1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "GCNSubtarget.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "SIMachineFunctionInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/ScheduleDAG.h" 19 #include "llvm/Support/TargetParser.h" 20 21 using namespace llvm; 22 23 namespace { 24 25 struct MFMAPaddingRatioParser : public cl::parser<unsigned> { 26 MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {} 27 28 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 29 if (Arg.getAsInteger(0, Value)) 30 return O.error("'" + Arg + "' value invalid for uint argument!"); 31 32 if (Value > 100) 33 return O.error("'" + Arg + "' value must be in the range [0, 100]!"); 34 35 return false; 36 } 37 }; 38 39 } // end anonymous namespace 40 41 static cl::opt<unsigned, false, MFMAPaddingRatioParser> 42 MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden, 43 cl::desc("Fill a percentage of the latency between " 44 "neighboring MFMA with s_nops.")); 45 46 //===----------------------------------------------------------------------===// 47 // Hazard Recognizer Implementation 48 //===----------------------------------------------------------------------===// 49 50 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 51 const GCNSubtarget &ST); 52 53 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 54 IsHazardRecognizerMode(false), 55 CurrCycleInstr(nullptr), 56 MF(MF), 57 ST(MF.getSubtarget<GCNSubtarget>()), 58 TII(*ST.getInstrInfo()), 59 TRI(TII.getRegisterInfo()), 60 ClauseUses(TRI.getNumRegUnits()), 61 ClauseDefs(TRI.getNumRegUnits()) { 62 MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5; 63 TSchedModel.init(&ST); 64 RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST); 65 } 66 67 void GCNHazardRecognizer::Reset() { 68 EmittedInstrs.clear(); 69 } 70 71 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 72 EmitInstruction(SU->getInstr()); 73 } 74 75 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 76 CurrCycleInstr = MI; 77 } 78 79 static bool isDivFMas(unsigned Opcode) { 80 return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64; 81 } 82 83 static bool isSGetReg(unsigned Opcode) { 84 return Opcode == AMDGPU::S_GETREG_B32; 85 } 86 87 static bool isSSetReg(unsigned Opcode) { 88 switch (Opcode) { 89 case AMDGPU::S_SETREG_B32: 90 case AMDGPU::S_SETREG_B32_mode: 91 case AMDGPU::S_SETREG_IMM32_B32: 92 case AMDGPU::S_SETREG_IMM32_B32_mode: 93 return true; 94 } 95 return false; 96 } 97 98 static bool isRWLane(unsigned Opcode) { 99 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 100 } 101 102 static bool isRFE(unsigned Opcode) { 103 return Opcode == AMDGPU::S_RFE_B64; 104 } 105 106 static bool isSMovRel(unsigned Opcode) { 107 switch (Opcode) { 108 case AMDGPU::S_MOVRELS_B32: 109 case AMDGPU::S_MOVRELS_B64: 110 case AMDGPU::S_MOVRELD_B32: 111 case AMDGPU::S_MOVRELD_B64: 112 return true; 113 default: 114 return false; 115 } 116 } 117 118 static bool isDGEMM(unsigned Opcode) { 119 return AMDGPU::getMAIIsDGEMM(Opcode); 120 } 121 122 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) { 123 unsigned Opcode = MI.getOpcode(); 124 125 if (!SIInstrInfo::isMAI(MI) || 126 isDGEMM(Opcode) || 127 Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 128 Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64) 129 return false; 130 131 if (!ST.hasGFX940Insts()) 132 return true; 133 134 return AMDGPU::getMAIIsGFX940XDL(Opcode); 135 } 136 137 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 138 const MachineInstr &MI) { 139 if (TII.isAlwaysGDS(MI.getOpcode())) 140 return true; 141 142 switch (MI.getOpcode()) { 143 case AMDGPU::S_SENDMSG: 144 case AMDGPU::S_SENDMSGHALT: 145 case AMDGPU::S_TTRACEDATA: 146 return true; 147 // These DS opcodes don't support GDS. 148 case AMDGPU::DS_NOP: 149 case AMDGPU::DS_PERMUTE_B32: 150 case AMDGPU::DS_BPERMUTE_B32: 151 return false; 152 default: 153 if (TII.isDS(MI.getOpcode())) { 154 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 155 AMDGPU::OpName::gds); 156 if (MI.getOperand(GDS).getImm()) 157 return true; 158 } 159 return false; 160 } 161 } 162 163 static bool isPermlane(const MachineInstr &MI) { 164 unsigned Opcode = MI.getOpcode(); 165 return Opcode == AMDGPU::V_PERMLANE16_B32_e64 || 166 Opcode == AMDGPU::V_PERMLANEX16_B32_e64; 167 } 168 169 static bool isLdsDma(const MachineInstr &MI) { 170 return SIInstrInfo::isVALU(MI) && 171 (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)); 172 } 173 174 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 175 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 176 AMDGPU::OpName::simm16); 177 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 178 } 179 180 ScheduleHazardRecognizer::HazardType 181 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 182 MachineInstr *MI = SU->getInstr(); 183 // If we are not in "HazardRecognizerMode" and therefore not being run from 184 // the scheduler, track possible stalls from hazards but don't insert noops. 185 auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard; 186 187 if (MI->isBundle()) 188 return NoHazard; 189 190 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 191 return HazardType; 192 193 if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) 194 return HazardType; 195 196 if (checkFPAtomicToDenormModeHazard(MI) > 0) 197 return HazardType; 198 199 if (ST.hasNoDataDepHazard()) 200 return NoHazard; 201 202 // FIXME: Should flat be considered vmem? 203 if ((SIInstrInfo::isVMEM(*MI) || 204 SIInstrInfo::isFLAT(*MI)) 205 && checkVMEMHazards(MI) > 0) 206 return HazardType; 207 208 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 209 return HazardType; 210 211 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 212 return HazardType; 213 214 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 215 return HazardType; 216 217 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 218 return HazardType; 219 220 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 221 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 222 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 223 return HazardType; 224 225 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 226 return HazardType; 227 228 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 229 return HazardType; 230 231 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 232 return HazardType; 233 234 if (((ST.hasReadM0MovRelInterpHazard() && 235 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()))) || 236 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 237 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 238 (ST.hasReadM0LdsDirectHazard() && 239 MI->readsRegister(AMDGPU::LDS_DIRECT))) && 240 checkReadM0Hazards(MI) > 0) 241 return HazardType; 242 243 if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0) 244 return HazardType; 245 246 if ((SIInstrInfo::isVMEM(*MI) || 247 SIInstrInfo::isFLAT(*MI) || 248 SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0) 249 return HazardType; 250 251 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 252 return HazardType; 253 254 return NoHazard; 255 } 256 257 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII, 258 unsigned Quantity) { 259 while (Quantity > 0) { 260 unsigned Arg = std::min(Quantity, 8u); 261 Quantity -= Arg; 262 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP)) 263 .addImm(Arg - 1); 264 } 265 } 266 267 unsigned 268 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const { 269 const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI); 270 assert(TSchedModel.getWriteProcResBegin(SC) != 271 TSchedModel.getWriteProcResEnd(SC)); 272 return TSchedModel.getWriteProcResBegin(SC)->Cycles; 273 } 274 275 void GCNHazardRecognizer::processBundle() { 276 MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator()); 277 MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); 278 // Check bundled MachineInstr's for hazards. 279 for (; MI != E && MI->isInsideBundle(); ++MI) { 280 CurrCycleInstr = &*MI; 281 unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); 282 283 if (IsHazardRecognizerMode) { 284 fixHazards(CurrCycleInstr); 285 286 insertNoopsInBundle(CurrCycleInstr, TII, WaitStates); 287 } 288 289 // It’s unnecessary to track more than MaxLookAhead instructions. Since we 290 // include the bundled MI directly after, only add a maximum of 291 // (MaxLookAhead - 1) noops to EmittedInstrs. 292 for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i) 293 EmittedInstrs.push_front(nullptr); 294 295 EmittedInstrs.push_front(CurrCycleInstr); 296 EmittedInstrs.resize(MaxLookAhead); 297 } 298 CurrCycleInstr = nullptr; 299 } 300 301 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 302 IsHazardRecognizerMode = true; 303 CurrCycleInstr = MI; 304 unsigned W = PreEmitNoopsCommon(MI); 305 fixHazards(MI); 306 CurrCycleInstr = nullptr; 307 return W; 308 } 309 310 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 311 if (MI->isBundle()) 312 return 0; 313 314 int WaitStates = 0; 315 316 if (SIInstrInfo::isSMRD(*MI)) 317 return std::max(WaitStates, checkSMRDHazards(MI)); 318 319 if (ST.hasNSAtoVMEMBug()) 320 WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI)); 321 322 WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI)); 323 324 if (ST.hasNoDataDepHazard()) 325 return WaitStates; 326 327 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 328 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 329 330 if (SIInstrInfo::isVALU(*MI)) 331 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 332 333 if (SIInstrInfo::isDPP(*MI)) 334 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 335 336 if (isDivFMas(MI->getOpcode())) 337 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 338 339 if (isRWLane(MI->getOpcode())) 340 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 341 342 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 343 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 344 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 345 WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI)); 346 347 if (MI->isInlineAsm()) 348 return std::max(WaitStates, checkInlineAsmHazards(MI)); 349 350 if (isSGetReg(MI->getOpcode())) 351 return std::max(WaitStates, checkGetRegHazards(MI)); 352 353 if (isSSetReg(MI->getOpcode())) 354 return std::max(WaitStates, checkSetRegHazards(MI)); 355 356 if (isRFE(MI->getOpcode())) 357 return std::max(WaitStates, checkRFEHazards(MI)); 358 359 if ((ST.hasReadM0MovRelInterpHazard() && 360 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()))) || 361 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 362 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 363 (ST.hasReadM0LdsDirectHazard() && MI->readsRegister(AMDGPU::LDS_DIRECT))) 364 return std::max(WaitStates, checkReadM0Hazards(MI)); 365 366 if (SIInstrInfo::isMAI(*MI)) 367 return std::max(WaitStates, checkMAIHazards(MI)); 368 369 if (SIInstrInfo::isVMEM(*MI) || 370 SIInstrInfo::isFLAT(*MI) || 371 SIInstrInfo::isDS(*MI)) 372 return std::max(WaitStates, checkMAILdStHazards(MI)); 373 374 return WaitStates; 375 } 376 377 void GCNHazardRecognizer::EmitNoop() { 378 EmittedInstrs.push_front(nullptr); 379 } 380 381 void GCNHazardRecognizer::AdvanceCycle() { 382 // When the scheduler detects a stall, it will call AdvanceCycle() without 383 // emitting any instructions. 