1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "GCNSubtarget.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "SIMachineFunctionInfo.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/ScheduleDAG.h" 20 #include "llvm/TargetParser/TargetParser.h" 21 22 using namespace llvm; 23 24 namespace { 25 26 struct MFMAPaddingRatioParser : public cl::parser<unsigned> { 27 MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {} 28 29 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 30 if (Arg.getAsInteger(0, Value)) 31 return O.error("'" + Arg + "' value invalid for uint argument!"); 32 33 if (Value > 100) 34 return O.error("'" + Arg + "' value must be in the range [0, 100]!"); 35 36 return false; 37 } 38 }; 39 40 } // end anonymous namespace 41 42 static cl::opt<unsigned, false, MFMAPaddingRatioParser> 43 MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden, 44 cl::desc("Fill a percentage of the latency between " 45 "neighboring MFMA with s_nops.")); 46 47 //===----------------------------------------------------------------------===// 48 // Hazard Recognizer Implementation 49 //===----------------------------------------------------------------------===// 50 51 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 52 const GCNSubtarget &ST); 53 54 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 55 IsHazardRecognizerMode(false), 56 CurrCycleInstr(nullptr), 57 MF(MF), 58 ST(MF.getSubtarget<GCNSubtarget>()), 59 TII(*ST.getInstrInfo()), 60 TRI(TII.getRegisterInfo()), 61 ClauseUses(TRI.getNumRegUnits()), 62 ClauseDefs(TRI.getNumRegUnits()) { 63 MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5; 64 TSchedModel.init(&ST); 65 RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST); 66 } 67 68 void GCNHazardRecognizer::Reset() { 69 EmittedInstrs.clear(); 70 } 71 72 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 73 EmitInstruction(SU->getInstr()); 74 } 75 76 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 77 CurrCycleInstr = MI; 78 } 79 80 static bool isDivFMas(unsigned Opcode) { 81 return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64; 82 } 83 84 static bool isSGetReg(unsigned Opcode) { 85 return Opcode == AMDGPU::S_GETREG_B32; 86 } 87 88 static bool isSSetReg(unsigned Opcode) { 89 switch (Opcode) { 90 case AMDGPU::S_SETREG_B32: 91 case AMDGPU::S_SETREG_B32_mode: 92 case AMDGPU::S_SETREG_IMM32_B32: 93 case AMDGPU::S_SETREG_IMM32_B32_mode: 94 return true; 95 } 96 return false; 97 } 98 99 static bool isRWLane(unsigned Opcode) { 100 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 101 } 102 103 static bool isRFE(unsigned Opcode) { 104 return Opcode == AMDGPU::S_RFE_B64; 105 } 106 107 static bool isSMovRel(unsigned Opcode) { 108 switch (Opcode) { 109 case AMDGPU::S_MOVRELS_B32: 110 case AMDGPU::S_MOVRELS_B64: 111 case AMDGPU::S_MOVRELD_B32: 112 case AMDGPU::S_MOVRELD_B64: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static bool isDGEMM(unsigned Opcode) { 120 return AMDGPU::getMAIIsDGEMM(Opcode); 121 } 122 123 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) { 124 unsigned Opcode = MI.getOpcode(); 125 126 if (!SIInstrInfo::isMAI(MI) || 127 isDGEMM(Opcode) || 128 Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 129 Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64) 130 return false; 131 132 if (!ST.hasGFX940Insts()) 133 return true; 134 135 return AMDGPU::getMAIIsGFX940XDL(Opcode); 136 } 137 138 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 139 const MachineInstr &MI) { 140 if (TII.isAlwaysGDS(MI.getOpcode())) 141 return true; 142 143 switch (MI.getOpcode()) { 144 case AMDGPU::S_SENDMSG: 145 case AMDGPU::S_SENDMSGHALT: 146 case AMDGPU::S_TTRACEDATA: 147 return true; 148 // These DS opcodes don't support GDS. 149 case AMDGPU::DS_NOP: 150 case AMDGPU::DS_PERMUTE_B32: 151 case AMDGPU::DS_BPERMUTE_B32: 152 return false; 153 default: 154 if (TII.isDS(MI.getOpcode())) { 155 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 156 AMDGPU::OpName::gds); 157 if (MI.getOperand(GDS).getImm()) 158 return true; 159 } 160 return false; 161 } 162 } 163 164 static bool isPermlane(const MachineInstr &MI) { 165 unsigned Opcode = MI.getOpcode(); 166 return Opcode == AMDGPU::V_PERMLANE16_B32_e64 || 167 Opcode == AMDGPU::V_PERMLANE64_B32 || 168 Opcode == AMDGPU::V_PERMLANEX16_B32_e64 || 169 Opcode == AMDGPU::V_PERMLANE16_VAR_B32_e64 || 170 Opcode == AMDGPU::V_PERMLANEX16_VAR_B32_e64; 171 } 172 173 static bool isLdsDma(const MachineInstr &MI) { 174 return SIInstrInfo::isVALU(MI) && 175 (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)); 176 } 177 178 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 179 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 180 AMDGPU::OpName::simm16); 181 return std::get<0>(AMDGPU::Hwreg::HwregEncoding::decode(RegOp->getImm())); 182 } 183 184 ScheduleHazardRecognizer::HazardType 185 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 186 MachineInstr *MI = SU->getInstr(); 187 // If we are not in "HazardRecognizerMode" and therefore not being run from 188 // the scheduler, track possible stalls from hazards but don't insert noops. 189 auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard; 190 191 if (MI->isBundle()) 192 return NoHazard; 193 194 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 195 return HazardType; 196 197 if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) 198 return HazardType; 199 200 if (checkFPAtomicToDenormModeHazard(MI) > 0) 201 return HazardType; 202 203 if (ST.hasNoDataDepHazard()) 204 return NoHazard; 205 206 // FIXME: Should flat be considered vmem? 207 if ((SIInstrInfo::isVMEM(*MI) || 208 SIInstrInfo::isFLAT(*MI)) 209 && checkVMEMHazards(MI) > 0) 210 return HazardType; 211 212 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 213 return HazardType; 214 215 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 216 return HazardType; 217 218 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 219 return HazardType; 220 221 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 222 return HazardType; 223 224 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 225 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 226 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 227 return HazardType; 228 229 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 230 return HazardType; 231 232 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 233 return HazardType; 234 235 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 236 return HazardType; 237 238 if (((ST.hasReadM0MovRelInterpHazard() && 239 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 240 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 241 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 242 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 243 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 244 (ST.hasReadM0LdsDirectHazard() && 245 MI->readsRegister(AMDGPU::LDS_DIRECT, /*TRI=*/nullptr))) && 246 checkReadM0Hazards(MI) > 0) 247 return HazardType; 248 249 if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0) 250 return HazardType; 251 252 if ((SIInstrInfo::isVMEM(*MI) || 253 SIInstrInfo::isFLAT(*MI) || 254 SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0) 255 return HazardType; 256 257 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 258 return HazardType; 259 260 return NoHazard; 261 } 262 263 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII, 264 unsigned Quantity) { 265 while (Quantity > 0) { 266 unsigned Arg = std::min(Quantity, 8u); 267 Quantity -= Arg; 268 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP)) 269 .addImm(Arg - 1); 270 } 271 } 272 273 unsigned 274 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const { 275 const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI); 276 assert(TSchedModel.getWriteProcResBegin(SC) != 277 TSchedModel.getWriteProcResEnd(SC)); 278 return TSchedModel.getWriteProcResBegin(SC)->ReleaseAtCycle; 279 } 280 281 void GCNHazardRecognizer::processBundle() { 282 MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator()); 283 MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); 284 // Check bundled MachineInstr's for hazards. 285 for (; MI != E && MI->isInsideBundle(); ++MI) { 286 CurrCycleInstr = &*MI; 287 unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); 288 289 if (IsHazardRecognizerMode) { 290 fixHazards(CurrCycleInstr); 291 292 insertNoopsInBundle(CurrCycleInstr, TII, WaitStates); 293 } 294 295 // It’s unnecessary to track more than MaxLookAhead instructions. Since we 296 // include the bundled MI directly after, only add a maximum of 297 // (MaxLookAhead - 1) noops to EmittedInstrs. 298 for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i) 299 EmittedInstrs.push_front(nullptr); 300 301 EmittedInstrs.push_front(CurrCycleInstr); 302 EmittedInstrs.resize(MaxLookAhead); 303 } 304 CurrCycleInstr = nullptr; 305 } 306 307 void GCNHazardRecognizer::runOnInstruction(MachineInstr *MI) { 308 assert(IsHazardRecognizerMode); 309 310 unsigned NumPreNoops = PreEmitNoops(MI); 311 EmitNoops(NumPreNoops); 312 if (MI->isInsideBundle()) 313 insertNoopsInBundle(MI, TII, NumPreNoops); 314 else 315 TII.insertNoops(*MI->getParent(), MachineBasicBlock::iterator(MI), 316 NumPreNoops); 317 EmitInstruction(MI); 318 AdvanceCycle(); 319 } 320 321 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 322 IsHazardRecognizerMode = true; 323 CurrCycleInstr = MI; 324 unsigned W = PreEmitNoopsCommon(MI); 325 fixHazards(MI); 326 CurrCycleInstr = nullptr; 327 return W; 328 } 329 330 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 331 if (MI->isBundle()) 332 return 0; 333 334 int WaitStates = 0; 335 336 if (SIInstrInfo::isSMRD(*MI)) 337 return std::max(WaitStates, checkSMRDHazards(MI)); 338 339 if (ST.hasNSAtoVMEMBug()) 340 WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI)); 341 342 WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI)); 343 344 if (ST.hasNoDataDepHazard()) 345 return WaitStates; 346 347 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 348 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 349 350 if (SIInstrInfo::isVALU(*MI)) 351 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 352 353 if (SIInstrInfo::isDPP(*MI)) 354 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 355 356 if (isDivFMas(MI->getOpcode())) 357 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 358 359 if (isRWLane(MI->getOpcode())) 360 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 361 362 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 363 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 364 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 365 WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI)); 366 367 if (MI->isInlineAsm()) 368 return std::max(WaitStates, checkInlineAsmHazards(MI)); 369 370 if (isSGetReg(MI->getOpcode())) 371 return std::max(WaitStates, checkGetRegHazards(MI)); 372 373 if (isSSetReg(MI->getOpcode())) 374 return std::max(WaitStates, checkSetRegHazards(MI)); 375 376 if (isRFE(MI->getOpcode())) 377 return std::max(WaitStates, checkRFEHazards(MI)); 378 379 if ((ST.hasReadM0MovRelInterpHazard() && 380 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 381 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 382 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 383 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 384 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 385 (ST.hasReadM0LdsDirectHazard() && 386 MI->readsRegister(AMDGPU::LDS_DIRECT, /*TRI=*/nullptr))) 387 return std::max(WaitStates, checkReadM0Hazards(MI)); 388 389 if (SIInstrInfo::isMAI(*MI)) 390 return std::max(WaitStates, checkMAIHazards(MI)); 391 392 if (SIInstrInfo::isVMEM(*MI) || 393 SIInstrInfo::isFLAT(*MI) || 394 SIInstrInfo::isDS(*MI)) 395 return std::max(WaitStates, checkMAILdStHazards(MI)); 396 397 return WaitStates; 398 } 399 400 void GCNHazardRecognizer::EmitNoop() { 401 EmittedInstrs.push_front(nullptr); 402 } 403 404 void GCNHazardRecognizer::AdvanceCycle() { 405 // When the scheduler detects a stall, it will call AdvanceCycle() without 406 // emitting any instructions. 407 if (!CurrCycleInstr) { 408 EmittedInstrs.push_front(nullptr); 409 return; 410 } 411 412 if (CurrCycleInstr->isBundle()) { 413 processBundle(); 414 return; 415 } 416 417 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 418 if (!NumWaitStates) { 419 CurrCycleInstr = nullptr; 420 return; 421 } 422 423 // Keep track of emitted instructions 424 EmittedInstrs.push_front(CurrCycleInstr); 425 426 // Add a nullptr for each additional wait state after the first. Make sure 427 // not to add more than getMaxLookAhead() items to the list, since we 428 // truncate the list to that size right after this loop. 429 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 430 i < e; ++i) { 431 EmittedInstrs.push_front(nullptr); 432 } 433 434 // getMaxLookahead() is the largest number of wait states we will ever need 435 // to insert, so there is no point in keeping track of more than that many 436 // wait states. 