 // This overloads expiry testing with all the hazard detection 1674 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1675 // Too many VALU states have passed 1676 if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS) 1677 return HazardExpired; 1678 1679 // Instructions which cause va_vdst==0 expire hazard 1680 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1681 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1682 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1683 I.getOperand(0).getImm() == 0x0fff)) 1684 return HazardExpired; 1685 1686 // Track registers writes 1687 if (SIInstrInfo::isTRANS(I)) { 1688 for (Register Src : SrcVGPRs) { 1689 if (I.modifiesRegister(Src, &TRI)) { 1690 return HazardFound; 1691 } 1692 } 1693 } 1694 1695 return NoHazardFound; 1696 }; 1697 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1698 if (SIInstrInfo::isVALU(MI)) 1699 State.VALUs += 1; 1700 if (SIInstrInfo::isTRANS(MI)) 1701 State.TRANS += 1; 1702 }; 1703 1704 DenseSet<const MachineBasicBlock *> Visited; 1705 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1706 std::next(MI->getReverseIterator()), Visited)) 1707 return false; 1708 1709 // Hazard is observed - insert a wait on va_dst counter to ensure hazard is 1710 // avoided. 1711 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1712 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1713 .addImm(AMDGPU::DepCtr::encodeFieldVaVdst(0)); 1714 1715 return true; 1716 } 1717 1718 bool GCNHazardRecognizer::fixWMMAHazards(MachineInstr *MI) { 1719 if (!SIInstrInfo::isWMMA(*MI) && !SIInstrInfo::isSWMMAC(*MI)) 1720 return false; 1721 1722 const SIInstrInfo *TII = ST.getInstrInfo(); 1723 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1724 1725 auto IsHazardFn = [MI, TII, TRI, this](const MachineInstr &I) { 1726 if (!SIInstrInfo::isWMMA(I) && !SIInstrInfo::isSWMMAC(I)) 1727 return false; 1728 1729 // Src0(matrix A) or Src1(matrix B) of the current wmma instruction overlaps 1730 // with the dest(matrix D) of the previous wmma. 1731 const Register CurSrc0Reg = 1732 TII->getNamedOperand(*MI, AMDGPU::OpName::src0)->getReg(); 1733 const Register CurSrc1Reg = 1734 TII->getNamedOperand(*MI, AMDGPU::OpName::src1)->getReg(); 1735 1736 const Register PrevDstReg = 1737 TII->getNamedOperand(I, AMDGPU::OpName::vdst)->getReg(); 1738 1739 if (TRI->regsOverlap(PrevDstReg, CurSrc0Reg) || 1740 TRI->regsOverlap(PrevDstReg, CurSrc1Reg)) { 1741 return true; 1742 } 1743 1744 // GFX12+ allows overlap of matrix C with PrevDstReg (hardware will stall) 1745 // but Index can't overlap with PrevDstReg. 1746 if (AMDGPU::isGFX12Plus(ST)) { 1747 if (SIInstrInfo::isSWMMAC(*MI)) { 1748 const Register CurIndex = 1749 TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->getReg(); 1750 if (TRI->regsOverlap(PrevDstReg, CurIndex)) 1751 return true; 1752 } 1753 return false; 1754 } 1755 1756 return false; 1757 }; 1758 1759 auto IsExpiredFn = [](const MachineInstr &I, int) { 1760 return SIInstrInfo::isVALU(I); 1761 }; 1762 1763 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1764 std::numeric_limits<int>::max()) 1765 return false; 1766 1767 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32)); 1768 1769 return true; 1770 } 1771 1772 bool GCNHazardRecognizer::fixShift64HighRegBug(MachineInstr *MI) { 1773 if (!ST.hasShift64HighRegBug()) 1774 return false; 1775 assert(!ST.hasExtendedWaitCounts()); 1776 1777 switch (MI->getOpcode()) { 1778 default: 1779 return false; 1780 case AMDGPU::V_LSHLREV_B64_e64: 1781 case AMDGPU::V_LSHRREV_B64_e64: 1782 case AMDGPU::V_ASHRREV_I64_e64: 1783 break; 1784 } 1785 1786 MachineOperand *Amt = TII.getNamedOperand(*MI, AMDGPU::OpName::src0); 1787 if (!Amt->isReg()) 1788 return false; 1789 1790 Register AmtReg = Amt->getReg(); 1791 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1792 // Check if this is a last VGPR in the allocation block. 1793 if (!TRI.isVGPR(MRI, AmtReg) || ((AmtReg - AMDGPU::VGPR0) & 7) != 7) 1794 return false; 1795 1796 if (AmtReg != AMDGPU::VGPR255 && MRI.isPhysRegUsed(AmtReg + 1)) 1797 return false; 1798 1799 MachineOperand *Src1 = TII.getNamedOperand(*MI, AMDGPU::OpName::src1); 1800 bool OverlappedSrc = Src1->isReg() && TRI.regsOverlap(Src1->getReg(), AmtReg); 1801 bool OverlappedDst = MI->modifiesRegister(AmtReg, &TRI); 1802 bool Overlapped = OverlappedSrc || OverlappedDst; 1803 1804 assert(!OverlappedDst || !OverlappedSrc || 1805 Src1->getReg() == MI->getOperand(0).getReg()); 1806 assert(ST.needsAlignedVGPRs()); 1807 static_assert(AMDGPU::VGPR0 + 1 == AMDGPU::VGPR1); 1808 1809 Register NewReg; 1810 for (MCRegister Reg : Overlapped ? AMDGPU::VReg_64_Align2RegClass 1811 : AMDGPU::VGPR_32RegClass) { 1812 if (!MI->modifiesRegister(Reg, &TRI) && !MI->readsRegister(Reg, &TRI)) { 1813 NewReg = Reg; 1814 break; 1815 } 1816 } 1817 1818 Register NewAmt = Overlapped ? (Register)TRI.getSubReg(NewReg, AMDGPU::sub1) 1819 : NewReg; 1820 Register NewAmtLo; 1821 1822 if (Overlapped) 1823 NewAmtLo = TRI.getSubReg(NewReg, AMDGPU::sub0); 1824 1825 DebugLoc DL = MI->getDebugLoc(); 1826 MachineBasicBlock *MBB = MI->getParent(); 