384 if (!CurrCycleInstr) { 385 EmittedInstrs.push_front(nullptr); 386 return; 387 } 388 389 if (CurrCycleInstr->isBundle()) { 390 processBundle(); 391 return; 392 } 393 394 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 395 if (!NumWaitStates) { 396 CurrCycleInstr = nullptr; 397 return; 398 } 399 400 // Keep track of emitted instructions 401 EmittedInstrs.push_front(CurrCycleInstr); 402 403 // Add a nullptr for each additional wait state after the first. Make sure 404 // not to add more than getMaxLookAhead() items to the list, since we 405 // truncate the list to that size right after this loop. 406 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 407 i < e; ++i) { 408 EmittedInstrs.push_front(nullptr); 409 } 410 411 // getMaxLookahead() is the largest number of wait states we will ever need 412 // to insert, so there is no point in keeping track of more than that many 413 // wait states. 414 EmittedInstrs.resize(getMaxLookAhead()); 415 416 CurrCycleInstr = nullptr; 417 } 418 419 void GCNHazardRecognizer::RecedeCycle() { 420 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 421 } 422 423 //===----------------------------------------------------------------------===// 424 // Helper Functions 425 //===----------------------------------------------------------------------===// 426 427 typedef enum { HazardFound, HazardExpired, NoHazardFound } HazardFnResult; 428 429 typedef function_ref<bool(const MachineInstr &, int WaitStates)> IsExpiredFn; 430 431 // Search for a hazard in a block and its predecessors. 432 template <typename StateT> 433 static bool 434 hasHazard(StateT State, 435 function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard, 436 function_ref<void(StateT &, const MachineInstr &)> UpdateState, 437 const MachineBasicBlock *MBB, 438 MachineBasicBlock::const_reverse_instr_iterator I, 439 DenseSet<const MachineBasicBlock *> &Visited) { 440 for (auto E = MBB->instr_rend(); I != E; ++I) { 441 // No need to look at parent BUNDLE instructions. 442 if (I->isBundle()) 443 continue; 444 445 switch (IsHazard(State, *I)) { 446 case HazardFound: 447 return true; 448 case HazardExpired: 449 return false; 450 default: 451 // Continue search 452 break; 453 } 454 455 if (I->isInlineAsm() || I->isMetaInstruction()) 456 continue; 457 458 UpdateState(State, *I); 459 } 460 461 for (MachineBasicBlock *Pred : MBB->predecessors()) { 462 if (!Visited.insert(Pred).second) 463 continue; 464 465 if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(), 466 Visited)) 467 return true; 468 } 469 470 return false; 471 } 472 473 // Returns a minimum wait states since \p I walking all predecessors. 474 // Only scans until \p IsExpired does not return true. 475 // Can only be run in a hazard recognizer mode. 476 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 477 const MachineBasicBlock *MBB, 478 MachineBasicBlock::const_reverse_instr_iterator I, 479 int WaitStates, IsExpiredFn IsExpired, 480 DenseSet<const MachineBasicBlock *> &Visited) { 481 for (auto E = MBB->instr_rend(); I != E; ++I) { 482 // Don't add WaitStates for parent BUNDLE instructions. 483 if (I->isBundle()) 484 continue; 485 486 if (IsHazard(*I)) 487 return WaitStates; 488 489 if (I->isInlineAsm()) 490 continue; 491 492 WaitStates += SIInstrInfo::getNumWaitStates(*I); 493 494 if (IsExpired(*I, WaitStates)) 495 return std::numeric_limits<int>::max(); 496 } 497 498 int MinWaitStates = std::numeric_limits<int>::max(); 499 for (MachineBasicBlock *Pred : MBB->predecessors()) { 500 if (!Visited.insert(Pred).second) 501 continue; 502 503 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), 504 WaitStates, IsExpired, Visited); 505 506 MinWaitStates = std::min(MinWaitStates, W); 507 } 508 509 return MinWaitStates; 510 } 511 512 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 513 const MachineInstr *MI, IsExpiredFn IsExpired) { 514 DenseSet<const MachineBasicBlock *> Visited; 515 return getWaitStatesSince(IsHazard, MI->getParent(), 516 std::next(MI->getReverseIterator()), 517 0, IsExpired, Visited); 518 } 519 520 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 521 if (IsHazardRecognizerMode) { 522 auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) { 523 return WaitStates >= Limit; 524 }; 525 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 526 } 527 528 int WaitStates = 0; 529 for (MachineInstr *MI : EmittedInstrs) { 530 if (MI) { 531 if (IsHazard(*MI)) 532 return WaitStates; 533 534 if (MI->isInlineAsm()) 535 continue; 536 } 537 ++WaitStates; 538 539 if (WaitStates >= Limit) 540 break; 541 } 542 return std::numeric_limits<int>::max(); 543 } 544 545 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 546 IsHazardFn IsHazardDef, 547 int Limit) { 548 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 549 550 auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) { 551 return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI); 552 }; 553 554 return getWaitStatesSince(IsHazardFn, Limit); 555 } 556 557 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 558 int Limit) { 559 auto IsHazardFn = [IsHazard](const MachineInstr &MI) { 560 return isSSetReg(MI.getOpcode()) && IsHazard(MI); 561 }; 562 563 return getWaitStatesSince(IsHazardFn, Limit); 564 } 565 566 //===----------------------------------------------------------------------===// 567 // No-op Hazard Detection 568 //===----------------------------------------------------------------------===// 569 570 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV, 571 MCRegister Reg) { 572 for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI) 573 BV.set(*RUI); 574 } 575 576 static void addRegsToSet(const SIRegisterInfo &TRI, 577 iterator_range<MachineInstr::const_mop_iterator> Ops, 578 BitVector &Set) { 579 for (const MachineOperand &Op : Ops) { 580 if (Op.isReg()) 581 addRegUnits(TRI, Set, Op.getReg().asMCReg()); 582 } 583 } 584 585 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 586 // XXX: Do we need to worry about implicit operands 587 addRegsToSet(TRI, MI.defs(), ClauseDefs); 588 addRegsToSet(TRI, MI.uses(), ClauseUses); 589 } 590 591 static bool breaksSMEMSoftClause(MachineInstr *MI) { 592 return !SIInstrInfo::isSMRD(*MI); 593 } 594 595 static bool breaksVMEMSoftClause(MachineInstr *MI) { 596 return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI); 597 } 598 599 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 600 // SMEM soft clause are only present on VI+, and only matter if xnack is 601 // enabled. 602 if (!ST.isXNACKEnabled()) 603 return 0; 604 605 bool IsSMRD = TII.isSMRD(*MEM); 606 607 resetClause(); 608 609 // A soft-clause is any group of consecutive SMEM instructions. The 610 // instructions in this group may return out of order and/or may be 611 // replayed (i.e. the same instruction issued more than once). 612 // 613 // In order to handle these situations correctly we need to make sure that 614 // when a clause has more than one instruction, no instruction in the clause 615 // writes to a register that is read by another instruction in the clause 616 // (including itself). If we encounter this situation, we need to break the 617 // clause by inserting a non SMEM instruction. 618 619 for (MachineInstr *MI : EmittedInstrs) { 620 // When we hit a non-SMEM instruction then we have passed the start of the 621 // clause and we can stop. 622 if (!MI) 623 break; 624 625 if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI)) 626 break; 627 628 addClauseInst(*MI); 629 } 630 631 if (ClauseDefs.none()) 632 return 0; 633 634 // We need to make sure not to put loads and stores in the same clause if they 635 // use the same address. For now, just start a new clause whenever we see a 636 // store. 637 if (MEM->mayStore()) 638 return 1; 639 640 addClauseInst(*MEM); 641 642 // If the set of defs and uses intersect then we cannot add this instruction 643 // to the clause, so we have a hazard. 644 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 645 } 646 647 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 648 int WaitStatesNeeded = 0; 649 650 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 651 652 // This SMRD hazard only affects SI. 653 if (!ST.hasSMRDReadVALUDefHazard()) 654 return WaitStatesNeeded; 655 656 // A read of an SGPR by SMRD instruction requires 4 wait states when the 657 // SGPR was written by a VALU instruction. 