1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements hazard recognizers for scheduling on GCN processors. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "GCNHazardRecognizer.h" 15 #include "AMDGPUSubtarget.h" 16 #include "SIInstrInfo.h" 17 #include "llvm/CodeGen/ScheduleDAG.h" 18 #include "llvm/Support/Debug.h" 19 20 using namespace llvm; 21 22 //===----------------------------------------------------------------------===// 23 // Hazard Recoginizer Implementation 24 //===----------------------------------------------------------------------===// 25 26 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 27 CurrCycleInstr(nullptr), 28 MF(MF), 29 ST(MF.getSubtarget<SISubtarget>()) { 30 MaxLookAhead = 5; 31 } 32 33 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 34 EmitInstruction(SU->getInstr()); 35 } 36 37 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 38 CurrCycleInstr = MI; 39 } 40 41 static bool isDivFMas(unsigned Opcode) { 42 return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64; 43 } 44 45 static bool isSGetReg(unsigned Opcode) { 46 return Opcode == AMDGPU::S_GETREG_B32; 47 } 48 49 static bool isSSetReg(unsigned Opcode) { 50 return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32; 51 } 52 53 static bool isRWLane(unsigned Opcode) { 54 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 55 } 56 57 static bool isRFE(unsigned Opcode) { 58 return Opcode == AMDGPU::S_RFE_B64; 59 } 60 61 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 62 63 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 64 AMDGPU::OpName::simm16); 65 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 66 } 67 68 ScheduleHazardRecognizer::HazardType 69 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 70 MachineInstr *MI = SU->getInstr(); 71 72 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 73 return NoopHazard; 74 75 if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0) 76 return NoopHazard; 77 78 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 79 return NoopHazard; 80 81 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 82 return NoopHazard; 83 84 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 85 return NoopHazard; 86 87 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 88 return NoopHazard; 89 90 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 91 return NoopHazard; 92 93 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 94 return NoopHazard; 95 96 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 97 return NoopHazard; 98 99 return NoHazard; 100 } 101 102 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) { 103 return PreEmitNoops(SU->getInstr()); 104 } 105 106 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 107 if (SIInstrInfo::isSMRD(*MI)) 108 return std::max(0, checkSMRDHazards(MI)); 109 110 if (SIInstrInfo::isVALU(*MI)) { 111 int WaitStates = std::max(0, checkVALUHazards(MI)); 112 113 if (SIInstrInfo::isVMEM(*MI)) 114 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 115 116 if (SIInstrInfo::isDPP(*MI)) 117 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 118 119 if (isDivFMas(MI->getOpcode())) 120 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 121 122 if (isRWLane(MI->getOpcode())) 123 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 124 125 return WaitStates; 126 } 127 128 if (isSGetReg(MI->getOpcode())) 129 return std::max(0, checkGetRegHazards(MI)); 130 131 if (isSSetReg(MI->getOpcode())) 132 return std::max(0, checkSetRegHazards(MI)); 133 134 if (isRFE(MI->getOpcode())) 135 return std::max(0, checkRFEHazards(MI)); 136 137 return 0; 138 } 139 140 void GCNHazardRecognizer::EmitNoop() { 141 EmittedInstrs.push_front(nullptr); 142 } 143 144 void GCNHazardRecognizer::AdvanceCycle() { 145 146 // When the scheduler detects a stall, it will call AdvanceCycle() without 147 // emitting any instructions. 148 if (!CurrCycleInstr) 149 return; 150 151 const SIInstrInfo *TII = ST.getInstrInfo(); 152 unsigned NumWaitStates = TII->getNumWaitStates(*CurrCycleInstr); 153 154 // Keep track of emitted instructions 155 EmittedInstrs.push_front(CurrCycleInstr); 156 157 // Add a nullptr for each additional wait state after the first. Make sure 158 // not to add more than getMaxLookAhead() items to the list, since we 159 // truncate the list to that size right after this loop. 160 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 161 i < e; ++i) { 162 EmittedInstrs.push_front(nullptr); 163 } 164 165 // getMaxLookahead() is the largest number of wait states we will ever need 166 // to insert, so there is no point in keeping track of more than that many 167 // wait states. 