1827 // Insert a full wait count because found register might be pending a wait. 1828 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_WAITCNT)) 1829 .addImm(0); 1830 1831 // Insert V_SWAP_B32 instruction(s) and run hazard recognizer on them. 1832 if (Overlapped) 1833 runOnInstruction( 1834 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmtLo) 1835 .addDef(AmtReg - 1) 1836 .addReg(AmtReg - 1, RegState::Undef) 1837 .addReg(NewAmtLo, RegState::Undef)); 1838 runOnInstruction(BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmt) 1839 .addDef(AmtReg) 1840 .addReg(AmtReg, RegState::Undef) 1841 .addReg(NewAmt, RegState::Undef)); 1842 1843 // Instructions emitted after the current instruction will be processed by the 1844 // parent loop of the hazard recognizer in a natural way. 1845 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1846 AmtReg) 1847 .addDef(NewAmt) 1848 .addReg(NewAmt) 1849 .addReg(AmtReg); 1850 if (Overlapped) 1851 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1852 AmtReg - 1) 1853 .addDef(NewAmtLo) 1854 .addReg(NewAmtLo) 1855 .addReg(AmtReg - 1); 1856 1857 // Re-running hazard recognizer on the modified instruction is not necessary, 1858 // inserted V_SWAP_B32 has already both read and write new registers so 1859 // hazards related to these register has already been handled. 1860 Amt->setReg(NewAmt); 1861 Amt->setIsKill(false); 1862 // We do not update liveness, so verifier may see it as undef. 1863 Amt->setIsUndef(); 1864 if (OverlappedDst) 1865 MI->getOperand(0).setReg(NewReg); 1866 if (OverlappedSrc) { 1867 Src1->setReg(NewReg); 1868 Src1->setIsKill(false); 1869 Src1->setIsUndef(); 1870 } 1871 1872 return true; 1873 } 1874 1875 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { 1876 int NSAtoVMEMWaitStates = 1; 1877 1878 if (!ST.hasNSAtoVMEMBug()) 1879 return 0; 1880 1881 if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI)) 1882 return 0; 1883 1884 const SIInstrInfo *TII = ST.getInstrInfo(); 1885 const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset); 1886 if (!Offset || (Offset->getImm() & 6) == 0) 1887 return 0; 1888 1889 auto IsHazardFn = [TII](const MachineInstr &I) { 1890 if (!SIInstrInfo::isMIMG(I)) 1891 return false; 1892 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode()); 1893 return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && 1894 TII->getInstSizeInBytes(I) >= 16; 1895 }; 1896 1897 return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1); 1898 } 1899 1900 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) { 1901 int FPAtomicToDenormModeWaitStates = 3; 1902 1903 if (!ST.hasFPAtomicToDenormModeHazard()) 1904 return 0; 1905 assert(!ST.hasExtendedWaitCounts()); 1906 1907 if (MI->getOpcode() != AMDGPU::S_DENORM_MODE) 1908 return 0; 1909 1910 auto IsHazardFn = [](const MachineInstr &I) { 1911 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I)) 1912 return false; 1913 return SIInstrInfo::isFPAtomic(I); 1914 }; 1915 1916 auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) { 1917 if (WaitStates >= 3 || SIInstrInfo::isVALU(MI)) 1918 return true; 1919 1920 switch (MI.getOpcode()) { 1921 case AMDGPU::S_WAITCNT: 1922 case AMDGPU::S_WAITCNT_VSCNT: 1923 case AMDGPU::S_WAITCNT_VMCNT: 1924 case AMDGPU::S_WAITCNT_EXPCNT: 1925 case AMDGPU::S_WAITCNT_LGKMCNT: 1926 case AMDGPU::S_WAIT_IDLE: 1927 return true; 1928 default: 1929 break; 1930 } 1931 1932 return false; 1933 }; 1934 1935 return FPAtomicToDenormModeWaitStates - 1936 ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn); 1937 } 1938 1939 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) { 1940 assert(SIInstrInfo::isMAI(*MI)); 1941 1942 return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI); 1943 } 1944 1945 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) { 1946 // Early exit if no padding is requested. 1947 if (MFMAPaddingRatio == 0) 1948 return 0; 1949 1950 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1951 if (!SIInstrInfo::isMFMA(*MI) || MFI->getOccupancy() < 2) 1952 return 0; 1953 1954 int NeighborMFMALatency = 0; 1955 auto IsNeighboringMFMA = [&NeighborMFMALatency, 1956 this](const MachineInstr &MI) { 1957 if (!SIInstrInfo::isMFMA(MI)) 1958 return false; 1959 1960 NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI); 1961 return true; 1962 }; 1963 1964 const int MaxMFMAPipelineWaitStates = 16; 1965 int WaitStatesSinceNeighborMFMA = 1966 getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates); 1967 1968 int NeighborMFMAPaddingNeeded = 1969 (NeighborMFMALatency * MFMAPaddingRatio / 100) - 1970 WaitStatesSinceNeighborMFMA; 1971 1972 return std::max(0, NeighborMFMAPaddingNeeded); 1973 } 1974 1975 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) { 1976 int WaitStatesNeeded = 0; 1977 unsigned Opc = MI->getOpcode(); 1978 1979 auto IsVALUFn = [](const MachineInstr &MI) { 1980 return SIInstrInfo::isVALU(MI) || MI.isInlineAsm(); 1981 }; 1982 1983 if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write 1984 const int LegacyVALUWritesVGPRWaitStates = 2; 1985 const int VALUWritesExecWaitStates = 4; 1986 const int MaxWaitStates = 4; 1987 1988 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 1989 getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates); 1990 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1991 1992 if (WaitStatesNeeded < MaxWaitStates) { 1993 for (const MachineOperand &Use : MI->explicit_uses()) { 1994 const int MaxWaitStates = 2; 1995 1996 if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1997 continue; 1998 1999 int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates - 2000 getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates); 2001 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2002 2003 if (WaitStatesNeeded == MaxWaitStates) 2004 break; 2005 } 2006 } 2007 } 2008 2009 for (const MachineOperand &Op : MI->explicit_operands()) { 2010 if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg())) 2011 continue; 2012 2013 if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2014 continue; 2015 2016 const int MFMAWritesAGPROverlappedSrcABWaitStates = 4; 2017 const int MFMAWritesAGPROverlappedSrcCWaitStates = 2; 2018 const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4; 2019 const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10; 2020 const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18; 2021 const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1; 2022 const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7; 2023 const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15; 2024 const int MaxWaitStates = 18; 2025 Register Reg = Op.getReg(); 2026 unsigned HazardDefLatency = 0; 2027 2028 auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency, 2029 this](const MachineInstr &MI) { 2030 if (!SIInstrInfo::isMFMA(MI)) 2031 return false; 2032 Register DstReg = MI.getOperand(0).getReg(); 2033 if (DstReg == Reg) 2034 return false; 2035 HazardDefLatency = 2036 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2037 return TRI.regsOverlap(DstReg, Reg); 2038 }; 2039 2040 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, 2041 MaxWaitStates); 2042 int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates; 2043 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2044 int OpNo = Op.getOperandNo(); 2045 if (OpNo == SrcCIdx) { 2046 NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates; 2047 } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) { 2048 switch (HazardDefLatency) { 2049 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates; 2050 break; 2051 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates; 2052 break; 2053 case 16: [[fallthrough]]; 2054 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates; 2055 break; 2056 } 2057 } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2058 switch (HazardDefLatency) { 2059 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates; 2060 break; 2061 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates; 2062 break; 2063 case 16: [[fallthrough]]; 2064 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates; 2065 break; 2066 } 2067 } 2068 2069 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2070 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2071 2072 if (WaitStatesNeeded == MaxWaitStates) 2073 return WaitStatesNeeded; // Early exit. 2074 2075 auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) { 2076 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2077 return false; 2078 Register DstReg = MI.getOperand(0).getReg(); 2079 return TRI.regsOverlap(Reg, DstReg); 2080 }; 2081 2082 const int AccVGPRWriteMFMAReadSrcCWaitStates = 1; 2083 const int AccVGPRWriteMFMAReadSrcABWaitStates = 3; 2084 const int AccVGPRWriteAccVgprReadWaitStates = 3; 2085 NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates; 2086 if (OpNo == SrcCIdx) 2087 NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates; 2088 else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) 2089 NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates; 2090 2091 WaitStatesNeededForUse = NeedWaitStates - 2092 getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates); 2093 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2094 2095 if (WaitStatesNeeded == MaxWaitStates) 2096 return WaitStatesNeeded; // Early exit. 2097 } 2098 2099 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2100 const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0; 2101 const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5; 2102 const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13; 2103 const int MaxWaitStates = 13; 2104 Register DstReg = MI->getOperand(0).getReg(); 2105 unsigned HazardDefLatency = 0; 2106 2107 auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency, 2108 this](const MachineInstr &MI) { 2109 if (!SIInstrInfo::isMFMA(MI)) 2110 return false; 2111 Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg(); 2112 HazardDefLatency = 2113 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2114 return TRI.regsOverlap(Reg, DstReg); 2115 }; 2116 2117 int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates); 2118 int NeedWaitStates; 2119 switch (HazardDefLatency) { 2120 case 2: NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates; 2121 break; 2122 case 8: NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates; 2123 break; 2124 case 16: [[fallthrough]]; 2125 default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates; 2126 break; 2127 } 2128 2129 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince; 2130 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2131 } 2132 2133 // Pad neighboring MFMA with noops for better inter-wave performance. 