1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "GCNSubtarget.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "SIMachineFunctionInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/ScheduleDAG.h" 19 #include "llvm/TargetParser/TargetParser.h" 20 21 using namespace llvm; 22 23 namespace { 24 25 struct MFMAPaddingRatioParser : public cl::parser<unsigned> { 26 MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {} 27 28 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 29 if (Arg.getAsInteger(0, Value)) 30 return O.error("'" + Arg + "' value invalid for uint argument!"); 31 32 if (Value > 100) 33 return O.error("'" + Arg + "' value must be in the range [0, 100]!"); 34 35 return false; 36 } 37 }; 38 39 } // end anonymous namespace 40 41 static cl::opt<unsigned, false, MFMAPaddingRatioParser> 42 MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden, 43 cl::desc("Fill a percentage of the latency between " 44 "neighboring MFMA with s_nops.")); 45 46 //===----------------------------------------------------------------------===// 47 // Hazard Recognizer Implementation 48 //===----------------------------------------------------------------------===// 49 50 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 51 const GCNSubtarget &ST); 52 53 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 54 IsHazardRecognizerMode(false), 55 CurrCycleInstr(nullptr), 56 MF(MF), 57 ST(MF.getSubtarget<GCNSubtarget>()), 58 TII(*ST.getInstrInfo()), 59 TRI(TII.getRegisterInfo()), 60 ClauseUses(TRI.getNumRegUnits()), 61 ClauseDefs(TRI.getNumRegUnits()) { 62 MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5; 63 TSchedModel.init(&ST); 64 RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST); 65 } 66 67 void GCNHazardRecognizer::Reset() { 68 EmittedInstrs.clear(); 69 } 70 71 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 72 EmitInstruction(SU->getInstr()); 73 } 74 75 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 76 CurrCycleInstr = MI; 77 } 78 79 static bool isDivFMas(unsigned Opcode) { 80 return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64; 81 } 82 83 static bool isSGetReg(unsigned Opcode) { 84 return Opcode == AMDGPU::S_GETREG_B32; 85 } 86 87 static bool isSSetReg(unsigned Opcode) { 88 switch (Opcode) { 89 case AMDGPU::S_SETREG_B32: 90 case AMDGPU::S_SETREG_B32_mode: 91 case AMDGPU::S_SETREG_IMM32_B32: 92 case AMDGPU::S_SETREG_IMM32_B32_mode: 93 return true; 94 } 95 return false; 96 } 97 98 static bool isRWLane(unsigned Opcode) { 99 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 100 } 101 102 static bool isRFE(unsigned Opcode) { 103 return Opcode == AMDGPU::S_RFE_B64; 104 } 105 106 static bool isSMovRel(unsigned Opcode) { 107 switch (Opcode) { 108 case AMDGPU::S_MOVRELS_B32: 109 case AMDGPU::S_MOVRELS_B64: 110 case AMDGPU::S_MOVRELD_B32: 111 case AMDGPU::S_MOVRELD_B64: 112 return true; 113 default: 114 return false; 115 } 116 } 117 118 static bool isDGEMM(unsigned Opcode) { 119 return AMDGPU::getMAIIsDGEMM(Opcode); 120 } 121 122 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) { 123 unsigned Opcode = MI.getOpcode(); 124 125 if (!SIInstrInfo::isMAI(MI) || 126 isDGEMM(Opcode) || 127 Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 128 Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64) 129 return false; 130 131 if (!ST.hasGFX940Insts()) 132 return true; 133 134 return AMDGPU::getMAIIsGFX940XDL(Opcode); 135 } 136 137 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 138 const MachineInstr &MI) { 139 if (TII.isAlwaysGDS(MI.getOpcode())) 140 return true; 141 142 switch (MI.getOpcode()) { 143 case AMDGPU::S_SENDMSG: 144 case AMDGPU::S_SENDMSGHALT: 145 case AMDGPU::S_TTRACEDATA: 146 return true; 147 // These DS opcodes don't support GDS. 148 case AMDGPU::DS_NOP: 149 case AMDGPU::DS_PERMUTE_B32: 150 case AMDGPU::DS_BPERMUTE_B32: 151 return false; 152 default: 153 if (TII.isDS(MI.getOpcode())) { 154 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 155 AMDGPU::OpName::gds); 156 if (MI.getOperand(GDS).getImm()) 157 return true; 158 } 159 return false; 160 } 161 } 162 163 static bool isPermlane(const MachineInstr &MI) { 164 unsigned Opcode = MI.getOpcode(); 165 return Opcode == AMDGPU::V_PERMLANE16_B32_e64 || 166 Opcode == AMDGPU::V_PERMLANEX16_B32_e64 || 167 Opcode == AMDGPU::V_PERMLANE16_VAR_B32_e64 || 168 Opcode == AMDGPU::V_PERMLANEX16_VAR_B32_e64; 169 } 170 171 static bool isLdsDma(const MachineInstr &MI) { 172 return SIInstrInfo::isVALU(MI) && 173 (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)); 174 } 175 176 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 177 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 178 AMDGPU::OpName::simm16); 179 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 180 } 181 182 ScheduleHazardRecognizer::HazardType 183 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 184 MachineInstr *MI = SU->getInstr(); 185 // If we are not in "HazardRecognizerMode" and therefore not being run from 186 // the scheduler, track possible stalls from hazards but don't insert noops. 187 auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard; 188 189 if (MI->isBundle()) 190 return NoHazard; 191 192 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 193 return HazardType; 194 195 if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) 196 return HazardType; 197 198 if (checkFPAtomicToDenormModeHazard(MI) > 0) 199 return HazardType; 200 201 if (ST.hasNoDataDepHazard()) 202 return NoHazard; 203 204 // FIXME: Should flat be considered vmem? 205 if ((SIInstrInfo::isVMEM(*MI) || 206 SIInstrInfo::isFLAT(*MI)) 207 && checkVMEMHazards(MI) > 0) 208 return HazardType; 209 210 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 211 return HazardType; 212 213 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 214 return HazardType; 215 216 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 217 return HazardType; 218 219 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 220 return HazardType; 221 222 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 223 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 224 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 225 return HazardType; 226 227 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 228 return HazardType; 229 230 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 231 return HazardType; 232 233 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 234 return HazardType; 235 236 if (((ST.hasReadM0MovRelInterpHazard() && 237 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 238 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 239 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 240 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 241 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 242 (ST.hasReadM0LdsDirectHazard() && 243 MI->readsRegister(AMDGPU::LDS_DIRECT))) && 244 checkReadM0Hazards(MI) > 0) 245 return HazardType; 246 247 if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0) 248 return HazardType; 249 250 if ((SIInstrInfo::isVMEM(*MI) || 251 SIInstrInfo::isFLAT(*MI) || 252 SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0) 253 return HazardType; 254 255 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 256 return HazardType; 257 258 return NoHazard; 259 } 260 261 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII, 262 unsigned Quantity) { 263 while (Quantity > 0) { 264 unsigned Arg = std::min(Quantity, 8u); 265 Quantity -= Arg; 266 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP)) 267 .addImm(Arg - 1); 268 } 269 } 270 271 unsigned 272 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const { 273 const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI); 274 assert(TSchedModel.getWriteProcResBegin(SC) != 275 TSchedModel.getWriteProcResEnd(SC)); 276 return TSchedModel.getWriteProcResBegin(SC)->ReleaseAtCycle; 277 } 278 279 void GCNHazardRecognizer::processBundle() { 280 MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator()); 281 MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); 282 // Check bundled MachineInstr's for hazards. 283 for (; MI != E && MI->isInsideBundle(); ++MI) { 284 CurrCycleInstr = &*MI; 285 unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); 286 287 if (IsHazardRecognizerMode) { 288 fixHazards(CurrCycleInstr); 289 290 insertNoopsInBundle(CurrCycleInstr, TII, WaitStates); 291 } 292 293 // It’s unnecessary to track more than MaxLookAhead instructions. Since we 294 // include the bundled MI directly after, only add a maximum of 295 // (MaxLookAhead - 1) noops to EmittedInstrs. 296 for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i) 297 EmittedInstrs.push_front(nullptr); 298 299 EmittedInstrs.push_front(CurrCycleInstr); 300 EmittedInstrs.resize(MaxLookAhead); 301 } 302 CurrCycleInstr = nullptr; 303 } 304 305 void GCNHazardRecognizer::runOnInstruction(MachineInstr *MI) { 306 assert(IsHazardRecognizerMode); 307 308 unsigned NumPreNoops = PreEmitNoops(MI); 309 EmitNoops(NumPreNoops); 310 if (MI->isInsideBundle()) 311 insertNoopsInBundle(MI, TII, NumPreNoops); 312 else 313 TII.insertNoops(*MI->getParent(), MachineBasicBlock::iterator(MI), 314 NumPreNoops); 315 EmitInstruction(MI); 316 AdvanceCycle(); 317 } 318 319 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 320 IsHazardRecognizerMode = true; 321 CurrCycleInstr = MI; 322 unsigned W = PreEmitNoopsCommon(MI); 323 fixHazards(MI); 324 CurrCycleInstr = nullptr; 325 return W; 326 } 327 328 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 329 if (MI->isBundle()) 330 return 0; 331 332 int WaitStates = 0; 333 334 if (SIInstrInfo::isSMRD(*MI)) 335 return std::max(WaitStates, checkSMRDHazards(MI)); 336 337 if (ST.hasNSAtoVMEMBug()) 338 WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI)); 339 340 WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI)); 341 342 if (ST.hasNoDataDepHazard()) 343 return WaitStates; 344 345 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 346 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 347 348 if (SIInstrInfo::isVALU(*MI)) 349 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 350 351 if (SIInstrInfo::isDPP(*MI)) 352 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 353 354 if (isDivFMas(MI->getOpcode())) 355 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 356 357 if (isRWLane(MI->getOpcode())) 358 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 359 360 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 361 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 362 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 363 WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI)); 364 365 if (MI->isInlineAsm()) 366 return std::max(WaitStates, checkInlineAsmHazards(MI)); 367 368 if (isSGetReg(MI->getOpcode())) 369 return std::max(WaitStates, checkGetRegHazards(MI)); 370 371 if (isSSetReg(MI->getOpcode())) 372 return std::max(WaitStates, checkSetRegHazards(MI)); 373 374 if (isRFE(MI->getOpcode())) 375 return std::max(WaitStates, checkRFEHazards(MI)); 376 377 if ((ST.hasReadM0MovRelInterpHazard() && 378 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 379 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 380 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 381 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 382 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 383 (ST.hasReadM0LdsDirectHazard() && MI->readsRegister(AMDGPU::LDS_DIRECT))) 384 return std::max(WaitStates, checkReadM0Hazards(MI)); 385 386 if (SIInstrInfo::isMAI(*MI)) 387 return std::max(WaitStates, checkMAIHazards(MI)); 388 389 if (SIInstrInfo::isVMEM(*MI) || 390 SIInstrInfo::isFLAT(*MI) || 391 SIInstrInfo::isDS(*MI)) 392 return std::max(WaitStates, checkMAILdStHazards(MI)); 393 394 return WaitStates; 395 } 396 397 void GCNHazardRecognizer::EmitNoop() { 398 EmittedInstrs.push_front(nullptr); 399 } 400 401 void GCNHazardRecognizer::AdvanceCycle() { 402 // When the scheduler detects a stall, it will call AdvanceCycle() without 403 // emitting any instructions. 