437 EmittedInstrs.resize(getMaxLookAhead()); 438 439 CurrCycleInstr = nullptr; 440 } 441 442 void GCNHazardRecognizer::RecedeCycle() { 443 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 444 } 445 446 //===----------------------------------------------------------------------===// 447 // Helper Functions 448 //===----------------------------------------------------------------------===// 449 450 using HazardFnResult = enum { HazardFound, HazardExpired, NoHazardFound }; 451 452 using IsExpiredFn = function_ref<bool(const MachineInstr &, int WaitStates)>; 453 using GetNumWaitStatesFn = function_ref<unsigned int(const MachineInstr &)>; 454 455 // Search for a hazard in a block and its predecessors. 456 template <typename StateT> 457 static bool 458 hasHazard(StateT State, 459 function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard, 460 function_ref<void(StateT &, const MachineInstr &)> UpdateState, 461 const MachineBasicBlock *MBB, 462 MachineBasicBlock::const_reverse_instr_iterator I, 463 DenseSet<const MachineBasicBlock *> &Visited) { 464 for (auto E = MBB->instr_rend(); I != E; ++I) { 465 // No need to look at parent BUNDLE instructions. 466 if (I->isBundle()) 467 continue; 468 469 switch (IsHazard(State, *I)) { 470 case HazardFound: 471 return true; 472 case HazardExpired: 473 return false; 474 default: 475 // Continue search 476 break; 477 } 478 479 if (I->isInlineAsm() || I->isMetaInstruction()) 480 continue; 481 482 UpdateState(State, *I); 483 } 484 485 for (MachineBasicBlock *Pred : MBB->predecessors()) { 486 if (!Visited.insert(Pred).second) 487 continue; 488 489 if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(), 490 Visited)) 491 return true; 492 } 493 494 return false; 495 } 496 497 // Returns a minimum wait states since \p I walking all predecessors. 498 // Only scans until \p IsExpired does not return true. 499 // Can only be run in a hazard recognizer mode. 500 static int getWaitStatesSince( 501 GCNHazardRecognizer::IsHazardFn IsHazard, const MachineBasicBlock *MBB, 502 MachineBasicBlock::const_reverse_instr_iterator I, int WaitStates, 503 IsExpiredFn IsExpired, DenseSet<const MachineBasicBlock *> &Visited, 504 GetNumWaitStatesFn GetNumWaitStates = SIInstrInfo::getNumWaitStates) { 505 for (auto E = MBB->instr_rend(); I != E; ++I) { 506 // Don't add WaitStates for parent BUNDLE instructions. 507 if (I->isBundle()) 508 continue; 509 510 if (IsHazard(*I)) 511 return WaitStates; 512 513 if (I->isInlineAsm()) 514 continue; 515 516 WaitStates += GetNumWaitStates(*I); 517 518 if (IsExpired(*I, WaitStates)) 519 return std::numeric_limits<int>::max(); 520 } 521 522 int MinWaitStates = std::numeric_limits<int>::max(); 523 for (MachineBasicBlock *Pred : MBB->predecessors()) { 524 if (!Visited.insert(Pred).second) 525 continue; 526 527 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), WaitStates, 528 IsExpired, Visited, GetNumWaitStates); 529 530 MinWaitStates = std::min(MinWaitStates, W); 531 } 532 533 return MinWaitStates; 534 } 535 536 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 537 const MachineInstr *MI, IsExpiredFn IsExpired) { 538 DenseSet<const MachineBasicBlock *> Visited; 539 return getWaitStatesSince(IsHazard, MI->getParent(), 540 std::next(MI->getReverseIterator()), 541 0, IsExpired, Visited); 542 } 543 544 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 545 if (IsHazardRecognizerMode) { 546 auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) { 547 return WaitStates >= Limit; 548 }; 549 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 550 } 551 552 int WaitStates = 0; 553 for (MachineInstr *MI : EmittedInstrs) { 554 if (MI) { 555 if (IsHazard(*MI)) 556 return WaitStates; 557 558 if (MI->isInlineAsm()) 559 continue; 560 } 561 ++WaitStates; 562 563 if (WaitStates >= Limit) 564 break; 565 } 566 return std::numeric_limits<int>::max(); 567 } 568 569 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 570 IsHazardFn IsHazardDef, 571 int Limit) { 572 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 573 574 auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) { 575 return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI); 576 }; 577 578 return getWaitStatesSince(IsHazardFn, Limit); 579 } 580 581 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 582 int Limit) { 583 auto IsHazardFn = [IsHazard](const MachineInstr &MI) { 584 return isSSetReg(MI.getOpcode()) && IsHazard(MI); 585 }; 586 587 return getWaitStatesSince(IsHazardFn, Limit); 588 } 589 590 //===----------------------------------------------------------------------===// 591 // No-op Hazard Detection 592 //===----------------------------------------------------------------------===// 593 594 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV, 595 MCRegister Reg) { 596 for (MCRegUnit Unit : TRI.regunits(Reg)) 597 BV.set(Unit); 598 } 599 600 static void addRegsToSet(const SIRegisterInfo &TRI, 601 iterator_range<MachineInstr::const_mop_iterator> Ops, 602 BitVector &DefSet, BitVector &UseSet) { 603 for (const MachineOperand &Op : Ops) { 604 if (Op.isReg()) 605 addRegUnits(TRI, Op.isDef() ? DefSet : UseSet, Op.getReg().asMCReg()); 606 } 607 } 608 609 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 610 addRegsToSet(TRI, MI.operands(), ClauseDefs, ClauseUses); 611 } 612 613 static bool breaksSMEMSoftClause(MachineInstr *MI) { 614 return !SIInstrInfo::isSMRD(*MI); 615 } 616 617 static bool breaksVMEMSoftClause(MachineInstr *MI) { 618 return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI); 619 } 620 621 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 622 // SMEM soft clause are only present on VI+, and only matter if xnack is 623 // enabled. 624 if (!ST.isXNACKEnabled()) 625 return 0; 626 627 bool IsSMRD = TII.isSMRD(*MEM); 628 629 resetClause(); 630 631 // A soft-clause is any group of consecutive SMEM instructions. The 632 // instructions in this group may return out of order and/or may be 633 // replayed (i.e. the same instruction issued more than once). 634 // 635 // In order to handle these situations correctly we need to make sure that 636 // when a clause has more than one instruction, no instruction in the clause 637 // writes to a register that is read by another instruction in the clause 638 // (including itself). If we encounter this situation, we need to break the 639 // clause by inserting a non SMEM instruction. 640 641 for (MachineInstr *MI : EmittedInstrs) { 642 // When we hit a non-SMEM instruction then we have passed the start of the 643 // clause and we can stop. 644 if (!MI) 645 break; 646 647 if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI)) 648 break; 649 650 addClauseInst(*MI); 651 } 652 653 if (ClauseDefs.none()) 654 return 0; 655 656 // We need to make sure not to put loads and stores in the same clause if they 657 // use the same address. For now, just start a new clause whenever we see a 658 // store. 659 if (MEM->mayStore()) 660 return 1; 661 662 addClauseInst(*MEM); 663 664 // If the set of defs and uses intersect then we cannot add this instruction 665 // to the clause, so we have a hazard. 666 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 667 } 668 669 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 670 int WaitStatesNeeded = 0; 671 672 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 673 674 // This SMRD hazard only affects SI. 675 if (!ST.hasSMRDReadVALUDefHazard()) 676 return WaitStatesNeeded; 677 678 // A read of an SGPR by SMRD instruction requires 4 wait states when the 679 // SGPR was written by a VALU instruction. 680 int SmrdSgprWaitStates = 4; 681 auto IsHazardDefFn = [this](const MachineInstr &MI) { 682 return TII.isVALU(MI); 683 }; 684 auto IsBufferHazardDefFn = [this](const MachineInstr &MI) { 685 return TII.isSALU(MI); 686 }; 687 688 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 689 690 for (const MachineOperand &Use : SMRD->uses()) { 691 if (!Use.isReg()) 692 continue; 693 int WaitStatesNeededForUse = 694 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 695 SmrdSgprWaitStates); 696 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 697 698 // This fixes what appears to be undocumented hardware behavior in SI where 699 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 700 // needs some number of nops in between. We don't know how many we need, but 701 // let's use 4. This wasn't discovered before probably because the only 702 // case when this happens is when we expand a 64-bit pointer into a full 703 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 704 // probably never encountered in the closed-source land. 705 if (IsBufferSMRD) { 706 int WaitStatesNeededForUse = 707 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 708 IsBufferHazardDefFn, 709 SmrdSgprWaitStates); 710 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 711 } 712 } 713 714 return WaitStatesNeeded; 715 } 716 717 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 718 if (!ST.hasVMEMReadSGPRVALUDefHazard()) 719 return 0; 720 721 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 722 723 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 724 // SGPR was written by a VALU Instruction. 725 const int VmemSgprWaitStates = 5; 726 auto IsHazardDefFn = [this](const MachineInstr &MI) { 727 return TII.isVALU(MI); 728 }; 729 for (const MachineOperand &Use : VMEM->uses()) { 730 if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg())) 731 continue; 732 733 int WaitStatesNeededForUse = 734 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 735 VmemSgprWaitStates); 736 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 737 } 738 return WaitStatesNeeded; 739 } 740 741 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 742 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 743 const SIInstrInfo *TII = ST.getInstrInfo(); 744 745 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 746 int DppVgprWaitStates = 2; 747 int DppExecWaitStates = 5; 748 int WaitStatesNeeded = 0; 749 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 750 return TII->isVALU(MI); 751 }; 752 753 for (const MachineOperand &Use : DPP->uses()) { 754 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 755 continue; 756 int WaitStatesNeededForUse = 757 DppVgprWaitStates - getWaitStatesSinceDef( 758 Use.getReg(), 759 [](const MachineInstr &) { return true; }, 760 DppVgprWaitStates); 761 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 762 } 763 764 WaitStatesNeeded = std::max( 765 WaitStatesNeeded, 766 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 767 DppExecWaitStates)); 768 769 return WaitStatesNeeded; 770 } 771 772 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 773 const SIInstrInfo *TII = ST.getInstrInfo(); 774 775 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 776 // instruction. 777 const int DivFMasWaitStates = 4; 778 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 779 return TII->isVALU(MI); 780 }; 781 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 782 DivFMasWaitStates); 783 784 return DivFMasWaitStates - WaitStatesNeeded; 785 } 786 787 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 788 const SIInstrInfo *TII = ST.getInstrInfo(); 789 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 790 791 const int GetRegWaitStates = 2; 792 auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) { 793 return GetRegHWReg == getHWReg(TII, MI); 794 }; 795 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 796 797 return GetRegWaitStates - WaitStatesNeeded; 798 } 799 800 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 801 const SIInstrInfo *TII = ST.getInstrInfo(); 802 unsigned HWReg = getHWReg(TII, *SetRegInstr); 803 804 const int SetRegWaitStates = ST.getSetRegWaitStates(); 805 auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) { 806 return HWReg == getHWReg(TII, MI); 807 }; 808 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 809 return SetRegWaitStates - WaitStatesNeeded; 810 } 811 812 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 813 if (!MI.mayStore()) 814 return -1; 815 816 const SIInstrInfo *TII = ST.getInstrInfo(); 817 unsigned Opcode = MI.getOpcode(); 818 const MCInstrDesc &Desc = MI.getDesc(); 819 820 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 821 int VDataRCID = -1; 822 if (VDataIdx != -1) 823 VDataRCID = Desc.operands()[VDataIdx].RegClass; 824 825 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 826 // There is no hazard if the instruction does not use vector regs 827 // (like wbinvl1) 828 if (VDataIdx == -1) 829 return -1; 830 // For MUBUF/MTBUF instructions this hazard only exists if the 831 // instruction is not using a register in the soffset field. 