658 int SmrdSgprWaitStates = 4; 659 auto IsHazardDefFn = [this](const MachineInstr &MI) { 660 return TII.isVALU(MI); 661 }; 662 auto IsBufferHazardDefFn = [this](const MachineInstr &MI) { 663 return TII.isSALU(MI); 664 }; 665 666 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 667 668 for (const MachineOperand &Use : SMRD->uses()) { 669 if (!Use.isReg()) 670 continue; 671 int WaitStatesNeededForUse = 672 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 673 SmrdSgprWaitStates); 674 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 675 676 // This fixes what appears to be undocumented hardware behavior in SI where 677 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 678 // needs some number of nops in between. We don't know how many we need, but 679 // let's use 4. This wasn't discovered before probably because the only 680 // case when this happens is when we expand a 64-bit pointer into a full 681 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 682 // probably never encountered in the closed-source land. 683 if (IsBufferSMRD) { 684 int WaitStatesNeededForUse = 685 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 686 IsBufferHazardDefFn, 687 SmrdSgprWaitStates); 688 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 689 } 690 } 691 692 return WaitStatesNeeded; 693 } 694 695 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 696 if (!ST.hasVMEMReadSGPRVALUDefHazard()) 697 return 0; 698 699 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 700 701 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 702 // SGPR was written by a VALU Instruction. 703 const int VmemSgprWaitStates = 5; 704 auto IsHazardDefFn = [this](const MachineInstr &MI) { 705 return TII.isVALU(MI); 706 }; 707 for (const MachineOperand &Use : VMEM->uses()) { 708 if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg())) 709 continue; 710 711 int WaitStatesNeededForUse = 712 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 713 VmemSgprWaitStates); 714 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 715 } 716 return WaitStatesNeeded; 717 } 718 719 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 720 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 721 const SIInstrInfo *TII = ST.getInstrInfo(); 722 723 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 724 int DppVgprWaitStates = 2; 725 int DppExecWaitStates = 5; 726 int WaitStatesNeeded = 0; 727 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 728 return TII->isVALU(MI); 729 }; 730 731 for (const MachineOperand &Use : DPP->uses()) { 732 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 733 continue; 734 int WaitStatesNeededForUse = 735 DppVgprWaitStates - getWaitStatesSinceDef( 736 Use.getReg(), 737 [](const MachineInstr &) { return true; }, 738 DppVgprWaitStates); 739 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 740 } 741 742 WaitStatesNeeded = std::max( 743 WaitStatesNeeded, 744 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 745 DppExecWaitStates)); 746 747 return WaitStatesNeeded; 748 } 749 750 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 751 const SIInstrInfo *TII = ST.getInstrInfo(); 752 753 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 754 // instruction. 755 const int DivFMasWaitStates = 4; 756 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 757 return TII->isVALU(MI); 758 }; 759 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 760 DivFMasWaitStates); 761 762 return DivFMasWaitStates - WaitStatesNeeded; 763 } 764 765 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 766 const SIInstrInfo *TII = ST.getInstrInfo(); 767 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 768 769 const int GetRegWaitStates = 2; 770 auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) { 771 return GetRegHWReg == getHWReg(TII, MI); 772 }; 773 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 774 775 return GetRegWaitStates - WaitStatesNeeded; 776 } 777 778 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 779 const SIInstrInfo *TII = ST.getInstrInfo(); 780 unsigned HWReg = getHWReg(TII, *SetRegInstr); 781 782 const int SetRegWaitStates = ST.getSetRegWaitStates(); 783 auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) { 784 return HWReg == getHWReg(TII, MI); 785 }; 786 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 787 return SetRegWaitStates - WaitStatesNeeded; 788 } 789 790 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 791 if (!MI.mayStore()) 792 return -1; 793 794 const SIInstrInfo *TII = ST.getInstrInfo(); 795 unsigned Opcode = MI.getOpcode(); 796 const MCInstrDesc &Desc = MI.getDesc(); 797 798 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 799 int VDataRCID = -1; 800 if (VDataIdx != -1) 801 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 802 803 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 804 // There is no hazard if the instruction does not use vector regs 805 // (like wbinvl1) 806 if (VDataIdx == -1) 807 return -1; 808 // For MUBUF/MTBUF instructions this hazard only exists if the 809 // instruction is not using a register in the soffset field. 810 const MachineOperand *SOffset = 811 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 812 // If we have no soffset operand, then assume this field has been 813 // hardcoded to zero. 814 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 815 (!SOffset || !SOffset->isReg())) 816 return VDataIdx; 817 } 818 819 // MIMG instructions create a hazard if they don't use a 256-bit T# and 820 // the store size is greater than 8 bytes and they have more than two bits 821 // of their dmask set. 822 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 823 if (TII->isMIMG(MI)) { 824 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 825 assert(SRsrcIdx != -1 && 826 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 827 (void)SRsrcIdx; 828 } 829 830 if (TII->isFLAT(MI)) { 831 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 832 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 833 return DataIdx; 834 } 835 836 return -1; 837 } 838 839 int 840 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 841 const MachineRegisterInfo &MRI) { 842 // Helper to check for the hazard where VMEM instructions that store more than 843 // 8 bytes can have there store data over written by the next instruction. 844 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 845 846 const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1; 847 int WaitStatesNeeded = 0; 848 849 if (!TRI->isVectorRegister(MRI, Def.getReg())) 850 return WaitStatesNeeded; 851 Register Reg = Def.getReg(); 852 auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) { 853 int DataIdx = createsVALUHazard(MI); 854 return DataIdx >= 0 && 855 TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg); 856 }; 857 int WaitStatesNeededForDef = 858 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 859 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 860 861 return WaitStatesNeeded; 862 } 863 864 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 865 int WaitStatesNeeded = 0; 866 867 if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) { 868 const int TransDefWaitstates = 1; 869 870 auto IsTransDefFn = [this, VALU](const MachineInstr &MI) { 871 if (!SIInstrInfo::isTRANS(MI)) 872 return false; 873 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 874 const SIInstrInfo *TII = ST.getInstrInfo(); 875 Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg(); 876 877 for (const MachineOperand &Use : VALU->explicit_uses()) { 878 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 879 return true; 880 } 881 882 return false; 883 }; 884 885 int WaitStatesNeededForDef = 886 TransDefWaitstates - 887 getWaitStatesSince(IsTransDefFn, TransDefWaitstates); 888 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 889 } 890 891 if (ST.hasDstSelForwardingHazard()) { 892 const int Shift16DefWaitstates = 1; 893 894 auto IsShift16BitDefFn = [this, VALU](const MachineInstr &MI) { 895 if (!SIInstrInfo::isVALU(MI)) 896 return false; 897 const SIInstrInfo *TII = ST.getInstrInfo(); 898 if (SIInstrInfo::isSDWA(MI)) { 899 if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel)) 900 if (DstSel->getImm() == AMDGPU::SDWA::DWORD) 901 return false; 902 } else { 903 if ((AMDGPU::getNamedOperandIdx(MI.getOpcode(), 904 AMDGPU::OpName::op_sel) == -1) || 905 !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers) 906 ->getImm() & 907 SISrcMods::DST_OP_SEL)) 908 return false; 909 } 910 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 911 if (auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) { 912 Register Def = Dst->getReg(); 913 914 for (const MachineOperand &Use : VALU->explicit_uses()) { 915 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 916 return true; 917 } 918 } 919 920 return false; 921 }; 922 923 int WaitStatesNeededForDef = 924 Shift16DefWaitstates - 925 getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates); 926 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 927 } 928 929 if (ST.hasVDecCoExecHazard()) { 930 const int VALUWriteSGPRVALUReadWaitstates = 2; 931 const int VALUWriteEXECRWLane = 4; 932 const int VALUWriteVGPRReadlaneRead = 1; 933 934 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 935 const MachineRegisterInfo &MRI = MF.getRegInfo(); 936 Register UseReg; 937 auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) { 938 if (!SIInstrInfo::isVALU(MI)) 939 return false; 940 return MI.modifiesRegister(UseReg, TRI); 941 }; 942 943 for (const MachineOperand &Use : VALU->explicit_uses()) { 944 if (!Use.isReg()) 945 continue; 946 947 UseReg = Use.getReg(); 948 if (TRI->isSGPRReg(MRI, UseReg)) { 949 int WaitStatesNeededForDef = 950 VALUWriteSGPRVALUReadWaitstates - 951 getWaitStatesSince(IsVALUDefSGPRFn, 952 VALUWriteSGPRVALUReadWaitstates); 953 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 954 } 955 } 956 957 if (VALU->readsRegister(AMDGPU::VCC, TRI)) { 958 UseReg = AMDGPU::VCC; 959 int WaitStatesNeededForDef = 960 VALUWriteSGPRVALUReadWaitstates - 961 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates); 962 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 963 } 964 965 switch (VALU->getOpcode()) { 966 case AMDGPU::V_READLANE_B32: 967 case AMDGPU::V_READFIRSTLANE_B32: { 968 MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0); 969 UseReg = Src->getReg(); 970 int WaitStatesNeededForDef = 971 VALUWriteVGPRReadlaneRead - 972 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead); 973 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 974 } 975 LLVM_FALLTHROUGH; 976 case AMDGPU::V_WRITELANE_B32: { 977 UseReg = AMDGPU::EXEC; 978 int WaitStatesNeededForDef = 979 VALUWriteEXECRWLane - 980 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane); 981 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 982 break; 983 } 984 default: 985 break; 986 } 987 } 988 989 // This checks for the hazard where VMEM instructions that store more than 990 // 8 bytes can have there store data over written by the next instruction. 