1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements hazard recognizers for scheduling on GCN processors. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "GCNHazardRecognizer.h" 15 #include "AMDGPUSubtarget.h" 16 #include "SIDefines.h" 17 #include "SIInstrInfo.h" 18 #include "SIRegisterInfo.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/ScheduleDAG.h" 25 #include "llvm/MC/MCInstrDesc.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include <algorithm> 28 #include <cassert> 29 #include <limits> 30 #include <set> 31 #include <vector> 32 33 using namespace llvm; 34 35 //===----------------------------------------------------------------------===// 36 // Hazard Recoginizer Implementation 37 //===----------------------------------------------------------------------===// 38 39 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 40 CurrCycleInstr(nullptr), 41 MF(MF), 42 ST(MF.getSubtarget<SISubtarget>()), 43 TII(*ST.getInstrInfo()) { 44 MaxLookAhead = 5; 45 } 46 47 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 48 EmitInstruction(SU->getInstr()); 49 } 50 51 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 52 CurrCycleInstr = MI; 53 } 54 55 static bool isDivFMas(unsigned Opcode) { 56 return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64; 57 } 58 59 static bool isSGetReg(unsigned Opcode) { 60 return Opcode == AMDGPU::S_GETREG_B32; 61 } 62 63 static bool isSSetReg(unsigned Opcode) { 64 return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32; 65 } 66 67 static bool isRWLane(unsigned Opcode) { 68 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 69 } 70 71 static bool isRFE(unsigned Opcode) { 72 return Opcode == AMDGPU::S_RFE_B64; 73 } 74 75 static bool isSMovRel(unsigned Opcode) { 76 switch (Opcode) { 77 case AMDGPU::S_MOVRELS_B32: 78 case AMDGPU::S_MOVRELS_B64: 79 case AMDGPU::S_MOVRELD_B32: 80 case AMDGPU::S_MOVRELD_B64: 81 return true; 82 default: 83 return false; 84 } 85 } 86 87 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 88 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 89 AMDGPU::OpName::simm16); 90 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 91 } 92 93 ScheduleHazardRecognizer::HazardType 94 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 95 MachineInstr *MI = SU->getInstr(); 96 97 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 98 return NoopHazard; 99 100 if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0) 101 return NoopHazard; 102 103 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 104 return NoopHazard; 105 106 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 107 return NoopHazard; 108 109 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 110 return NoopHazard; 111 112 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 113 return NoopHazard; 114 115 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 116 return NoopHazard; 117 118 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 119 return NoopHazard; 120 121 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 122 return NoopHazard; 123 124 if ((TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) && 125 checkReadM0Hazards(MI) > 0) 126 return NoopHazard; 127 128 if (checkAnyInstHazards(MI) > 0) 129 return NoopHazard; 130 131 return NoHazard; 132 } 133 134 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) { 135 return PreEmitNoops(SU->getInstr()); 136 } 137 138 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 139 int WaitStates = std::max(0, checkAnyInstHazards(MI)); 140 141 if (SIInstrInfo::isSMRD(*MI)) 142 return std::max(WaitStates, checkSMRDHazards(MI)); 143 144 if (SIInstrInfo::isVALU(*MI)) { 145 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 146 147 if (SIInstrInfo::isVMEM(*MI)) 148 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 149 150 if (SIInstrInfo::isDPP(*MI)) 151 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 152 153 if (isDivFMas(MI->getOpcode())) 154 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 155 156 if (isRWLane(MI->getOpcode())) 157 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 158 159 if (TII.isVINTRP(*MI)) 160 WaitStates = std::max(WaitStates, checkReadM0Hazards(MI)); 161 162 return WaitStates; 163 } 164 165 if (isSGetReg(MI->getOpcode())) 166 return std::max(WaitStates, checkGetRegHazards(MI)); 167 168 if (isSSetReg(MI->getOpcode())) 169 return std::max(WaitStates, checkSetRegHazards(MI)); 170 171 if (isRFE(MI->getOpcode())) 172 return std::max(WaitStates, checkRFEHazards(MI)); 173 174 if (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) 175 return std::max(WaitStates, checkReadM0Hazards(MI)); 176 177 return WaitStates; 178 } 179 180 void GCNHazardRecognizer::EmitNoop() { 181 EmittedInstrs.push_front(nullptr); 182 } 183 184 void GCNHazardRecognizer::AdvanceCycle() { 185 // When the scheduler detects a stall, it will call AdvanceCycle() without 186 // emitting any instructions. 187 if (!CurrCycleInstr) 188 return; 189 190 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 191 192 // Keep track of emitted instructions 193 EmittedInstrs.push_front(CurrCycleInstr); 194 195 // Add a nullptr for each additional wait state after the first. Make sure 196 // not to add more than getMaxLookAhead() items to the list, since we 197 // truncate the list to that size right after this loop. 198 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 199 i < e; ++i) { 200 EmittedInstrs.push_front(nullptr); 201 } 202 203 // getMaxLookahead() is the largest number of wait states we will ever need 204 // to insert, so there is no point in keeping track of more than that many 205 // wait states. 