404 if (!CurrCycleInstr) { 405 EmittedInstrs.push_front(nullptr); 406 return; 407 } 408 409 if (CurrCycleInstr->isBundle()) { 410 processBundle(); 411 return; 412 } 413 414 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 415 if (!NumWaitStates) { 416 CurrCycleInstr = nullptr; 417 return; 418 } 419 420 // Keep track of emitted instructions 421 EmittedInstrs.push_front(CurrCycleInstr); 422 423 // Add a nullptr for each additional wait state after the first. Make sure 424 // not to add more than getMaxLookAhead() items to the list, since we 425 // truncate the list to that size right after this loop. 426 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 427 i < e; ++i) { 428 EmittedInstrs.push_front(nullptr); 429 } 430 431 // getMaxLookahead() is the largest number of wait states we will ever need 432 // to insert, so there is no point in keeping track of more than that many 433 // wait states. 434 EmittedInstrs.resize(getMaxLookAhead()); 435 436 CurrCycleInstr = nullptr; 437 } 438 439 void GCNHazardRecognizer::RecedeCycle() { 440 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 441 } 442 443 //===----------------------------------------------------------------------===// 444 // Helper Functions 445 //===----------------------------------------------------------------------===// 446 447 typedef enum { HazardFound, HazardExpired, NoHazardFound } HazardFnResult; 448 449 typedef function_ref<bool(const MachineInstr &, int WaitStates)> IsExpiredFn; 450 typedef function_ref<unsigned int(const MachineInstr &)> GetNumWaitStatesFn; 451 452 // Search for a hazard in a block and its predecessors. 453 template <typename StateT> 454 static bool 455 hasHazard(StateT State, 456 function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard, 457 function_ref<void(StateT &, const MachineInstr &)> UpdateState, 458 const MachineBasicBlock *MBB, 459 MachineBasicBlock::const_reverse_instr_iterator I, 460 DenseSet<const MachineBasicBlock *> &Visited) { 461 for (auto E = MBB->instr_rend(); I != E; ++I) { 462 // No need to look at parent BUNDLE instructions. 463 if (I->isBundle()) 464 continue; 465 466 switch (IsHazard(State, *I)) { 467 case HazardFound: 468 return true; 469 case HazardExpired: 470 return false; 471 default: 472 // Continue search 473 break; 474 } 475 476 if (I->isInlineAsm() || I->isMetaInstruction()) 477 continue; 478 479 UpdateState(State, *I); 480 } 481 482 for (MachineBasicBlock *Pred : MBB->predecessors()) { 483 if (!Visited.insert(Pred).second) 484 continue; 485 486 if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(), 487 Visited)) 488 return true; 489 } 490 491 return false; 492 } 493 494 // Returns a minimum wait states since \p I walking all predecessors. 495 // Only scans until \p IsExpired does not return true. 496 // Can only be run in a hazard recognizer mode. 497 static int getWaitStatesSince( 498 GCNHazardRecognizer::IsHazardFn IsHazard, const MachineBasicBlock *MBB, 499 MachineBasicBlock::const_reverse_instr_iterator I, int WaitStates, 500 IsExpiredFn IsExpired, DenseSet<const MachineBasicBlock *> &Visited, 501 GetNumWaitStatesFn GetNumWaitStates = SIInstrInfo::getNumWaitStates) { 502 for (auto E = MBB->instr_rend(); I != E; ++I) { 503 // Don't add WaitStates for parent BUNDLE instructions. 504 if (I->isBundle()) 505 continue; 506 507 if (IsHazard(*I)) 508 return WaitStates; 509 510 if (I->isInlineAsm()) 511 continue; 512 513 WaitStates += GetNumWaitStates(*I); 514 515 if (IsExpired(*I, WaitStates)) 516 return std::numeric_limits<int>::max(); 517 } 518 519 int MinWaitStates = std::numeric_limits<int>::max(); 520 for (MachineBasicBlock *Pred : MBB->predecessors()) { 521 if (!Visited.insert(Pred).second) 522 continue; 523 524 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), WaitStates, 525 IsExpired, Visited, GetNumWaitStates); 526 527 MinWaitStates = std::min(MinWaitStates, W); 528 } 529 530 return MinWaitStates; 531 } 532 533 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 534 const MachineInstr *MI, IsExpiredFn IsExpired) { 535 DenseSet<const MachineBasicBlock *> Visited; 536 return getWaitStatesSince(IsHazard, MI->getParent(), 537 std::next(MI->getReverseIterator()), 538 0, IsExpired, Visited); 539 } 540 541 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 542 if (IsHazardRecognizerMode) { 543 auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) { 544 return WaitStates >= Limit; 545 }; 546 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 547 } 548 549 int WaitStates = 0; 550 for (MachineInstr *MI : EmittedInstrs) { 551 if (MI) { 552 if (IsHazard(*MI)) 553 return WaitStates; 554 555 if (MI->isInlineAsm()) 556 continue; 557 } 558 ++WaitStates; 559 560 if (WaitStates >= Limit) 561 break; 562 } 563 return std::numeric_limits<int>::max(); 564 } 565 566 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 567 IsHazardFn IsHazardDef, 568 int Limit) { 569 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 570 571 auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) { 572 return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI); 573 }; 574 575 return getWaitStatesSince(IsHazardFn, Limit); 576 } 577 578 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 579 int Limit) { 580 auto IsHazardFn = [IsHazard](const MachineInstr &MI) { 581 return isSSetReg(MI.getOpcode()) && IsHazard(MI); 582 }; 583 584 return getWaitStatesSince(IsHazardFn, Limit); 585 } 586 587 //===----------------------------------------------------------------------===// 588 // No-op Hazard Detection 589 //===----------------------------------------------------------------------===// 590 591 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV, 592 MCRegister Reg) { 593 for (MCRegUnit Unit : TRI.regunits(Reg)) 594 BV.set(Unit); 595 } 596 597 static void addRegsToSet(const SIRegisterInfo &TRI, 598 iterator_range<MachineInstr::const_mop_iterator> Ops, 599 BitVector &DefSet, BitVector &UseSet) { 600 for (const MachineOperand &Op : Ops) { 601 if (Op.isReg()) 602 addRegUnits(TRI, Op.isDef() ? DefSet : UseSet, Op.getReg().asMCReg()); 603 } 604 } 605 606 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 607 addRegsToSet(TRI, MI.operands(), ClauseDefs, ClauseUses); 608 } 609 610 static bool breaksSMEMSoftClause(MachineInstr *MI) { 611 return !SIInstrInfo::isSMRD(*MI); 612 } 613 614 static bool breaksVMEMSoftClause(MachineInstr *MI) { 615 return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI); 616 } 617 618 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 619 // SMEM soft clause are only present on VI+, and only matter if xnack is 620 // enabled. 621 if (!ST.isXNACKEnabled()) 622 return 0; 623 624 bool IsSMRD = TII.isSMRD(*MEM); 625 626 resetClause(); 627 628 // A soft-clause is any group of consecutive SMEM instructions. The 629 // instructions in this group may return out of order and/or may be 630 // replayed (i.e. the same instruction issued more than once). 631 // 632 // In order to handle these situations correctly we need to make sure that 633 // when a clause has more than one instruction, no instruction in the clause 634 // writes to a register that is read by another instruction in the clause 635 // (including itself). If we encounter this situation, we need to break the 636 // clause by inserting a non SMEM instruction. 637 638 for (MachineInstr *MI : EmittedInstrs) { 639 // When we hit a non-SMEM instruction then we have passed the start of the 640 // clause and we can stop. 641 if (!MI) 642 break; 643 644 if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI)) 645 break; 646 647 addClauseInst(*MI); 648 } 649 650 if (ClauseDefs.none()) 651 return 0; 652 653 // We need to make sure not to put loads and stores in the same clause if they 654 // use the same address. For now, just start a new clause whenever we see a 655 // store. 656 if (MEM->mayStore()) 657 return 1; 658 659 addClauseInst(*MEM); 660 661 // If the set of defs and uses intersect then we cannot add this instruction 662 // to the clause, so we have a hazard. 663 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 664 } 665 666 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 667 int WaitStatesNeeded = 0; 668 669 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 670 671 // This SMRD hazard only affects SI. 672 if (!ST.hasSMRDReadVALUDefHazard()) 673 return WaitStatesNeeded; 674 675 // A read of an SGPR by SMRD instruction requires 4 wait states when the 676 // SGPR was written by a VALU instruction. 677 int SmrdSgprWaitStates = 4; 678 auto IsHazardDefFn = [this](const MachineInstr &MI) { 679 return TII.isVALU(MI); 680 }; 681 auto IsBufferHazardDefFn = [this](const MachineInstr &MI) { 682 return TII.isSALU(MI); 683 }; 684 685 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 686 687 for (const MachineOperand &Use : SMRD->uses()) { 688 if (!Use.isReg()) 689 continue; 690 int WaitStatesNeededForUse = 691 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 692 SmrdSgprWaitStates); 693 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 694 695 // This fixes what appears to be undocumented hardware behavior in SI where 696 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 697 // needs some number of nops in between. We don't know how many we need, but 698 // let's use 4. This wasn't discovered before probably because the only 699 // case when this happens is when we expand a 64-bit pointer into a full 700 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 701 // probably never encountered in the closed-source land. 702 if (IsBufferSMRD) { 703 int WaitStatesNeededForUse = 704 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 705 IsBufferHazardDefFn, 706 SmrdSgprWaitStates); 707 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 708 } 709 } 710 711 return WaitStatesNeeded; 712 } 713 714 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 715 if (!ST.hasVMEMReadSGPRVALUDefHazard()) 716 return 0; 717 718 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 719 720 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 721 // SGPR was written by a VALU Instruction. 722 const int VmemSgprWaitStates = 5; 723 auto IsHazardDefFn = [this](const MachineInstr &MI) { 724 return TII.isVALU(MI); 725 }; 726 for (const MachineOperand &Use : VMEM->uses()) { 727 if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg())) 728 continue; 729 730 int WaitStatesNeededForUse = 731 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 732 VmemSgprWaitStates); 733 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 734 } 735 return WaitStatesNeeded; 736 } 737 738 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 739 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 740 const SIInstrInfo *TII = ST.getInstrInfo(); 741 742 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 743 int DppVgprWaitStates = 2; 744 int DppExecWaitStates = 5; 745 int WaitStatesNeeded = 0; 746 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 747 return TII->isVALU(MI); 748 }; 749 750 for (const MachineOperand &Use : DPP->uses()) { 751 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 752 continue; 753 int WaitStatesNeededForUse = 754 DppVgprWaitStates - getWaitStatesSinceDef( 755 Use.getReg(), 756 [](const MachineInstr &) { return true; }, 757 DppVgprWaitStates); 758 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 759 } 760 761 WaitStatesNeeded = std::max( 762 WaitStatesNeeded, 763 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 764 DppExecWaitStates)); 765 766 return WaitStatesNeeded; 767 } 768 769 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 770 const SIInstrInfo *TII = ST.getInstrInfo(); 771 772 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 773 // instruction. 