832 const MachineOperand *SOffset = 833 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 834 // If we have no soffset operand, then assume this field has been 835 // hardcoded to zero. 836 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 837 (!SOffset || !SOffset->isReg())) 838 return VDataIdx; 839 } 840 841 // MIMG instructions create a hazard if they don't use a 256-bit T# and 842 // the store size is greater than 8 bytes and they have more than two bits 843 // of their dmask set. 844 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 845 if (TII->isMIMG(MI)) { 846 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 847 assert(SRsrcIdx != -1 && 848 AMDGPU::getRegBitWidth(Desc.operands()[SRsrcIdx].RegClass) == 256); 849 (void)SRsrcIdx; 850 } 851 852 if (TII->isFLAT(MI)) { 853 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 854 if (AMDGPU::getRegBitWidth(Desc.operands()[DataIdx].RegClass) > 64) 855 return DataIdx; 856 } 857 858 return -1; 859 } 860 861 int 862 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 863 const MachineRegisterInfo &MRI) { 864 // Helper to check for the hazard where VMEM instructions that store more than 865 // 8 bytes can have there store data over written by the next instruction. 866 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 867 868 const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1; 869 int WaitStatesNeeded = 0; 870 871 if (!TRI->isVectorRegister(MRI, Def.getReg())) 872 return WaitStatesNeeded; 873 Register Reg = Def.getReg(); 874 auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) { 875 int DataIdx = createsVALUHazard(MI); 876 return DataIdx >= 0 && 877 TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg); 878 }; 879 880 int WaitStatesNeededForDef = 881 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 882 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 883 884 return WaitStatesNeeded; 885 } 886 887 /// Dest sel forwarding issue occurs if additional logic is needed to swizzle / 888 /// pack the computed value into correct bit position of the dest register. This 889 /// occurs if we have SDWA with dst_sel != DWORD or if we have op_sel with 890 /// dst_sel that is not aligned to the register. This function analayzes the \p 891 /// MI and \returns an operand with dst forwarding issue, or nullptr if 892 /// none exists. 893 static const MachineOperand * 894 getDstSelForwardingOperand(const MachineInstr &MI, const GCNSubtarget &ST) { 895 if (!SIInstrInfo::isVALU(MI)) 896 return nullptr; 897 898 const SIInstrInfo *TII = ST.getInstrInfo(); 899 900 unsigned Opcode = MI.getOpcode(); 901 902 // There are three different types of instructions 903 // which produce forwarded dest: 1. SDWA with dst_sel != DWORD, 2. VOP3 904 // which write hi bits (e.g. op_sel[3] == 1), and 3. CVR_SR_FP8_F32 and 905 // CVT_SR_BF8_F32 with op_sel[3:2] 906 // != 0 907 if (SIInstrInfo::isSDWA(MI)) { 908 // Type 1: SDWA with dst_sel != DWORD 909 if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel)) 910 if (DstSel->getImm() == AMDGPU::SDWA::DWORD) 911 return nullptr; 912 } else { 913 // Type 2 && Type 3: (VOP3 which write the hi bits) || (CVT_SR_FP8_F32 and 914 // CVT_SR_BF8_F32 with op_sel[3:2] != 0) 915 if (!AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::op_sel) || 916 !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm() & 917 SISrcMods::DST_OP_SEL || 918 (AMDGPU::isFP8DstSelInst(Opcode) && 919 (TII->getNamedOperand(MI, AMDGPU::OpName::src2_modifiers)->getImm() & 920 SISrcMods::OP_SEL_0)))) 921 return nullptr; 922 } 923 924 return TII->getNamedOperand(MI, AMDGPU::OpName::vdst); 925 } 926 927 /// Checks whether the provided \p MI "consumes" the operand with a Dest sel 928 /// fowarding issue \p Dst . We may "consume" the Dst via a standard explicit 929 /// RAW, or through irregular ways (e.g implicit RAW, certain types of WAW) 930 static bool consumesDstSelForwardingOperand(const MachineInstr *VALU, 931 const MachineOperand *Dst, 932 const SIRegisterInfo *TRI) { 933 // We must consider implicit reads of the VALU. SDWA with dst_sel and 934 // UNUSED_PRESERVE will implicitly read the result from forwarded dest, 935 // and we must account for that hazard. 936 // We also must account for WAW hazards. In particular, WAW with dest 937 // preserve semantics (e.g. VOP3 with op_sel, VOP2 && 938 // !zeroesHigh16BitsOfDest) will read the forwarded dest for parity 939 // check for ECC. Without accounting for this hazard, the ECC will be 940 // wrong. 941 // TODO: limit to RAW (including implicit reads) + problematic WAW (i.e. 942 // complete zeroesHigh16BitsOfDest) 943 for (auto &Operand : VALU->operands()) { 944 if (Operand.isReg() && TRI->regsOverlap(Dst->getReg(), Operand.getReg())) { 945 return true; 946 } 947 } 948 return false; 949 } 950 951 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 952 int WaitStatesNeeded = 0; 953 954 if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) { 955 const int TransDefWaitstates = 1; 956 957 auto IsTransDefFn = [this, VALU](const MachineInstr &MI) { 958 if (!SIInstrInfo::isTRANS(MI)) 959 return false; 960 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 961 const SIInstrInfo *TII = ST.getInstrInfo(); 962 Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg(); 963 964 for (const MachineOperand &Use : VALU->explicit_uses()) { 965 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 966 return true; 967 } 968 969 return false; 970 }; 971 972 int WaitStatesNeededForDef = 973 TransDefWaitstates - 974 getWaitStatesSince(IsTransDefFn, TransDefWaitstates); 975 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 976 } 977 978 if (ST.hasDstSelForwardingHazard()) { 979 const int Shift16DefWaitstates = 1; 980 981 auto IsShift16BitDefFn = [this, VALU](const MachineInstr &ProducerMI) { 982 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 983 const MachineOperand *ForwardedDst = 984 getDstSelForwardingOperand(ProducerMI, ST); 985 if (ForwardedDst) { 986 return consumesDstSelForwardingOperand(VALU, ForwardedDst, TRI); 987 } 988 989 if (ProducerMI.isInlineAsm()) { 990 // Assume inline asm has dst forwarding hazard 991 for (auto &Def : ProducerMI.all_defs()) { 992 if (consumesDstSelForwardingOperand(VALU, &Def, TRI)) 993 return true; 994 } 995 } 996 997 return false; 998 }; 999 1000 int WaitStatesNeededForDef = 1001 Shift16DefWaitstates - 1002 getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates); 1003 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 1004 } 1005 1006 if (ST.hasVDecCoExecHazard()) { 1007 const int VALUWriteSGPRVALUReadWaitstates = 2; 1008 const int VALUWriteEXECRWLane = 4; 1009 const int VALUWriteVGPRReadlaneRead = 1; 1010 1011 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1012 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1013 Register UseReg; 1014 auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) { 1015 if (!SIInstrInfo::isVALU(MI)) 1016 return false; 1017 return MI.modifiesRegister(UseReg, TRI); 1018 }; 1019 1020 for (const MachineOperand &Use : VALU->explicit_uses()) { 1021 if (!Use.isReg()) 1022 continue; 1023 1024 UseReg = Use.getReg(); 1025 if (TRI->isSGPRReg(MRI, UseReg)) { 1026 int WaitStatesNeededForDef = 1027 VALUWriteSGPRVALUReadWaitstates - 1028 getWaitStatesSince(IsVALUDefSGPRFn, 1029 VALUWriteSGPRVALUReadWaitstates); 1030 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 1031 } 1032 } 1033 1034 if (VALU->readsRegister(AMDGPU::VCC, TRI)) { 1035 UseReg = AMDGPU::VCC; 1036 int WaitStatesNeededForDef = 1037 VALUWriteSGPRVALUReadWaitstates - 1038 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates); 1039 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 1040 } 1041 1042 switch (VALU->getOpcode()) { 1043 case AMDGPU::V_READLANE_B32: 1044 case AMDGPU::V_READFIRSTLANE_B32: { 1045 MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0); 1046 UseReg = Src->getReg(); 1047 int WaitStatesNeededForDef = 1048 VALUWriteVGPRReadlaneRead - 1049 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead); 1050 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 1051 } 1052 [[fallthrough]]; 1053 case AMDGPU::V_WRITELANE_B32: { 1054 UseReg = AMDGPU::EXEC; 1055 int WaitStatesNeededForDef = 1056 VALUWriteEXECRWLane - 1057 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane); 1058 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 1059 break; 1060 } 1061 default: 1062 break; 1063 } 1064 } 1065 1066 // This checks for the hazard where VMEM instructions that store more than 1067 // 8 bytes can have there store data over written by the next instruction. 1068 if (!ST.has12DWordStoreHazard()) 1069 return WaitStatesNeeded; 1070 1071 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1072 1073 for (const MachineOperand &Def : VALU->defs()) { 1074 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 1075 } 1076 1077 return WaitStatesNeeded; 1078 } 1079 1080 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 1081 // This checks for hazards associated with inline asm statements. 1082 // Since inline asms can contain just about anything, we use this 1083 // to call/leverage other check*Hazard routines. Note that 1084 // this function doesn't attempt to address all possible inline asm 1085 // hazards (good luck), but is a collection of what has been 1086 // problematic thus far. 1087 1088 // see checkVALUHazards() 1089 if (!ST.has12DWordStoreHazard() && !ST.hasDstSelForwardingHazard()) 1090 return 0; 1091 1092 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1093 int WaitStatesNeeded = 0; 1094 1095 for (const MachineOperand &Op : 1096 llvm::drop_begin(IA->operands(), InlineAsm::MIOp_FirstOperand)) { 1097 if (Op.isReg() && Op.isDef()) { 1098 if (!TRI.isVectorRegister(MRI, Op.getReg())) 1099 continue; 1100 1101 if (ST.has12DWordStoreHazard()) { 1102 WaitStatesNeeded = 1103 std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 1104 } 1105 } 1106 } 1107 1108 if (ST.hasDstSelForwardingHazard()) { 1109 const int Shift16DefWaitstates = 1; 1110 1111 auto IsShift16BitDefFn = [this, &IA](const MachineInstr &ProducerMI) { 1112 const MachineOperand *Dst = getDstSelForwardingOperand(ProducerMI, ST); 1113 // Assume inline asm reads the dst 1114 if (Dst) 1115 return IA->modifiesRegister(Dst->getReg(), &TRI) || 1116 IA->readsRegister(Dst->getReg(), &TRI); 1117 1118 if (ProducerMI.isInlineAsm()) { 1119 // If MI is inline asm, assume it has dst forwarding hazard 1120 for (auto &Def : ProducerMI.all_defs()) { 1121 if (IA->modifiesRegister(Def.getReg(), &TRI) || 1122 IA->readsRegister(Def.getReg(), &TRI)) { 1123 return true; 1124 } 1125 } 1126 } 1127 1128 return false; 1129 }; 1130 1131 int WaitStatesNeededForDef = 1132 Shift16DefWaitstates - 1133 getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates); 1134 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 1135 } 1136 1137 return WaitStatesNeeded; 1138 } 1139 1140 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 1141 const SIInstrInfo *TII = ST.getInstrInfo(); 1142 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1143 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1144 1145 const MachineOperand *LaneSelectOp = 1146 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 1147 1148 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 1149 return 0; 1150 1151 Register LaneSelectReg = LaneSelectOp->getReg(); 1152 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); }; 1153 1154 const int RWLaneWaitStates = 4; 1155 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 1156 RWLaneWaitStates); 1157 return RWLaneWaitStates - WaitStatesSince; 1158 } 1159 1160 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 1161 if (!ST.hasRFEHazards()) 1162 return 0; 1163 1164 const SIInstrInfo *TII = ST.getInstrInfo(); 1165 1166 const int RFEWaitStates = 1; 1167 1168 auto IsHazardFn = [TII](const MachineInstr &MI) { 1169 return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS; 1170 }; 1171 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 1172 return RFEWaitStates - WaitStatesNeeded; 1173 } 1174 1175 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 1176 const SIInstrInfo *TII = ST.getInstrInfo(); 1177 const int ReadM0WaitStates = 1; 1178 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); }; 1179 return ReadM0WaitStates - 1180 getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, ReadM0WaitStates); 1181 } 1182 1183 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { 1184 fixVMEMtoScalarWriteHazards(MI); 1185 fixVcmpxPermlaneHazards(MI); 1186 fixSMEMtoVectorWriteHazards(MI); 1187 fixVcmpxExecWARHazard(MI); 1188 fixLdsBranchVmemWARHazard(MI); 1189 if (ST.hasLdsDirect()) { 1190 fixLdsDirectVALUHazard(MI); 1191 fixLdsDirectVMEMHazard(MI); 1192 } 1193 fixVALUPartialForwardingHazard(MI); 1194 fixVALUTransUseHazard(MI); 1195 fixWMMAHazards(MI); 1196 fixShift64HighRegBug(MI); 1197 fixVALUMaskWriteHazard(MI); 1198 fixRequiredExportPriority(MI); 1199 } 1200 1201 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) { 1202 if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI)) 1203 return false; 1204 1205 const SIInstrInfo *TII = ST.getInstrInfo(); 1206 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1207 auto IsHazardFn = [TII, TRI](const MachineInstr &MI) { 1208 return (TII->isVOPC(MI) || 1209 ((TII->isVOP3(MI) || TII->isSDWA(MI)) && MI.isCompare())) && 1210 MI.modifiesRegister(AMDGPU::EXEC, TRI); 1211 }; 1212 1213 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1214 unsigned Opc = MI.getOpcode(); 1215 return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 && 1216 Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa; 1217 }; 1218 1219 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1220 std::numeric_limits<int>::max()) 1221 return false; 1222 1223 // V_NOP will be discarded by SQ. 1224 // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE* 1225 // which is always a VGPR and available. 