1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "AMDGPUSubtarget.h" 15 #include "SIDefines.h" 16 #include "SIInstrInfo.h" 17 #include "SIRegisterInfo.h" 18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/ScheduleDAG.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <limits> 31 #include <set> 32 #include <vector> 33 34 using namespace llvm; 35 36 //===----------------------------------------------------------------------===// 37 // Hazard Recoginizer Implementation 38 //===----------------------------------------------------------------------===// 39 40 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 41 IsHazardRecognizerMode(false), 42 CurrCycleInstr(nullptr), 43 MF(MF), 44 ST(MF.getSubtarget<GCNSubtarget>()), 45 TII(*ST.getInstrInfo()), 46 TRI(TII.getRegisterInfo()), 47 ClauseUses(TRI.getNumRegUnits()), 48 ClauseDefs(TRI.getNumRegUnits()) { 49 MaxLookAhead = 5; 50 } 51 52 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 53 EmitInstruction(SU->getInstr()); 54 } 55 56 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 57 CurrCycleInstr = MI; 58 } 59 60 static bool isDivFMas(unsigned Opcode) { 61 return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64; 62 } 63 64 static bool isSGetReg(unsigned Opcode) { 65 return Opcode == AMDGPU::S_GETREG_B32; 66 } 67 68 static bool isSSetReg(unsigned Opcode) { 69 return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32; 70 } 71 72 static bool isRWLane(unsigned Opcode) { 73 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 74 } 75 76 static bool isRFE(unsigned Opcode) { 77 return Opcode == AMDGPU::S_RFE_B64; 78 } 79 80 static bool isSMovRel(unsigned Opcode) { 81 switch (Opcode) { 82 case AMDGPU::S_MOVRELS_B32: 83 case AMDGPU::S_MOVRELS_B64: 84 case AMDGPU::S_MOVRELD_B32: 85 case AMDGPU::S_MOVRELD_B64: 86 return true; 87 default: 88 return false; 89 } 90 } 91 92 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 93 const MachineInstr &MI) { 94 if (TII.isAlwaysGDS(MI.getOpcode())) 95 return true; 96 97 switch (MI.getOpcode()) { 98 case AMDGPU::S_SENDMSG: 99 case AMDGPU::S_SENDMSGHALT: 100 case AMDGPU::S_TTRACEDATA: 101 return true; 102 // These DS opcodes don't support GDS. 103 case AMDGPU::DS_NOP: 104 case AMDGPU::DS_PERMUTE_B32: 105 case AMDGPU::DS_BPERMUTE_B32: 106 return false; 107 default: 108 if (TII.isDS(MI.getOpcode())) { 109 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 110 AMDGPU::OpName::gds); 111 if (MI.getOperand(GDS).getImm()) 112 return true; 113 } 114 return false; 115 } 116 } 117 118 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 119 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 120 AMDGPU::OpName::simm16); 121 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 122 } 123 124 ScheduleHazardRecognizer::HazardType 125 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 126 MachineInstr *MI = SU->getInstr(); 127 if (MI->isBundle()) 128 return NoHazard; 129 130 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 131 return NoopHazard; 132 133 // FIXME: Should flat be considered vmem? 134 if ((SIInstrInfo::isVMEM(*MI) || 135 SIInstrInfo::isFLAT(*MI)) 136 && checkVMEMHazards(MI) > 0) 137 return NoopHazard; 138 139 if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) 140 return NoopHazard; 141 142 if (ST.hasNoDataDepHazard()) 143 return NoHazard; 144 145 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 146 return NoopHazard; 147 148 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 149 return NoopHazard; 150 151 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 152 return NoopHazard; 153 154 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 155 return NoopHazard; 156 157 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 158 return NoopHazard; 159 160 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 161 return NoopHazard; 162 163 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 164 return NoopHazard; 165 166 if (ST.hasReadM0MovRelInterpHazard() && 167 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) && 168 checkReadM0Hazards(MI) > 0) 169 return NoopHazard; 170 171 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) && 