774 const int DivFMasWaitStates = 4; 775 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 776 return TII->isVALU(MI); 777 }; 778 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 779 DivFMasWaitStates); 780 781 return DivFMasWaitStates - WaitStatesNeeded; 782 } 783 784 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 785 const SIInstrInfo *TII = ST.getInstrInfo(); 786 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 787 788 const int GetRegWaitStates = 2; 789 auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) { 790 return GetRegHWReg == getHWReg(TII, MI); 791 }; 792 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 793 794 return GetRegWaitStates - WaitStatesNeeded; 795 } 796 797 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 798 const SIInstrInfo *TII = ST.getInstrInfo(); 799 unsigned HWReg = getHWReg(TII, *SetRegInstr); 800 801 const int SetRegWaitStates = ST.getSetRegWaitStates(); 802 auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) { 803 return HWReg == getHWReg(TII, MI); 804 }; 805 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 806 return SetRegWaitStates - WaitStatesNeeded; 807 } 808 809 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 810 if (!MI.mayStore()) 811 return -1; 812 813 const SIInstrInfo *TII = ST.getInstrInfo(); 814 unsigned Opcode = MI.getOpcode(); 815 const MCInstrDesc &Desc = MI.getDesc(); 816 817 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 818 int VDataRCID = -1; 819 if (VDataIdx != -1) 820 VDataRCID = Desc.operands()[VDataIdx].RegClass; 821 822 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 823 // There is no hazard if the instruction does not use vector regs 824 // (like wbinvl1) 825 if (VDataIdx == -1) 826 return -1; 827 // For MUBUF/MTBUF instructions this hazard only exists if the 828 // instruction is not using a register in the soffset field. 829 const MachineOperand *SOffset = 830 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 831 // If we have no soffset operand, then assume this field has been 832 // hardcoded to zero. 833 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 834 (!SOffset || !SOffset->isReg())) 835 return VDataIdx; 836 } 837 838 // MIMG instructions create a hazard if they don't use a 256-bit T# and 839 // the store size is greater than 8 bytes and they have more than two bits 840 // of their dmask set. 841 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 842 if (TII->isMIMG(MI)) { 843 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 844 assert(SRsrcIdx != -1 && 845 AMDGPU::getRegBitWidth(Desc.operands()[SRsrcIdx].RegClass) == 256); 846 (void)SRsrcIdx; 847 } 848 849 if (TII->isFLAT(MI)) { 850 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 851 if (AMDGPU::getRegBitWidth(Desc.operands()[DataIdx].RegClass) > 64) 852 return DataIdx; 853 } 854 855 return -1; 856 } 857 858 int 859 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 860 const MachineRegisterInfo &MRI) { 861 // Helper to check for the hazard where VMEM instructions that store more than 862 // 8 bytes can have there store data over written by the next instruction. 863 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 864 865 const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1; 866 int WaitStatesNeeded = 0; 867 868 if (!TRI->isVectorRegister(MRI, Def.getReg())) 869 return WaitStatesNeeded; 870 Register Reg = Def.getReg(); 871 auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) { 872 int DataIdx = createsVALUHazard(MI); 873 return DataIdx >= 0 && 874 TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg); 875 }; 876 int WaitStatesNeededForDef = 877 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 878 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 879 880 return WaitStatesNeeded; 881 } 882 883 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 884 int WaitStatesNeeded = 0; 885 886 if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) { 887 const int TransDefWaitstates = 1; 888 889 auto IsTransDefFn = [this, VALU](const MachineInstr &MI) { 890 if (!SIInstrInfo::isTRANS(MI)) 891 return false; 892 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 893 const SIInstrInfo *TII = ST.getInstrInfo(); 894 Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg(); 895 896 for (const MachineOperand &Use : VALU->explicit_uses()) { 897 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 898 return true; 899 } 900 901 return false; 902 }; 903 904 int WaitStatesNeededForDef = 905 TransDefWaitstates - 906 getWaitStatesSince(IsTransDefFn, TransDefWaitstates); 907 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 908 } 909 910 if (ST.hasDstSelForwardingHazard()) { 911 const int Shift16DefWaitstates = 1; 912 913 auto IsShift16BitDefFn = [this, VALU](const MachineInstr &MI) { 914 if (!SIInstrInfo::isVALU(MI)) 915 return false; 916 const SIInstrInfo *TII = ST.getInstrInfo(); 917 if (SIInstrInfo::isSDWA(MI)) { 918 if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel)) 919 if (DstSel->getImm() == AMDGPU::SDWA::DWORD) 920 return false; 921 } else { 922 if (!AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::op_sel) || 923 !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers) 924 ->getImm() & 925 SISrcMods::DST_OP_SEL)) 926 return false; 927 } 928 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 929 if (auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) { 930 Register Def = Dst->getReg(); 931 932 for (const MachineOperand &Use : VALU->explicit_uses()) { 933 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 934 return true; 935 } 936 } 937 938 return false; 939 }; 940 941 int WaitStatesNeededForDef = 942 Shift16DefWaitstates - 943 getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates); 944 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 945 } 946 947 if (ST.hasVDecCoExecHazard()) { 948 const int VALUWriteSGPRVALUReadWaitstates = 2; 949 const int VALUWriteEXECRWLane = 4; 950 const int VALUWriteVGPRReadlaneRead = 1; 951 952 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 953 const MachineRegisterInfo &MRI = MF.getRegInfo(); 954 Register UseReg; 955 auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) { 956 if (!SIInstrInfo::isVALU(MI)) 957 return false; 958 return MI.modifiesRegister(UseReg, TRI); 959 }; 960 961 for (const MachineOperand &Use : VALU->explicit_uses()) { 962 if (!Use.isReg()) 963 continue; 964 965 UseReg = Use.getReg(); 966 if (TRI->isSGPRReg(MRI, UseReg)) { 967 int WaitStatesNeededForDef = 968 VALUWriteSGPRVALUReadWaitstates - 969 getWaitStatesSince(IsVALUDefSGPRFn, 970 VALUWriteSGPRVALUReadWaitstates); 971 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 972 } 973 } 974 975 if (VALU->readsRegister(AMDGPU::VCC, TRI)) { 976 UseReg = AMDGPU::VCC; 977 int WaitStatesNeededForDef = 978 VALUWriteSGPRVALUReadWaitstates - 979 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates); 980 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 981 } 982 983 switch (VALU->getOpcode()) { 984 case AMDGPU::V_READLANE_B32: 985 case AMDGPU::V_READFIRSTLANE_B32: { 986 MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0); 987 UseReg = Src->getReg(); 988 int WaitStatesNeededForDef = 989 VALUWriteVGPRReadlaneRead - 990 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead); 991 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 992 } 993 [[fallthrough]]; 994 case AMDGPU::V_WRITELANE_B32: { 995 UseReg = AMDGPU::EXEC; 996 int WaitStatesNeededForDef = 997 VALUWriteEXECRWLane - 998 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane); 999 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 1000 break; 1001 } 1002 default: 1003 break; 1004 } 1005 } 1006 1007 // This checks for the hazard where VMEM instructions that store more than 1008 // 8 bytes can have there store data over written by the next instruction. 1009 if (!ST.has12DWordStoreHazard()) 1010 return WaitStatesNeeded; 1011 1012 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1013 1014 for (const MachineOperand &Def : VALU->defs()) { 1015 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 1016 } 1017 1018 return WaitStatesNeeded; 1019 } 1020 1021 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 1022 // This checks for hazards associated with inline asm statements. 1023 // Since inline asms can contain just about anything, we use this 1024 // to call/leverage other check*Hazard routines. Note that 1025 // this function doesn't attempt to address all possible inline asm 1026 // hazards (good luck), but is a collection of what has been 1027 // problematic thus far. 1028 1029 // see checkVALUHazards() 1030 if (!ST.has12DWordStoreHazard()) 1031 return 0; 1032 1033 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1034 int WaitStatesNeeded = 0; 1035 1036 for (const MachineOperand &Op : 1037 llvm::drop_begin(IA->operands(), InlineAsm::MIOp_FirstOperand)) { 1038 if (Op.isReg() && Op.isDef()) { 1039 WaitStatesNeeded = 1040 std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 1041 } 1042 } 1043 1044 return WaitStatesNeeded; 1045 } 1046 1047 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 1048 const SIInstrInfo *TII = ST.getInstrInfo(); 1049 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1050 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1051 1052 const MachineOperand *LaneSelectOp = 1053 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 1054 1055 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 1056 return 0; 1057 1058 Register LaneSelectReg = LaneSelectOp->getReg(); 1059 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); }; 1060 1061 const int RWLaneWaitStates = 4; 1062 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 1063 RWLaneWaitStates); 1064 return RWLaneWaitStates - WaitStatesSince; 1065 } 1066 1067 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 1068 if (!ST.hasRFEHazards()) 1069 return 0; 1070 1071 const SIInstrInfo *TII = ST.getInstrInfo(); 1072 1073 const int RFEWaitStates = 1; 1074 1075 auto IsHazardFn = [TII](const MachineInstr &MI) { 1076 return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS; 1077 }; 1078 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 1079 return RFEWaitStates - WaitStatesNeeded; 1080 } 1081 1082 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 1083 const SIInstrInfo *TII = ST.getInstrInfo(); 1084 const int ReadM0WaitStates = 1; 1085 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); }; 1086 return ReadM0WaitStates - 1087 getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, ReadM0WaitStates); 1088 } 1089 1090 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { 1091 fixVMEMtoScalarWriteHazards(MI); 1092 fixVcmpxPermlaneHazards(MI); 1093 fixSMEMtoVectorWriteHazards(MI); 1094 fixVcmpxExecWARHazard(MI); 1095 fixLdsBranchVmemWARHazard(MI); 1096 if (ST.hasLdsDirect()) { 1097 fixLdsDirectVALUHazard(MI); 1098 fixLdsDirectVMEMHazard(MI); 1099 } 1100 fixVALUPartialForwardingHazard(MI); 1101 fixVALUTransUseHazard(MI); 1102 fixWMMAHazards(MI); 1103 fixShift64HighRegBug(MI); 1104 fixVALUMaskWriteHazard(MI); 1105 } 1106 1107 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) { 1108 if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI)) 1109 return false; 1110 1111 const SIInstrInfo *TII = ST.getInstrInfo(); 1112 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1113 auto IsHazardFn = [TII, TRI](const MachineInstr &MI) { 1114 return (TII->isVOPC(MI) || 1115 ((TII->isVOP3(MI) || TII->isSDWA(MI)) && MI.isCompare())) && 1116 MI.modifiesRegister(AMDGPU::EXEC, TRI); 1117 }; 1118 1119 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1120 unsigned Opc = MI.getOpcode(); 1121 return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 && 1122 Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa; 1123 }; 1124 1125 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1126 std::numeric_limits<int>::max()) 1127 return false; 1128 1129 // V_NOP will be discarded by SQ. 1130 // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE* 1131 // which is always a VGPR and available. 1132 auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1133 Register Reg = Src0->getReg(); 1134 bool IsUndef = Src0->isUndef(); 1135 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1136 TII->get(AMDGPU::V_MOV_B32_e32)) 1137 .