991 if (!ST.has12DWordStoreHazard()) 992 return WaitStatesNeeded; 993 994 const MachineRegisterInfo &MRI = MF.getRegInfo(); 995 996 for (const MachineOperand &Def : VALU->defs()) { 997 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 998 } 999 1000 return WaitStatesNeeded; 1001 } 1002 1003 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 1004 // This checks for hazards associated with inline asm statements. 1005 // Since inline asms can contain just about anything, we use this 1006 // to call/leverage other check*Hazard routines. Note that 1007 // this function doesn't attempt to address all possible inline asm 1008 // hazards (good luck), but is a collection of what has been 1009 // problematic thus far. 1010 1011 // see checkVALUHazards() 1012 if (!ST.has12DWordStoreHazard()) 1013 return 0; 1014 1015 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1016 int WaitStatesNeeded = 0; 1017 1018 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands(); 1019 I != E; ++I) { 1020 const MachineOperand &Op = IA->getOperand(I); 1021 if (Op.isReg() && Op.isDef()) { 1022 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 1023 } 1024 } 1025 1026 return WaitStatesNeeded; 1027 } 1028 1029 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 1030 const SIInstrInfo *TII = ST.getInstrInfo(); 1031 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1032 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1033 1034 const MachineOperand *LaneSelectOp = 1035 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 1036 1037 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 1038 return 0; 1039 1040 Register LaneSelectReg = LaneSelectOp->getReg(); 1041 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); }; 1042 1043 const int RWLaneWaitStates = 4; 1044 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 1045 RWLaneWaitStates); 1046 return RWLaneWaitStates - WaitStatesSince; 1047 } 1048 1049 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 1050 if (!ST.hasRFEHazards()) 1051 return 0; 1052 1053 const SIInstrInfo *TII = ST.getInstrInfo(); 1054 1055 const int RFEWaitStates = 1; 1056 1057 auto IsHazardFn = [TII](const MachineInstr &MI) { 1058 return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS; 1059 }; 1060 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 1061 return RFEWaitStates - WaitStatesNeeded; 1062 } 1063 1064 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 1065 const SIInstrInfo *TII = ST.getInstrInfo(); 1066 const int ReadM0WaitStates = 1; 1067 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); }; 1068 return ReadM0WaitStates - 1069 getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, ReadM0WaitStates); 1070 } 1071 1072 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { 1073 fixVMEMtoScalarWriteHazards(MI); 1074 fixVcmpxPermlaneHazards(MI); 1075 fixSMEMtoVectorWriteHazards(MI); 1076 fixVcmpxExecWARHazard(MI); 1077 fixLdsBranchVmemWARHazard(MI); 1078 fixVALUPartialForwardingHazard(MI); 1079 fixVALUTransUseHazard(MI); 1080 } 1081 1082 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) { 1083 if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI)) 1084 return false; 1085 1086 const SIInstrInfo *TII = ST.getInstrInfo(); 1087 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1088 auto IsHazardFn = [TII, TRI](const MachineInstr &MI) { 1089 return (TII->isVOPC(MI) || 1090 ((TII->isVOP3(MI) || TII->isSDWA(MI)) && MI.isCompare())) && 1091 MI.modifiesRegister(AMDGPU::EXEC, TRI); 1092 }; 1093 1094 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1095 unsigned Opc = MI.getOpcode(); 1096 return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 && 1097 Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa; 1098 }; 1099 1100 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1101 std::numeric_limits<int>::max()) 1102 return false; 1103 1104 // V_NOP will be discarded by SQ. 1105 // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE* 1106 // which is always a VGPR and available. 1107 auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1108 Register Reg = Src0->getReg(); 1109 bool IsUndef = Src0->isUndef(); 1110 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1111 TII->get(AMDGPU::V_MOV_B32_e32)) 1112 .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0)) 1113 .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill); 1114 1115 return true; 1116 } 1117 1118 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { 1119 if (!ST.hasVMEMtoScalarWriteHazard()) 1120 return false; 1121 1122 if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI)) 1123 return false; 1124 1125 if (MI->getNumDefs() == 0) 1126 return false; 1127 1128 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1129 1130 auto IsHazardFn = [TRI, MI](const MachineInstr &I) { 1131 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) && 1132 !SIInstrInfo::isFLAT(I)) 1133 return false; 1134 1135 for (const MachineOperand &Def : MI->defs()) { 1136 const MachineOperand *Op = 1137 I.findRegisterUseOperand(Def.getReg(), false, TRI); 1138 if (!Op) 1139 continue; 1140 return true; 1141 } 1142 return false; 1143 }; 1144 1145 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1146 return SIInstrInfo::isVALU(MI) || 1147 (MI.getOpcode() == AMDGPU::S_WAITCNT && 1148 !MI.getOperand(0).getImm()) || 1149 (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1150 MI.getOperand(0).getImm() == 0xffe3); 1151 }; 1152 1153 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1154 std::numeric_limits<int>::max()) 1155 return false; 1156 1157 const SIInstrInfo *TII = ST.getInstrInfo(); 1158 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1159 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1160 .addImm(0xffe3); 1161 return true; 1162 } 1163 1164 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { 1165 if (!ST.hasSMEMtoVectorWriteHazard()) 1166 return false; 1167 1168 if (!SIInstrInfo::isVALU(*MI)) 1169 return false; 1170 1171 unsigned SDSTName; 1172 switch (MI->getOpcode()) { 1173 case AMDGPU::V_READLANE_B32: 1174 case AMDGPU::V_READFIRSTLANE_B32: 1175 SDSTName = AMDGPU::OpName::vdst; 1176 break; 1177 default: 1178 SDSTName = AMDGPU::OpName::sdst; 1179 break; 1180 } 1181 1182 const SIInstrInfo *TII = ST.getInstrInfo(); 1183 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1184 const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU()); 1185 const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName); 1186 if (!SDST) { 1187 for (const auto &MO : MI->implicit_operands()) { 1188 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) { 1189 SDST = &MO; 1190 break; 1191 } 1192 } 1193 } 1194 1195 if (!SDST) 1196 return false; 1197 1198 const Register SDSTReg = SDST->getReg(); 1199 auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) { 1200 return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI); 1201 }; 1202 1203 auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) { 1204 if (TII->isSALU(MI)) { 1205 switch (MI.getOpcode()) { 1206 case AMDGPU::S_SETVSKIP: 1207 case AMDGPU::S_VERSION: 1208 case AMDGPU::S_WAITCNT_VSCNT: 1209 case AMDGPU::S_WAITCNT_VMCNT: 1210 case AMDGPU::S_WAITCNT_EXPCNT: 1211 // These instructions cannot not mitigate the hazard. 1212 return false; 1213 case AMDGPU::S_WAITCNT_LGKMCNT: 1214 // Reducing lgkmcnt count to 0 always mitigates the hazard. 1215 return (MI.getOperand(1).getImm() == 0) && 1216 (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1217 case AMDGPU::S_WAITCNT: { 1218 const int64_t Imm = MI.getOperand(0).getImm(); 1219 AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm); 1220 return (Decoded.LgkmCnt == 0); 1221 } 1222 default: 1223 // SOPP instructions cannot mitigate the hazard. 1224 if (TII->isSOPP(MI)) 1225 return false; 1226 // At this point the SALU can be assumed to mitigate the hazard 1227 // because either: 1228 // (a) it is independent of the at risk SMEM (breaking chain), 1229 // or 1230 // (b) it is dependent on the SMEM, in which case an appropriate 1231 // s_waitcnt lgkmcnt _must_ exist between it and the at risk 1232 // SMEM instruction. 1233 return true; 1234 } 1235 } 1236 return false; 1237 }; 1238 1239 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1240 std::numeric_limits<int>::max()) 1241 return false; 1242 1243 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1244 TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL) 1245 .addImm(0); 1246 return true; 1247 } 1248 1249 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { 1250 if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI)) 1251 return false; 1252 1253 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1254 if (!MI->modifiesRegister(AMDGPU::EXEC, TRI)) 1255 return false; 1256 1257 auto IsHazardFn = [TRI](const MachineInstr &I) { 1258 if (SIInstrInfo::isVALU(I)) 1259 return false; 1260 return I.readsRegister(AMDGPU::EXEC, TRI); 1261 }; 1262 1263 const SIInstrInfo *TII = ST.getInstrInfo(); 1264 auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) { 1265 if (SIInstrInfo::isVALU(MI)) { 1266 if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst)) 1267 return true; 1268 for (auto MO : MI.implicit_operands()) 1269 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) 1270 return true; 1271 } 1272 if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1273 (MI.getOperand(0).getImm() & 0xfffe) == 0xfffe) 1274 return true; 1275 return false; 1276 }; 1277 1278 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1279 std::numeric_limits<int>::max()) 1280 return false; 1281 1282 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1283 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1284 .addImm(0xfffe); 1285 return true; 1286 } 1287 1288 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 1289 const GCNSubtarget &ST) { 1290 if (!ST.hasLdsBranchVmemWARHazard()) 1291 return false; 1292 1293 // Check if the necessary condition for the hazard is met: both LDS and VMEM 1294 // instructions need to appear in the same function. 