2134 WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI)); 2135 2136 return WaitStatesNeeded; 2137 } 2138 2139 static int 2140 GFX940_XDL_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(int NumPasses) { 2141 // 2 pass -> 3 2142 // 4 pass -> 5 2143 // 8 pass -> 9 2144 // 16 pass -> 17 2145 return NumPasses + 1; 2146 } 2147 2148 static int 2149 GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(int NumPasses) { 2150 // 2 pass -> 2 2151 // 4 pass -> 4 2152 // 8 pass -> 8 2153 // 16 pass -> 16 2154 return NumPasses; 2155 } 2156 2157 static int 2158 GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses) { 2159 // 2 pass -> 4 2160 // 4 pass -> 6 2161 // 8 pass -> 10 2162 // 16 pass -> 18 2163 return NumPasses + 2; 2164 } 2165 2166 static int GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses) { 2167 // 2 pass -> 5 2168 // 4 pass -> 7 2169 // 8 pass -> 11 2170 // 16 pass -> 19 2171 return NumPasses + 3; 2172 } 2173 2174 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) { 2175 int WaitStatesNeeded = 0; 2176 unsigned Opc = MI->getOpcode(); 2177 2178 auto IsLegacyVALUFn = [](const MachineInstr &MI) { 2179 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI); 2180 }; 2181 2182 auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) { 2183 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) && 2184 !SIInstrInfo::isDOT(MI); 2185 }; 2186 2187 if (!SIInstrInfo::isMFMA(*MI)) 2188 return WaitStatesNeeded; 2189 2190 const int VALUWritesExecWaitStates = 4; 2191 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 2192 getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn, 2193 VALUWritesExecWaitStates); 2194 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2195 2196 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2197 2198 // Loop for both DGEMM and S/HGEMM 2nd instruction. 2199 for (const MachineOperand &Use : MI->explicit_uses()) { 2200 const int LegacyVALUNotDotWritesVGPRWaitStates = 2; 2201 const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2; 2202 const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8; 2203 const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16; 2204 const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3; 2205 const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9; 2206 const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17; 2207 const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9; 2208 const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4; 2209 const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5; 2210 const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11; 2211 const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19; 2212 const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6; 2213 const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11; 2214 const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4; 2215 const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2; 2216 const int MaxWaitStates = 19; 2217 2218 if (!Use.isReg()) 2219 continue; 2220 Register Reg = Use.getReg(); 2221 bool FullReg; 2222 const MachineInstr *MI1; 2223 2224 auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1, 2225 this](const MachineInstr &MI) { 2226 if (!SIInstrInfo::isMFMA(MI)) 2227 return false; 2228 Register DstReg = MI.getOperand(0).getReg(); 2229 FullReg = (DstReg == Reg); 2230 MI1 = &MI; 2231 return TRI.regsOverlap(DstReg, Reg); 2232 }; 2233 2234 WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates - 2235 getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates); 2236 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2237 2238 int NumWaitStates = 2239 getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates); 2240 if (NumWaitStates == std::numeric_limits<int>::max()) 2241 continue; 2242 2243 int OpNo = Use.getOperandNo(); 2244 unsigned Opc1 = MI1->getOpcode(); 2245 int NeedWaitStates = 0; 2246 if (OpNo == SrcCIdx) { 2247 if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) { 2248 NeedWaitStates = 0; 2249 } else if (FullReg) { 2250 if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2251 Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) && 2252 (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2253 Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64)) 2254 NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates; 2255 else if (ST.hasGFX940Insts() && 2256 TSchedModel.computeInstrLatency(MI1) == 2) 2257 NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates; 2258 } else { 2259 switch (Opc1) { 2260 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2261 