168 EmittedInstrs.resize(getMaxLookAhead()); 169 170 CurrCycleInstr = nullptr; 171 } 172 173 void GCNHazardRecognizer::RecedeCycle() { 174 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 175 } 176 177 //===----------------------------------------------------------------------===// 178 // Helper Functions 179 //===----------------------------------------------------------------------===// 180 181 int GCNHazardRecognizer::getWaitStatesSince( 182 function_ref<bool(MachineInstr *)> IsHazard) { 183 184 int WaitStates = -1; 185 for (MachineInstr *MI : EmittedInstrs) { 186 ++WaitStates; 187 if (!MI || !IsHazard(MI)) 188 continue; 189 return WaitStates; 190 } 191 return std::numeric_limits<int>::max(); 192 } 193 194 int GCNHazardRecognizer::getWaitStatesSinceDef( 195 unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) { 196 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 197 198 auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) { 199 return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI); 200 }; 201 202 return getWaitStatesSince(IsHazardFn); 203 } 204 205 int GCNHazardRecognizer::getWaitStatesSinceSetReg( 206 function_ref<bool(MachineInstr *)> IsHazard) { 207 208 auto IsHazardFn = [IsHazard] (MachineInstr *MI) { 209 return isSSetReg(MI->getOpcode()) && IsHazard(MI); 210 }; 211 212 return getWaitStatesSince(IsHazardFn); 213 } 214 215 //===----------------------------------------------------------------------===// 216 // No-op Hazard Detection 217 //===----------------------------------------------------------------------===// 218 219 static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops, 220 std::set<unsigned> &Set) { 221 for (const MachineOperand &Op : Ops) { 222 if (Op.isReg()) 223 Set.insert(Op.getReg()); 224 } 225 } 226 227 int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) { 228 // SMEM soft clause are only present on VI+ 229 if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) 230 return 0; 231 232 // A soft-clause is any group of consecutive SMEM instructions. The 233 // instructions in this group may return out of order and/or may be 234 // replayed (i.e. the same instruction issued more than once). 235 // 236 // In order to handle these situations correctly we need to make sure 237 // that when a clause has more than one instruction, no instruction in the 238 // clause writes to a register that is read another instruction in the clause 239 // (including itself). If we encounter this situaion, we need to break the 240 // clause by inserting a non SMEM instruction. 241 242 std::set<unsigned> ClauseDefs; 243 std::set<unsigned> ClauseUses; 244 245 for (MachineInstr *MI : EmittedInstrs) { 246 247 // When we hit a non-SMEM instruction then we have passed the start of the 248 // clause and we can stop. 249 if (!MI || !SIInstrInfo::isSMRD(*MI)) 250 break; 251 252 addRegsToSet(MI->defs(), ClauseDefs); 253 addRegsToSet(MI->uses(), ClauseUses); 254 } 255 256 if (ClauseDefs.empty()) 257 return 0; 258 259 // FIXME: When we support stores, we need to make sure not to put loads and 260 // stores in the same clause if they use the same address. For now, just 261 // start a new clause whenever we see a store. 262 if (SMEM->mayStore()) 263 return 1; 264 265 addRegsToSet(SMEM->defs(), ClauseDefs); 266 addRegsToSet(SMEM->uses(), ClauseUses); 267 268 std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size())); 269 std::vector<unsigned>::iterator End; 270 271 End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(), 272 ClauseUses.begin(), ClauseUses.end(), Result.begin()); 273 274 // If the set of defs and uses intersect then we cannot add this instruction 275 // to the clause, so we have a hazard. 276 if (End != Result.begin()) 277 return 1; 278 279 return 0; 280 } 281 282 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 283 const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); 284 const SIInstrInfo *TII = ST.getInstrInfo(); 285 int WaitStatesNeeded = 0; 286 287 WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD); 288 289 // This SMRD hazard only affects SI. 290 if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS) 291 return WaitStatesNeeded; 292 293 // A read of an SGPR by SMRD instruction requires 4 wait states when the 294 // SGPR was written by a VALU instruction. 295 int SmrdSgprWaitStates = 4; 296 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 297 298 for (const MachineOperand &Use : SMRD->uses()) { 299 if (!Use.isReg()) 300 continue; 301 int WaitStatesNeededForUse = 302 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); 303 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 304 } 305 return WaitStatesNeeded; 306 } 307 308 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 309 const SIInstrInfo *TII = ST.getInstrInfo(); 310 311 if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) 312 return 0; 313 314 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 315 316 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 317 // SGPR was written by a VALU Instruction. 318 int VmemSgprWaitStates = 5; 319 int WaitStatesNeeded = 0; 320 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 321 322 for (const MachineOperand &Use : VMEM->uses()) { 323 if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 324 continue; 325 326 int WaitStatesNeededForUse = 327 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); 328 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 329 } 330 return WaitStatesNeeded; 331 } 332 333 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 334 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 335 336 // Check for DPP VGPR read after VALU VGPR write. 337 int DppVgprWaitStates = 2; 338 int WaitStatesNeeded = 0; 339 340 for (const MachineOperand &Use : DPP->uses()) { 341 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 342 continue; 343 int WaitStatesNeededForUse = 344 DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg()); 345 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 346 } 347 348 return WaitStatesNeeded; 349 } 350 351 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 352 const SIInstrInfo *TII = ST.getInstrInfo(); 353 354 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 355 // instruction. 