172 checkReadM0Hazards(MI) > 0) 173 return NoopHazard; 174 175 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 176 return NoopHazard; 177 178 if (checkAnyInstHazards(MI) > 0) 179 return NoopHazard; 180 181 return NoHazard; 182 } 183 184 static void insertNoopInBundle(MachineInstr *MI, const SIInstrInfo &TII) { 185 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP)) 186 .addImm(0); 187 } 188 189 void GCNHazardRecognizer::processBundle() { 190 MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator()); 191 MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); 192 // Check bundled MachineInstr's for hazards. 193 for (; MI != E && MI->isInsideBundle(); ++MI) { 194 CurrCycleInstr = &*MI; 195 unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); 196 197 if (IsHazardRecognizerMode) 198 fixHazards(CurrCycleInstr); 199 200 for (unsigned i = 0; i < WaitStates; ++i) 201 insertNoopInBundle(CurrCycleInstr, TII); 202 203 // It’s unnecessary to track more than MaxLookAhead instructions. Since we 204 // include the bundled MI directly after, only add a maximum of 205 // (MaxLookAhead - 1) noops to EmittedInstrs. 206 for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i) 207 EmittedInstrs.push_front(nullptr); 208 209 EmittedInstrs.push_front(CurrCycleInstr); 210 EmittedInstrs.resize(MaxLookAhead); 211 } 212 CurrCycleInstr = nullptr; 213 } 214 215 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) { 216 IsHazardRecognizerMode = false; 217 return PreEmitNoopsCommon(SU->getInstr()); 218 } 219 220 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 221 IsHazardRecognizerMode = true; 222 CurrCycleInstr = MI; 223 unsigned W = PreEmitNoopsCommon(MI); 224 fixHazards(MI); 225 CurrCycleInstr = nullptr; 226 return W; 227 } 228 229 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 230 if (MI->isBundle()) 231 return 0; 232 233 int WaitStates = std::max(0, checkAnyInstHazards(MI)); 234 235 if (SIInstrInfo::isSMRD(*MI)) 236 return std::max(WaitStates, checkSMRDHazards(MI)); 237 238 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 239 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 240 241 if (ST.hasNSAtoVMEMBug()) 242 WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI)); 243 244 if (ST.hasNoDataDepHazard()) 245 return WaitStates; 246 247 if (SIInstrInfo::isVALU(*MI)) 248 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 249 250 if (SIInstrInfo::isDPP(*MI)) 251 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 252 253 if (isDivFMas(MI->getOpcode())) 254 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 255 256 if (isRWLane(MI->getOpcode())) 257 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 258 259 if (MI->isInlineAsm()) 260 return std::max(WaitStates, checkInlineAsmHazards(MI)); 261 262 if (isSGetReg(MI->getOpcode())) 263 return std::max(WaitStates, checkGetRegHazards(MI)); 264 265 if (isSSetReg(MI->getOpcode())) 266 return std::max(WaitStates, checkSetRegHazards(MI)); 267 268 if (isRFE(MI->getOpcode())) 269 return std::max(WaitStates, checkRFEHazards(MI)); 270 271 if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) || 272 isSMovRel(MI->getOpcode()))) 273 return std::max(WaitStates, checkReadM0Hazards(MI)); 274 275 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) 276 return std::max(WaitStates, checkReadM0Hazards(MI)); 277 278 return WaitStates; 279 } 280 281 void GCNHazardRecognizer::EmitNoop() { 282 EmittedInstrs.push_front(nullptr); 283 } 284 285 void GCNHazardRecognizer::AdvanceCycle() { 286 // When the scheduler detects a stall, it will call AdvanceCycle() without 287 // emitting any instructions. 288 if (!CurrCycleInstr) 289 return; 290 291 // Do not track non-instructions which do not affect the wait states. 292 // If included, these instructions can lead to buffer overflow such that 293 // detectable hazards are missed. 