1226 auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1227 Register Reg = Src0->getReg(); 1228 bool IsUndef = Src0->isUndef(); 1229 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1230 TII->get(AMDGPU::V_MOV_B32_e32)) 1231 .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0)) 1232 .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill); 1233 1234 return true; 1235 } 1236 1237 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { 1238 if (!ST.hasVMEMtoScalarWriteHazard()) 1239 return false; 1240 assert(!ST.hasExtendedWaitCounts()); 1241 1242 if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI)) 1243 return false; 1244 1245 if (MI->getNumDefs() == 0) 1246 return false; 1247 1248 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1249 1250 auto IsHazardFn = [TRI, MI](const MachineInstr &I) { 1251 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) && 1252 !SIInstrInfo::isFLAT(I)) 1253 return false; 1254 1255 for (const MachineOperand &Def : MI->defs()) { 1256 const MachineOperand *Op = 1257 I.findRegisterUseOperand(Def.getReg(), TRI, false); 1258 if (!Op) 1259 continue; 1260 return true; 1261 } 1262 return false; 1263 }; 1264 1265 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1266 return SIInstrInfo::isVALU(MI) || 1267 (MI.getOpcode() == AMDGPU::S_WAITCNT && 1268 !MI.getOperand(0).getImm()) || 1269 (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1270 AMDGPU::DepCtr::decodeFieldVmVsrc(MI.getOperand(0).getImm()) == 0); 1271 }; 1272 1273 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1274 std::numeric_limits<int>::max()) 1275 return false; 1276 1277 const SIInstrInfo *TII = ST.getInstrInfo(); 1278 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1279 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1280 .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0)); 1281 return true; 1282 } 1283 1284 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { 1285 if (!ST.hasSMEMtoVectorWriteHazard()) 1286 return false; 1287 assert(!ST.hasExtendedWaitCounts()); 1288 1289 if (!SIInstrInfo::isVALU(*MI)) 1290 return false; 1291 1292 unsigned SDSTName; 1293 switch (MI->getOpcode()) { 1294 case AMDGPU::V_READLANE_B32: 1295 case AMDGPU::V_READFIRSTLANE_B32: 1296 SDSTName = AMDGPU::OpName::vdst; 1297 break; 1298 default: 1299 SDSTName = AMDGPU::OpName::sdst; 1300 break; 1301 } 1302 1303 const SIInstrInfo *TII = ST.getInstrInfo(); 1304 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1305 const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU()); 1306 const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName); 1307 if (!SDST) { 1308 for (const auto &MO : MI->implicit_operands()) { 1309 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) { 1310 SDST = &MO; 1311 break; 1312 } 1313 } 1314 } 1315 1316 if (!SDST) 1317 return false; 1318 1319 const Register SDSTReg = SDST->getReg(); 1320 auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) { 1321 return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI); 1322 }; 1323 1324 auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) { 1325 if (TII->isSALU(MI)) { 1326 switch (MI.getOpcode()) { 1327 case AMDGPU::S_SETVSKIP: 1328 case AMDGPU::S_VERSION: 1329 case AMDGPU::S_WAITCNT_VSCNT: 1330 case AMDGPU::S_WAITCNT_VMCNT: 1331 case AMDGPU::S_WAITCNT_EXPCNT: 1332 // These instructions cannot not mitigate the hazard. 1333 return false; 1334 case AMDGPU::S_WAITCNT_LGKMCNT: 1335 // Reducing lgkmcnt count to 0 always mitigates the hazard. 1336 return (MI.getOperand(1).getImm() == 0) && 1337 (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1338 case AMDGPU::S_WAITCNT: { 1339 const int64_t Imm = MI.getOperand(0).getImm(); 1340 AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm); 1341 // DsCnt corresponds to LGKMCnt here. 1342 return (Decoded.DsCnt == 0); 1343 } 1344 default: 1345 // SOPP instructions cannot mitigate the hazard. 1346 if (TII->isSOPP(MI)) 1347 return false; 1348 // At this point the SALU can be assumed to mitigate the hazard 1349 // because either: 1350 // (a) it is independent of the at risk SMEM (breaking chain), 1351 // or 1352 // (b) it is dependent on the SMEM, in which case an appropriate 1353 // s_waitcnt lgkmcnt _must_ exist between it and the at risk 1354 // SMEM instruction. 1355 return true; 1356 } 1357 } 1358 return false; 1359 }; 1360 1361 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1362 std::numeric_limits<int>::max()) 1363 return false; 1364 1365 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1366 TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL) 1367 .addImm(0); 1368 return true; 1369 } 1370 1371 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { 1372 if (!ST.hasVcmpxExecWARHazard()) 1373 return false; 1374 assert(!ST.hasExtendedWaitCounts()); 1375 1376 if (!SIInstrInfo::isVALU(*MI)) 1377 return false; 1378 1379 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1380 if (!MI->modifiesRegister(AMDGPU::EXEC, TRI)) 1381 return false; 1382 1383 auto IsHazardFn = [TRI](const MachineInstr &I) { 1384 if (SIInstrInfo::isVALU(I)) 1385 return false; 1386 return I.readsRegister(AMDGPU::EXEC, TRI); 1387 }; 1388 1389 const SIInstrInfo *TII = ST.getInstrInfo(); 1390 auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) { 1391 if (SIInstrInfo::isVALU(MI)) { 1392 if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst)) 1393 return true; 1394 for (auto MO : MI.implicit_operands()) 1395 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) 1396 return true; 1397 } 1398 if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1399 AMDGPU::DepCtr::decodeFieldSaSdst(MI.getOperand(0).getImm()) == 0) 1400 return true; 1401 return false; 1402 }; 1403 1404 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1405 std::numeric_limits<int>::max()) 1406 return false; 1407 1408 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1409 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1410 .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0)); 1411 return true; 1412 } 1413 1414 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 1415 const GCNSubtarget &ST) { 1416 if (!ST.hasLdsBranchVmemWARHazard()) 1417 return false; 1418 1419 // Check if the necessary condition for the hazard is met: both LDS and VMEM 1420 // instructions need to appear in the same function. 1421 bool HasLds = false; 1422 bool HasVmem = false; 1423 for (auto &MBB : MF) { 1424 for (auto &MI : MBB) { 1425 HasLds |= SIInstrInfo::isDS(MI); 1426 HasVmem |= 1427 SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI); 1428 if (HasLds && HasVmem) 1429 return true; 1430 } 1431 } 1432 return false; 1433 } 1434 1435 static bool isStoreCountWaitZero(const MachineInstr &I) { 1436 return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1437 I.getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1438 !I.getOperand(1).getImm(); 1439 } 1440 1441 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { 1442 if (!RunLdsBranchVmemWARHazardFixup) 1443 return false; 1444 1445 assert(ST.hasLdsBranchVmemWARHazard()); 1446 assert(!ST.hasExtendedWaitCounts()); 1447 1448 auto IsHazardInst = [](const MachineInstr &MI) { 1449 if (SIInstrInfo::isDS(MI)) 1450 return 1; 1451 if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI)) 1452 return 2; 1453 return 0; 1454 }; 1455 1456 auto InstType = IsHazardInst(*MI); 1457 if (!InstType) 1458 return false; 1459 1460 auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) { 1461 return IsHazardInst(I) || isStoreCountWaitZero(I); 1462 }; 1463 1464 auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) { 1465 if (!I.isBranch()) 1466 return false; 1467 1468 auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) { 1469 auto InstType2 = IsHazardInst(I); 1470 return InstType2 && InstType != InstType2; 1471 }; 1472 1473 auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) { 1474 auto InstType2 = IsHazardInst(I); 1475 if (InstType == InstType2) 1476 return true; 1477 1478 return isStoreCountWaitZero(I); 1479 }; 1480 1481 return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) != 1482 std::numeric_limits<int>::max(); 1483 }; 1484 1485 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1486 std::numeric_limits<int>::max()) 1487 return false; 1488 1489 const SIInstrInfo *TII = ST.getInstrInfo(); 1490 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1491 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1492 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1493 .addImm(0); 1494 1495 return true; 1496 } 1497 1498 bool GCNHazardRecognizer::fixLdsDirectVALUHazard(MachineInstr *MI) { 1499 if (!SIInstrInfo::isLDSDIR(*MI)) 1500 return false; 1501 1502 const int NoHazardWaitStates = 15; 1503 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1504 const Register VDSTReg = VDST->getReg(); 1505 1506 bool VisitedTrans = false; 1507 auto IsHazardFn = [this, VDSTReg, &VisitedTrans](const MachineInstr &I) { 1508 if (!SIInstrInfo::isVALU(I)) 1509 return false; 1510 VisitedTrans = VisitedTrans || SIInstrInfo::isTRANS(I); 1511 // Cover both WAR and WAW 1512 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1513 }; 1514 auto IsExpiredFn = [&](const MachineInstr &I, int WaitStates) { 1515 if (WaitStates >= NoHazardWaitStates) 1516 return true; 1517 // Instructions which cause va_vdst==0 expire hazard 1518 return SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1519 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I); 1520 }; 1521 auto GetWaitStatesFn = [](const MachineInstr &MI) { 1522 return SIInstrInfo::isVALU(MI) ? 1 : 0; 1523 }; 1524 1525 DenseSet<const MachineBasicBlock *> Visited; 1526 auto Count = ::getWaitStatesSince(IsHazardFn, MI->getParent(), 1527 std::next(MI->getReverseIterator()), 0, 1528 IsExpiredFn, Visited, GetWaitStatesFn); 1529 1530 // Transcendentals can execute in parallel to other VALUs. 1531 // This makes va_vdst count unusable with a mixture of VALU and TRANS. 1532 if (VisitedTrans) 1533 Count = 0; 1534 1535 MachineOperand *WaitVdstOp = 1536 TII.getNamedOperand(*MI, AMDGPU::OpName::waitvdst); 1537 WaitVdstOp->setImm(std::min(Count, NoHazardWaitStates)); 1538 1539 return true; 1540 } 1541 1542 bool GCNHazardRecognizer::fixLdsDirectVMEMHazard(MachineInstr *MI) { 1543 if (!SIInstrInfo::isLDSDIR(*MI)) 1544 return false; 1545 1546 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1547 const Register VDSTReg = VDST->getReg(); 1548 1549 auto IsHazardFn = [this, VDSTReg](const MachineInstr &I) { 1550 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I) && 1551 !SIInstrInfo::isDS(I)) 1552 return false; 1553 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1554 }; 1555 bool LdsdirCanWait = ST.hasLdsWaitVMSRC(); 1556 // TODO: On GFX12 the hazard should expire on S_WAIT_LOADCNT/SAMPLECNT/BVHCNT 1557 // according to the type of VMEM instruction. 