1295 bool HasLds = false; 1296 bool HasVmem = false; 1297 for (auto &MBB : MF) { 1298 for (auto &MI : MBB) { 1299 HasLds |= SIInstrInfo::isDS(MI); 1300 HasVmem |= 1301 SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI); 1302 if (HasLds && HasVmem) 1303 return true; 1304 } 1305 } 1306 return false; 1307 } 1308 1309 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { 1310 if (!RunLdsBranchVmemWARHazardFixup) 1311 return false; 1312 1313 assert(ST.hasLdsBranchVmemWARHazard()); 1314 1315 auto IsHazardInst = [](const MachineInstr &MI) { 1316 if (SIInstrInfo::isDS(MI)) 1317 return 1; 1318 if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI)) 1319 return 2; 1320 return 0; 1321 }; 1322 1323 auto InstType = IsHazardInst(*MI); 1324 if (!InstType) 1325 return false; 1326 1327 auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) { 1328 return IsHazardInst(I) || (I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1329 I.getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1330 !I.getOperand(1).getImm()); 1331 }; 1332 1333 auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) { 1334 if (!I.isBranch()) 1335 return false; 1336 1337 auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) { 1338 auto InstType2 = IsHazardInst(I); 1339 return InstType2 && InstType != InstType2; 1340 }; 1341 1342 auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) { 1343 auto InstType2 = IsHazardInst(I); 1344 if (InstType == InstType2) 1345 return true; 1346 1347 return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1348 I.getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1349 !I.getOperand(1).getImm(); 1350 }; 1351 1352 return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) != 1353 std::numeric_limits<int>::max(); 1354 }; 1355 1356 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1357 std::numeric_limits<int>::max()) 1358 return false; 1359 1360 const SIInstrInfo *TII = ST.getInstrInfo(); 1361 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1362 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1363 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1364 .addImm(0); 1365 1366 return true; 1367 } 1368 1369 bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) { 1370 if (!ST.isWave64()) 1371 return false; 1372 if (!ST.hasVALUPartialForwardingHazard()) 1373 return false; 1374 if (!SIInstrInfo::isVALU(*MI)) 1375 return false; 1376 1377 SmallSetVector<Register, 4> SrcVGPRs; 1378 1379 for (const MachineOperand &Use : MI->explicit_uses()) { 1380 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1381 SrcVGPRs.insert(Use.getReg()); 1382 } 1383 1384 // Only applies with >= 2 unique VGPR sources 1385 if (SrcVGPRs.size() <= 1) 1386 return false; 1387 1388 // Look for the following pattern: 1389 // Va <- VALU [PreExecPos] 1390 // intv1 1391 // Exec <- SALU [ExecPos] 1392 // intv2 1393 // Vb <- VALU [PostExecPos] 1394 // intv3 1395 // MI Va, Vb (WaitState = 0) 1396 // 1397 // Where: 1398 // intv1 + intv2 <= 2 VALUs 1399 // intv3 <= 4 VALUs 1400 // 1401 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1402 1403 const int Intv1plus2MaxVALUs = 2; 1404 const int Intv3MaxVALUs = 4; 1405 const int IntvMaxVALUs = 6; 1406 const int NoHazardVALUWaitStates = IntvMaxVALUs + 2; 1407 1408 struct StateType { 1409 SmallDenseMap<Register, int, 4> DefPos; 1410 int ExecPos = std::numeric_limits<int>::max(); 1411 int VALUs = 0; 1412 }; 1413 1414 StateType State; 1415 1416 // This overloads expiry testing with all the hazard detection 1417 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1418 // Too many VALU states have passed 1419 if (State.VALUs > NoHazardVALUWaitStates) 1420 return HazardExpired; 1421 1422 // Instructions which cause va_vdst==0 expire hazard 1423 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1424 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1425 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1426 I.getOperand(0).getImm() == 0x0fff)) 1427 return HazardExpired; 1428 1429 // Track registers writes 1430 bool Changed = false; 1431 if (SIInstrInfo::isVALU(I)) { 1432 for (Register Src : SrcVGPRs) { 1433 if (!State.DefPos.count(Src) && I.modifiesRegister(Src, &TRI)) { 1434 State.DefPos[Src] = State.VALUs; 1435 Changed = true; 1436 } 1437 } 1438 } else if (SIInstrInfo::isSALU(I)) { 1439 if (State.ExecPos == std::numeric_limits<int>::max()) { 1440 if (!State.DefPos.empty() && I.modifiesRegister(AMDGPU::EXEC, &TRI)) { 1441 State.ExecPos = State.VALUs; 1442 Changed = true; 1443 } 1444 } 1445 } 1446 1447 // Early expiration: too many VALUs in intv3 1448 if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty()) 1449 return HazardExpired; 1450 1451 // Only evaluate state if something changed 1452 if (!Changed) 1453 return NoHazardFound; 1454 1455 // Determine positions of VALUs pre/post exec change 1456 if (State.ExecPos == std::numeric_limits<int>::max()) 1457 return NoHazardFound; 1458 1459 int PreExecPos = std::numeric_limits<int>::max(); 1460 int PostExecPos = std::numeric_limits<int>::max(); 1461 1462 for (auto Entry : State.DefPos) { 1463 int DefVALUs = Entry.second; 1464 if (DefVALUs != std::numeric_limits<int>::max()) { 1465 if (DefVALUs >= State.ExecPos) 1466 PreExecPos = std::min(PreExecPos, DefVALUs); 1467 else if (DefVALUs < State.ExecPos) 1468 PostExecPos = std::min(PostExecPos, DefVALUs); 1469 } 1470 } 1471 1472 // Need a VALUs post exec change 1473 if (PostExecPos == std::numeric_limits<int>::max()) 1474 return NoHazardFound; 1475 1476 // Too many VALUs in intv3? 1477 int Intv3VALUs = PostExecPos; 1478 if (Intv3VALUs > Intv3MaxVALUs) 1479 return HazardExpired; 1480 1481 // Too many VALUs in intv2? 1482 int Intv2VALUs = (State.ExecPos - PostExecPos) - 1; 1483 if (Intv2VALUs > Intv1plus2MaxVALUs) 1484 return HazardExpired; 1485 1486 // Need a VALUs pre exec change 1487 if (PreExecPos == std::numeric_limits<int>::max()) 1488 return NoHazardFound; 1489 1490 // Too many VALUs in intv1? 1491 int Intv1VALUs = PreExecPos - State.ExecPos; 1492 if (Intv1VALUs > Intv1plus2MaxVALUs) 1493 return HazardExpired; 1494 1495 // Too many VALUs in intv1 + intv2 1496 if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs) 1497 return HazardExpired; 1498 1499 return HazardFound; 1500 }; 1501 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1502 if (SIInstrInfo::isVALU(MI)) 1503 State.VALUs += 1; 1504 }; 1505 1506 DenseSet<const MachineBasicBlock *> Visited; 1507 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1508 std::next(MI->getReverseIterator()), Visited)) 1509 return false; 1510 1511 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1512 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1513 .addImm(0x0fff); 1514 1515 return true; 1516 } 1517 1518 bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) { 1519 if (!ST.hasVALUTransUseHazard()) 1520 return false; 1521 if (!SIInstrInfo::isVALU(*MI)) 1522 return false; 1523 1524 SmallSet<Register, 4> SrcVGPRs; 1525 1526 for (const MachineOperand &Use : MI->explicit_uses()) { 1527 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1528 SrcVGPRs.insert(Use.getReg()); 1529 } 1530 1531 // Look for the following pattern: 1532 // Va <- TRANS VALU 1533 // intv 1534 // MI Va (WaitState = 0) 1535 // 1536 // Where: 1537 // intv <= 5 VALUs / 1 TRANS 1538 // 1539 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1540 1541 const int IntvMaxVALUs = 5; 1542 const int IntvMaxTRANS = 1; 1543 1544 struct StateType { 1545 int VALUs = 0; 1546 int TRANS = 0; 1547 }; 1548 1549 StateType State; 1550 1551 // This overloads expiry testing with all the hazard detection 1552 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1553 // Too many VALU states have passed 1554 if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS) 1555 return HazardExpired; 1556 1557 // Instructions which cause va_vdst==0 expire hazard 1558 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1559 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1560 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1561 I.getOperand(0).getImm() == 0x0fff)) 1562 return HazardExpired; 1563 1564 // Track registers writes 1565 if (SIInstrInfo::isTRANS(I)) { 1566 for (Register Src : SrcVGPRs) { 1567 if (I.modifiesRegister(Src, &TRI)) { 1568 return HazardFound; 1569 } 1570 } 1571 } 1572 1573 return NoHazardFound; 1574 }; 1575 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1576 if (SIInstrInfo::isVALU(MI)) 1577 State.VALUs += 1; 1578 if (SIInstrInfo::isTRANS(MI)) 1579 State.TRANS += 1; 1580 }; 1581 1582 DenseSet<const MachineBasicBlock *> Visited; 1583 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1584 std::next(MI->getReverseIterator()), Visited)) 1585 return false; 1586 1587 // Hazard is observed - insert a wait on va_dst counter to ensure hazard is 1588 // avoided (mask 0x0fff achieves this). 