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2262 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2263 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2264 if (!isXDL(ST, *MI)) 2265 NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates; 2266 break; 2267 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2268 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2269 if (!isXDL(ST, *MI)) 2270 NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates; 2271 break; 2272 default: 2273 int NumPasses = TSchedModel.computeInstrLatency(MI1); 2274 if (ST.hasGFX940Insts()) { 2275 if (isXDL(ST, *MI) && !isXDL(ST, *MI1)) 2276 break; 2277 2278 NeedWaitStates = 2279 isXDL(ST, *MI1) 2280 ? GFX940_XDL_N_PassWritesVGPROverlappedSMFMASrcCWaitStates( 2281 NumPasses) 2282 : GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates( 2283 NumPasses); 2284 break; 2285 } 2286 2287 switch (NumPasses) { 2288 case 2: 2289 NeedWaitStates = 2290 isDGEMM(Opc) ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates 2291 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates; 2292 break; 2293 case 8: 2294 NeedWaitStates = 2295 isDGEMM(Opc) 2296 ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates 2297 : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates; 2298 break; 2299 case 16: 2300 NeedWaitStates = 2301 isDGEMM(Opc) 2302 ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates 2303 : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates; 2304 break; 2305 default: 2306 llvm_unreachable("unexpected number of passes"); 2307 } 2308 } 2309 } 2310 } else { 2311 switch (Opc1) { 2312 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2313 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2314 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2315 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2316 NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates; 2317 break; 2318 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2319 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2320 NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates; 2321 break; 2322 default: 2323 int NumPasses = TSchedModel.computeInstrLatency(MI1); 2324 2325 if (ST.hasGFX940Insts()) { 2326 NeedWaitStates = 2327 isXDL(ST, *MI1) 2328 ? GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates( 2329 NumPasses) 2330 : GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates( 2331 NumPasses); 2332 break; 2333 } 2334 2335 switch (NumPasses) { 2336 case 2: 2337 NeedWaitStates = SMFMA4x4WritesVGPROverlappedSrcABWaitStates; 2338 break; 2339 case 4: 2340 llvm_unreachable("unexpected number of passes for mfma"); 2341 case 8: 2342 NeedWaitStates = SMFMA16x16WritesVGPROverlappedSrcABWaitStates; 2343 break; 2344 case 16: [[fallthrough]]; 2345 default: 2346 NeedWaitStates = SMFMA32x32WritesVGPROverlappedSrcABWaitStates; 2347 } 2348 } 2349 } 2350 if (WaitStatesNeeded >= NeedWaitStates) 2351 continue; 2352 2353 WaitStatesNeededForUse = NeedWaitStates - NumWaitStates; 2354 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2355 2356 if (WaitStatesNeeded == MaxWaitStates) 2357 break; 2358 } 2359 2360 return WaitStatesNeeded; 2361 } 2362 2363 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) { 2364 // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards() 2365 if (!ST.hasMAIInsts() || ST.hasGFX90AInsts()) 2366 return 0; 2367 2368 int WaitStatesNeeded = 0; 2369 2370 auto IsAccVgprReadFn = [](const MachineInstr &MI) { 2371 return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64; 2372 }; 2373 2374 for (const MachineOperand &Op : MI->explicit_uses()) { 2375 if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg())) 2376 continue; 2377 2378 Register Reg = Op.getReg(); 2379 2380 const int AccVgprReadLdStWaitStates = 2; 2381 const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1; 2382 const int MaxWaitStates = 2; 2383 2384 int WaitStatesNeededForUse = AccVgprReadLdStWaitStates - 2385 getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates); 2386 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2387 2388 if (WaitStatesNeeded == MaxWaitStates) 2389 return WaitStatesNeeded; // Early exit. 2390 2391 auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) { 2392 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 && 2393 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2394 return false; 2395 auto IsVALUFn = [](const MachineInstr &MI) { 2396 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI); 2397 }; 2398 return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) < 2399 std::numeric_limits<int>::max(); 2400 }; 2401 2402 WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates - 2403 getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates); 2404 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2405 } 2406 2407 return WaitStatesNeeded; 2408 } 2409 2410 static int GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(int NumPasses) { 2411 // 2 pass -> 4 2412 // 4 pass -> 6 2413 // 8 pass -> 10 2414 // 16 pass -> 18 2415 return NumPasses + 2; 2416 } 2417 2418 static int