294 if (CurrCycleInstr->isImplicitDef() || CurrCycleInstr->isDebugInstr() || 295 CurrCycleInstr->isKill()) 296 return; 297 298 if (CurrCycleInstr->isBundle()) { 299 processBundle(); 300 return; 301 } 302 303 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 304 305 // Keep track of emitted instructions 306 EmittedInstrs.push_front(CurrCycleInstr); 307 308 // Add a nullptr for each additional wait state after the first. Make sure 309 // not to add more than getMaxLookAhead() items to the list, since we 310 // truncate the list to that size right after this loop. 311 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 312 i < e; ++i) { 313 EmittedInstrs.push_front(nullptr); 314 } 315 316 // getMaxLookahead() is the largest number of wait states we will ever need 317 // to insert, so there is no point in keeping track of more than that many 318 // wait states. 319 EmittedInstrs.resize(getMaxLookAhead()); 320 321 CurrCycleInstr = nullptr; 322 } 323 324 void GCNHazardRecognizer::RecedeCycle() { 325 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 326 } 327 328 //===----------------------------------------------------------------------===// 329 // Helper Functions 330 //===----------------------------------------------------------------------===// 331 332 typedef function_ref<bool(MachineInstr *, int WaitStates)> IsExpiredFn; 333 334 // Returns a minimum wait states since \p I walking all predecessors. 335 // Only scans until \p IsExpired does not return true. 336 // Can only be run in a hazard recognizer mode. 337 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 338 MachineBasicBlock *MBB, 339 MachineBasicBlock::reverse_instr_iterator I, 340 int WaitStates, 341 IsExpiredFn IsExpired, 342 DenseSet<const MachineBasicBlock *> &Visited) { 343 for (auto E = MBB->instr_rend(); I != E; ++I) { 344 // Don't add WaitStates for parent BUNDLE instructions. 345 if (I->isBundle()) 346 continue; 347 348 if (IsHazard(&*I)) 349 return WaitStates; 350 351 if (I->isInlineAsm() || I->isImplicitDef() || I->isDebugInstr()) 352 continue; 353 354 WaitStates += SIInstrInfo::getNumWaitStates(*I); 355 356 if (IsExpired(&*I, WaitStates)) 357 return std::numeric_limits<int>::max(); 358 } 359 360 int MinWaitStates = WaitStates; 361 bool Found = false; 362 for (MachineBasicBlock *Pred : MBB->predecessors()) { 363 if (!Visited.insert(Pred).second) 364 continue; 365 366 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), 367 WaitStates, IsExpired, Visited); 368 369 if (W == std::numeric_limits<int>::max()) 370 continue; 371 372 MinWaitStates = Found ? std::min(MinWaitStates, W) : W; 373 if (IsExpired(nullptr, MinWaitStates)) 374 return MinWaitStates; 375 376 Found = true; 377 } 378 379 if (Found) 380 return MinWaitStates; 381 382 return std::numeric_limits<int>::max(); 383 } 384 385 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 386 MachineInstr *MI, 387 IsExpiredFn IsExpired) { 388 DenseSet<const MachineBasicBlock *> Visited; 389 return getWaitStatesSince(IsHazard, MI->getParent(), 390 std::next(MI->getReverseIterator()), 391 0, IsExpired, Visited); 392 } 393 394 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 395 if (IsHazardRecognizerMode) { 396 auto IsExpiredFn = [Limit] (MachineInstr *, int WaitStates) { 397 return WaitStates >= Limit; 398 }; 399 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 400 } 401 402 int WaitStates = 0; 403 for (MachineInstr *MI : EmittedInstrs) { 404 if (MI) { 405 if (IsHazard(MI)) 406 return WaitStates; 407 408 if (MI->isInlineAsm()) 409 continue; 410 } 411 ++WaitStates; 412 413 if (WaitStates >= Limit) 414 break; 415 } 416 return std::numeric_limits<int>::max(); 417 } 418 419 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 420 IsHazardFn IsHazardDef, 421 int Limit) { 422 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 423 424 auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) { 425 return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI); 426 }; 427 428 return getWaitStatesSince(IsHazardFn, Limit); 429 } 430 431 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 432 int Limit) { 433 auto IsHazardFn = [IsHazard] (MachineInstr *MI) { 434 return isSSetReg(MI->getOpcode()) && IsHazard(MI); 435 }; 436 437 return getWaitStatesSince(IsHazardFn, Limit); 438 } 439 440 //===----------------------------------------------------------------------===// 