1589 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1590 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1591 .addImm(0x0fff); 1592 1593 return true; 1594 } 1595 1596 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { 1597 int NSAtoVMEMWaitStates = 1; 1598 1599 if (!ST.hasNSAtoVMEMBug()) 1600 return 0; 1601 1602 if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI)) 1603 return 0; 1604 1605 const SIInstrInfo *TII = ST.getInstrInfo(); 1606 const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset); 1607 if (!Offset || (Offset->getImm() & 6) == 0) 1608 return 0; 1609 1610 auto IsHazardFn = [TII](const MachineInstr &I) { 1611 if (!SIInstrInfo::isMIMG(I)) 1612 return false; 1613 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode()); 1614 return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && 1615 TII->getInstSizeInBytes(I) >= 16; 1616 }; 1617 1618 return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1); 1619 } 1620 1621 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) { 1622 int FPAtomicToDenormModeWaitStates = 3; 1623 1624 if (MI->getOpcode() != AMDGPU::S_DENORM_MODE) 1625 return 0; 1626 1627 auto IsHazardFn = [](const MachineInstr &I) { 1628 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I)) 1629 return false; 1630 return SIInstrInfo::isFPAtomic(I); 1631 }; 1632 1633 auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) { 1634 if (WaitStates >= 3 || SIInstrInfo::isVALU(MI)) 1635 return true; 1636 1637 switch (MI.getOpcode()) { 1638 case AMDGPU::S_WAITCNT: 1639 case AMDGPU::S_WAITCNT_VSCNT: 1640 case AMDGPU::S_WAITCNT_VMCNT: 1641 case AMDGPU::S_WAITCNT_EXPCNT: 1642 case AMDGPU::S_WAITCNT_LGKMCNT: 1643 case AMDGPU::S_WAIT_IDLE: 1644 return true; 1645 default: 1646 break; 1647 } 1648 1649 return false; 1650 }; 1651 1652 return FPAtomicToDenormModeWaitStates - 1653 ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn); 1654 } 1655 1656 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) { 1657 assert(SIInstrInfo::isMAI(*MI)); 1658 1659 return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI); 1660 } 1661 1662 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) { 1663 // Early exit if no padding is requested. 1664 if (MFMAPaddingRatio == 0) 1665 return 0; 1666 1667 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1668 if (!SIInstrInfo::isMFMA(*MI) || MFI->getOccupancy() < 2) 1669 return 0; 1670 1671 int NeighborMFMALatency = 0; 1672 auto IsNeighboringMFMA = [&NeighborMFMALatency, 1673 this](const MachineInstr &MI) { 1674 if (!SIInstrInfo::isMFMA(MI)) 1675 return false; 1676 1677 NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI); 1678 return true; 1679 }; 1680 1681 const int MaxMFMAPipelineWaitStates = 16; 1682 int WaitStatesSinceNeighborMFMA = 1683 getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates); 1684 1685 int NeighborMFMAPaddingNeeded = 1686 (NeighborMFMALatency * MFMAPaddingRatio / 100) - 1687 WaitStatesSinceNeighborMFMA; 1688 1689 return std::max(0, NeighborMFMAPaddingNeeded); 1690 } 1691 1692 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) { 1693 int WaitStatesNeeded = 0; 1694 unsigned Opc = MI->getOpcode(); 1695 1696 auto IsVALUFn = [](const MachineInstr &MI) { 1697 return SIInstrInfo::isVALU(MI); 1698 }; 1699 1700 if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write 1701 const int LegacyVALUWritesVGPRWaitStates = 2; 1702 const int VALUWritesExecWaitStates = 4; 1703 const int MaxWaitStates = 4; 1704 1705 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 1706 getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates); 1707 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1708 1709 if (WaitStatesNeeded < MaxWaitStates) { 1710 for (const MachineOperand &Use : MI->explicit_uses()) { 1711 const int MaxWaitStates = 2; 1712 1713 if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1714 continue; 1715 1716 int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates - 1717 getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates); 1718 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1719 1720 if (WaitStatesNeeded == MaxWaitStates) 1721 break; 1722 } 1723 } 1724 } 1725 1726 for (const MachineOperand &Op : MI->explicit_operands()) { 1727 if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg())) 1728 continue; 1729 1730 if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 1731 continue; 1732 1733 const int MFMAWritesAGPROverlappedSrcABWaitStates = 4; 1734 const int MFMAWritesAGPROverlappedSrcCWaitStates = 2; 1735 const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4; 1736 const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10; 1737 const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18; 1738 const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1; 1739 const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7; 1740 const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15; 1741 const int MaxWaitStates = 18; 1742 Register Reg = Op.getReg(); 1743 unsigned HazardDefLatency = 0; 1744 1745 auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency, 1746 this](const MachineInstr &MI) { 1747 if (!SIInstrInfo::isMFMA(MI)) 1748 return false; 1749 Register DstReg = MI.getOperand(0).getReg(); 1750 if (DstReg == Reg) 1751 return false; 1752 HazardDefLatency = 1753 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 1754 return TRI.regsOverlap(DstReg, Reg); 1755 }; 1756 1757 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, 1758 MaxWaitStates); 1759 int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates; 1760 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1761 int OpNo = MI->getOperandNo(&Op); 1762 if (OpNo == SrcCIdx) { 1763 NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates; 1764 } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) { 1765 switch (HazardDefLatency) { 1766 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates; 1767 break; 1768 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates; 1769 break; 1770 case 16: LLVM_FALLTHROUGH; 1771 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates; 1772 break; 1773 } 1774 } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 1775 switch (HazardDefLatency) { 1776 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates; 1777 break; 1778 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates; 1779 break; 1780 case 16: LLVM_FALLTHROUGH; 1781 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates; 1782 break; 1783 } 1784 } 1785 1786 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 1787 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1788 1789 if (WaitStatesNeeded == MaxWaitStates) 1790 return WaitStatesNeeded; // Early exit. 1791 1792 auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) { 1793 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 1794 return false; 1795 Register DstReg = MI.getOperand(0).getReg(); 1796 return TRI.regsOverlap(Reg, DstReg); 1797 }; 1798 1799 const int AccVGPRWriteMFMAReadSrcCWaitStates = 1; 1800 const int AccVGPRWriteMFMAReadSrcABWaitStates = 3; 1801 const int AccVGPRWriteAccVgprReadWaitStates = 3; 1802 NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates; 1803 if (OpNo == SrcCIdx) 1804 NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates; 1805 else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) 1806 NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates; 1807 1808 WaitStatesNeededForUse = NeedWaitStates - 1809 getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates); 1810 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1811 1812 if (WaitStatesNeeded == MaxWaitStates) 1813 return WaitStatesNeeded; // Early exit. 1814 } 1815 1816 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 1817 const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0; 1818 const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5; 1819 const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13; 1820 const int MaxWaitStates = 13; 1821 Register DstReg = MI->getOperand(0).getReg(); 1822 unsigned HazardDefLatency = 0; 1823 1824 auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency, 1825 this](const MachineInstr &MI) { 1826 if (!SIInstrInfo::isMFMA(MI)) 1827 return false; 1828 Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg(); 1829 HazardDefLatency = 1830 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 1831 return TRI.regsOverlap(Reg, DstReg); 1832 }; 1833 1834 int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates); 1835 int NeedWaitStates; 1836 switch (HazardDefLatency) { 1837 case 2: NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates; 1838 break; 1839 case 8: NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates; 1840 break; 1841 case 16: LLVM_FALLTHROUGH; 1842 default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates; 1843 break; 1844 } 1845 1846 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince; 1847 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1848 } 1849 1850 // Pad neighboring MFMA with noops for better inter-wave performance. 1851 WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI)); 1852 1853 return WaitStatesNeeded; 1854 } 1855 1856 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) { 1857 int WaitStatesNeeded = 0; 1858 unsigned Opc = MI->getOpcode(); 1859 1860 auto IsLegacyVALUFn = [](const MachineInstr &MI) { 1861 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI); 1862 }; 1863 1864 auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) { 1865 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) && 1866 !SIInstrInfo::isDOT(MI); 1867 }; 1868 1869 if (!SIInstrInfo::isMFMA(*MI)) 1870 return WaitStatesNeeded; 1871 1872 const int VALUWritesExecWaitStates = 4; 1873 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 1874 getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn, 1875 VALUWritesExecWaitStates); 1876 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1877 1878 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1879 1880 // Loop for both DGEMM and S/HGEMM 2nd instruction. 