356 const int DivFMasWaitStates = 4; 357 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 358 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn); 359 360 return DivFMasWaitStates - WaitStatesNeeded; 361 } 362 363 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 364 const SIInstrInfo *TII = ST.getInstrInfo(); 365 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 366 367 const int GetRegWaitStates = 2; 368 auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) { 369 return GetRegHWReg == getHWReg(TII, *MI); 370 }; 371 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 372 373 return GetRegWaitStates - WaitStatesNeeded; 374 } 375 376 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 377 const SIInstrInfo *TII = ST.getInstrInfo(); 378 unsigned HWReg = getHWReg(TII, *SetRegInstr); 379 380 const int SetRegWaitStates = 381 ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2; 382 auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) { 383 return HWReg == getHWReg(TII, *MI); 384 }; 385 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 386 return SetRegWaitStates - WaitStatesNeeded; 387 } 388 389 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 390 if (!MI.mayStore()) 391 return -1; 392 393 const SIInstrInfo *TII = ST.getInstrInfo(); 394 unsigned Opcode = MI.getOpcode(); 395 const MCInstrDesc &Desc = MI.getDesc(); 396 397 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 398 int VDataRCID = -1; 399 if (VDataIdx != -1) 400 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 401 402 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 403 // There is no hazard if the instruction does not use vector regs 404 // (like wbinvl1) 405 if (VDataIdx == -1) 406 return -1; 407 // For MUBUF/MTBUF instructions this hazard only exists if the 408 // instruction is not using a register in the soffset field. 409 const MachineOperand *SOffset = 410 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 411 // If we have no soffset operand, then assume this field has been 412 // hardcoded to zero. 413 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 414 (!SOffset || !SOffset->isReg())) 415 return VDataIdx; 416 } 417 418 // MIMG instructions create a hazard if they don't use a 256-bit T# and 419 // the store size is greater than 8 bytes and they have more than two bits 420 // of their dmask set. 421 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 422 if (TII->isMIMG(MI)) { 423 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 424 assert(SRsrcIdx != -1 && 425 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 426 (void)SRsrcIdx; 427 } 428 429 if (TII->isFLAT(MI)) { 430 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 431 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 432 return DataIdx; 433 } 434 435 return -1; 436 } 437 438 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 439 // This checks for the hazard where VMEM instructions that store more than 440 // 8 bytes can have there store data over written by the next instruction. 441 if (!ST.has12DWordStoreHazard()) 442 return 0; 443 444 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 445 const MachineRegisterInfo &MRI = VALU->getParent()->getParent()->getRegInfo(); 446 447 const int VALUWaitStates = 1; 448 int WaitStatesNeeded = 0; 449 450 for (const MachineOperand &Def : VALU->defs()) { 451 if (!TRI->isVGPR(MRI, Def.getReg())) 452 continue; 453 unsigned Reg = Def.getReg(); 454 auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) { 455 int DataIdx = createsVALUHazard(*MI); 456 return DataIdx >= 0 && 457 TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg); 458 }; 459 int WaitStatesNeededForDef = 460 VALUWaitStates - getWaitStatesSince(IsHazardFn); 461 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 462 } 463 return WaitStatesNeeded; 464 } 465 466 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 467 const SIInstrInfo *TII = ST.getInstrInfo(); 468 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 469 const MachineRegisterInfo &MRI = 470 RWLane->getParent()->getParent()->getRegInfo(); 471 472 const MachineOperand *LaneSelectOp = 473 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 474 475 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 476 return 0; 477 478 unsigned LaneSelectReg = LaneSelectOp->getReg(); 479 auto IsHazardFn = [TII] (MachineInstr *MI) { 480 return TII->isVALU(*MI); 481 }; 482 483 const int RWLaneWaitStates = 4; 484 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn); 485 return RWLaneWaitStates - WaitStatesSince; 486 } 487 488 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 489 490 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 491 return 0; 492 493 const SIInstrInfo *TII = ST.getInstrInfo(); 494 495 const int RFEWaitStates = 1; 496 497 auto IsHazardFn = [TII] (MachineInstr *MI) { 498 return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS; 499 }; 500 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 501 return RFEWaitStates - WaitStatesNeeded; 502 } 503