441 // No-op Hazard Detection 442 //===----------------------------------------------------------------------===// 443 444 static void addRegUnits(const SIRegisterInfo &TRI, 445 BitVector &BV, unsigned Reg) { 446 for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI) 447 BV.set(*RUI); 448 } 449 450 static void addRegsToSet(const SIRegisterInfo &TRI, 451 iterator_range<MachineInstr::const_mop_iterator> Ops, 452 BitVector &Set) { 453 for (const MachineOperand &Op : Ops) { 454 if (Op.isReg()) 455 addRegUnits(TRI, Set, Op.getReg()); 456 } 457 } 458 459 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 460 // XXX: Do we need to worry about implicit operands 461 addRegsToSet(TRI, MI.defs(), ClauseDefs); 462 addRegsToSet(TRI, MI.uses(), ClauseUses); 463 } 464 465 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 466 // SMEM soft clause are only present on VI+, and only matter if xnack is 467 // enabled. 468 if (!ST.isXNACKEnabled()) 469 return 0; 470 471 bool IsSMRD = TII.isSMRD(*MEM); 472 473 resetClause(); 474 475 // A soft-clause is any group of consecutive SMEM instructions. The 476 // instructions in this group may return out of order and/or may be 477 // replayed (i.e. the same instruction issued more than once). 478 // 479 // In order to handle these situations correctly we need to make sure that 480 // when a clause has more than one instruction, no instruction in the clause 481 // writes to a register that is read by another instruction in the clause 482 // (including itself). If we encounter this situaion, we need to break the 483 // clause by inserting a non SMEM instruction. 484 485 for (MachineInstr *MI : EmittedInstrs) { 486 // When we hit a non-SMEM instruction then we have passed the start of the 487 // clause and we can stop. 488 if (!MI) 489 break; 490 491 if (IsSMRD != SIInstrInfo::isSMRD(*MI)) 492 break; 493 494 addClauseInst(*MI); 495 } 496 497 if (ClauseDefs.none()) 498 return 0; 499 500 // We need to make sure not to put loads and stores in the same clause if they 501 // use the same address. For now, just start a new clause whenever we see a 502 // store. 503 if (MEM->mayStore()) 504 return 1; 505 506 addClauseInst(*MEM); 507 508 // If the set of defs and uses intersect then we cannot add this instruction 509 // to the clause, so we have a hazard. 510 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 511 } 512 513 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 514 int WaitStatesNeeded = 0; 515 516 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 517 518 // This SMRD hazard only affects SI. 519 if (ST.getGeneration() != AMDGPUSubtarget::SOUTHERN_ISLANDS) 520 return WaitStatesNeeded; 521 522 // A read of an SGPR by SMRD instruction requires 4 wait states when the 523 // SGPR was written by a VALU instruction. 524 int SmrdSgprWaitStates = 4; 525 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 526 auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); }; 527 528 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 529 530 for (const MachineOperand &Use : SMRD->uses()) { 531 if (!Use.isReg()) 532 continue; 533 int WaitStatesNeededForUse = 534 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 535 SmrdSgprWaitStates); 536 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 537 538 // This fixes what appears to be undocumented hardware behavior in SI where 539 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 540 // needs some number of nops in between. We don't know how many we need, but 541 // let's use 4. This wasn't discovered before probably because the only 542 // case when this happens is when we expand a 64-bit pointer into a full 543 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 544 // probably never encountered in the closed-source land. 545 if (IsBufferSMRD) { 546 int WaitStatesNeededForUse = 547 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 548 IsBufferHazardDefFn, 549 SmrdSgprWaitStates); 550 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 551 } 552 } 553 554 return WaitStatesNeeded; 555 } 556 557 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 558 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 559 return 0; 560 561 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 562 563 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 564 // SGPR was written by a VALU Instruction. 