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0)) 1138 .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill); 1139 1140 return true; 1141 } 1142 1143 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { 1144 if (!ST.hasVMEMtoScalarWriteHazard()) 1145 return false; 1146 assert(!ST.hasExtendedWaitCounts()); 1147 1148 if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI)) 1149 return false; 1150 1151 if (MI->getNumDefs() == 0) 1152 return false; 1153 1154 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1155 1156 auto IsHazardFn = [TRI, MI](const MachineInstr &I) { 1157 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) && 1158 !SIInstrInfo::isFLAT(I)) 1159 return false; 1160 1161 for (const MachineOperand &Def : MI->defs()) { 1162 const MachineOperand *Op = 1163 I.findRegisterUseOperand(Def.getReg(), false, TRI); 1164 if (!Op) 1165 continue; 1166 return true; 1167 } 1168 return false; 1169 }; 1170 1171 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1172 return SIInstrInfo::isVALU(MI) || 1173 (MI.getOpcode() == AMDGPU::S_WAITCNT && 1174 !MI.getOperand(0).getImm()) || 1175 (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1176 AMDGPU::DepCtr::decodeFieldVmVsrc(MI.getOperand(0).getImm()) == 0); 1177 }; 1178 1179 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1180 std::numeric_limits<int>::max()) 1181 return false; 1182 1183 const SIInstrInfo *TII = ST.getInstrInfo(); 1184 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1185 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1186 .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0)); 1187 return true; 1188 } 1189 1190 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { 1191 if (!ST.hasSMEMtoVectorWriteHazard()) 1192 return false; 1193 assert(!ST.hasExtendedWaitCounts()); 1194 1195 if (!SIInstrInfo::isVALU(*MI)) 1196 return false; 1197 1198 unsigned SDSTName; 1199 switch (MI->getOpcode()) { 1200 case AMDGPU::V_READLANE_B32: 1201 case AMDGPU::V_READFIRSTLANE_B32: 1202 SDSTName = AMDGPU::OpName::vdst; 1203 break; 1204 default: 1205 SDSTName = AMDGPU::OpName::sdst; 1206 break; 1207 } 1208 1209 const SIInstrInfo *TII = ST.getInstrInfo(); 1210 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1211 const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU()); 1212 const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName); 1213 if (!SDST) { 1214 for (const auto &MO : MI->implicit_operands()) { 1215 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) { 1216 SDST = &MO; 1217 break; 1218 } 1219 } 1220 } 1221 1222 if (!SDST) 1223 return false; 1224 1225 const Register SDSTReg = SDST->getReg(); 1226 auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) { 1227 return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI); 1228 }; 1229 1230 auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) { 1231 if (TII->isSALU(MI)) { 1232 switch (MI.getOpcode()) { 1233 case AMDGPU::S_SETVSKIP: 1234 case AMDGPU::S_VERSION: 1235 case AMDGPU::S_WAITCNT_VSCNT: 1236 case AMDGPU::S_WAITCNT_VMCNT: 1237 case AMDGPU::S_WAITCNT_EXPCNT: 1238 // These instructions cannot not mitigate the hazard. 1239 return false; 1240 case AMDGPU::S_WAITCNT_LGKMCNT: 1241 // Reducing lgkmcnt count to 0 always mitigates the hazard. 1242 return (MI.getOperand(1).getImm() == 0) && 1243 (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1244 case AMDGPU::S_WAITCNT: { 1245 const int64_t Imm = MI.getOperand(0).getImm(); 1246 AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm); 1247 // DsCnt corresponds to LGKMCnt here. 1248 return (Decoded.DsCnt == 0); 1249 } 1250 default: 1251 // SOPP instructions cannot mitigate the hazard. 1252 if (TII->isSOPP(MI)) 1253 return false; 1254 // At this point the SALU can be assumed to mitigate the hazard 1255 // because either: 1256 // (a) it is independent of the at risk SMEM (breaking chain), 1257 // or 1258 // (b) it is dependent on the SMEM, in which case an appropriate 1259 // s_waitcnt lgkmcnt _must_ exist between it and the at risk 1260 // SMEM instruction. 1261 return true; 1262 } 1263 } 1264 return false; 1265 }; 1266 1267 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1268 std::numeric_limits<int>::max()) 1269 return false; 1270 1271 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1272 TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL) 1273 .addImm(0); 1274 return true; 1275 } 1276 1277 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { 1278 if (!ST.hasVcmpxExecWARHazard()) 1279 return false; 1280 assert(!ST.hasExtendedWaitCounts()); 1281 1282 if (!SIInstrInfo::isVALU(*MI)) 1283 return false; 1284 1285 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1286 if (!MI->modifiesRegister(AMDGPU::EXEC, TRI)) 1287 return false; 1288 1289 auto IsHazardFn = [TRI](const MachineInstr &I) { 1290 if (SIInstrInfo::isVALU(I)) 1291 return false; 1292 return I.readsRegister(AMDGPU::EXEC, TRI); 1293 }; 1294 1295 const SIInstrInfo *TII = ST.getInstrInfo(); 1296 auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) { 1297 if (SIInstrInfo::isVALU(MI)) { 1298 if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst)) 1299 return true; 1300 for (auto MO : MI.implicit_operands()) 1301 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) 1302 return true; 1303 } 1304 if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1305 AMDGPU::DepCtr::decodeFieldSaSdst(MI.getOperand(0).getImm()) == 0) 1306 return true; 1307 return false; 1308 }; 1309 1310 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1311 std::numeric_limits<int>::max()) 1312 return false; 1313 1314 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1315 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1316 .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0)); 1317 return true; 1318 } 1319 1320 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 1321 const GCNSubtarget &ST) { 1322 if (!ST.hasLdsBranchVmemWARHazard()) 1323 return false; 1324 1325 // Check if the necessary condition for the hazard is met: both LDS and VMEM 1326 // instructions need to appear in the same function. 1327 bool HasLds = false; 1328 bool HasVmem = false; 1329 for (auto &MBB : MF) { 1330 for (auto &MI : MBB) { 1331 HasLds |= SIInstrInfo::isDS(MI); 1332 HasVmem |= 1333 SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI); 1334 if (HasLds && HasVmem) 1335 return true; 1336 } 1337 } 1338 return false; 1339 } 1340 1341 static bool isStoreCountWaitZero(const MachineInstr &I) { 1342 return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1343 I.getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1344 !I.getOperand(1).getImm(); 1345 } 1346 1347 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { 1348 if (!RunLdsBranchVmemWARHazardFixup) 1349 return false; 1350 1351 assert(ST.hasLdsBranchVmemWARHazard()); 1352 assert(!ST.hasExtendedWaitCounts()); 1353 1354 auto IsHazardInst = [](const MachineInstr &MI) { 1355 if (SIInstrInfo::isDS(MI)) 1356 return 1; 1357 if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI)) 1358 return 2; 1359 return 0; 1360 }; 1361 1362 auto InstType = IsHazardInst(*MI); 1363 if (!InstType) 1364 return false; 1365 1366 auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) { 1367 return IsHazardInst(I) || isStoreCountWaitZero(I); 1368 }; 1369 1370 auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) { 1371 if (!I.isBranch()) 1372 return false; 1373 1374 auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) { 1375 auto InstType2 = IsHazardInst(I); 1376 return InstType2 && InstType != InstType2; 1377 }; 1378 1379 auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) { 1380 auto InstType2 = IsHazardInst(I); 1381 if (InstType == InstType2) 1382 return true; 1383 1384 return isStoreCountWaitZero(I); 1385 }; 1386 1387 return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) != 1388 std::numeric_limits<int>::max(); 1389 }; 1390 1391 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1392 std::numeric_limits<int>::max()) 1393 return false; 1394 1395 const SIInstrInfo *TII = ST.getInstrInfo(); 1396 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1397 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1398 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1399 .addImm(0); 1400 1401 return true; 1402 } 1403 1404 bool GCNHazardRecognizer::fixLdsDirectVALUHazard(MachineInstr *MI) { 1405 if (!SIInstrInfo::isLDSDIR(*MI)) 1406 return false; 1407 1408 const int NoHazardWaitStates = 15; 1409 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1410 const Register VDSTReg = VDST->getReg(); 1411 1412 bool VisitedTrans = false; 1413 auto IsHazardFn = [this, VDSTReg, &VisitedTrans](const MachineInstr &I) { 1414 if (!SIInstrInfo::isVALU(I)) 1415 return false; 1416 VisitedTrans = VisitedTrans || SIInstrInfo::isTRANS(I); 1417 // Cover both WAR and WAW 1418 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1419 }; 1420 auto IsExpiredFn = [&](const MachineInstr &I, int WaitStates) { 1421 if (WaitStates >= NoHazardWaitStates) 1422 return true; 1423 // Instructions which cause va_vdst==0 expire hazard 1424 return SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1425 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I); 1426 }; 1427 auto GetWaitStatesFn = [](const MachineInstr &MI) { 1428 return SIInstrInfo::isVALU(MI) ? 1 : 0; 1429 }; 1430 1431 DenseSet<const MachineBasicBlock *> Visited; 1432 auto Count = ::getWaitStatesSince(IsHazardFn, MI->getParent(), 1433 std::next(MI->getReverseIterator()), 0, 1434 IsExpiredFn, Visited, GetWaitStatesFn); 1435 1436 // Transcendentals can execute in parallel to other VALUs. 1437 // This makes va_vdst count unusable with a mixture of VALU and TRANS. 1438 if (VisitedTrans) 1439 Count = 0; 1440 1441 MachineOperand *WaitVdstOp = 1442 TII.getNamedOperand(*MI, AMDGPU::OpName::waitvdst); 1443 WaitVdstOp->setImm(std::min(Count, NoHazardWaitStates)); 1444 1445 return true; 1446 } 1447 1448 bool GCNHazardRecognizer::fixLdsDirectVMEMHazard(MachineInstr *MI) { 1449 if (!SIInstrInfo::isLDSDIR(*MI)) 1450 return false; 1451 1452 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1453 const Register VDSTReg = VDST->getReg(); 1454 1455 auto IsHazardFn = [this, VDSTReg](const MachineInstr &I) { 1456 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I) && 1457 !SIInstrInfo::isDS(I)) 1458 return false; 1459 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1460 }; 1461 bool LdsdirCanWait = ST.hasLdsWaitVMSRC(); 1462 // TODO: On GFX12 the hazard should expire on S_WAIT_LOADCNT/SAMPLECNT/BVHCNT 1463 // according to the type of VMEM instruction. 1464 auto IsExpiredFn = [this, LdsdirCanWait](const MachineInstr &I, int) { 1465 return SIInstrInfo::isVALU(I) || SIInstrInfo::isEXP(I) || 1466 (I.getOpcode() == AMDGPU::S_WAITCNT && !I.getOperand(0).getImm()) || 1467 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1468 AMDGPU::DepCtr::decodeFieldVmVsrc(I.getOperand(0).getImm()) == 0) || 1469 (LdsdirCanWait && SIInstrInfo::isLDSDIR(I) && 1470 !TII.getNamedOperand(I, AMDGPU::OpName::waitvsrc)->getImm()); 1471 }; 1472 1473 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1474 std::numeric_limits<int>::max()) 1475 return false; 1476 1477 if (LdsdirCanWait) { 1478 TII.getNamedOperand(*MI, AMDGPU::OpName::waitvsrc)->setImm(0); 1479 } else { 1480 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1481 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1482 .