GFX940_XDL_N_PassWriteVgprVALUWawWaitStates(int NumPasses) { 2419 // 2 pass -> 5 2420 // 4 pass -> 7 2421 // 8 pass -> 11 2422 // 16 pass -> 19 2423 return NumPasses + 3; 2424 } 2425 2426 static int GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses) { 2427 // 2 pass -> 5 2428 // 4 pass -> 7 2429 // 8 pass -> 11 2430 // 16 pass -> 19 2431 return NumPasses + 3; 2432 } 2433 2434 static int GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses) { 2435 // 2 pass -> 4 2436 // 4 pass -> 6 2437 // 8 pass -> 10 2438 // 16 pass -> 18 2439 return NumPasses + 2; 2440 } 2441 2442 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) { 2443 if (!ST.hasGFX90AInsts()) 2444 return 0; 2445 2446 auto IsDGEMMFn = [](const MachineInstr &MI) -> bool { 2447 return isDGEMM(MI.getOpcode()); 2448 }; 2449 2450 // This is checked in checkMAIHazards90A() 2451 if (SIInstrInfo::isMFMA(*MI)) 2452 return 0; 2453 2454 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2455 2456 int WaitStatesNeeded = 0; 2457 2458 bool IsMem = SIInstrInfo::isVMEM(*MI) || 2459 SIInstrInfo::isFLAT(*MI) || 2460 SIInstrInfo::isDS(*MI); 2461 bool IsMemOrExport = IsMem || SIInstrInfo::isEXP(*MI); 2462 bool IsVALU = SIInstrInfo::isVALU(*MI); 2463 2464 const MachineInstr *MFMA = nullptr; 2465 unsigned Reg; 2466 auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2467 if (!SIInstrInfo::isMFMA(MI) || 2468 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2469 return false; 2470 MFMA = &MI; 2471 return true; 2472 }; 2473 2474 const MachineInstr *DOT = nullptr; 2475 auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) { 2476 if (!SIInstrInfo::isDOT(MI) || 2477 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2478 return false; 2479 DOT = &MI; 2480 return true; 2481 }; 2482 2483 bool DGEMMAfterVALUWrite = false; 2484 auto IsDGEMMHazard = [&DGEMMAfterVALUWrite, this](const MachineInstr &MI) { 2485 // Found DGEMM on reverse traversal to def. 2486 if (isDGEMM(MI.getOpcode())) 2487 DGEMMAfterVALUWrite = true; 2488 2489 // Only hazard if register is defined by a VALU and a DGEMM is found after 2490 // after the def. 2491 if (!TII.isVALU(MI) || !DGEMMAfterVALUWrite) 2492 return false; 2493 2494 return true; 2495 }; 2496 2497 int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), 2498 AMDGPU::OpName::src2); 2499 2500 if (IsMemOrExport || IsVALU) { 2501 const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5; 2502 const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11; 2503 const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19; 2504 const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9; 2505 const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18; 2506 const int DMFMA4x4WriteVgprVALUReadWaitStates = 6; 2507 const int DMFMA16x16WriteVgprVALUReadWaitStates = 11; 2508 const int DotWriteSameDotReadSrcAB = 3; 2509 const int DotWriteDifferentVALURead = 3; 2510 const int DMFMABetweenVALUWriteVMEMRead = 2; 2511 const int MaxWaitStates = 19; 2512 2513 for (const MachineOperand &Use : MI->explicit_uses()) { 2514 if (!Use.isReg()) 2515 continue; 2516 Reg = Use.getReg(); 2517 2518 DOT = nullptr; 2519 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2520 MaxWaitStates); 2521 if (DOT) { 2522 int NeedWaitStates = 0; 2523 if (DOT->getOpcode() == MI->getOpcode()) { 2524 if (&Use - &MI->getOperand(0) != SrcCIdx) 2525 NeedWaitStates = DotWriteSameDotReadSrcAB; 2526 } else { 2527 NeedWaitStates = DotWriteDifferentVALURead; 2528 } 2529 2530 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2531 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2532 } 2533 2534 // Workaround for HW data hazard bug observed only in GFX90A. When there 2535 // is a DGEMM instruction in-between a VALU and a VMEM instruction it 2536 // causes the SQ to incorrectly not insert two wait states between the two 2537 // instructions needed to avoid data hazard. 2538 if (IsMem && ST.hasGFX90AInsts() && !ST.hasGFX940Insts()) { 2539 DGEMMAfterVALUWrite = false; 2540 if (TRI.isVectorRegister(MRI, Reg)) { 2541 int WaitStatesNeededForUse = 2542 DMFMABetweenVALUWriteVMEMRead - 2543 getWaitStatesSinceDef(Reg, IsDGEMMHazard, 2544 DMFMABetweenVALUWriteVMEMRead); 2545 2546 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2547 } 2548 } 2549 2550 MFMA = nullptr; 2551 WaitStatesSinceDef = 2552 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2553 if (!MFMA) 2554 continue; 2555 2556 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2557 int NumPasses = HazardDefLatency; 2558 int NeedWaitStates = MaxWaitStates; 2559 2560 if (isDGEMM(MFMA->getOpcode())) { 2561 switch (HazardDefLatency) { 2562 case 4: 2563 NeedWaitStates = IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates 2564 : DMFMA4x4WriteVgprVALUReadWaitStates; 2565 break; 2566 case 8: 2567 case 16: 2568 NeedWaitStates = IsMemOrExport 2569 ? DMFMA16x16WriteVgprMemExpReadWaitStates 2570 : DMFMA16x16WriteVgprVALUReadWaitStates; 2571 break; 2572 default: 2573 llvm_unreachable("unexpected dgemm"); 2574 } 2575 } else if (ST.hasGFX940Insts()) { 2576 NeedWaitStates = 2577 isXDL(ST, *MFMA) 2578 ? GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates(NumPasses) 2579 : GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates( 2580 NumPasses); 2581 } else { 2582 switch (HazardDefLatency) { 2583 case 2: 2584 NeedWaitStates = SMFMA4x4WriteVgprVALUMemExpReadWaitStates; 2585 break; 2586 case 8: 2587 NeedWaitStates = SMFMA16x16WriteVgprVALUMemExpReadWaitStates; 2588 break; 2589 case 16: 2590 NeedWaitStates = SMFMA32x32WriteVgprVALUMemExpReadWaitStates; 2591 break; 2592 default: 2593 llvm_unreachable("unexpected number of passes for mfma"); 2594 } 2595 } 2596 2597 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2598 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2599 2600 if (WaitStatesNeeded == MaxWaitStates) 2601 break; 2602 } 2603 } 2604 2605 unsigned Opc = MI->getOpcode(); 2606 const int DMFMAToFMA64WaitStates = 2; 2607 if ((Opc == AMDGPU::V_FMA_F64_e64 || 2608 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 || 2609 Opc == AMDGPU::V_FMAC_F64_dpp) && 2610 WaitStatesNeeded < DMFMAToFMA64WaitStates) { 2611 int WaitStatesNeededForUse = DMFMAToFMA64WaitStates - 2612 getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates); 2613 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2614 } 2615 2616 if (!IsVALU && !IsMemOrExport) 2617 return WaitStatesNeeded; 2618 2619 for (const MachineOperand &Def : MI->defs()) { 2620 const int SMFMA4x4WriteVgprVALUWawWaitStates = 5; 2621 const int SMFMA16x16WriteVgprVALUWawWaitStates = 11; 2622 const int SMFMA32x32WriteVgprVALUWawWaitStates = 19; 2623 const int SMFMA4x4ReadVgprVALUWarWaitStates = 1; 2624 const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3; 2625 const int SMFMA16x16ReadVgprVALUWarWaitStates = 7; 2626 const int SMFMA32x32ReadVgprVALUWarWaitStates = 15; 2627 const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6; 2628 const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11; 2629 const int DotWriteDifferentVALUWrite = 3; 2630 const int MaxWaitStates = 19; 2631 const int MaxWarWaitStates = 15; 2632 2633 Reg = Def.getReg(); 2634 2635 DOT = nullptr; 2636 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2637 MaxWaitStates); 2638 if (DOT && DOT->getOpcode() != MI->getOpcode()) 2639 WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite - 2640 WaitStatesSinceDef); 2641 2642 MFMA = nullptr; 2643 WaitStatesSinceDef = 2644 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2645 if (MFMA) { 2646 int NeedWaitStates = MaxWaitStates; 2647 int NumPasses = TSchedModel.computeInstrLatency(MFMA); 2648 2649 if (isDGEMM(MFMA->getOpcode())) { 2650 switch (NumPasses) { 2651 case 4: 2652 NeedWaitStates = DMFMA4x4WriteVgprVALUWriteWaitStates; 2653 break; 2654 case 8: 2655 case 16: 2656 NeedWaitStates = DMFMA16x16WriteVgprVALUWriteWaitStates; 2657 break; 2658 default: 2659 llvm_unreachable("unexpected number of cycles for dgemm"); 2660 } 2661 } else if (ST.hasGFX940Insts()) { 2662 NeedWaitStates = 2663 isXDL(ST, *MFMA) 2664 ? GFX940_XDL_N_PassWriteVgprVALUWawWaitStates(NumPasses) 2665 : GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(NumPasses); 2666 } else { 2667 switch (NumPasses) { 2668 case 2: 2669 NeedWaitStates = SMFMA4x4WriteVgprVALUWawWaitStates; 2670 break; 2671 case 8: 2672 NeedWaitStates = SMFMA16x16WriteVgprVALUWawWaitStates; 2673 break; 2674 case 16: 2675 NeedWaitStates = SMFMA32x32WriteVgprVALUWawWaitStates; 2676 break; 2677 default: 2678 llvm_unreachable("Unexpected number of passes for mfma"); 2679 } 2680 } 2681 2682 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2683 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2684 2685 if (WaitStatesNeeded == MaxWaitStates) 2686 break; 2687 } 2688 2689 auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2690 if (!SIInstrInfo::isMFMA(MI) || isDGEMM(MI.getOpcode()) || 2691 !MI.readsRegister(Reg, &TRI)) 2692 return false; 2693 2694 if (ST.hasGFX940Insts() && !isXDL(ST, MI)) 2695 return false; 2696 2697 const MachineOperand *SrcC = 2698 TII.getNamedOperand(MI, AMDGPU::OpName::src2); 2699 assert(SrcC); 2700 if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg)) 2701 return false; 2702 2703 MFMA = &MI; 2704 return true; 2705 }; 2706 2707 MFMA = nullptr; 2708 int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn, 2709 MaxWarWaitStates); 2710 if (!MFMA) 2711 continue; 2712 2713 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2714 int NeedWaitStates = MaxWaitStates; 2715 switch (HazardDefLatency) { 2716 case 2: NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates; 2717 break; 2718 case 4: assert(ST.hasGFX940Insts()); 2719 NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates; 2720 break; 2721 case 8: NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates; 2722 break; 2723 case 16: [[fallthrough]]; 2724 default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates; 2725 break; 2726 } 2727 2728 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse; 2729 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2730 } 2731 2732 return WaitStatesNeeded; 2733 } 2734 2735 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) { 2736 if (!SU->isInstr()) 2737 return