1558 auto IsExpiredFn = [this, LdsdirCanWait](const MachineInstr &I, int) { 1559 return SIInstrInfo::isVALU(I) || SIInstrInfo::isEXP(I) || 1560 (I.getOpcode() == AMDGPU::S_WAITCNT && !I.getOperand(0).getImm()) || 1561 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1562 AMDGPU::DepCtr::decodeFieldVmVsrc(I.getOperand(0).getImm()) == 0) || 1563 (LdsdirCanWait && SIInstrInfo::isLDSDIR(I) && 1564 !TII.getNamedOperand(I, AMDGPU::OpName::waitvsrc)->getImm()); 1565 }; 1566 1567 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1568 std::numeric_limits<int>::max()) 1569 return false; 1570 1571 if (LdsdirCanWait) { 1572 TII.getNamedOperand(*MI, AMDGPU::OpName::waitvsrc)->setImm(0); 1573 } else { 1574 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1575 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1576 .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0)); 1577 } 1578 1579 return true; 1580 } 1581 1582 bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) { 1583 if (!ST.hasVALUPartialForwardingHazard()) 1584 return false; 1585 assert(!ST.hasExtendedWaitCounts()); 1586 1587 if (!ST.isWave64() || !SIInstrInfo::isVALU(*MI)) 1588 return false; 1589 1590 SmallSetVector<Register, 4> SrcVGPRs; 1591 1592 for (const MachineOperand &Use : MI->explicit_uses()) { 1593 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1594 SrcVGPRs.insert(Use.getReg()); 1595 } 1596 1597 // Only applies with >= 2 unique VGPR sources 1598 if (SrcVGPRs.size() <= 1) 1599 return false; 1600 1601 // Look for the following pattern: 1602 // Va <- VALU [PreExecPos] 1603 // intv1 1604 // Exec <- SALU [ExecPos] 1605 // intv2 1606 // Vb <- VALU [PostExecPos] 1607 // intv3 1608 // MI Va, Vb (WaitState = 0) 1609 // 1610 // Where: 1611 // intv1 + intv2 <= 2 VALUs 1612 // intv3 <= 4 VALUs 1613 // 1614 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1615 1616 const int Intv1plus2MaxVALUs = 2; 1617 const int Intv3MaxVALUs = 4; 1618 const int IntvMaxVALUs = 6; 1619 const int NoHazardVALUWaitStates = IntvMaxVALUs + 2; 1620 1621 struct StateType { 1622 SmallDenseMap<Register, int, 4> DefPos; 1623 int ExecPos = std::numeric_limits<int>::max(); 1624 int VALUs = 0; 1625 }; 1626 1627 StateType State; 1628 1629 // This overloads expiry testing with all the hazard detection 1630 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1631 // Too many VALU states have passed 1632 if (State.VALUs > NoHazardVALUWaitStates) 1633 return HazardExpired; 1634 1635 // Instructions which cause va_vdst==0 expire hazard 1636 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1637 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1638 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1639 AMDGPU::DepCtr::decodeFieldVaVdst(I.getOperand(0).getImm()) == 0)) 1640 return HazardExpired; 1641 1642 // Track registers writes 1643 bool Changed = false; 1644 if (SIInstrInfo::isVALU(I)) { 1645 for (Register Src : SrcVGPRs) { 1646 if (!State.DefPos.count(Src) && I.modifiesRegister(Src, &TRI)) { 1647 State.DefPos[Src] = State.VALUs; 1648 Changed = true; 1649 } 1650 } 1651 } else if (SIInstrInfo::isSALU(I)) { 1652 if (State.ExecPos == std::numeric_limits<int>::max()) { 1653 if (!State.DefPos.empty() && I.modifiesRegister(AMDGPU::EXEC, &TRI)) { 1654 State.ExecPos = State.VALUs; 1655 Changed = true; 1656 } 1657 } 1658 } 1659 1660 // Early expiration: too many VALUs in intv3 1661 if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty()) 1662 return HazardExpired; 1663 1664 // Only evaluate state if something changed 1665 if (!Changed) 1666 return NoHazardFound; 1667 1668 // Determine positions of VALUs pre/post exec change 1669 if (State.ExecPos == std::numeric_limits<int>::max()) 1670 return NoHazardFound; 1671 1672 int PreExecPos = std::numeric_limits<int>::max(); 1673 int PostExecPos = std::numeric_limits<int>::max(); 1674 1675 for (auto Entry : State.DefPos) { 1676 int DefVALUs = Entry.second; 1677 if (DefVALUs != std::numeric_limits<int>::max()) { 1678 if (DefVALUs >= State.ExecPos) 1679 PreExecPos = std::min(PreExecPos, DefVALUs); 1680 else 1681 PostExecPos = std::min(PostExecPos, DefVALUs); 1682 } 1683 } 1684 1685 // Need a VALUs post exec change 1686 if (PostExecPos == std::numeric_limits<int>::max()) 1687 return NoHazardFound; 1688 1689 // Too many VALUs in intv3? 1690 int Intv3VALUs = PostExecPos; 1691 if (Intv3VALUs > Intv3MaxVALUs) 1692 return HazardExpired; 1693 1694 // Too many VALUs in intv2? 1695 int Intv2VALUs = (State.ExecPos - PostExecPos) - 1; 1696 if (Intv2VALUs > Intv1plus2MaxVALUs) 1697 return HazardExpired; 1698 1699 // Need a VALUs pre exec change 1700 if (PreExecPos == std::numeric_limits<int>::max()) 1701 return NoHazardFound; 1702 1703 // Too many VALUs in intv1? 1704 int Intv1VALUs = PreExecPos - State.ExecPos; 1705 if (Intv1VALUs > Intv1plus2MaxVALUs) 1706 return HazardExpired; 1707 1708 // Too many VALUs in intv1 + intv2 1709 if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs) 1710 return HazardExpired; 1711 1712 return HazardFound; 1713 }; 1714 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1715 if (SIInstrInfo::isVALU(MI)) 1716 State.VALUs += 1; 1717 }; 1718 1719 DenseSet<const MachineBasicBlock *> Visited; 1720 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1721 std::next(MI->getReverseIterator()), Visited)) 1722 return false; 1723 1724 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1725 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1726 .addImm(0x0fff); 1727 1728 return true; 1729 } 1730 1731 bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) { 1732 if (!ST.hasVALUTransUseHazard()) 1733 return false; 1734 assert(!ST.hasExtendedWaitCounts()); 1735 1736 if (!SIInstrInfo::isVALU(*MI)) 1737 return false; 1738 1739 SmallSet<Register, 4> SrcVGPRs; 1740 1741 for (const MachineOperand &Use : MI->explicit_uses()) { 1742 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1743 SrcVGPRs.insert(Use.getReg()); 1744 } 1745 1746 // Look for the following pattern: 1747 // Va <- TRANS VALU 1748 // intv 1749 // MI Va (WaitState = 0) 1750 // 1751 // Where: 1752 // intv <= 5 VALUs / 1 TRANS 1753 // 1754 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1755 1756 const int IntvMaxVALUs = 5; 1757 const int IntvMaxTRANS = 1; 1758 1759 struct StateType { 1760 int VALUs = 0; 1761 int TRANS = 0; 1762 }; 1763 1764 StateType State; 1765 1766 // This overloads expiry testing with all the hazard detection 1767 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1768 // Too many VALU states have passed 1769 if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS) 1770 return HazardExpired; 1771 1772 // Instructions which cause va_vdst==0 expire hazard 1773 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1774 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1775 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1776 I.getOperand(0).getImm() == 0x0fff)) 1777 return HazardExpired; 1778 1779 // Track registers writes 1780 if (SIInstrInfo::isTRANS(I)) { 1781 for (Register Src : SrcVGPRs) { 1782 if (I.modifiesRegister(Src, &TRI)) { 1783 return HazardFound; 1784 } 1785 } 1786 } 1787 1788 return NoHazardFound; 1789 }; 1790 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1791 if (SIInstrInfo::isVALU(MI)) 1792 State.VALUs += 1; 1793 if (SIInstrInfo::isTRANS(MI)) 1794 State.TRANS += 1; 1795 }; 1796 1797 DenseSet<const MachineBasicBlock *> Visited; 1798 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1799 std::next(MI->getReverseIterator()), Visited)) 1800 return false; 1801 1802 // Hazard is observed - insert a wait on va_dst counter to ensure hazard is 1803 // avoided. 1804 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1805 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1806 .addImm(AMDGPU::DepCtr::encodeFieldVaVdst(0)); 1807 1808 return true; 1809 } 1810 1811 bool GCNHazardRecognizer::fixWMMAHazards(MachineInstr *MI) { 1812 if (!SIInstrInfo::isWMMA(*MI) && !SIInstrInfo::isSWMMAC(*MI)) 1813 return false; 1814 1815 const SIInstrInfo *TII = ST.getInstrInfo(); 1816 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1817 1818 auto IsHazardFn = [MI, TII, TRI, this](const MachineInstr &I) { 1819 if (!SIInstrInfo::isWMMA(I) && !SIInstrInfo::isSWMMAC(I)) 1820 return false; 1821 1822 // Src0(matrix A) or Src1(matrix B) of the current wmma instruction overlaps 1823 // with the dest(matrix D) of the previous wmma. 1824 const Register CurSrc0Reg = 1825 TII->getNamedOperand(*MI, AMDGPU::OpName::src0)->getReg(); 1826 const Register CurSrc1Reg = 1827 TII->getNamedOperand(*MI, AMDGPU::OpName::src1)->getReg(); 1828 1829 const Register PrevDstReg = 1830 TII->getNamedOperand(I, AMDGPU::OpName::vdst)->getReg(); 1831 1832 if (TRI->regsOverlap(PrevDstReg, CurSrc0Reg) || 1833 TRI->regsOverlap(PrevDstReg, CurSrc1Reg)) { 1834 return true; 1835 } 1836 1837 // GFX12+ allows overlap of matrix C with PrevDstReg (hardware will stall) 1838 // but Index can't overlap with PrevDstReg. 1839 if (AMDGPU::isGFX12Plus(ST)) { 1840 if (SIInstrInfo::isSWMMAC(*MI)) { 1841 const Register CurIndex = 1842 TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->getReg(); 1843 if (TRI->regsOverlap(PrevDstReg, CurIndex)) 1844 return true; 1845 } 1846 return false; 1847 } 1848 1849 return false; 1850 }; 1851 1852 auto IsExpiredFn = [](const MachineInstr &I, int) { 1853 return SIInstrInfo::isVALU(I); 1854 }; 1855 1856 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1857 std::numeric_limits<int>::max()) 1858 return false; 1859 1860 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32)); 1861 1862 return true; 1863 } 1864 1865 bool GCNHazardRecognizer::fixShift64HighRegBug(MachineInstr *MI) { 1866 if (!ST.hasShift64HighRegBug()) 1867 return false; 1868 assert(!ST.hasExtendedWaitCounts()); 1869 1870 switch (MI->getOpcode()) { 1871 default: 1872 return false; 1873 case AMDGPU::V_LSHLREV_B64_e64: 1874 case AMDGPU::V_LSHRREV_B64_e64: 1875 case AMDGPU::V_ASHRREV_I64_e64: 1876 break; 1877 } 1878 1879 MachineOperand *Amt = TII.getNamedOperand(*MI, AMDGPU::OpName::src0); 1880 if (!Amt->isReg()) 1881 return false; 1882 1883 Register AmtReg = Amt->getReg(); 1884 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1885 // Check if this is a last VGPR in the allocation block. 1886 if (!TRI.isVGPR(MRI, AmtReg) || ((AmtReg - AMDGPU::VGPR0) & 7) != 7) 1887 return false; 1888 1889 if (AmtReg != AMDGPU::VGPR255 && MRI.isPhysRegUsed(AmtReg + 1)) 1890 return false; 1891 1892 MachineOperand *Src1 = TII.getNamedOperand(*MI, AMDGPU::OpName::src1); 1893 bool OverlappedSrc = Src1->isReg() && TRI.regsOverlap(Src1->getReg(), AmtReg); 1894 bool OverlappedDst = MI->modifiesRegister(AmtReg, &TRI); 1895 bool Overlapped = OverlappedSrc || OverlappedDst; 1896 1897 assert(!OverlappedDst || !OverlappedSrc || 1898 Src1->getReg() == MI->getOperand(0).getReg()); 1899 assert(ST.needsAlignedVGPRs()); 1900 static_assert(AMDGPU::VGPR0 + 1 == AMDGPU::VGPR1); 1901 1902 Register NewReg; 1903 for (MCRegister Reg : Overlapped ? AMDGPU::VReg_64_Align2RegClass 1904 : AMDGPU::VGPR_32RegClass) { 1905 if (!MI->modifiesRegister(Reg, &TRI) && !MI->readsRegister(Reg, &TRI)) { 1906 NewReg = Reg; 1907 break; 1908 } 1909 } 1910 1911 Register NewAmt = Overlapped ? (Register)TRI.getSubReg(NewReg, AMDGPU::sub1) 1912 : NewReg; 1913 Register NewAmtLo; 1914 1915 if (Overlapped) 1916 NewAmtLo = TRI.getSubReg(NewReg, AMDGPU::sub0); 1917 1918 DebugLoc DL = MI->getDebugLoc(); 1919 MachineBasicBlock *MBB = MI->getParent(); 1920 // Insert a full wait count because found register might be pending a wait. 1921 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_WAITCNT)) 1922 .addImm(0); 1923 1924 // Insert V_SWAP_B32 instruction(s) and run hazard recognizer on them. 1925 if (Overlapped) 1926 runOnInstruction( 1927 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmtLo) 1928 .addDef(AmtReg - 1) 1929 .addReg(AmtReg - 1, RegState::Undef) 1930 .addReg(NewAmtLo, RegState::Undef)); 1931 runOnInstruction(BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmt) 1932 .addDef(AmtReg) 1933 .addReg(AmtReg, RegState::Undef) 1934 .addReg(NewAmt, RegState::Undef)); 1935 1936 // Instructions emitted after the current instruction will be processed by the 1937 // parent loop of the hazard recognizer in a natural way. 1938 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1939 AmtReg) 1940 .addDef(NewAmt) 1941 .addReg(NewAmt) 1942 .addReg(AmtReg); 1943 if (Overlapped) 1944 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1945 AmtReg - 1) 1946 .addDef(NewAmtLo) 1947 .addReg(NewAmtLo) 1948 .addReg(AmtReg - 1); 1949 1950 // Re-running hazard recognizer on the modified instruction is not necessary, 1951 // inserted V_SWAP_B32 has already both read and write new registers so 1952 // hazards related to these register has already been handled. 1953 Amt->setReg(NewAmt); 1954 Amt->setIsKill(false); 1955 // We do not update liveness, so verifier may see it as undef. 