565 const int VmemSgprWaitStates = 5; 566 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 567 for (const MachineOperand &Use : VMEM->uses()) { 568 if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 569 continue; 570 571 int WaitStatesNeededForUse = 572 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 573 VmemSgprWaitStates); 574 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 575 } 576 return WaitStatesNeeded; 577 } 578 579 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 580 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 581 const SIInstrInfo *TII = ST.getInstrInfo(); 582 583 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 584 int DppVgprWaitStates = 2; 585 int DppExecWaitStates = 5; 586 int WaitStatesNeeded = 0; 587 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 588 589 for (const MachineOperand &Use : DPP->uses()) { 590 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 591 continue; 592 int WaitStatesNeededForUse = 593 DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 594 [](MachineInstr *) { return true; }, 595 DppVgprWaitStates); 596 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 597 } 598 599 WaitStatesNeeded = std::max( 600 WaitStatesNeeded, 601 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 602 DppExecWaitStates)); 603 604 return WaitStatesNeeded; 605 } 606 607 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 608 const SIInstrInfo *TII = ST.getInstrInfo(); 609 610 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 611 // instruction. 612 const int DivFMasWaitStates = 4; 613 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 614 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 615 DivFMasWaitStates); 616 617 return DivFMasWaitStates - WaitStatesNeeded; 618 } 619 620 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 621 const SIInstrInfo *TII = ST.getInstrInfo(); 622 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 623 624 const int GetRegWaitStates = 2; 625 auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) { 626 return GetRegHWReg == getHWReg(TII, *MI); 627 }; 628 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 629 630 return GetRegWaitStates - WaitStatesNeeded; 631 } 632 633 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 634 const SIInstrInfo *TII = ST.getInstrInfo(); 635 unsigned HWReg = getHWReg(TII, *SetRegInstr); 636 637 const int SetRegWaitStates = 638 ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2; 639 auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) { 640 return HWReg == getHWReg(TII, *MI); 641 }; 642 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 643 return SetRegWaitStates - WaitStatesNeeded; 644 } 645 646 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 647 if (!MI.mayStore()) 648 return -1; 649 650 const SIInstrInfo *TII = ST.getInstrInfo(); 651 unsigned Opcode = MI.getOpcode(); 652 const MCInstrDesc &Desc = MI.getDesc(); 653 654 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 655 int VDataRCID = -1; 656 if (VDataIdx != -1) 657 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 658 659 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 660 // There is no hazard if the instruction does not use vector regs 661 // (like wbinvl1) 662 if (VDataIdx == -1) 663 return -1; 664 // For MUBUF/MTBUF instructions this hazard only exists if the 665 // instruction is not using a register in the soffset field. 