false; 2738 2739 const MachineInstr *MAI = nullptr; 2740 2741 auto IsMFMAFn = [&MAI](const MachineInstr &MI) { 2742 MAI = nullptr; 2743 if (SIInstrInfo::isMFMA(MI)) 2744 MAI = &MI; 2745 return MAI != nullptr; 2746 }; 2747 2748 MachineInstr *MI = SU->getInstr(); 2749 if (IsMFMAFn(*MI)) { 2750 int W = getWaitStatesSince(IsMFMAFn, 16); 2751 if (MAI) 2752 return W < (int)TSchedModel.computeInstrLatency(MAI); 2753 } 2754 2755 return false; 2756 } 2757 2758 bool GCNHazardRecognizer::fixVALUMaskWriteHazard(MachineInstr *MI) { 2759 if (!ST.hasVALUMaskWriteHazard()) 2760 return false; 2761 assert(!ST.hasExtendedWaitCounts()); 2762 2763 if (!ST.isWave64() || !SIInstrInfo::isSALU(*MI)) 2764 return false; 2765 2766 // The hazard sequence is three instructions: 2767 // 1. VALU reads SGPR as mask 2768 // 2. SALU writes SGPR 2769 // 3. SALU reads SGPR 2770 // The hazard can expire if the distance between 2 and 3 is sufficient. 2771 // In practice this happens <10% of the time, hence this always assumes 2772 // the hazard exists if 1 and 2 are present to avoid searching. 2773 2774 const MachineOperand *SDSTOp = TII.getNamedOperand(*MI, AMDGPU::OpName::sdst); 2775 if (!SDSTOp || !SDSTOp->isReg()) 2776 return false; 2777 2778 const Register HazardReg = SDSTOp->getReg(); 2779 if (HazardReg == AMDGPU::EXEC || 2780 HazardReg == AMDGPU::EXEC_LO || 2781 HazardReg == AMDGPU::EXEC_HI || 2782 HazardReg == AMDGPU::M0) 2783 return false; 2784 2785 auto IsHazardFn = [HazardReg, this](const MachineInstr &I) { 2786 switch (I.getOpcode()) { 2787 case AMDGPU::V_ADDC_U32_e32: 2788 case AMDGPU::V_ADDC_U32_dpp: 2789 case AMDGPU::V_CNDMASK_B16_e32: 2790 case AMDGPU::V_CNDMASK_B16_dpp: 2791 case AMDGPU::V_CNDMASK_B32_e32: 2792 case AMDGPU::V_CNDMASK_B32_dpp: 2793 case AMDGPU::V_DIV_FMAS_F32_e64: 2794 case AMDGPU::V_DIV_FMAS_F64_e64: 2795 case AMDGPU::V_SUBB_U32_e32: 2796 case AMDGPU::V_SUBB_U32_dpp: 2797 case AMDGPU::V_SUBBREV_U32_e32: 2798 case AMDGPU::V_SUBBREV_U32_dpp: 2799 // These implicitly read VCC as mask source. 2800 return HazardReg == AMDGPU::VCC || 2801 HazardReg == AMDGPU::VCC_LO || 2802 HazardReg == AMDGPU::VCC_HI; 2803 case AMDGPU::V_ADDC_U32_e64: 2804 case AMDGPU::V_ADDC_U32_e64_dpp: 2805 case AMDGPU::V_CNDMASK_B16_e64: 2806 case AMDGPU::V_CNDMASK_B16_e64_dpp: 2807 case AMDGPU::V_CNDMASK_B32_e64: 2808 case AMDGPU::V_CNDMASK_B32_e64_dpp: 2809 case AMDGPU::V_SUBB_U32_e64: 2810 case AMDGPU::V_SUBB_U32_e64_dpp: 2811 case AMDGPU::V_SUBBREV_U32_e64: 2812 case AMDGPU::V_SUBBREV_U32_e64_dpp: { 2813 // Only check mask register overlaps. 2814 const MachineOperand *SSRCOp = TII.getNamedOperand(I, AMDGPU::OpName::src2); 2815 assert(SSRCOp); 2816 return TRI.regsOverlap(SSRCOp->getReg(), HazardReg); 2817 } 2818 default: 2819 return false; 2820 } 2821 }; 2822 2823 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2824 auto IsExpiredFn = [&MRI, this](const MachineInstr &I, int) { 2825 // s_waitcnt_depctr sa_sdst(0) mitigates hazard. 2826 if (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 2827 AMDGPU::DepCtr::decodeFieldSaSdst(I.getOperand(0).getImm()) == 0) 2828 return true; 2829 2830 // VALU access to any SGPR or literal constant other than HazardReg 2831 // mitigates hazard. No need to check HazardReg here as this will 2832 // only be called when !IsHazardFn. 2833 if (!SIInstrInfo::isVALU(I)) 2834 return false; 2835 for (int OpNo = 0, End = I.getNumOperands(); OpNo < End; ++OpNo) { 2836 const MachineOperand &Op = I.getOperand(OpNo); 2837 if (Op.isReg()) { 2838 Register OpReg = Op.getReg(); 2839 // Only consider uses 2840 if (!Op.isUse()) 2841 continue; 2842 // Ignore EXEC 2843 if (OpReg == AMDGPU::EXEC || 2844 OpReg == AMDGPU::EXEC_LO || 2845 OpReg == AMDGPU::EXEC_HI) 2846 continue; 2847 // Ignore all implicit uses except VCC 2848 if (Op.isImplicit()) { 2849 if (OpReg == AMDGPU::VCC || 2850 OpReg == AMDGPU::VCC_LO || 2851 OpReg == AMDGPU::VCC_HI) 2852 return true; 2853 continue; 2854 } 2855 if (TRI.isSGPRReg(MRI, OpReg)) 2856 return true; 2857 } else { 2858 const MCInstrDesc &InstDesc = I.getDesc(); 2859 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; 2860 if (!TII.isInlineConstant(Op, OpInfo)) 2861 return true; 2862 } 2863 } 2864 return false; 2865 }; 2866 2867 // Check for hazard 2868 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 2869 std::numeric_limits<int>::max()) 2870 return false; 2871 2872 auto NextMI = std::next(MI->getIterator()); 2873 2874 // Add s_waitcnt_depctr sa_sdst(0) after SALU write. 2875 BuildMI(*MI->getParent(), NextMI, MI->getDebugLoc(), 2876 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 2877 .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0)); 2878 2879 // SALU write may be s_getpc in a bundle. 2880 if (MI->getOpcode() == AMDGPU::S_GETPC_B64) { 2881 // Update offsets of any references in the bundle. 2882 while (NextMI != MI->getParent()->end() && 2883 NextMI->isBundledWithPred()) { 2884 for (auto &Operand : NextMI->operands()) { 2885 if (Operand.isGlobal()) 2886 Operand.setOffset(Operand.getOffset() + 4); 2887 } 2888 NextMI++; 2889 } 2890 } 2891 2892 return true; 2893 } 2894