1956 Amt->setIsUndef(); 1957 if (OverlappedDst) 1958 MI->getOperand(0).setReg(NewReg); 1959 if (OverlappedSrc) { 1960 Src1->setReg(NewReg); 1961 Src1->setIsKill(false); 1962 Src1->setIsUndef(); 1963 } 1964 1965 return true; 1966 } 1967 1968 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { 1969 int NSAtoVMEMWaitStates = 1; 1970 1971 if (!ST.hasNSAtoVMEMBug()) 1972 return 0; 1973 1974 if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI)) 1975 return 0; 1976 1977 const SIInstrInfo *TII = ST.getInstrInfo(); 1978 const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset); 1979 if (!Offset || (Offset->getImm() & 6) == 0) 1980 return 0; 1981 1982 auto IsHazardFn = [TII](const MachineInstr &I) { 1983 if (!SIInstrInfo::isMIMG(I)) 1984 return false; 1985 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode()); 1986 return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && 1987 TII->getInstSizeInBytes(I) >= 16; 1988 }; 1989 1990 return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1); 1991 } 1992 1993 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) { 1994 int FPAtomicToDenormModeWaitStates = 3; 1995 1996 if (!ST.hasFPAtomicToDenormModeHazard()) 1997 return 0; 1998 assert(!ST.hasExtendedWaitCounts()); 1999 2000 if (MI->getOpcode() != AMDGPU::S_DENORM_MODE) 2001 return 0; 2002 2003 auto IsHazardFn = [](const MachineInstr &I) { 2004 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I)) 2005 return false; 2006 return SIInstrInfo::isFPAtomic(I); 2007 }; 2008 2009 auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) { 2010 if (WaitStates >= 3 || SIInstrInfo::isVALU(MI)) 2011 return true; 2012 2013 switch (MI.getOpcode()) { 2014 case AMDGPU::S_WAITCNT: 2015 case AMDGPU::S_WAITCNT_VSCNT: 2016 case AMDGPU::S_WAITCNT_VMCNT: 2017 case AMDGPU::S_WAITCNT_EXPCNT: 2018 case AMDGPU::S_WAITCNT_LGKMCNT: 2019 case AMDGPU::S_WAIT_IDLE: 2020 return true; 2021 default: 2022 break; 2023 } 2024 2025 return false; 2026 }; 2027 2028 return FPAtomicToDenormModeWaitStates - 2029 ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn); 2030 } 2031 2032 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) { 2033 assert(SIInstrInfo::isMAI(*MI)); 2034 2035 return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI); 2036 } 2037 2038 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) { 2039 // Early exit if no padding is requested. 2040 if (MFMAPaddingRatio == 0) 2041 return 0; 2042 2043 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 2044 if (!SIInstrInfo::isMFMA(*MI) || MFI->getOccupancy() < 2) 2045 return 0; 2046 2047 int NeighborMFMALatency = 0; 2048 auto IsNeighboringMFMA = [&NeighborMFMALatency, 2049 this](const MachineInstr &MI) { 2050 if (!SIInstrInfo::isMFMA(MI)) 2051 return false; 2052 2053 NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI); 2054 return true; 2055 }; 2056 2057 const int MaxMFMAPipelineWaitStates = 16; 2058 int WaitStatesSinceNeighborMFMA = 2059 getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates); 2060 2061 int NeighborMFMAPaddingNeeded = 2062 (NeighborMFMALatency * MFMAPaddingRatio / 100) - 2063 WaitStatesSinceNeighborMFMA; 2064 2065 return std::max(0, NeighborMFMAPaddingNeeded); 2066 } 2067 2068 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) { 2069 int WaitStatesNeeded = 0; 2070 unsigned Opc = MI->getOpcode(); 2071 2072 auto IsVALUFn = [](const MachineInstr &MI) { 2073 return SIInstrInfo::isVALU(MI) || MI.isInlineAsm(); 2074 }; 2075 2076 if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write 2077 const int LegacyVALUWritesVGPRWaitStates = 2; 2078 const int VALUWritesExecWaitStates = 4; 2079 const int MaxWaitStates = 4; 2080 2081 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 2082 getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates); 2083 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2084 2085 if (WaitStatesNeeded < MaxWaitStates) { 2086 for (const MachineOperand &Use : MI->explicit_uses()) { 2087 const int MaxWaitStates = 2; 2088 2089 if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 2090 continue; 2091 2092 int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates - 2093 getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates); 2094 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2095 2096 if (WaitStatesNeeded == MaxWaitStates) 2097 break; 2098 } 2099 } 2100 } 2101 2102 for (const MachineOperand &Op : MI->explicit_operands()) { 2103 if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg())) 2104 continue; 2105 2106 if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2107 continue; 2108 2109 const int MFMAWritesAGPROverlappedSrcABWaitStates = 4; 2110 const int MFMAWritesAGPROverlappedSrcCWaitStates = 2; 2111 const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4; 2112 const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10; 2113 const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18; 2114 const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1; 2115 const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7; 2116 const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15; 2117 const int MaxWaitStates = 18; 2118 Register Reg = Op.getReg(); 2119 unsigned HazardDefLatency = 0; 2120 2121 auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency, 2122 this](const MachineInstr &MI) { 2123 if (!SIInstrInfo::isMFMA(MI)) 2124 return false; 2125 Register DstReg = MI.getOperand(0).getReg(); 2126 if (DstReg == Reg) 2127 return false; 2128 HazardDefLatency = 2129 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2130 return TRI.regsOverlap(DstReg, Reg); 2131 }; 2132 2133 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, 2134 MaxWaitStates); 2135 int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates; 2136 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2137 int OpNo = Op.getOperandNo(); 2138 if (OpNo == SrcCIdx) { 2139 NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates; 2140 } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) { 2141 switch (HazardDefLatency) { 2142 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates; 2143 break; 2144 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates; 2145 break; 2146 case 16: [[fallthrough]]; 2147 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates; 2148 break; 2149 } 2150 } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2151 switch (HazardDefLatency) { 2152 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates; 2153 break; 2154 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates; 2155 break; 2156 case 16: [[fallthrough]]; 2157 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates; 2158 break; 2159 } 2160 } 2161 2162 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2163 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2164 2165 if (WaitStatesNeeded == MaxWaitStates) 2166 return WaitStatesNeeded; // Early exit. 2167 2168 auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) { 2169 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2170 return false; 2171 Register DstReg = MI.getOperand(0).getReg(); 2172 return TRI.regsOverlap(Reg, DstReg); 2173 }; 2174 2175 const int AccVGPRWriteMFMAReadSrcCWaitStates = 1; 2176 const int AccVGPRWriteMFMAReadSrcABWaitStates = 3; 2177 const int AccVGPRWriteAccVgprReadWaitStates = 3; 2178 NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates; 2179 if (OpNo == SrcCIdx) 2180 NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates; 2181 else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) 2182 NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates; 2183 2184 WaitStatesNeededForUse = NeedWaitStates - 2185 getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates); 2186 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2187 2188 if (WaitStatesNeeded == MaxWaitStates) 2189 return WaitStatesNeeded; // Early exit. 2190 } 2191 2192 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2193 const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0; 2194 const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5; 2195 const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13; 2196 const int MaxWaitStates = 13; 2197 Register DstReg = MI->getOperand(0).getReg(); 2198 unsigned HazardDefLatency = 0; 2199 2200 auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency, 2201 this](const MachineInstr &MI) { 2202 if (!SIInstrInfo::isMFMA(MI)) 2203 return false; 2204 Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg(); 2205 HazardDefLatency = 2206 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2207 return TRI.regsOverlap(Reg, DstReg); 2208 }; 2209 2210 int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates); 2211 int NeedWaitStates; 2212 switch (HazardDefLatency) { 2213 case 2: NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates; 2214 break; 2215 case 8: NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates; 2216 break; 2217 case 16: [[fallthrough]]; 2218 default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates; 2219 break; 2220 } 2221 2222 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince; 2223 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2224 } 2225 2226 // Pad neighboring MFMA with noops for better inter-wave performance. 2227 WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI)); 2228 2229 return WaitStatesNeeded; 2230 } 2231 2232 static int 2233 GFX940_XDL_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(int NumPasses) { 2234 // 2 pass -> 3 2235 // 4 pass -> 5 2236 // 8 pass -> 9 2237 // 16 pass -> 17 2238 return NumPasses + 1; 2239 } 2240 2241 static int 2242 GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(int NumPasses) { 2243 // 2 pass -> 2 2244 // 4 pass -> 4 2245 // 8 pass -> 8 2246 // 16 pass -> 16 2247 return NumPasses; 2248 } 2249 2250 static int 2251 GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses) { 2252 // 2 pass -> 4 2253 // 4 pass -> 6 2254 // 8 pass -> 10 2255 // 16 pass -> 18 2256 return NumPasses + 2; 2257 } 2258 2259 static int GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses) { 2260 // 2 pass -> 5 2261 // 4 pass -> 7 2262 // 8 pass -> 11 2263 // 16 pass -> 19 2264 return NumPasses + 3; 2265 } 2266 2267 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) { 2268 int WaitStatesNeeded = 0; 2269 unsigned Opc = MI->getOpcode(); 2270 2271 auto IsLegacyVALUFn = [](const MachineInstr &MI) { 2272 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI); 2273 }; 2274 2275 auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) { 2276 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) && 2277 !SIInstrInfo::isDOT(MI); 2278 }; 2279 2280 if (!SIInstrInfo::isMFMA(*MI)) 2281 return WaitStatesNeeded; 2282 2283 const int VALUWritesExecWaitStates = 4; 2284 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 2285 getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn, 2286 VALUWritesExecWaitStates); 2287 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2288 2289 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2290 2291 // Loop for both DGEMM and S/HGEMM 2nd instruction. 