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0)); 1483 } 1484 1485 return true; 1486 } 1487 1488 bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) { 1489 if (!ST.hasVALUPartialForwardingHazard()) 1490 return false; 1491 assert(!ST.hasExtendedWaitCounts()); 1492 1493 if (!ST.isWave64() || !SIInstrInfo::isVALU(*MI)) 1494 return false; 1495 1496 SmallSetVector<Register, 4> SrcVGPRs; 1497 1498 for (const MachineOperand &Use : MI->explicit_uses()) { 1499 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1500 SrcVGPRs.insert(Use.getReg()); 1501 } 1502 1503 // Only applies with >= 2 unique VGPR sources 1504 if (SrcVGPRs.size() <= 1) 1505 return false; 1506 1507 // Look for the following pattern: 1508 // Va <- VALU [PreExecPos] 1509 // intv1 1510 // Exec <- SALU [ExecPos] 1511 // intv2 1512 // Vb <- VALU [PostExecPos] 1513 // intv3 1514 // MI Va, Vb (WaitState = 0) 1515 // 1516 // Where: 1517 // intv1 + intv2 <= 2 VALUs 1518 // intv3 <= 4 VALUs 1519 // 1520 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1521 1522 const int Intv1plus2MaxVALUs = 2; 1523 const int Intv3MaxVALUs = 4; 1524 const int IntvMaxVALUs = 6; 1525 const int NoHazardVALUWaitStates = IntvMaxVALUs + 2; 1526 1527 struct StateType { 1528 SmallDenseMap<Register, int, 4> DefPos; 1529 int ExecPos = std::numeric_limits<int>::max(); 1530 int VALUs = 0; 1531 }; 1532 1533 StateType State; 1534 1535 // This overloads expiry testing with all the hazard detection 1536 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1537 // Too many VALU states have passed 1538 if (State.VALUs > NoHazardVALUWaitStates) 1539 return HazardExpired; 1540 1541 // Instructions which cause va_vdst==0 expire hazard 1542 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1543 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1544 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1545 AMDGPU::DepCtr::decodeFieldVaVdst(I.getOperand(0).getImm()) == 0)) 1546 return HazardExpired; 1547 1548 // Track registers writes 1549 bool Changed = false; 1550 if (SIInstrInfo::isVALU(I)) { 1551 for (Register Src : SrcVGPRs) { 1552 if (!State.DefPos.count(Src) && I.modifiesRegister(Src, &TRI)) { 1553 State.DefPos[Src] = State.VALUs; 1554 Changed = true; 1555 } 1556 } 1557 } else if (SIInstrInfo::isSALU(I)) { 1558 if (State.ExecPos == std::numeric_limits<int>::max()) { 1559 if (!State.DefPos.empty() && I.modifiesRegister(AMDGPU::EXEC, &TRI)) { 1560 State.ExecPos = State.VALUs; 1561 Changed = true; 1562 } 1563 } 1564 } 1565 1566 // Early expiration: too many VALUs in intv3 1567 if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty()) 1568 return HazardExpired; 1569 1570 // Only evaluate state if something changed 1571 if (!Changed) 1572 return NoHazardFound; 1573 1574 // Determine positions of VALUs pre/post exec change 1575 if (State.ExecPos == std::numeric_limits<int>::max()) 1576 return NoHazardFound; 1577 1578 int PreExecPos = std::numeric_limits<int>::max(); 1579 int PostExecPos = std::numeric_limits<int>::max(); 1580 1581 for (auto Entry : State.DefPos) { 1582 int DefVALUs = Entry.second; 1583 if (DefVALUs != std::numeric_limits<int>::max()) { 1584 if (DefVALUs >= State.ExecPos) 1585 PreExecPos = std::min(PreExecPos, DefVALUs); 1586 else if (DefVALUs < State.ExecPos) 1587 PostExecPos = std::min(PostExecPos, DefVALUs); 1588 } 1589 } 1590 1591 // Need a VALUs post exec change 1592 if (PostExecPos == std::numeric_limits<int>::max()) 1593 return NoHazardFound; 1594 1595 // Too many VALUs in intv3? 1596 int Intv3VALUs = PostExecPos; 1597 if (Intv3VALUs > Intv3MaxVALUs) 1598 return HazardExpired; 1599 1600 // Too many VALUs in intv2? 1601 int Intv2VALUs = (State.ExecPos - PostExecPos) - 1; 1602 if (Intv2VALUs > Intv1plus2MaxVALUs) 1603 return HazardExpired; 1604 1605 // Need a VALUs pre exec change 1606 if (PreExecPos == std::numeric_limits<int>::max()) 1607 return NoHazardFound; 1608 1609 // Too many VALUs in intv1? 1610 int Intv1VALUs = PreExecPos - State.ExecPos; 1611 if (Intv1VALUs > Intv1plus2MaxVALUs) 1612 return HazardExpired; 1613 1614 // Too many VALUs in intv1 + intv2 1615 if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs) 1616 return HazardExpired; 1617 1618 return HazardFound; 1619 }; 1620 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1621 if (SIInstrInfo::isVALU(MI)) 1622 State.VALUs += 1; 1623 }; 1624 1625 DenseSet<const MachineBasicBlock *> Visited; 1626 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1627 std::next(MI->getReverseIterator()), Visited)) 1628 return false; 1629 1630 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1631 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1632 .addImm(0x0fff); 1633 1634 return true; 1635 } 1636 1637 bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) { 1638 if (!ST.hasVALUTransUseHazard()) 1639 return false; 1640 assert(!ST.hasExtendedWaitCounts()); 1641 1642 if (!SIInstrInfo::isVALU(*MI)) 1643 return false; 1644 1645 SmallSet<Register, 4> SrcVGPRs; 1646 1647 for (const MachineOperand &Use : MI->explicit_uses()) { 1648 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1649 SrcVGPRs.insert(Use.getReg()); 1650 } 1651 1652 // Look for the following pattern: 1653 // Va <- TRANS VALU 1654 // intv 1655 // MI Va (WaitState = 0) 1656 // 1657 // Where: 1658 // intv <= 5 VALUs / 1 TRANS 1659 // 1660 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1661 1662 const int IntvMaxVALUs = 5; 1663 const int IntvMaxTRANS = 1; 1664 1665 struct StateType { 1666 int VALUs = 0; 1667 int TRANS = 0; 1668 }; 1669 1670 StateType State; 1671 1672 // This overloads expiry testing with all the hazard detection 1673 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1674 // Too many VALU states have passed 1675 if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS) 1676 return HazardExpired; 1677 1678 // Instructions which cause va_vdst==0 expire hazard 1679 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1680 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1681 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1682 I.getOperand(0).getImm() == 0x0fff)) 1683 return HazardExpired; 1684 1685 // Track registers writes 1686 if (SIInstrInfo::isTRANS(I)) { 1687 for (Register Src : SrcVGPRs) { 1688 if (I.modifiesRegister(Src, &TRI)) { 1689 return HazardFound; 1690 } 1691 } 1692 } 1693 1694 return NoHazardFound; 1695 }; 1696 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1697 if (SIInstrInfo::isVALU(MI)) 1698 State.VALUs += 1; 1699 if (SIInstrInfo::isTRANS(MI)) 1700 State.TRANS += 1; 1701 }; 1702 1703 DenseSet<const MachineBasicBlock *> Visited; 1704 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1705 std::next(MI->getReverseIterator()), Visited)) 1706 return false; 1707 1708 // Hazard is observed - insert a wait on va_dst counter to ensure hazard is 1709 // avoided. 1710 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1711 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1712 .addImm(AMDGPU::DepCtr::encodeFieldVaVdst(0)); 1713 1714 return true; 1715 } 1716 1717 bool GCNHazardRecognizer::fixWMMAHazards(MachineInstr *MI) { 1718 if (!SIInstrInfo::isWMMA(*MI)) 1719 return false; 1720 1721 const SIInstrInfo *TII = ST.getInstrInfo(); 1722 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1723 1724 auto IsHazardFn = [MI, TII, TRI](const MachineInstr &I) { 1725 if (!SIInstrInfo::isWMMA(I)) 1726 return false; 1727 1728 // Src0 or Src1 of the current wmma instruction overlaps with the dest of 1729 // the previous wmma. 1730 const Register CurSrc0Reg = 1731 TII->getNamedOperand(*MI, AMDGPU::OpName::src0)->getReg(); 1732 const Register CurSrc1Reg = 1733 TII->getNamedOperand(*MI, AMDGPU::OpName::src1)->getReg(); 1734 1735 const Register PrevDstReg = 1736 TII->getNamedOperand(I, AMDGPU::OpName::vdst)->getReg(); 1737 1738 if (TRI->regsOverlap(PrevDstReg, CurSrc0Reg) || 1739 TRI->regsOverlap(PrevDstReg, CurSrc1Reg)) { 1740 return true; 1741 } 1742 1743 // Src2 of the current wmma instruction overlaps with the dest of the 1744 // previous wmma. 1745 const MachineOperand *Src2 = 1746 TII->getNamedOperand(*MI, AMDGPU::OpName::src2); 1747 const Register CurSrc2Reg = Src2->isReg() ? Src2->getReg() : Register(); 1748 1749 if (CurSrc2Reg != AMDGPU::NoRegister && 1750 TRI->regsOverlap(PrevDstReg, CurSrc2Reg)) { 1751 1752 const MachineOperand *Src2Mods = 1753 TII->getNamedOperand(*MI, AMDGPU::OpName::src2_modifiers); 1754 const bool NoSrc2Mods = 1755 (Src2Mods->getImm() & (SISrcMods::NEG | SISrcMods::NEG_HI)) == 0; 1756 // Exception: there is no hazard if the wmma instructions are of the same 1757 // type and there is no input modifier on src2 of the current instruction. 1758 return !(NoSrc2Mods && (TII->pseudoToMCOpcode(I.getOpcode()) == 1759 TII->pseudoToMCOpcode(MI->getOpcode()))); 1760 } 1761 1762 return false; 1763 }; 1764 1765 auto IsExpiredFn = [](const MachineInstr &I, int) { 1766 return SIInstrInfo::isVALU(I); 1767 }; 1768 1769 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1770 std::numeric_limits<int>::max()) 1771 return false; 1772 1773 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32)); 1774 1775 return true; 1776 } 1777 1778 bool GCNHazardRecognizer::fixShift64HighRegBug(MachineInstr *MI) { 1779 if (!ST.hasShift64HighRegBug()) 1780 return false; 1781 assert(!ST.hasExtendedWaitCounts()); 1782 1783 switch (MI->getOpcode()) { 1784 default: 1785 return false; 1786 case AMDGPU::V_LSHLREV_B64_e64: 1787 case AMDGPU::V_LSHRREV_B64_e64: 1788 case AMDGPU::V_ASHRREV_I64_e64: 1789 break; 1790 } 1791 1792 MachineOperand *Amt = TII.getNamedOperand(*MI, AMDGPU::OpName::src0); 1793 if (!Amt->isReg()) 1794 return false; 1795 1796 Register AmtReg = Amt->getReg(); 1797 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1798 // Check if this is a last VGPR in the allocation block. 1799 if (!TRI.isVGPR(MRI, AmtReg) || ((AmtReg - AMDGPU::VGPR0) & 7) != 7) 1800 return false; 1801 1802 if (AmtReg != AMDGPU::VGPR255 && MRI.isPhysRegUsed(AmtReg + 1)) 1803 return false; 1804 1805 MachineOperand *Src1 = TII.getNamedOperand(*MI, AMDGPU::OpName::src1); 1806 bool OverlappedSrc = Src1->isReg() && TRI.regsOverlap(Src1->getReg(), AmtReg); 1807 bool OverlappedDst = MI->modifiesRegister(AmtReg, &TRI); 1808 bool Overlapped = OverlappedSrc || OverlappedDst; 1809 1810 assert(!OverlappedDst || !OverlappedSrc || 1811 Src1->getReg() == MI->getOperand(0).getReg()); 1812 assert(ST.needsAlignedVGPRs()); 1813 static_assert(AMDGPU::VGPR0 + 1 == AMDGPU::VGPR1); 1814 1815 Register NewReg; 1816 for (MCRegister Reg : Overlapped ? AMDGPU::VReg_64_Align2RegClass 1817 : AMDGPU::VGPR_32RegClass) { 1818 if (!MI->modifiesRegister(Reg, &TRI) && !MI->readsRegister(Reg, &TRI)) { 1819 NewReg = Reg; 1820 break; 1821 } 1822 } 1823 1824 Register NewAmt = Overlapped ? (Register)TRI.getSubReg(NewReg, AMDGPU::sub1) 1825 : NewReg; 1826 Register NewAmtLo; 1827 1828 if (Overlapped) 1829 NewAmtLo = TRI.getSubReg(NewReg, AMDGPU::sub0); 1830 1831 DebugLoc DL = MI->getDebugLoc(); 1832 MachineBasicBlock *MBB = MI->getParent(); 1833 // Insert a full wait count because found register might be pending a wait. 1834 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_WAITCNT)) 1835 .addImm(0); 1836 1837 // Insert V_SWAP_B32 instruction(s) and run hazard recognizer on them. 1838 if (Overlapped) 1839 runOnInstruction( 1840 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmtLo) 1841 .addDef(AmtReg - 1) 1842 .addReg(AmtReg - 1, RegState::Undef) 1843 .addReg(NewAmtLo, RegState::Undef)); 1844 runOnInstruction(BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmt) 1845 .addDef(AmtReg) 1846 .addReg(AmtReg, RegState::Undef) 1847 .addReg(NewAmt, RegState::Undef)); 1848 1849 // Instructions emitted after the current instruction will be processed by the 1850 // parent loop of the hazard recognizer in a natural way. 1851 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1852 AmtReg) 1853 .addDef(NewAmt) 1854 .addReg(NewAmt) 1855 .addReg(AmtReg); 1856 if (Overlapped) 1857 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1858 AmtReg - 1) 1859 .addDef(NewAmtLo) 1860 .addReg(NewAmtLo) 1861 .addReg(AmtReg - 1); 1862 1863 // Re-running hazard recognizer on the modified instruction is not necessary, 1864 // inserted V_SWAP_B32 has already both read and write new registers so 1865 // hazards related to these register has already been handled. 1866 Amt->setReg(NewAmt); 1867 Amt->setIsKill(false); 1868 // We do not update liveness, so verifier may see it as undef. 