666 const MachineOperand *SOffset = 667 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 668 // If we have no soffset operand, then assume this field has been 669 // hardcoded to zero. 670 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 671 (!SOffset || !SOffset->isReg())) 672 return VDataIdx; 673 } 674 675 // MIMG instructions create a hazard if they don't use a 256-bit T# and 676 // the store size is greater than 8 bytes and they have more than two bits 677 // of their dmask set. 678 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 679 if (TII->isMIMG(MI)) { 680 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 681 assert(SRsrcIdx != -1 && 682 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 683 (void)SRsrcIdx; 684 } 685 686 if (TII->isFLAT(MI)) { 687 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 688 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 689 return DataIdx; 690 } 691 692 return -1; 693 } 694 695 int GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 696 const MachineRegisterInfo &MRI) { 697 // Helper to check for the hazard where VMEM instructions that store more than 698 // 8 bytes can have there store data over written by the next instruction. 699 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 700 701 const int VALUWaitStates = 1; 702 int WaitStatesNeeded = 0; 703 704 if (!TRI->isVGPR(MRI, Def.getReg())) 705 return WaitStatesNeeded; 706 unsigned Reg = Def.getReg(); 707 auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) { 708 int DataIdx = createsVALUHazard(*MI); 709 return DataIdx >= 0 && 710 TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg); 711 }; 712 int WaitStatesNeededForDef = 713 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 714 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 715 716 return WaitStatesNeeded; 717 } 718 719 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 720 // This checks for the hazard where VMEM instructions that store more than 721 // 8 bytes can have there store data over written by the next instruction. 722 if (!ST.has12DWordStoreHazard()) 723 return 0; 724 725 const MachineRegisterInfo &MRI = MF.getRegInfo(); 726 int WaitStatesNeeded = 0; 727 728 for (const MachineOperand &Def : VALU->defs()) { 729 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 730 } 731 732 return WaitStatesNeeded; 733 } 734 735 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 736 // This checks for hazards associated with inline asm statements. 737 // Since inline asms can contain just about anything, we use this 738 // to call/leverage other check*Hazard routines. Note that 739 // this function doesn't attempt to address all possible inline asm 740 // hazards (good luck), but is a collection of what has been 741 // problematic thus far. 742 743 // see checkVALUHazards() 744 if (!ST.has12DWordStoreHazard()) 745 return 0; 746 747 const MachineRegisterInfo &MRI = MF.getRegInfo(); 748 int WaitStatesNeeded = 0; 749 750 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands(); 751 I != E; ++I) { 752 const MachineOperand &Op = IA->getOperand(I); 753 if (Op.isReg() && Op.isDef()) { 754 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 755 } 756 } 757 758 return WaitStatesNeeded; 759 } 760 761 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 762 const SIInstrInfo *TII = ST.getInstrInfo(); 763 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 764 const MachineRegisterInfo &MRI = MF.getRegInfo(); 765 766 const MachineOperand *LaneSelectOp = 767 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 768 769 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 770 return 0; 771 772 unsigned LaneSelectReg = LaneSelectOp->getReg(); 773 auto IsHazardFn = [TII] (MachineInstr *MI) { 774 return TII->isVALU(*MI); 775 }; 776 777 const int RWLaneWaitStates = 4; 778 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 779 RWLaneWaitStates); 780 return RWLaneWaitStates - WaitStatesSince; 781 } 782 783 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 784 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 785 return 0; 786 787 const SIInstrInfo *TII = ST.getInstrInfo(); 788 789 const int RFEWaitStates = 1; 790 791 auto IsHazardFn = [TII] (MachineInstr *MI) { 792 return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS; 793 }; 794 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 795 return RFEWaitStates - WaitStatesNeeded; 796 } 797 798 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) { 799 if (MI->isDebugInstr()) 800 return 0; 801 802 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 803 if (!ST.hasSMovFedHazard()) 804 return 0; 805 806 // Check for any instruction reading an SGPR after a write from 807 // s_mov_fed_b32. 