2292 for (const MachineOperand &Use : MI->explicit_uses()) { 2293 const int LegacyVALUNotDotWritesVGPRWaitStates = 2; 2294 const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2; 2295 const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8; 2296 const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16; 2297 const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3; 2298 const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9; 2299 const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17; 2300 const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9; 2301 const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4; 2302 const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5; 2303 const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11; 2304 const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19; 2305 const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6; 2306 const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11; 2307 const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4; 2308 const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2; 2309 const int MaxWaitStates = 19; 2310 2311 if (!Use.isReg()) 2312 continue; 2313 Register Reg = Use.getReg(); 2314 bool FullReg; 2315 const MachineInstr *MI1; 2316 2317 auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1, 2318 this](const MachineInstr &MI) { 2319 if (!SIInstrInfo::isMFMA(MI)) 2320 return false; 2321 Register DstReg = MI.getOperand(0).getReg(); 2322 FullReg = (DstReg == Reg); 2323 MI1 = &MI; 2324 return TRI.regsOverlap(DstReg, Reg); 2325 }; 2326 2327 WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates - 2328 getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates); 2329 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2330 2331 int NumWaitStates = 2332 getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates); 2333 if (NumWaitStates == std::numeric_limits<int>::max()) 2334 continue; 2335 2336 int OpNo = Use.getOperandNo(); 2337 unsigned Opc1 = MI1->getOpcode(); 2338 int NeedWaitStates = 0; 2339 if (OpNo == SrcCIdx) { 2340 if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) { 2341 NeedWaitStates = 0; 2342 } else if (FullReg) { 2343 if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2344 Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) && 2345 (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2346 Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64)) 2347 NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates; 2348 else if (ST.hasGFX940Insts() && 2349 TSchedModel.computeInstrLatency(MI1) == 2) 2350 NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates; 2351 } else { 2352 switch (Opc1) { 2353 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2354 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2355 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2356 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2357 if (!isXDL(ST, *MI)) 2358 NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates; 2359 break; 2360 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2361 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2362 if (!isXDL(ST, *MI)) 2363 NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates; 2364 break; 2365 default: 2366 int NumPasses = TSchedModel.computeInstrLatency(MI1); 2367 if (ST.hasGFX940Insts()) { 2368 if (isXDL(ST, *MI) && !isXDL(ST, *MI1)) 2369 break; 2370 2371 NeedWaitStates = 2372 isXDL(ST, *MI1) 2373 ? GFX940_XDL_N_PassWritesVGPROverlappedSMFMASrcCWaitStates( 2374 NumPasses) 2375 : GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates( 2376 NumPasses); 2377 break; 2378 } 2379 2380 switch (NumPasses) { 2381 case 2: 2382 NeedWaitStates = 2383 isDGEMM(Opc) ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates 2384 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates; 2385 break; 2386 case 8: 2387 NeedWaitStates = 2388 isDGEMM(Opc) 2389 ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates 2390 : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates; 2391 break; 2392 case 16: 2393 NeedWaitStates = 2394 isDGEMM(Opc) 2395 ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates 2396 : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates; 2397 break; 2398 default: 2399 llvm_unreachable("unexpected number of passes"); 2400 } 2401 } 2402 } 2403 } else { 2404 switch (Opc1) { 2405 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2406 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2407 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2408 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2409 NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates; 2410 break; 2411 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2412 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2413 NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates; 2414 break; 2415 default: 2416 int NumPasses = TSchedModel.computeInstrLatency(MI1); 2417 2418 if (ST.hasGFX940Insts()) { 2419 NeedWaitStates = 2420 isXDL(ST, *MI1) 2421 ? GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates( 2422 NumPasses) 2423 : GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates( 2424 NumPasses); 2425 break; 2426 } 2427 2428 switch (NumPasses) { 2429 case 2: 2430 NeedWaitStates = SMFMA4x4WritesVGPROverlappedSrcABWaitStates; 2431 break; 2432 case 4: 2433 llvm_unreachable("unexpected number of passes for mfma"); 2434 case 8: 2435 NeedWaitStates = SMFMA16x16WritesVGPROverlappedSrcABWaitStates; 2436 break; 2437 case 16: 2438 default: 2439 NeedWaitStates = SMFMA32x32WritesVGPROverlappedSrcABWaitStates; 2440 } 2441 } 2442 } 2443 if (WaitStatesNeeded >= NeedWaitStates) 2444 continue; 2445 2446 WaitStatesNeededForUse = NeedWaitStates - NumWaitStates; 2447 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2448 2449 if (WaitStatesNeeded == MaxWaitStates) 2450 break; 2451 } 2452 2453 // Pad neighboring MFMA with noops for better inter-wave performance. 2454 WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI)); 2455 2456 return WaitStatesNeeded; 2457 } 2458 2459 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) { 2460 // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards() 2461 if (!ST.hasMAIInsts() || ST.hasGFX90AInsts()) 2462 return 0; 2463 2464 int WaitStatesNeeded = 0; 2465 2466 auto IsAccVgprReadFn = [](const MachineInstr &MI) { 2467 return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64; 2468 }; 2469 2470 for (const MachineOperand &Op : MI->explicit_uses()) { 2471 if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg())) 2472 continue; 2473 2474 Register Reg = Op.getReg(); 2475 2476 const int AccVgprReadLdStWaitStates = 2; 2477 const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1; 2478 const int MaxWaitStates = 2; 2479 2480 int WaitStatesNeededForUse = AccVgprReadLdStWaitStates - 2481 getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates); 2482 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2483 2484 if (WaitStatesNeeded == MaxWaitStates) 2485 return WaitStatesNeeded; // Early exit. 2486 2487 auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) { 2488 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 && 2489 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2490 return false; 2491 auto IsVALUFn = [](const MachineInstr &MI) { 2492 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI); 2493 }; 2494 return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) < 2495 std::numeric_limits<int>::max(); 2496 }; 2497 2498 WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates - 2499 getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates); 2500 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2501 } 2502 2503 return WaitStatesNeeded; 2504 } 2505 2506 static int GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(int NumPasses) { 2507 // 2 pass -> 4 2508 // 4 pass -> 6 2509 // 8 pass -> 10 2510 // 16 pass -> 18 2511 return NumPasses + 2; 2512 } 2513 2514 static int GFX940_XDL_N_PassWriteVgprVALUWawWaitStates(int NumPasses) { 2515 // 2 pass -> 5 2516 // 4 pass -> 7 2517 // 8 pass -> 11 2518 // 16 pass -> 19 2519 return NumPasses + 3; 2520 } 2521 2522 static int GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses) { 2523 // 2 pass -> 5 2524 // 4 pass -> 7 2525 // 8 pass -> 11 2526 // 16 pass -> 19 2527 return NumPasses + 3; 2528 } 2529 2530 static int GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses) { 2531 // 2 pass -> 4 2532 // 4 pass -> 6 2533 // 8 pass -> 10 2534 // 16 pass -> 18 2535 return NumPasses + 2; 2536 } 2537 2538 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) { 2539 if (!ST.hasGFX90AInsts()) 2540 return 0; 2541 2542 auto IsDGEMMFn = [](const MachineInstr &MI) -> bool { 2543 return isDGEMM(MI.getOpcode()); 2544 }; 2545 2546 // This is checked in checkMAIHazards90A() 2547 if (SIInstrInfo::isMFMA(*MI)) 2548 return 0; 2549 2550 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2551 2552 int WaitStatesNeeded = 0; 2553 2554 bool IsMem = SIInstrInfo::isVMEM(*MI) || 2555 SIInstrInfo::isFLAT(*MI) || 2556 SIInstrInfo::isDS(*MI); 2557 bool IsMemOrExport = IsMem || SIInstrInfo::isEXP(*MI); 2558 bool IsVALU = SIInstrInfo::isVALU(*MI); 2559 2560 const MachineInstr *MFMA = nullptr; 2561 unsigned Reg; 2562 auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2563 if (!SIInstrInfo::isMFMA(MI) || 2564 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2565 return false; 2566 MFMA = &MI; 2567 return true; 2568 }; 2569 2570 const MachineInstr *DOT = nullptr; 2571 auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) { 2572 if (!SIInstrInfo::isDOT(MI) || 2573 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2574 return false; 2575 DOT = &MI; 2576 return true; 2577 }; 2578 2579 bool DGEMMAfterVALUWrite = false; 2580 auto IsDGEMMHazard = [&DGEMMAfterVALUWrite, this](const MachineInstr &MI) { 2581 // Found DGEMM on reverse traversal to def. 2582 if (isDGEMM(MI.getOpcode())) 2583 DGEMMAfterVALUWrite = true; 2584 2585 // Only hazard if register is defined by a VALU and a DGEMM is found after 2586 // after the def. 2587 if (!TII.isVALU(MI) || !DGEMMAfterVALUWrite) 2588 return false; 2589 2590 return true; 2591 }; 2592 2593 int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), 2594 AMDGPU::OpName::src2); 2595 2596 if (IsMemOrExport || IsVALU) { 2597 const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5; 2598 const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11; 2599 const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19; 2600 const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9; 2601 const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18; 2602 const int DMFMA4x4WriteVgprVALUReadWaitStates = 6; 2603 const int DMFMA16x16WriteVgprVALUReadWaitStates = 11; 2604 const int DotWriteSameDotReadSrcAB = 3; 2605 const int DotWriteDifferentVALURead = 3; 2606 const int DMFMABetweenVALUWriteVMEMRead = 2; 2607 const int MaxWaitStates = 19; 2608 2609 for (const MachineOperand &Use : MI->explicit_uses()) { 2610 if (!Use.isReg()) 2611 continue; 2612 Reg = Use.getReg(); 2613 2614 DOT = nullptr; 2615 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2616 MaxWaitStates); 2617 if (DOT) { 2618 int NeedWaitStates = 0; 2619 if (DOT->getOpcode() == MI->getOpcode()) { 2620 if (&Use - &MI->getOperand(0) != SrcCIdx) 2621 NeedWaitStates = DotWriteSameDotReadSrcAB; 2622 } else { 2623 NeedWaitStates = DotWriteDifferentVALURead; 2624 } 2625 2626 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2627 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2628 } 2629 2630 // Workaround for HW data hazard bug observed only in GFX90A. When there 2631 // is a DGEMM instruction in-between a VALU and a VMEM instruction it 2632 // causes the SQ to incorrectly not insert two wait states between the two 2633 // instructions needed to avoid data hazard. 2634 if (IsMem && ST.hasGFX90AInsts() && !ST.hasGFX940Insts()) { 2635 DGEMMAfterVALUWrite = false; 2636 if (TRI.isVectorRegister(MRI, Reg)) { 2637 int WaitStatesNeededForUse = 2638 DMFMABetweenVALUWriteVMEMRead - 2639 getWaitStatesSinceDef(Reg, IsDGEMMHazard, 2640 DMFMABetweenVALUWriteVMEMRead); 2641 2642 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2643 } 2644 } 2645 2646 MFMA = nullptr; 2647 WaitStatesSinceDef = 2648 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2649 if (!MFMA) 2650 continue; 2651 2652 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2653 int NumPasses = HazardDefLatency; 2654 int NeedWaitStates = MaxWaitStates; 2655 2656 if (isDGEMM(MFMA->getOpcode())) { 2657 switch (HazardDefLatency) { 2658 case 4: 2659 NeedWaitStates = IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates 2660 : DMFMA4x4WriteVgprVALUReadWaitStates; 2661 break; 2662 case 8: 2663 case 16: 2664 NeedWaitStates = IsMemOrExport 2665 ? DMFMA16x16WriteVgprMemExpReadWaitStates 2666 : DMFMA16x16WriteVgprVALUReadWaitStates; 2667 break; 2668 default: 2669 llvm_unreachable("unexpected dgemm"); 2670 } 2671 } else if (ST.hasGFX940Insts()) { 2672 NeedWaitStates = 2673 isXDL(ST, *MFMA) 2674 ? GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates(NumPasses) 2675 : GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates( 2676 NumPasses); 2677 } else { 2678 switch (HazardDefLatency) { 2679 case 2: 2680 NeedWaitStates = SMFMA4x4WriteVgprVALUMemExpReadWaitStates; 2681 break; 2682 case 8: 2683 NeedWaitStates = SMFMA16x16WriteVgprVALUMemExpReadWaitStates; 2684 break; 2685 case 16: 2686 NeedWaitStates = SMFMA32x32WriteVgprVALUMemExpReadWaitStates; 2687 break; 2688 default: 2689 llvm_unreachable("unexpected number of passes for mfma"); 2690 } 2691 } 2692 2693 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2694 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2695 2696 if (WaitStatesNeeded == MaxWaitStates) 2697 break; 2698 } 2699 } 2700 2701 unsigned Opc = MI->getOpcode(); 2702 const int DMFMAToFMA64WaitStates = 2; 2703 if ((Opc == AMDGPU::V_FMA_F64_e64 || 2704 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 || 2705 Opc == AMDGPU::V_FMAC_F64_dpp) && 2706 WaitStatesNeeded < DMFMAToFMA64WaitStates) { 2707 int WaitStatesNeededForUse = DMFMAToFMA64WaitStates - 2708 getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates); 2709 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2710 } 2711 2712 if (!IsVALU && !IsMemOrExport) 2713 return WaitStatesNeeded; 2714 2715 for (const MachineOperand &Def : MI->defs()) { 2716 const int SMFMA4x4WriteVgprVALUWawWaitStates = 5; 2717 const int SMFMA16x16WriteVgprVALUWawWaitStates = 11; 2718 const int SMFMA32x32WriteVgprVALUWawWaitStates = 19; 2719 const int SMFMA4x4ReadVgprVALUWarWaitStates = 1; 2720 const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3; 2721 const int SMFMA16x16ReadVgprVALUWarWaitStates = 7; 2722 const int SMFMA32x32ReadVgprVALUWarWaitStates = 15; 2723 const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6; 2724 const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11; 2725 const int DotWriteDifferentVALUWrite = 3; 2726 const int MaxWaitStates = 19; 2727 const int MaxWarWaitStates = 15; 2728 2729 Reg = Def.getReg(); 2730 2731 DOT = nullptr; 2732 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2733 MaxWaitStates); 2734 if (DOT && DOT->getOpcode() != MI->getOpcode()) 2735 WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite - 2736 WaitStatesSinceDef); 2737 2738 MFMA = nullptr; 2739 WaitStatesSinceDef = 2740 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2741 if (MFMA) { 2742 int NeedWaitStates = MaxWaitStates; 2743 int NumPasses = TSchedModel.computeInstrLatency(MFMA); 2744 2745 if (isDGEMM(MFMA->getOpcode())) { 2746 switch (NumPasses) { 2747 case 4: 2748 NeedWaitStates = DMFMA4x4WriteVgprVALUWriteWaitStates; 2749 break; 2750 case 8: 2751 case 16: 2752 NeedWaitStates = DMFMA16x16WriteVgprVALUWriteWaitStates; 2753 break; 2754 default: 2755 llvm_unreachable("unexpected number of cycles for dgemm"); 2756 } 2757 } else if (ST.hasGFX940Insts()) { 2758 NeedWaitStates = 2759 isXDL(ST, *MFMA) 2760 ? GFX940_XDL_N_PassWriteVgprVALUWawWaitStates(NumPasses) 2761 : GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(NumPasses); 2762 } else { 2763 switch (NumPasses) { 2764 case 2: 2765 NeedWaitStates = SMFMA4x4WriteVgprVALUWawWaitStates; 2766 break; 2767 case 8: 2768 NeedWaitStates = SMFMA16x16WriteVgprVALUWawWaitStates; 2769 break; 2770 case 16: 2771 NeedWaitStates = SMFMA32x32WriteVgprVALUWawWaitStates; 2772 break; 2773 default: 2774 llvm_unreachable("Unexpected number of passes for mfma"); 2775 } 2776 } 2777 2778 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2779 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2780 2781 if (WaitStatesNeeded == MaxWaitStates) 2782 break; 2783 } 2784 2785 auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2786 if (!SIInstrInfo::isMFMA(MI) || isDGEMM(MI.getOpcode()) || 2787 !MI.readsRegister(Reg, &TRI)) 2788 return false; 2789 2790 if (ST.hasGFX940Insts() && !isXDL(ST, MI)) 2791 return false; 2792 2793 const MachineOperand *SrcC = 2794 TII.getNamedOperand(MI, AMDGPU::OpName::src2); 2795 assert(SrcC); 2796 if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg)) 2797 return false; 2798 2799 MFMA = &MI; 2800 return true; 2801 }; 2802 2803 MFMA = nullptr; 2804 int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn, 2805 MaxWarWaitStates); 2806 if (!MFMA) 2807 continue; 2808 2809 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2810 int NeedWaitStates = MaxWaitStates; 2811 switch (HazardDefLatency) { 2812 case 2: NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates; 2813 break; 2814 case 4: assert(ST.hasGFX940Insts()); 2815 NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates; 2816 break; 2817 case 8: NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates; 2818 break; 2819 case 16: [[fallthrough]]; 2820 default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates; 2821 break; 2822 } 2823 2824 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse; 2825 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2826 } 2827 2828 return WaitStatesNeeded; 2829 } 2830 2831 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) { 2832 if (!SU->isInstr()) 2833 return false; 2834 2835 const MachineInstr *MAI = nullptr; 2836 2837 auto IsMFMAFn = [&MAI](const MachineInstr &MI) { 2838 MAI = nullptr; 2839 if (SIInstrInfo::isMFMA(MI)) 2840 MAI = &MI; 2841 return MAI != nullptr; 2842 }; 2843 2844 MachineInstr *MI = SU->getInstr(); 2845 if (IsMFMAFn(*MI)) { 2846 int W = getWaitStatesSince(IsMFMAFn, 16); 2847 if (MAI) 2848 return W < (int)TSchedModel.computeInstrLatency(MAI); 2849 } 2850 2851 return false; 2852 } 2853 2854 bool GCNHazardRecognizer::fixVALUMaskWriteHazard(MachineInstr *MI) { 2855 if (!ST.hasVALUMaskWriteHazard()) 2856 return false; 2857 assert(!ST.hasExtendedWaitCounts()); 2858 2859 if (!ST.isWave64() || !SIInstrInfo::isSALU(*MI)) 2860 return false; 2861 2862 // The hazard sequence is three instructions: 2863 // 1. VALU reads SGPR as mask 2864 // 2. SALU writes SGPR 2865 // 3. SALU reads SGPR 2866 // The hazard can expire if the distance between 2 and 3 is sufficient. 2867 // In practice this happens <10% of the time, hence this always assumes 2868 // the hazard exists if 1 and 2 are present to avoid searching. 2869 2870 const MachineOperand *SDSTOp = TII.getNamedOperand(*MI, AMDGPU::OpName::sdst); 2871 if (!SDSTOp || !SDSTOp->isReg()) 2872 return false; 2873 2874 const Register HazardReg = SDSTOp->getReg(); 2875 if (HazardReg == AMDGPU::EXEC || 2876 HazardReg == AMDGPU::EXEC_LO || 2877 HazardReg == AMDGPU::EXEC_HI || 2878 HazardReg == AMDGPU::M0) 2879 return false; 2880 2881 auto IsHazardFn = [HazardReg, this](const MachineInstr &I) { 2882 switch (I.getOpcode()) { 2883 case AMDGPU::V_ADDC_U32_e32: 2884 case AMDGPU::V_ADDC_U32_dpp: 2885 case AMDGPU::V_CNDMASK_B16_e32: 2886 case AMDGPU::V_CNDMASK_B16_dpp: 2887 case AMDGPU::V_CNDMASK_B32_e32: 2888 case AMDGPU::V_CNDMASK_B32_dpp: 2889 case AMDGPU::V_DIV_FMAS_F32_e64: 2890 case AMDGPU::V_DIV_FMAS_F64_e64: 2891 case AMDGPU::V_SUBB_U32_e32: 2892 case AMDGPU::V_SUBB_U32_dpp: 2893 case AMDGPU::V_SUBBREV_U32_e32: 2894 case AMDGPU::V_SUBBREV_U32_dpp: 2895 // These implicitly read VCC as mask source. 2896 return HazardReg == AMDGPU::VCC || 2897 HazardReg == AMDGPU::VCC_LO || 2898 HazardReg == AMDGPU::VCC_HI; 2899 case AMDGPU::V_ADDC_U32_e64: 2900 case AMDGPU::V_ADDC_U32_e64_dpp: 2901 case AMDGPU::V_CNDMASK_B16_e64: 2902 case AMDGPU::V_CNDMASK_B16_e64_dpp: 2903 case AMDGPU::V_CNDMASK_B32_e64: 2904 case AMDGPU::V_CNDMASK_B32_e64_dpp: 2905 case AMDGPU::V_SUBB_U32_e64: 2906 case AMDGPU::V_SUBB_U32_e64_dpp: 2907 case AMDGPU::V_SUBBREV_U32_e64: 2908 case AMDGPU::V_SUBBREV_U32_e64_dpp: { 2909 // Only check mask register overlaps. 2910 const MachineOperand *SSRCOp = TII.getNamedOperand(I, AMDGPU::OpName::src2); 2911 assert(SSRCOp); 2912 return TRI.regsOverlap(SSRCOp->getReg(), HazardReg); 2913 } 2914 default: 2915 return false; 2916 } 2917 }; 2918 2919 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2920 auto IsExpiredFn = [&MRI, this](const MachineInstr &I, int) { 2921 // s_waitcnt_depctr sa_sdst(0) mitigates hazard. 2922 if (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 2923 AMDGPU::DepCtr::decodeFieldSaSdst(I.getOperand(0).getImm()) == 0) 2924 return true; 2925 2926 // VALU access to any SGPR or literal constant other than HazardReg 2927 // mitigates hazard. No need to check HazardReg here as this will 2928 // only be called when !IsHazardFn. 2929 if (!SIInstrInfo::isVALU(I)) 2930 return false; 2931 for (int OpNo = 0, End = I.getNumOperands(); OpNo < End; ++OpNo) { 2932 const MachineOperand &Op = I.getOperand(OpNo); 2933 if (Op.isReg()) { 2934 Register OpReg = Op.getReg(); 2935 // Only consider uses 2936 if (!Op.isUse()) 2937 continue; 2938 // Ignore EXEC 2939 if (OpReg == AMDGPU::EXEC || 2940 OpReg == AMDGPU::EXEC_LO || 2941 OpReg == AMDGPU::EXEC_HI) 2942 continue; 2943 // Ignore all implicit uses except VCC 2944 if (Op.isImplicit()) { 2945 if (OpReg == AMDGPU::VCC || 2946 OpReg == AMDGPU::VCC_LO || 2947 OpReg == AMDGPU::VCC_HI) 2948 return true; 2949 continue; 2950 } 2951 if (TRI.isSGPRReg(MRI, OpReg)) 2952 return true; 2953 } else { 2954 const MCInstrDesc &InstDesc = I.getDesc(); 2955 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; 2956 if (!TII.isInlineConstant(Op, OpInfo)) 2957 return true; 2958 } 2959 } 2960 return false; 2961 }; 2962 2963 // Check for hazard 2964 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 2965 std::numeric_limits<int>::max()) 2966 return false; 2967 2968 auto NextMI = std::next(MI->getIterator()); 2969 2970 // Add s_waitcnt_depctr sa_sdst(0) after SALU write. 2971 BuildMI(*MI->getParent(), NextMI, MI->getDebugLoc(), 2972 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 2973 .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0)); 2974 2975 // SALU write may be s_getpc in a bundle. 2976 if (MI->getOpcode() == AMDGPU::S_GETPC_B64) { 2977 // Update offsets of any references in the bundle. 2978 while (NextMI != MI->getParent()->end() && 2979 NextMI->isBundledWithPred()) { 2980 for (auto &Operand : NextMI->operands()) { 2981 if (Operand.isGlobal()) 2982 Operand.setOffset(Operand.getOffset() + 4); 2983 } 2984 NextMI++; 2985 } 2986 } 2987 2988 return true; 2989 } 2990 2991 static bool ensureEntrySetPrio(MachineFunction *MF, int Priority, 2992 const SIInstrInfo &TII) { 2993 MachineBasicBlock &EntryMBB = MF->front(); 2994 if (EntryMBB.begin() != EntryMBB.end()) { 2995 auto &EntryMI = *EntryMBB.begin(); 2996 if (EntryMI.getOpcode() == AMDGPU::S_SETPRIO && 2997 EntryMI.getOperand(0).getImm() >= Priority) 2998 return false; 2999 } 3000 3001 BuildMI(EntryMBB, EntryMBB.begin(), DebugLoc(), TII.get(AMDGPU::S_SETPRIO)) 3002 .addImm(Priority); 3003 return true; 3004 } 3005 3006 bool GCNHazardRecognizer::fixRequiredExportPriority(MachineInstr *MI) { 3007 if (!ST.hasRequiredExportPriority()) 3008 return false; 3009 3010 // Assume the following shader types will never have exports, 3011 // and avoid adding or adjusting S_SETPRIO. 3012 MachineBasicBlock *MBB = MI->getParent(); 3013 MachineFunction *MF = MBB->getParent(); 3014 auto CC = MF->getFunction().getCallingConv(); 3015 switch (CC) { 3016 case CallingConv::AMDGPU_CS: 3017 case CallingConv::AMDGPU_CS_Chain: 3018 case CallingConv::AMDGPU_CS_ChainPreserve: 3019 case CallingConv::AMDGPU_KERNEL: 3020 return false; 3021 default: 3022 break; 3023 } 3024 3025 const int MaxPriority = 3; 3026 const int NormalPriority = 2; 3027 const int PostExportPriority = 0; 3028 3029 auto It = MI->getIterator(); 3030 switch (MI->getOpcode()) { 3031 case AMDGPU::S_ENDPGM: 3032 case AMDGPU::S_ENDPGM_SAVED: 3033 case AMDGPU::S_ENDPGM_ORDERED_PS_DONE: 3034 case AMDGPU::SI_RETURN_TO_EPILOG: 3035 // Ensure shader with calls raises priority at entry. 3036 // This ensures correct priority if exports exist in callee. 3037 if (MF->getFrameInfo().hasCalls()) 3038 return ensureEntrySetPrio(MF, NormalPriority, TII); 3039 return false; 3040 case AMDGPU::S_SETPRIO: { 3041 // Raise minimum priority unless in workaround. 3042 auto &PrioOp = MI->getOperand(0); 3043 int Prio = PrioOp.getImm(); 3044 bool InWA = (Prio == PostExportPriority) && 3045 (It != MBB->begin() && TII.isEXP(*std::prev(It))); 3046 if (InWA || Prio >= NormalPriority) 3047 return false; 3048 PrioOp.setImm(std::min(Prio + NormalPriority, MaxPriority)); 3049 return true; 3050 } 3051 default: 3052 if (!TII.isEXP(*MI)) 3053 return false; 3054 break; 3055 } 3056 3057 // Check entry priority at each export (as there will only be a few). 3058 // Note: amdgpu_gfx can only be a callee, so defer to caller setprio. 3059 bool Changed = false; 3060 if (CC != CallingConv::AMDGPU_Gfx) 3061 Changed = ensureEntrySetPrio(MF, NormalPriority, TII); 3062 3063 auto NextMI = std::next(It); 3064 bool EndOfShader = false; 3065 if (NextMI != MBB->end()) { 3066 // Only need WA at end of sequence of exports. 3067 if (TII.isEXP(*NextMI)) 3068 return Changed; 3069 // Assume appropriate S_SETPRIO after export means WA already applied. 3070 if (NextMI->getOpcode() == AMDGPU::S_SETPRIO && 3071 NextMI->getOperand(0).getImm() == PostExportPriority) 3072 return Changed; 3073 EndOfShader = NextMI->getOpcode() == AMDGPU::S_ENDPGM; 3074 } 3075 3076 const DebugLoc &DL = MI->getDebugLoc(); 3077 3078 // Lower priority. 3079 BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_SETPRIO)) 3080 .addImm(PostExportPriority); 3081 3082 if (!EndOfShader) { 3083 // Wait for exports to complete. 3084 BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_WAITCNT_EXPCNT)) 3085 .addReg(AMDGPU::SGPR_NULL) 3086 .addImm(0); 3087 } 3088 3089 BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_NOP)).addImm(0); 3090 BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_NOP)).addImm(0); 3091 3092 if (!EndOfShader) { 3093 // Return to normal (higher) priority. 3094 BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_SETPRIO)) 3095 .addImm(NormalPriority); 3096 } 3097 3098 return true; 3099 } 3100