1869 Amt->setIsUndef(); 1870 if (OverlappedDst) 1871 MI->getOperand(0).setReg(NewReg); 1872 if (OverlappedSrc) { 1873 Src1->setReg(NewReg); 1874 Src1->setIsKill(false); 1875 Src1->setIsUndef(); 1876 } 1877 1878 return true; 1879 } 1880 1881 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { 1882 int NSAtoVMEMWaitStates = 1; 1883 1884 if (!ST.hasNSAtoVMEMBug()) 1885 return 0; 1886 1887 if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI)) 1888 return 0; 1889 1890 const SIInstrInfo *TII = ST.getInstrInfo(); 1891 const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset); 1892 if (!Offset || (Offset->getImm() & 6) == 0) 1893 return 0; 1894 1895 auto IsHazardFn = [TII](const MachineInstr &I) { 1896 if (!SIInstrInfo::isMIMG(I)) 1897 return false; 1898 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode()); 1899 return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && 1900 TII->getInstSizeInBytes(I) >= 16; 1901 }; 1902 1903 return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1); 1904 } 1905 1906 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) { 1907 int FPAtomicToDenormModeWaitStates = 3; 1908 1909 if (!ST.hasFPAtomicToDenormModeHazard()) 1910 return 0; 1911 assert(!ST.hasExtendedWaitCounts()); 1912 1913 if (MI->getOpcode() != AMDGPU::S_DENORM_MODE) 1914 return 0; 1915 1916 auto IsHazardFn = [](const MachineInstr &I) { 1917 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I)) 1918 return false; 1919 return SIInstrInfo::isFPAtomic(I); 1920 }; 1921 1922 auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) { 1923 if (WaitStates >= 3 || SIInstrInfo::isVALU(MI)) 1924 return true; 1925 1926 switch (MI.getOpcode()) { 1927 case AMDGPU::S_WAITCNT: 1928 case AMDGPU::S_WAITCNT_VSCNT: 1929 case AMDGPU::S_WAITCNT_VMCNT: 1930 case AMDGPU::S_WAITCNT_EXPCNT: 1931 case AMDGPU::S_WAITCNT_LGKMCNT: 1932 case AMDGPU::S_WAIT_IDLE: 1933 return true; 1934 default: 1935 break; 1936 } 1937 1938 return false; 1939 }; 1940 1941 return FPAtomicToDenormModeWaitStates - 1942 ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn); 1943 } 1944 1945 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) { 1946 assert(SIInstrInfo::isMAI(*MI)); 1947 1948 return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI); 1949 } 1950 1951 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) { 1952 // Early exit if no padding is requested. 1953 if (MFMAPaddingRatio == 0) 1954 return 0; 1955 1956 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1957 if (!SIInstrInfo::isMFMA(*MI) || MFI->getOccupancy() < 2) 1958 return 0; 1959 1960 int NeighborMFMALatency = 0; 1961 auto IsNeighboringMFMA = [&NeighborMFMALatency, 1962 this](const MachineInstr &MI) { 1963 if (!SIInstrInfo::isMFMA(MI)) 1964 return false; 1965 1966 NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI); 1967 return true; 1968 }; 1969 1970 const int MaxMFMAPipelineWaitStates = 16; 1971 int WaitStatesSinceNeighborMFMA = 1972 getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates); 1973 1974 int NeighborMFMAPaddingNeeded = 1975 (NeighborMFMALatency * MFMAPaddingRatio / 100) - 1976 WaitStatesSinceNeighborMFMA; 1977 1978 return std::max(0, NeighborMFMAPaddingNeeded); 1979 } 1980 1981 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) { 1982 int WaitStatesNeeded = 0; 1983 unsigned Opc = MI->getOpcode(); 1984 1985 auto IsVALUFn = [](const MachineInstr &MI) { 1986 return SIInstrInfo::isVALU(MI) || MI.isInlineAsm(); 1987 }; 1988 1989 if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write 1990 const int LegacyVALUWritesVGPRWaitStates = 2; 1991 const int VALUWritesExecWaitStates = 4; 1992 const int MaxWaitStates = 4; 1993 1994 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 1995 getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates); 1996 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1997 1998 if (WaitStatesNeeded < MaxWaitStates) { 1999 for (const MachineOperand &Use : MI->explicit_uses()) { 2000 const int MaxWaitStates = 2; 2001 2002 if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 2003 continue; 2004 2005 int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates - 2006 getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates); 2007 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2008 2009 if (WaitStatesNeeded == MaxWaitStates) 2010 break; 2011 } 2012 } 2013 } 2014 2015 for (const MachineOperand &Op : MI->explicit_operands()) { 2016 if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg())) 2017 continue; 2018 2019 if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2020 continue; 2021 2022 const int MFMAWritesAGPROverlappedSrcABWaitStates = 4; 2023 const int MFMAWritesAGPROverlappedSrcCWaitStates = 2; 2024 const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4; 2025 const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10; 2026 const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18; 2027 const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1; 2028 const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7; 2029 const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15; 2030 const int MaxWaitStates = 18; 2031 Register Reg = Op.getReg(); 2032 unsigned HazardDefLatency = 0; 2033 2034 auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency, 2035 this](const MachineInstr &MI) { 2036 if (!SIInstrInfo::isMFMA(MI)) 2037 return false; 2038 Register DstReg = MI.getOperand(0).getReg(); 2039 if (DstReg == Reg) 2040 return false; 2041 HazardDefLatency = 2042 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2043 return TRI.regsOverlap(DstReg, Reg); 2044 }; 2045 2046 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, 2047 MaxWaitStates); 2048 int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates; 2049 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2050 int OpNo = Op.getOperandNo(); 2051 if (OpNo == SrcCIdx) { 2052 NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates; 2053 } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) { 2054 switch (HazardDefLatency) { 2055 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates; 2056 break; 2057 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates; 2058 break; 2059 case 16: [[fallthrough]]; 2060 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates; 2061 break; 2062 } 2063 } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2064 switch (HazardDefLatency) { 2065 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates; 2066 break; 2067 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates; 2068 break; 2069 case 16: [[fallthrough]]; 2070 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates; 2071 break; 2072 } 2073 } 2074 2075 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2076 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2077 2078 if (WaitStatesNeeded == MaxWaitStates) 2079 return WaitStatesNeeded; // Early exit. 2080 2081 auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) { 2082 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2083 return false; 2084 Register DstReg = MI.getOperand(0).getReg(); 2085 return TRI.regsOverlap(Reg, DstReg); 2086 }; 2087 2088 const int AccVGPRWriteMFMAReadSrcCWaitStates = 1; 2089 const int AccVGPRWriteMFMAReadSrcABWaitStates = 3; 2090 const int AccVGPRWriteAccVgprReadWaitStates = 3; 2091 NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates; 2092 if (OpNo == SrcCIdx) 2093 NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates; 2094 else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) 2095 NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates; 2096 2097 WaitStatesNeededForUse = NeedWaitStates - 2098 getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates); 2099 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2100 2101 if (WaitStatesNeeded == MaxWaitStates) 2102 return WaitStatesNeeded; // Early exit. 2103 } 2104 2105 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2106 const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0; 2107 const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5; 2108 const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13; 2109 const int MaxWaitStates = 13; 2110 Register DstReg = MI->getOperand(0).getReg(); 2111 unsigned HazardDefLatency = 0; 2112 2113 auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency, 2114 this](const MachineInstr &MI) { 2115 if (!SIInstrInfo::isMFMA(MI)) 2116 return false; 2117 Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg(); 2118 HazardDefLatency = 2119 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2120 return TRI.regsOverlap(Reg, DstReg); 2121 }; 2122 2123 int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates); 2124 int NeedWaitStates; 2125 switch (HazardDefLatency) { 2126 case 2: NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates; 2127 break; 2128 case 8: NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates; 2129 break; 2130 case 16: [[fallthrough]]; 2131 default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates; 2132 break; 2133 } 2134 2135 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince; 2136 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2137 } 2138 2139 // Pad neighboring MFMA with noops for better inter-wave performance. 2140 WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI)); 2141 2142 return WaitStatesNeeded; 2143 } 2144 2145 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) { 2146 int WaitStatesNeeded = 0; 2147 unsigned Opc = MI->getOpcode(); 2148 2149 auto IsLegacyVALUFn = [](const MachineInstr &MI) { 2150 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI); 2151 }; 2152 2153 auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) { 2154 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) && 2155 !SIInstrInfo::isDOT(MI); 2156 }; 2157 2158 if (!SIInstrInfo::isMFMA(*MI)) 2159 return WaitStatesNeeded; 2160 2161 const int VALUWritesExecWaitStates = 4; 2162 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 2163 getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn, 2164 VALUWritesExecWaitStates); 2165 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2166 2167 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2168 2169 // Loop for both DGEMM and S/HGEMM 2nd instruction. 2170 for (const MachineOperand &Use : MI->explicit_uses()) { 2171 const int LegacyVALUNotDotWritesVGPRWaitStates = 2; 2172 const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2; 2173 const int GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates = 3; 2174 const int GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates = 5; 2175 const int GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates = 4; 2176 const int GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates = 9; 2177 const int GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates = 8; 2178 const int GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates = 17; 2179 const int GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates = 16; 2180 const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8; 2181 const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16; 2182 const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3; 2183 const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9; 2184 const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17; 2185 const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9; 2186 const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4; 2187 const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5; 2188 const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11; 2189 const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19; 2190 const int GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates = 4; 2191 const int GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates = 6; 2192 const int GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates = 10; 2193 const int GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates = 18; 2194 const int GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates = 5; 2195 const int GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates = 7; 2196 const int GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates = 11; 2197 const int GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates = 19; 2198 const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6; 2199 const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11; 2200 const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4; 2201 const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2; 2202 const int MaxWaitStates = 19; 2203 2204 if (!Use.isReg()) 2205 continue; 2206 Register Reg = Use.getReg(); 2207 bool FullReg; 2208 const MachineInstr *MI1; 2209 2210 auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1, 2211 this](const MachineInstr &MI) { 2212 if (!SIInstrInfo::isMFMA(MI)) 2213 return false; 2214 Register DstReg = MI.getOperand(0).getReg(); 2215 FullReg = (DstReg == Reg); 2216 MI1 = &MI; 2217 return TRI.regsOverlap(DstReg, Reg); 2218 }; 2219 2220 WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates - 2221 getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates); 2222 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2223 2224 int NumWaitStates = 2225 getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates); 2226 if (NumWaitStates == std::numeric_limits<int>::max()) 2227 continue; 2228 2229 int OpNo = Use.getOperandNo(); 2230 unsigned Opc1 = MI1->getOpcode(); 2231 int NeedWaitStates = 0; 2232 if (OpNo == SrcCIdx) { 2233 if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) { 2234 NeedWaitStates = 0; 2235 } else if (FullReg) { 2236 if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2237 Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) && 2238 (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2239 Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64)) 2240 NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates; 2241 else if (ST.hasGFX940Insts() && 2242 TSchedModel.computeInstrLatency(MI1) == 2) 2243 NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates; 2244 } else { 2245 switch (Opc1) { 2246 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2247 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2248 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2249 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2250 if (!isXDL(ST, *MI)) 2251 NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates; 2252 break; 2253 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2254 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2255 if (!isXDL(ST, *MI)) 2256 NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates; 2257 break; 2258 default: 2259 if (ST.hasGFX940Insts() && isXDL(ST, *MI) && !isXDL(ST, *MI1)) 2260 break; 2261 switch (TSchedModel.computeInstrLatency(MI1)) { 2262 case 2: 2263 NeedWaitStates = ST.hasGFX940Insts() 2264 ? isXDL(ST, *MI1) 2265 ? GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates 2266 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates 2267 : isDGEMM(Opc) 2268 ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates 2269 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates; 2270 break; 2271 case 4: 2272 assert(ST.hasGFX940Insts()); 2273 NeedWaitStates = isXDL(ST, *MI1) 2274 ? GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates 2275 : GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates; 2276 break; 2277 case 8: 2278 NeedWaitStates = ST.hasGFX940Insts() 2279 ? isXDL(ST, *MI1) 2280 ? GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates 2281 : GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates 2282 : isDGEMM(Opc) 2283 ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates 2284 : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates; 2285 break; 2286 case 16: [[fallthrough]]; 2287 default: 2288 NeedWaitStates = ST.hasGFX940Insts() 2289 ? isXDL(ST, *MI1) 2290 ? GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates 2291 : GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates 2292 : isDGEMM(Opc) 2293 ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates 2294 : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates; 2295 } 2296 } 2297 } 2298 } else { 2299 switch (Opc1) { 2300 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2301 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2302 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2303 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2304 NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates; 2305 break; 2306 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2307 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2308 NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates; 2309 break; 2310 default: 2311 switch (TSchedModel.computeInstrLatency(MI1)) { 2312 case 2: 2313 NeedWaitStates = ST.hasGFX940Insts() 2314 ? isXDL(ST, *MI1) 2315 ? GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates 2316 : GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates 2317 : SMFMA4x4WritesVGPROverlappedSrcABWaitStates; 2318 break; 2319 case 4: 2320 assert(ST.hasGFX940Insts()); 2321 NeedWaitStates = isXDL(ST, *MI1) 2322 ? GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates 2323 : GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates; 2324 break; 2325 case 8: 2326 NeedWaitStates = ST.hasGFX940Insts() 2327 ? isXDL(ST, *MI1) 2328 ? GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates 2329 : GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates 2330 : SMFMA16x16WritesVGPROverlappedSrcABWaitStates; 2331 break; 2332 case 16: [[fallthrough]]; 2333 default: 2334 NeedWaitStates = ST.hasGFX940Insts() 2335 ? isXDL(ST, *MI1) 2336 ? GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates 2337 : GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates 2338 : SMFMA32x32WritesVGPROverlappedSrcABWaitStates; 2339 } 2340 } 2341 } 2342 if (WaitStatesNeeded >= NeedWaitStates) 2343 continue; 2344 2345 WaitStatesNeededForUse = NeedWaitStates - NumWaitStates; 2346 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2347 2348 if (WaitStatesNeeded == MaxWaitStates) 2349 break; 2350 } 2351 2352 return WaitStatesNeeded; 2353 } 2354 2355 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) { 2356 // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards() 2357 if (!ST.hasMAIInsts() || ST.hasGFX90AInsts()) 2358 return 0; 2359 2360 int WaitStatesNeeded = 0; 2361 2362 auto IsAccVgprReadFn = [](const MachineInstr &MI) { 2363 return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64; 2364 }; 2365 2366 for (const MachineOperand &Op : MI->explicit_uses()) { 2367 if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg())) 2368 continue; 2369 2370 Register Reg = Op.getReg(); 2371 2372 const int AccVgprReadLdStWaitStates = 2; 2373 const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1; 2374 const int MaxWaitStates = 2; 2375 2376 int WaitStatesNeededForUse = AccVgprReadLdStWaitStates - 2377 getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates); 2378 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2379 2380 if (WaitStatesNeeded == MaxWaitStates) 2381 return WaitStatesNeeded; // Early exit. 2382 2383 auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) { 2384 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 && 2385 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2386 return false; 2387 auto IsVALUFn = [](const MachineInstr &MI) { 2388 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI); 2389 }; 2390 return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) < 2391 std::numeric_limits<int>::max(); 2392 }; 2393 2394 WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates - 2395 getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates); 2396 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2397 } 2398 2399 return WaitStatesNeeded; 2400 } 2401 2402 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) { 2403 if (!ST.hasGFX90AInsts()) 2404 return 0; 2405 2406 auto IsDGEMMFn = [](const MachineInstr &MI) -> bool { 2407 return isDGEMM(MI.getOpcode()); 2408 }; 2409 2410 // This is checked in checkMAIHazards90A() 2411 if (SIInstrInfo::isMFMA(*MI)) 2412 return 0; 2413 2414 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2415 2416 int WaitStatesNeeded = 0; 2417 2418 bool IsMem = SIInstrInfo::isVMEM(*MI) || 2419 SIInstrInfo::isFLAT(*MI) || 2420 SIInstrInfo::isDS(*MI); 2421 bool IsMemOrExport = IsMem || SIInstrInfo::isEXP(*MI); 2422 bool IsVALU = SIInstrInfo::isVALU(*MI); 2423 2424 const MachineInstr *MFMA = nullptr; 2425 unsigned Reg; 2426 auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2427 if (!SIInstrInfo::isMFMA(MI) || 2428 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2429 return false; 2430 MFMA = &MI; 2431 return true; 2432 }; 2433 2434 const MachineInstr *DOT = nullptr; 2435 auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) { 2436 if (!SIInstrInfo::isDOT(MI) || 2437 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2438 return false; 2439 DOT = &MI; 2440 return true; 2441 }; 2442 2443 bool DGEMMAfterVALUWrite = false; 2444 auto IsDGEMMHazard = [&DGEMMAfterVALUWrite, this](const MachineInstr &MI) { 2445 // Found DGEMM on reverse traversal to def. 2446 if (isDGEMM(MI.getOpcode())) 2447 DGEMMAfterVALUWrite = true; 2448 2449 // Only hazard if register is defined by a VALU and a DGEMM is found after 2450 // after the def. 2451 if (!TII.isVALU(MI) || !DGEMMAfterVALUWrite) 2452 return false; 2453 2454 return true; 2455 }; 2456 2457 int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), 2458 AMDGPU::OpName::src2); 2459 2460 if (IsMemOrExport || IsVALU) { 2461 const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5; 2462 const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11; 2463 const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19; 2464 const int GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates = 4; 2465 const int GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates = 6; 2466 const int GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates = 10; 2467 const int GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates = 18; 2468 const int GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates = 5; 2469 const int GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates = 7; 2470 const int GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates = 11; 2471 const int GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates = 19; 2472 const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9; 2473 const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18; 2474 const int DMFMA4x4WriteVgprVALUReadWaitStates = 6; 2475 const int DMFMA16x16WriteVgprVALUReadWaitStates = 11; 2476 const int DotWriteSameDotReadSrcAB = 3; 2477 const int DotWriteDifferentVALURead = 3; 2478 const int DMFMABetweenVALUWriteVMEMRead = 2; 2479 const int MaxWaitStates = 19; 2480 2481 for (const MachineOperand &Use : MI->explicit_uses()) { 2482 if (!Use.isReg()) 2483 continue; 2484 Reg = Use.getReg(); 2485 2486 DOT = nullptr; 2487 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2488 MaxWaitStates); 2489 if (DOT) { 2490 int NeedWaitStates = 0; 2491 if (DOT->getOpcode() == MI->getOpcode()) { 2492 if (&Use - &MI->getOperand(0) != SrcCIdx) 2493 NeedWaitStates = DotWriteSameDotReadSrcAB; 2494 } else { 2495 NeedWaitStates = DotWriteDifferentVALURead; 2496 } 2497 2498 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2499 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2500 } 2501 2502 // Workaround for HW data hazard bug observed only in GFX90A. When there 2503 // is a DGEMM instruction in-between a VALU and a VMEM instruction it 2504 // causes the SQ to incorrectly not insert two wait states between the two 2505 // instructions needed to avoid data hazard. 