808 int MovFedWaitStates = 1; 809 int WaitStatesNeeded = 0; 810 811 for (const MachineOperand &Use : MI->uses()) { 812 if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 813 continue; 814 auto IsHazardFn = [] (MachineInstr *MI) { 815 return MI->getOpcode() == AMDGPU::S_MOV_FED_B32; 816 }; 817 int WaitStatesNeededForUse = 818 MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn, 819 MovFedWaitStates); 820 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 821 } 822 823 return WaitStatesNeeded; 824 } 825 826 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 827 const SIInstrInfo *TII = ST.getInstrInfo(); 828 const int SMovRelWaitStates = 1; 829 auto IsHazardFn = [TII] (MachineInstr *MI) { 830 return TII->isSALU(*MI); 831 }; 832 return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, 833 SMovRelWaitStates); 834 } 835 836 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { 837 fixVMEMtoScalarWriteHazards(MI); 838 fixSMEMtoVectorWriteHazards(MI); 839 fixVcmpxExecWARHazard(MI); 840 fixLdsBranchVmemWARHazard(MI); 841 } 842 843 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { 844 if (!ST.hasVMEMtoScalarWriteHazard()) 845 return false; 846 847 if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI)) 848 return false; 849 850 if (MI->getNumDefs() == 0) 851 return false; 852 853 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 854 855 auto IsHazardFn = [TRI, MI] (MachineInstr *I) { 856 if (!SIInstrInfo::isVMEM(*I) && !SIInstrInfo::isDS(*I) && 857 !SIInstrInfo::isFLAT(*I)) 858 return false; 859 860 for (const MachineOperand &Def : MI->defs()) { 861 MachineOperand *Op = I->findRegisterUseOperand(Def.getReg(), false, TRI); 862 if (!Op || (Op->isImplicit() && Op->getReg() == AMDGPU::EXEC)) 863 continue; 864 return true; 865 } 866 return false; 867 }; 868 869 auto IsExpiredFn = [] (MachineInstr *MI, int) { 870 return MI && (SIInstrInfo::isVALU(*MI) || 871 (MI->getOpcode() == AMDGPU::S_WAITCNT && 872 !MI->getOperand(0).getImm())); 873 }; 874 875 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 876 std::numeric_limits<int>::max()) 877 return false; 878 879 const SIInstrInfo *TII = ST.getInstrInfo(); 880 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32)); 881 return true; 882 } 883 884 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { 885 if (!ST.hasSMEMtoVectorWriteHazard()) 886 return false; 887 888 if (!SIInstrInfo::isVALU(*MI)) 889 return false; 890 891 unsigned SDSTName; 892 switch (MI->getOpcode()) { 893 case AMDGPU::V_READLANE_B32: 894 case AMDGPU::V_READFIRSTLANE_B32: 895 SDSTName = AMDGPU::OpName::vdst; 896 break; 897 default: 898 SDSTName = AMDGPU::OpName::sdst; 899 break; 900 } 901 902 const SIInstrInfo *TII = ST.getInstrInfo(); 903 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 904 const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName); 905 if (!SDST) { 906 for (const auto &MO : MI->implicit_operands()) { 907 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) { 908 SDST = &MO; 909 break; 910 } 911 } 912 } 913 914 if (!SDST) 915 return false; 916 917 const unsigned SDSTReg = SDST->getReg(); 918 auto IsHazardFn = [SDSTReg, TRI] (MachineInstr *I) { 919 return SIInstrInfo::isSMRD(*I) && I->readsRegister(SDSTReg, TRI); 920 }; 921 922 // This assumes that there will be s_waitcnt lgkmcnt(0) or equivalent 923 // between any at risk SMEM and any SALU dependent on the SMEM results. 