1881 for (const MachineOperand &Use : MI->explicit_uses()) { 1882 const int LegacyVALUNotDotWritesVGPRWaitStates = 2; 1883 const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2; 1884 const int GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates = 3; 1885 const int GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates = 5; 1886 const int GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates = 4; 1887 const int GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates = 9; 1888 const int GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates = 8; 1889 const int GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates = 17; 1890 const int GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates = 16; 1891 const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8; 1892 const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16; 1893 const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3; 1894 const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9; 1895 const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17; 1896 const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9; 1897 const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4; 1898 const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5; 1899 const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11; 1900 const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19; 1901 const int GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates = 4; 1902 const int GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates = 6; 1903 const int GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates = 10; 1904 const int GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates = 18; 1905 const int GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates = 5; 1906 const int GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates = 7; 1907 const int GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates = 11; 1908 const int GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates = 19; 1909 const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6; 1910 const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11; 1911 const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4; 1912 const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2; 1913 const int MaxWaitStates = 19; 1914 1915 if (!Use.isReg()) 1916 continue; 1917 Register Reg = Use.getReg(); 1918 bool FullReg; 1919 const MachineInstr *MI1; 1920 1921 auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1, 1922 this](const MachineInstr &MI) { 1923 if (!SIInstrInfo::isMFMA(MI)) 1924 return false; 1925 Register DstReg = MI.getOperand(0).getReg(); 1926 FullReg = (DstReg == Reg); 1927 MI1 = &MI; 1928 return TRI.regsOverlap(DstReg, Reg); 1929 }; 1930 1931 WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates - 1932 getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates); 1933 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1934 1935 int NumWaitStates = 1936 getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates); 1937 if (NumWaitStates == std::numeric_limits<int>::max()) 1938 continue; 1939 1940 int OpNo = MI->getOperandNo(&Use); 1941 unsigned Opc1 = MI1->getOpcode(); 1942 int NeedWaitStates = 0; 1943 if (OpNo == SrcCIdx) { 1944 if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) { 1945 NeedWaitStates = 0; 1946 } else if (FullReg) { 1947 if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 1948 Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) && 1949 (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 1950 Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64)) 1951 NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates; 1952 else if (ST.hasGFX940Insts() && 1953 TSchedModel.computeInstrLatency(MI1) == 2) 1954 NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates; 1955 } else { 1956 switch (Opc1) { 1957 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 1958 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 1959 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 1960 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 1961 if (!isXDL(ST, *MI)) 1962 NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates; 1963 break; 1964 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 1965 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 1966 if (!isXDL(ST, *MI)) 1967 NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates; 1968 break; 1969 default: 1970 if (ST.hasGFX940Insts() && isXDL(ST, *MI) && !isXDL(ST, *MI1)) 1971 break; 1972 switch (TSchedModel.computeInstrLatency(MI1)) { 1973 case 2: 1974 NeedWaitStates = ST.hasGFX940Insts() 1975 ? isXDL(ST, *MI1) 1976 ? GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates 1977 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates 1978 : isDGEMM(Opc) 1979 ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates 1980 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates; 1981 break; 1982 case 4: 1983 assert(ST.hasGFX940Insts()); 1984 NeedWaitStates = isXDL(ST, *MI1) 1985 ? GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates 1986 : GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates; 1987 break; 1988 case 8: 1989 NeedWaitStates = ST.hasGFX940Insts() 1990 ? isXDL(ST, *MI1) 1991 ? GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates 1992 : GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates 1993 : isDGEMM(Opc) 1994 ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates 1995 : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates; 1996 break; 1997 case 16: LLVM_FALLTHROUGH; 1998 default: 1999 NeedWaitStates = ST.hasGFX940Insts() 2000 ? isXDL(ST, *MI1) 2001 ? GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates 2002 : GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates 2003 : isDGEMM(Opc) 2004 ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates 2005 : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates; 2006 } 2007 } 2008 } 2009 } else { 2010 switch (Opc1) { 2011 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2012 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2013 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2014 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2015 NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates; 2016 break; 2017 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2018 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2019 NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates; 2020 break; 2021 default: 2022 switch (TSchedModel.computeInstrLatency(MI1)) { 2023 case 2: 2024 NeedWaitStates = ST.hasGFX940Insts() 2025 ? isXDL(ST, *MI1) 2026 ? GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates 2027 : GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates 2028 : SMFMA4x4WritesVGPROverlappedSrcABWaitStates; 2029 break; 2030 case 4: 2031 assert(ST.hasGFX940Insts()); 2032 NeedWaitStates = isXDL(ST, *MI1) 2033 ? GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates 2034 : GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates; 2035 break; 2036 case 8: 2037 NeedWaitStates = ST.hasGFX940Insts() 2038 ? isXDL(ST, *MI1) 2039 ? GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates 2040 : GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates 2041 : SMFMA16x16WritesVGPROverlappedSrcABWaitStates; 2042 break; 2043 case 16: LLVM_FALLTHROUGH; 2044 default: 2045 NeedWaitStates = ST.hasGFX940Insts() 2046 ? isXDL(ST, *MI1) 2047 ? GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates 2048 : GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates 2049 : SMFMA32x32WritesVGPROverlappedSrcABWaitStates; 2050 } 2051 } 2052 } 2053 if (WaitStatesNeeded >= NeedWaitStates) 2054 continue; 2055 2056 WaitStatesNeededForUse = NeedWaitStates - NumWaitStates; 2057 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2058 2059 if (WaitStatesNeeded == MaxWaitStates) 2060 break; 2061 } 2062 2063 return WaitStatesNeeded; 2064 } 2065 2066 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) { 2067 // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards() 2068 if (!ST.hasMAIInsts() || ST.hasGFX90AInsts()) 2069 return 0; 2070 2071 int WaitStatesNeeded = 0; 2072 2073 auto IsAccVgprReadFn = [](const MachineInstr &MI) { 2074 return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64; 2075 }; 2076 2077 for (const MachineOperand &Op : MI->explicit_uses()) { 2078 if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg())) 2079 continue; 2080 2081 Register Reg = Op.getReg(); 2082 2083 const int AccVgprReadLdStWaitStates = 2; 2084 const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1; 2085 const int MaxWaitStates = 2; 2086 2087 int WaitStatesNeededForUse = AccVgprReadLdStWaitStates - 2088 getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates); 2089 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2090 2091 if (WaitStatesNeeded == MaxWaitStates) 2092 return WaitStatesNeeded; // Early exit. 2093 2094 auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) { 2095 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 && 2096 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2097 return false; 2098 auto IsVALUFn = [](const MachineInstr &MI) { 2099 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI); 2100 }; 2101 return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) < 2102 std::numeric_limits<int>::max(); 2103 }; 2104 2105 WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates - 2106 getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates); 2107 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2108 } 2109 2110 return WaitStatesNeeded; 2111 } 2112 2113 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) { 2114 if (!ST.hasGFX90AInsts()) 2115 return 0; 2116 2117 auto IsDGEMMFn = [](const MachineInstr &MI) -> bool { 2118 return isDGEMM(MI.getOpcode()); 2119 }; 2120 2121 // This is checked in checkMAIHazards90A() 2122 if (SIInstrInfo::isMFMA(*MI)) 2123 return 0; 2124 2125 int WaitStatesNeeded = 0; 2126 2127 bool IsMemOrExport = SIInstrInfo::isVMEM(*MI) || 2128 SIInstrInfo::isFLAT(*MI) || 2129 SIInstrInfo::isDS(*MI) || 2130 SIInstrInfo::isEXP(*MI); 2131 