2506 if (IsMem && ST.hasGFX90AInsts() && !ST.hasGFX940Insts()) { 2507 DGEMMAfterVALUWrite = false; 2508 if (TRI.isVectorRegister(MRI, Reg)) { 2509 int WaitStatesNeededForUse = 2510 DMFMABetweenVALUWriteVMEMRead - 2511 getWaitStatesSinceDef(Reg, IsDGEMMHazard, 2512 DMFMABetweenVALUWriteVMEMRead); 2513 2514 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2515 } 2516 } 2517 2518 MFMA = nullptr; 2519 WaitStatesSinceDef = 2520 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2521 if (!MFMA) 2522 continue; 2523 2524 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2525 int NeedWaitStates = MaxWaitStates; 2526 switch (HazardDefLatency) { 2527 case 2: 2528 NeedWaitStates = 2529 ST.hasGFX940Insts() 2530 ? isXDL(ST, *MFMA) 2531 ? GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates 2532 : GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates 2533 : SMFMA4x4WriteVgprVALUMemExpReadWaitStates; 2534 break; 2535 case 4: 2536 assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts()); 2537 NeedWaitStates = 2538 isDGEMM(MFMA->getOpcode()) 2539 ? IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates 2540 : DMFMA4x4WriteVgprVALUReadWaitStates 2541 : isXDL(ST, *MFMA) 2542 ? GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates 2543 : GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates; 2544 break; 2545 case 8: 2546 NeedWaitStates = 2547 ST.hasGFX940Insts() 2548 ? isXDL(ST, *MFMA) 2549 ? GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates 2550 : GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates 2551 : SMFMA16x16WriteVgprVALUMemExpReadWaitStates; 2552 break; 2553 case 16: [[fallthrough]]; 2554 default: 2555 NeedWaitStates = 2556 isDGEMM(MFMA->getOpcode()) 2557 ? IsMemOrExport ? DMFMA16x16WriteVgprMemExpReadWaitStates 2558 : DMFMA16x16WriteVgprVALUReadWaitStates 2559 : ST.hasGFX940Insts() 2560 ? isXDL(ST, *MFMA) 2561 ? GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates 2562 : GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates 2563 : SMFMA32x32WriteVgprVALUMemExpReadWaitStates; 2564 break; 2565 } 2566 2567 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2568 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2569 2570 if (WaitStatesNeeded == MaxWaitStates) 2571 break; 2572 } 2573 } 2574 2575 unsigned Opc = MI->getOpcode(); 2576 const int DMFMAToFMA64WaitStates = 2; 2577 if ((Opc == AMDGPU::V_FMA_F64_e64 || 2578 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 || 2579 Opc == AMDGPU::V_FMAC_F64_dpp) && 2580 WaitStatesNeeded < DMFMAToFMA64WaitStates) { 2581 int WaitStatesNeededForUse = DMFMAToFMA64WaitStates - 2582 getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates); 2583 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2584 } 2585 2586 if (!IsVALU && !IsMemOrExport) 2587 return WaitStatesNeeded; 2588 2589 for (const MachineOperand &Def : MI->defs()) { 2590 const int SMFMA4x4WriteVgprVALUWawWaitStates = 5; 2591 const int SMFMA16x16WriteVgprVALUWawWaitStates = 11; 2592 const int SMFMA32x32WriteVgprVALUWawWaitStates = 19; 2593 const int GFX940_SMFMA2PassWriteVgprVALUWawWaitStates = 4; 2594 const int GFX940_SMFMA4PassWriteVgprVALUWawWaitStates = 6; 2595 const int GFX940_SMFMA8PassWriteVgprVALUWawWaitStates = 10; 2596 const int GFX940_SMFMA16PassWriteVgprVALUWawWaitStates = 18; 2597 const int GFX940_XDL2PassWriteVgprVALUWawWaitStates = 5; 2598 const int GFX940_XDL4PassWriteVgprVALUWawWaitStates = 7; 2599 const int GFX940_XDL8PassWriteVgprVALUWawWaitStates = 11; 2600 const int GFX940_XDL16PassWriteVgprVALUWawWaitStates = 19; 2601 const int SMFMA4x4ReadVgprVALUWarWaitStates = 1; 2602 const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3; 2603 const int SMFMA16x16ReadVgprVALUWarWaitStates = 7; 2604 const int SMFMA32x32ReadVgprVALUWarWaitStates = 15; 2605 const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6; 2606 const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11; 2607 const int DotWriteDifferentVALUWrite = 3; 2608 const int MaxWaitStates = 19; 2609 const int MaxWarWaitStates = 15; 2610 2611 Reg = Def.getReg(); 2612 2613 DOT = nullptr; 2614 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2615 MaxWaitStates); 2616 if (DOT && DOT->getOpcode() != MI->getOpcode()) 2617 WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite - 2618 WaitStatesSinceDef); 2619 2620 MFMA = nullptr; 2621 WaitStatesSinceDef = 2622 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2623 if (MFMA) { 2624 int NeedWaitStates = MaxWaitStates; 2625 switch (TSchedModel.computeInstrLatency(MFMA)) { 2626 case 2: 2627 NeedWaitStates = ST.hasGFX940Insts() 2628 ? isXDL(ST, *MFMA) 2629 ? GFX940_XDL2PassWriteVgprVALUWawWaitStates 2630 : GFX940_SMFMA2PassWriteVgprVALUWawWaitStates 2631 : SMFMA4x4WriteVgprVALUWawWaitStates; 2632 break; 2633 case 4: 2634 assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts()); 2635 NeedWaitStates = isDGEMM(MFMA->getOpcode()) 2636 ? DMFMA4x4WriteVgprVALUWriteWaitStates 2637 : isXDL(ST, *MFMA) 2638 ? GFX940_XDL4PassWriteVgprVALUWawWaitStates 2639 : GFX940_SMFMA4PassWriteVgprVALUWawWaitStates; 2640 break; 2641 case 8: 2642 NeedWaitStates = ST.hasGFX940Insts() 2643 ? isXDL(ST, *MFMA) 2644 ? GFX940_XDL8PassWriteVgprVALUWawWaitStates 2645 : GFX940_SMFMA8PassWriteVgprVALUWawWaitStates 2646 : SMFMA16x16WriteVgprVALUWawWaitStates; 2647 break; 2648 case 16: [[fallthrough]]; 2649 default: 2650 NeedWaitStates = isDGEMM(MFMA->getOpcode()) 2651 ? DMFMA16x16WriteVgprVALUWriteWaitStates 2652 : ST.hasGFX940Insts() 2653 ? isXDL(ST, *MFMA) 2654 ? GFX940_XDL16PassWriteVgprVALUWawWaitStates 2655 : GFX940_SMFMA16PassWriteVgprVALUWawWaitStates 2656 : SMFMA32x32WriteVgprVALUWawWaitStates; 2657 break; 2658 } 2659 2660 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2661 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2662 2663 if (WaitStatesNeeded == MaxWaitStates) 2664 break; 2665 } 2666 2667 auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2668 if (!SIInstrInfo::isMFMA(MI) || isDGEMM(MI.getOpcode()) || 2669 !MI.readsRegister(Reg, &TRI)) 2670 return false; 2671 2672 if (ST.hasGFX940Insts() && !isXDL(ST, MI)) 2673 return false; 2674 2675 const MachineOperand *SrcC = 2676 TII.getNamedOperand(MI, AMDGPU::OpName::src2); 2677 assert(SrcC); 2678 if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg)) 2679 return false; 2680 2681 MFMA = &MI; 2682 return true; 2683 }; 2684 2685 MFMA = nullptr; 2686 int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn, 2687 MaxWarWaitStates); 2688 if (!MFMA) 2689 continue; 2690 2691 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2692 int NeedWaitStates = MaxWaitStates; 2693 switch (HazardDefLatency) { 2694 case 2: NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates; 2695 break; 2696 case 4: assert(ST.hasGFX940Insts()); 2697 NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates; 2698 break; 2699 case 8: NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates; 2700 break; 2701 case 16: [[fallthrough]]; 2702 default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates; 2703 break; 2704 } 2705 2706 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse; 2707 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2708 } 2709 2710 return WaitStatesNeeded; 2711 } 2712 2713 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) { 2714 if (!SU->isInstr()) 2715 return false; 2716 2717 const MachineInstr *MAI = nullptr; 2718 2719 auto IsMFMAFn = [&MAI](const MachineInstr &MI) { 2720 MAI = nullptr; 2721 if (SIInstrInfo::isMFMA(MI)) 2722 MAI = &MI; 2723 return MAI != nullptr; 2724 }; 2725 2726 MachineInstr *MI = SU->getInstr(); 2727 if (IsMFMAFn(*MI)) { 2728 int W = getWaitStatesSince(IsMFMAFn, 16); 2729 if (MAI) 2730 return W < (int)TSchedModel.computeInstrLatency(MAI); 2731 } 2732 2733 return false; 2734 } 2735 2736 bool GCNHazardRecognizer::fixVALUMaskWriteHazard(MachineInstr *MI) { 2737 if (!ST.hasVALUMaskWriteHazard()) 2738 return false; 2739 assert(!ST.hasExtendedWaitCounts()); 2740 2741 if (!ST.isWave64() || !SIInstrInfo::isSALU(*MI)) 2742 return false; 2743 2744 // The hazard sequence is three instructions: 2745 // 1. VALU reads SGPR as mask 2746 // 2. SALU writes SGPR 2747 // 3. SALU reads SGPR 2748 // The hazard can expire if the distance between 2 and 3 is sufficient. 2749 // In practice this happens <10% of the time, hence this always assumes 2750 // the hazard exists if 1 and 2 are present to avoid searching. 2751 2752 const MachineOperand *SDSTOp = TII.getNamedOperand(*MI, AMDGPU::OpName::sdst); 2753 if (!SDSTOp || !SDSTOp->isReg()) 2754 return false; 2755 2756 const Register HazardReg = SDSTOp->getReg(); 2757 if (HazardReg == AMDGPU::EXEC || 2758 HazardReg == AMDGPU::EXEC_LO || 2759 HazardReg == AMDGPU::EXEC_HI || 2760 HazardReg == AMDGPU::M0) 2761 return false; 2762 2763 auto IsHazardFn = [HazardReg, this](const MachineInstr &I) { 2764 switch (I.getOpcode()) { 2765 case AMDGPU::V_ADDC_U32_e32: 2766 case AMDGPU::V_ADDC_U32_dpp: 2767 case AMDGPU::V_CNDMASK_B16_e32: 2768 case AMDGPU::V_CNDMASK_B16_dpp: 2769 case AMDGPU::V_CNDMASK_B32_e32: 2770 case AMDGPU::V_CNDMASK_B32_dpp: 2771 case AMDGPU::V_DIV_FMAS_F32_e64: 2772 case AMDGPU::V_DIV_FMAS_F64_e64: 2773 case AMDGPU::V_SUBB_U32_e32: 2774 case AMDGPU::V_SUBB_U32_dpp: 2775 case AMDGPU::V_SUBBREV_U32_e32: 2776 case AMDGPU::V_SUBBREV_U32_dpp: 2777 // These implicitly read VCC as mask source. 2778 return HazardReg == AMDGPU::VCC || 2779 HazardReg == AMDGPU::VCC_LO || 2780 HazardReg == AMDGPU::VCC_HI; 2781 case AMDGPU::V_ADDC_U32_e64: 2782 case AMDGPU::V_ADDC_U32_e64_dpp: 2783 case AMDGPU::V_CNDMASK_B16_e64: 2784 case AMDGPU::V_CNDMASK_B16_e64_dpp: 2785 case AMDGPU::V_CNDMASK_B32_e64: 2786 case AMDGPU::V_CNDMASK_B32_e64_dpp: 2787 case AMDGPU::V_SUBB_U32_e64: 2788 case AMDGPU::V_SUBB_U32_e64_dpp: 2789 case AMDGPU::V_SUBBREV_U32_e64: 2790 case AMDGPU::V_SUBBREV_U32_e64_dpp: { 2791 // Only check mask register overlaps. 2792 const MachineOperand *SSRCOp = TII.getNamedOperand(I, AMDGPU::OpName::src2); 2793 assert(SSRCOp); 2794 return TRI.regsOverlap(SSRCOp->getReg(), HazardReg); 2795 } 2796 default: 2797 return false; 2798 } 2799 }; 2800 2801 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2802 auto IsExpiredFn = [&MRI, this](const MachineInstr &I, int) { 2803 // s_waitcnt_depctr sa_sdst(0) mitigates hazard. 2804 if (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 2805 AMDGPU::DepCtr::decodeFieldSaSdst(I.getOperand(0).getImm()) == 0) 2806 return true; 2807 2808 // VALU access to any SGPR or literal constant other than HazardReg 2809 // mitigates hazard. No need to check HazardReg here as this will 2810 // only be called when !IsHazardFn. 2811 if (!SIInstrInfo::isVALU(I)) 2812 return false; 2813 for (int OpNo = 0, End = I.getNumOperands(); OpNo < End; ++OpNo) { 2814 const MachineOperand &Op = I.getOperand(OpNo); 2815 if (Op.isReg()) { 2816 Register OpReg = Op.getReg(); 2817 // Only consider uses 2818 if (!Op.isUse()) 2819 continue; 2820 // Ignore EXEC 2821 if (OpReg == AMDGPU::EXEC || 2822 OpReg == AMDGPU::EXEC_LO || 2823 OpReg == AMDGPU::EXEC_HI) 2824 continue; 2825 // Ignore all implicit uses except VCC 2826 if (Op.isImplicit()) { 2827 if (OpReg == AMDGPU::VCC || 2828 OpReg == AMDGPU::VCC_LO || 2829 OpReg == AMDGPU::VCC_HI) 2830 return true; 2831 continue; 2832 } 2833 if (TRI.isSGPRReg(MRI, OpReg)) 2834 return true; 2835 } else { 2836 const MCInstrDesc &InstDesc = I.getDesc(); 2837 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; 2838 if (!TII.isInlineConstant(Op, OpInfo)) 2839 return true; 2840 } 2841 } 2842 return false; 2843 }; 2844 2845 // Check for hazard 2846 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 2847 std::numeric_limits<int>::max()) 2848 return false; 2849 2850 auto NextMI = std::next(MI->getIterator()); 2851 2852 // Add s_waitcnt_depctr sa_sdst(0) after SALU write. 2853 BuildMI(*MI->getParent(), NextMI, MI->getDebugLoc(), 2854 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 2855 .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0)); 2856 2857 // SALU write may be s_getpc in a bundle. 2858 if (MI->getOpcode() == AMDGPU::S_GETPC_B64) { 2859 // Update offsets of any references in the bundle. 2860 while (NextMI != MI->getParent()->end() && 2861 NextMI->isBundledWithPred()) { 2862 for (auto &Operand : NextMI->operands()) { 2863 if (Operand.isGlobal()) 2864 Operand.setOffset(Operand.getOffset() + 4); 2865 } 2866 NextMI++; 2867 } 2868 } 2869 2870 return true; 2871 } 2872