924 auto IsExpiredFn = [TII] (MachineInstr *MI, int) { 925 if (MI) { 926 if (TII->isSALU(*MI)) { 927 if (TII->isSOPP(*MI)) 928 return false; 929 switch (MI->getOpcode()) { 930 case AMDGPU::S_SETVSKIP: 931 case AMDGPU::S_VERSION: 932 case AMDGPU::S_WAITCNT_VSCNT: 933 case AMDGPU::S_WAITCNT_VMCNT: 934 case AMDGPU::S_WAITCNT_EXPCNT: 935 case AMDGPU::S_WAITCNT_LGKMCNT: 936 return false; 937 default: 938 return true; 939 } 940 } 941 } 942 return false; 943 }; 944 945 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 946 std::numeric_limits<int>::max()) 947 return false; 948 949 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 950 TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL) 951 .addImm(0); 952 return true; 953 } 954 955 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { 956 if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI)) 957 return false; 958 959 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 960 if (!MI->modifiesRegister(AMDGPU::EXEC, TRI)) 961 return false; 962 963 auto IsHazardFn = [TRI] (MachineInstr *I) { 964 if (SIInstrInfo::isVALU(*I)) 965 return false; 966 return I->readsRegister(AMDGPU::EXEC, TRI); 967 }; 968 969 const SIInstrInfo *TII = ST.getInstrInfo(); 970 auto IsExpiredFn = [TII, TRI] (MachineInstr *MI, int) { 971 if (!MI) 972 return false; 973 if (SIInstrInfo::isVALU(*MI)) { 974 if (TII->getNamedOperand(*MI, AMDGPU::OpName::sdst)) 975 return true; 976 for (auto MO : MI->implicit_operands()) 977 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) 978 return true; 979 } 980 if (MI->getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 981 (MI->getOperand(0).getImm() & 0xfffe) == 0xfffe) 982 return true; 983 return false; 984 }; 985 986 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 987 std::numeric_limits<int>::max()) 988 return false; 989 990 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 991 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 992 .addImm(0xfffe); 993 return true; 994 } 995 996 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { 997 if (!ST.hasLdsBranchVmemWARHazard()) 998 return false; 999 1000 auto IsHazardInst = [] (const MachineInstr *MI) { 1001 if (SIInstrInfo::isDS(*MI)) 1002 return 1; 1003 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isSegmentSpecificFLAT(*MI)) 1004 return 2; 1005 return 0; 1006 }; 1007 1008 auto InstType = IsHazardInst(MI); 1009 if (!InstType) 1010 return false; 1011 1012 auto IsExpiredFn = [&IsHazardInst] (MachineInstr *I, int) { 1013 return I && (IsHazardInst(I) || 1014 (I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1015 I->getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1016 !I->getOperand(1).getImm())); 1017 }; 1018 1019 auto IsHazardFn = [InstType, &IsHazardInst] (MachineInstr *I) { 1020 if (!I->isBranch()) 1021 return false; 1022 1023 auto IsHazardFn = [InstType, IsHazardInst] (MachineInstr *I) { 1024 auto InstType2 = IsHazardInst(I); 1025 return InstType2 && InstType != InstType2; 1026 }; 1027 1028 auto IsExpiredFn = [InstType, &IsHazardInst] (MachineInstr *I, int) { 1029 if (!I) 1030 return false; 1031 1032 auto InstType2 = IsHazardInst(I); 1033 if (InstType == InstType2) 1034 return true; 1035 1036 return I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1037 I->getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1038 !I->getOperand(1).getImm(); 1039 }; 1040 1041 return ::getWaitStatesSince(IsHazardFn, I, IsExpiredFn) != 1042 std::numeric_limits<int>::max(); 1043 }; 1044 1045 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1046 std::numeric_limits<int>::max()) 1047 return false; 1048 1049 const SIInstrInfo *TII = ST.getInstrInfo(); 1050 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1051 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1052 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1053 .addImm(0); 1054 1055 return true; 1056 } 1057 1058 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { 1059 int NSAtoVMEMWaitStates = 1; 1060 1061 if (!ST.hasNSAtoVMEMBug()) 1062 return 0; 1063 1064 if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI)) 1065 return 0; 1066 1067 const SIInstrInfo *TII = ST.getInstrInfo(); 1068 const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset); 1069 if (!Offset || (Offset->getImm() & 6) == 0) 1070 return 0; 1071 1072 auto IsHazardFn = [TII] (MachineInstr *I) { 1073 if (!SIInstrInfo::isMIMG(*I)) 1074 return false; 1075 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I->getOpcode()); 1076 return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && 1077 TII->getInstSizeInBytes(*I) >= 16; 1078 }; 1079 1080 return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1); 1081 } 1082