bool IsVALU = SIInstrInfo::isVALU(*MI); 2132 2133 const MachineInstr *MFMA = nullptr; 2134 unsigned Reg; 2135 auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2136 if (!SIInstrInfo::isMFMA(MI) || 2137 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2138 return false; 2139 MFMA = &MI; 2140 return true; 2141 }; 2142 2143 const MachineInstr *DOT = nullptr; 2144 auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) { 2145 if (!SIInstrInfo::isDOT(MI) || 2146 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2147 return false; 2148 DOT = &MI; 2149 return true; 2150 }; 2151 2152 int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), 2153 AMDGPU::OpName::src2); 2154 2155 if (IsMemOrExport || IsVALU) { 2156 const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5; 2157 const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11; 2158 const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19; 2159 const int GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates = 4; 2160 const int GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates = 6; 2161 const int GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates = 10; 2162 const int GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates = 18; 2163 const int GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates = 5; 2164 const int GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates = 7; 2165 const int GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates = 11; 2166 const int GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates = 19; 2167 const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9; 2168 const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18; 2169 const int DMFMA4x4WriteVgprVALUReadWaitStates = 6; 2170 const int DMFMA16x16WriteVgprVALUReadWaitStates = 11; 2171 const int DotWriteSameDotReadSrcAB = 3; 2172 const int DotWriteDifferentVALURead = 3; 2173 const int MaxWaitStates = 19; 2174 2175 for (const MachineOperand &Use : MI->explicit_uses()) { 2176 if (!Use.isReg()) 2177 continue; 2178 Reg = Use.getReg(); 2179 2180 DOT = nullptr; 2181 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2182 MaxWaitStates); 2183 if (DOT) { 2184 int NeedWaitStates = 0; 2185 if (DOT->getOpcode() == MI->getOpcode()) { 2186 if (&Use - &MI->getOperand(0) != SrcCIdx) 2187 NeedWaitStates = DotWriteSameDotReadSrcAB; 2188 } else { 2189 NeedWaitStates = DotWriteDifferentVALURead; 2190 } 2191 2192 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2193 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2194 } 2195 2196 MFMA = nullptr; 2197 WaitStatesSinceDef = 2198 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2199 if (!MFMA) 2200 continue; 2201 2202 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2203 int NeedWaitStates = MaxWaitStates; 2204 switch (HazardDefLatency) { 2205 case 2: 2206 NeedWaitStates = 2207 ST.hasGFX940Insts() 2208 ? isXDL(ST, *MFMA) 2209 ? GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates 2210 : GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates 2211 : SMFMA4x4WriteVgprVALUMemExpReadWaitStates; 2212 break; 2213 case 4: 2214 assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts()); 2215 NeedWaitStates = 2216 isDGEMM(MFMA->getOpcode()) 2217 ? IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates 2218 : DMFMA4x4WriteVgprVALUReadWaitStates 2219 : isXDL(ST, *MFMA) 2220 ? GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates 2221 : GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates; 2222 break; 2223 case 8: 2224 NeedWaitStates = 2225 ST.hasGFX940Insts() 2226 ? isXDL(ST, *MFMA) 2227 ? GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates 2228 : GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates 2229 : SMFMA16x16WriteVgprVALUMemExpReadWaitStates; 2230 break; 2231 case 16: LLVM_FALLTHROUGH; 2232 default: 2233 NeedWaitStates = 2234 isDGEMM(MFMA->getOpcode()) 2235 ? IsMemOrExport ? DMFMA16x16WriteVgprMemExpReadWaitStates 2236 : DMFMA16x16WriteVgprVALUReadWaitStates 2237 : ST.hasGFX940Insts() 2238 ? isXDL(ST, *MFMA) 2239 ? GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates 2240 : GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates 2241 : SMFMA32x32WriteVgprVALUMemExpReadWaitStates; 2242 break; 2243 } 2244 2245 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2246 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2247 2248 if (WaitStatesNeeded == MaxWaitStates) 2249 break; 2250 } 2251 } 2252 2253 unsigned Opc = MI->getOpcode(); 2254 const int DMFMAToFMA64WaitStates = 2; 2255 if ((Opc == AMDGPU::V_FMA_F64_e64 || 2256 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 || 2257 Opc == AMDGPU::V_FMAC_F64_dpp) && 2258 WaitStatesNeeded < DMFMAToFMA64WaitStates) { 2259 int WaitStatesNeededForUse = DMFMAToFMA64WaitStates - 2260 getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates); 2261 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2262 } 2263 2264 if (!IsVALU && !IsMemOrExport) 2265 return WaitStatesNeeded; 2266 2267 for (const MachineOperand &Def : MI->defs()) { 2268 const int SMFMA4x4WriteVgprVALUWawWaitStates = 5; 2269 const int SMFMA16x16WriteVgprVALUWawWaitStates = 11; 2270 const int SMFMA32x32WriteVgprVALUWawWaitStates = 19; 2271 const int GFX940_SMFMA2PassWriteVgprVALUWawWaitStates = 4; 2272 const int GFX940_SMFMA4PassWriteVgprVALUWawWaitStates = 6; 2273 const int GFX940_SMFMA8PassWriteVgprVALUWawWaitStates = 10; 2274 const int GFX940_SMFMA16PassWriteVgprVALUWawWaitStates = 18; 2275 const int GFX940_XDL2PassWriteVgprVALUWawWaitStates = 5; 2276 const int GFX940_XDL4PassWriteVgprVALUWawWaitStates = 7; 2277 const int GFX940_XDL8PassWriteVgprVALUWawWaitStates = 11; 2278 const int GFX940_XDL16PassWriteVgprVALUWawWaitStates = 19; 2279 const int SMFMA4x4ReadVgprVALUWarWaitStates = 1; 2280 const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3; 2281 const int SMFMA16x16ReadVgprVALUWarWaitStates = 7; 2282 const int SMFMA32x32ReadVgprVALUWarWaitStates = 15; 2283 const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6; 2284 const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11; 2285 const int DotWriteDifferentVALUWrite = 3; 2286 const int MaxWaitStates = 19; 2287 const int MaxWarWaitStates = 15; 2288 2289 Reg = Def.getReg(); 2290 2291 DOT = nullptr; 2292 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2293 MaxWaitStates); 2294 if (DOT && DOT->getOpcode() != MI->getOpcode()) 2295 WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite - 2296 WaitStatesSinceDef); 2297 2298 MFMA = nullptr; 2299 WaitStatesSinceDef = 2300 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2301 if (MFMA) { 2302 int NeedWaitStates = MaxWaitStates; 2303 switch (TSchedModel.computeInstrLatency(MFMA)) { 2304 case 2: 2305 NeedWaitStates = ST.hasGFX940Insts() 2306 ? isXDL(ST, *MFMA) 2307 ? GFX940_XDL2PassWriteVgprVALUWawWaitStates 2308 : GFX940_SMFMA2PassWriteVgprVALUWawWaitStates 2309 : SMFMA4x4WriteVgprVALUWawWaitStates; 2310 break; 2311 case 4: 2312 assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts()); 2313 NeedWaitStates = isDGEMM(MFMA->getOpcode()) 2314 ? DMFMA4x4WriteVgprVALUWriteWaitStates 2315 : isXDL(ST, *MFMA) 2316 ? GFX940_XDL4PassWriteVgprVALUWawWaitStates 2317 : GFX940_SMFMA4PassWriteVgprVALUWawWaitStates; 2318 break; 2319 case 8: 2320 NeedWaitStates = ST.hasGFX940Insts() 2321 ? isXDL(ST, *MFMA) 2322 ? GFX940_XDL8PassWriteVgprVALUWawWaitStates 2323 : GFX940_SMFMA8PassWriteVgprVALUWawWaitStates 2324 : SMFMA16x16WriteVgprVALUWawWaitStates; 2325 break; 2326 case 16: LLVM_FALLTHROUGH; 2327 default: 2328 NeedWaitStates = isDGEMM(MFMA->getOpcode()) 2329 ? DMFMA16x16WriteVgprVALUWriteWaitStates 2330 : ST.hasGFX940Insts() 2331 ? isXDL(ST, *MFMA) 2332 ? GFX940_XDL16PassWriteVgprVALUWawWaitStates 2333 : GFX940_SMFMA16PassWriteVgprVALUWawWaitStates 2334 : SMFMA32x32WriteVgprVALUWawWaitStates; 2335 break; 2336 } 2337 2338 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2339 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2340 2341 if (WaitStatesNeeded == MaxWaitStates) 2342 break; 2343 } 2344 2345 auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2346 if (!SIInstrInfo::isMFMA(MI) || isDGEMM(MI.getOpcode()) || 2347 !MI.readsRegister(Reg, &TRI)) 2348 return false; 2349 2350 if (ST.hasGFX940Insts() && !isXDL(ST, MI)) 2351 return false; 2352 2353 const MachineOperand *SrcC = 2354 TII.getNamedOperand(MI, AMDGPU::OpName::src2); 2355 assert(SrcC); 2356 if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg)) 2357 return false; 2358 2359 MFMA = &MI; 2360 return true; 2361 }; 2362 2363 MFMA = nullptr; 2364 int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn, 2365 MaxWarWaitStates); 2366 if (!MFMA) 2367 continue; 2368 2369 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2370 int NeedWaitStates = MaxWaitStates; 2371 switch (HazardDefLatency) { 2372 case 2: NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates; 2373 break; 2374 case 4: assert(ST.hasGFX940Insts()); 2375 NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates; 2376 break; 2377 case 8: NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates; 2378 break; 2379 case 16: LLVM_FALLTHROUGH; 2380 default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates; 2381 break; 2382 } 2383 2384 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse; 2385 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2386 } 2387 2388 return WaitStatesNeeded; 2389 } 2390 2391 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) { 2392 if (!SU->isInstr()) 2393 return false; 2394 2395 const MachineInstr *MAI = nullptr; 2396 2397 auto IsMFMAFn = [&MAI](const MachineInstr &MI) { 2398 MAI = nullptr; 2399 if (SIInstrInfo::isMFMA(MI)) 2400 MAI = &MI; 2401 return MAI != nullptr; 2402 }; 2403 2404 MachineInstr *MI = SU->getInstr(); 2405 if (IsMFMAFn(*MI)) { 2406 int W = getWaitStatesSince(IsMFMAFn, 16); 2407 if (MAI) 2408 return W < (int)TSchedModel.computeInstrLatency(MAI); 2409 } 2410 2411 return false; 2412 } 2413