206 EmittedInstrs.resize(getMaxLookAhead()); 207 208 CurrCycleInstr = nullptr; 209 } 210 211 void GCNHazardRecognizer::RecedeCycle() { 212 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 213 } 214 215 //===----------------------------------------------------------------------===// 216 // Helper Functions 217 //===----------------------------------------------------------------------===// 218 219 int GCNHazardRecognizer::getWaitStatesSince( 220 function_ref<bool(MachineInstr *)> IsHazard) { 221 int WaitStates = 0; 222 for (MachineInstr *MI : EmittedInstrs) { 223 if (MI) { 224 if (IsHazard(MI)) 225 return WaitStates; 226 227 unsigned Opcode = MI->getOpcode(); 228 if (Opcode == AMDGPU::DBG_VALUE || Opcode == AMDGPU::IMPLICIT_DEF) 229 continue; 230 } 231 ++WaitStates; 232 } 233 return std::numeric_limits<int>::max(); 234 } 235 236 int GCNHazardRecognizer::getWaitStatesSinceDef( 237 unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) { 238 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 239 240 auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) { 241 return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI); 242 }; 243 244 return getWaitStatesSince(IsHazardFn); 245 } 246 247 int GCNHazardRecognizer::getWaitStatesSinceSetReg( 248 function_ref<bool(MachineInstr *)> IsHazard) { 249 auto IsHazardFn = [IsHazard] (MachineInstr *MI) { 250 return isSSetReg(MI->getOpcode()) && IsHazard(MI); 251 }; 252 253 return getWaitStatesSince(IsHazardFn); 254 } 255 256 //===----------------------------------------------------------------------===// 257 // No-op Hazard Detection 258 //===----------------------------------------------------------------------===// 259 260 static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops, 261 std::set<unsigned> &Set) { 262 for (const MachineOperand &Op : Ops) { 263 if (Op.isReg()) 264 Set.insert(Op.getReg()); 265 } 266 } 267 268 int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) { 269 // SMEM soft clause are only present on VI+ 270 if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) 271 return 0; 272 273 // A soft-clause is any group of consecutive SMEM instructions. The 274 // instructions in this group may return out of order and/or may be 275 // replayed (i.e. the same instruction issued more than once). 276 // 277 // In order to handle these situations correctly we need to make sure 278 // that when a clause has more than one instruction, no instruction in the 279 // clause writes to a register that is read another instruction in the clause 280 // (including itself). If we encounter this situaion, we need to break the 281 // clause by inserting a non SMEM instruction. 282 283 std::set<unsigned> ClauseDefs; 284 std::set<unsigned> ClauseUses; 285 286 for (MachineInstr *MI : EmittedInstrs) { 287 288 // When we hit a non-SMEM instruction then we have passed the start of the 289 // clause and we can stop. 290 if (!MI || !SIInstrInfo::isSMRD(*MI)) 291 break; 292 293 addRegsToSet(MI->defs(), ClauseDefs); 294 addRegsToSet(MI->uses(), ClauseUses); 295 } 296 297 if (ClauseDefs.empty()) 298 return 0; 299 300 // FIXME: When we support stores, we need to make sure not to put loads and 301 // stores in the same clause if they use the same address. For now, just 302 // start a new clause whenever we see a store. 303 if (SMEM->mayStore()) 304 return 1; 305 306 addRegsToSet(SMEM->defs(), ClauseDefs); 307 addRegsToSet(SMEM->uses(), ClauseUses); 308 309 std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size())); 310 std::vector<unsigned>::iterator End; 311 312 End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(), 313 ClauseUses.begin(), ClauseUses.end(), Result.begin()); 314 315 // If the set of defs and uses intersect then we cannot add this instruction 316 // to the clause, so we have a hazard. 317 if (End != Result.begin()) 318 return 1; 319 320 return 0; 321 } 322 323 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 324 const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); 325 int WaitStatesNeeded = 0; 326 327 WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD); 328 329 // This SMRD hazard only affects SI. 330 if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS) 331 return WaitStatesNeeded; 332 333 // A read of an SGPR by SMRD instruction requires 4 wait states when the 334 // SGPR was written by a VALU instruction. 335 int SmrdSgprWaitStates = 4; 336 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 337 338 for (const MachineOperand &Use : SMRD->uses()) { 339 if (!Use.isReg()) 340 continue; 341 int WaitStatesNeededForUse = 342 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); 343 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 344 } 345 return WaitStatesNeeded; 346 } 347 348 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 349 const SIInstrInfo *TII = ST.getInstrInfo(); 350 351 if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) 352 return 0; 353 354 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 355 356 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 357 // SGPR was written by a VALU Instruction. 358 int VmemSgprWaitStates = 5; 359 int WaitStatesNeeded = 0; 360 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 361 362 for (const MachineOperand &Use : VMEM->uses()) { 363 if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 364 continue; 365 366 int WaitStatesNeededForUse = 367 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); 368 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 369 } 370 return WaitStatesNeeded; 371 } 372 373 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 374 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 375 const SIInstrInfo *TII = ST.getInstrInfo(); 376 377 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 378 int DppVgprWaitStates = 2; 379 int DppExecWaitStates = 5; 380 int WaitStatesNeeded = 0; 381 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 382 383 for (const MachineOperand &Use : DPP->uses()) { 384 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 385 continue; 386 int WaitStatesNeededForUse = 387 DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg()); 388 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 389 } 390 391 WaitStatesNeeded = std::max( 392 WaitStatesNeeded, 393 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn)); 394 395 return WaitStatesNeeded; 396 } 397 398 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 399 const SIInstrInfo *TII = ST.getInstrInfo(); 400 401 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 402 // instruction. 403 const int DivFMasWaitStates = 4; 404 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 405 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn); 406 407 return DivFMasWaitStates - WaitStatesNeeded; 408 } 409 410 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 411 const SIInstrInfo *TII = ST.getInstrInfo(); 412 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 413 414 const int GetRegWaitStates = 2; 415 auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) { 416 return GetRegHWReg == getHWReg(TII, *MI); 417 }; 418 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 419 420 return GetRegWaitStates - WaitStatesNeeded; 421 } 422 423 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 424 const SIInstrInfo *TII = ST.getInstrInfo(); 425 unsigned HWReg = getHWReg(TII, *SetRegInstr); 426 427 const int SetRegWaitStates = 428 ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2; 429 auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) { 430 return HWReg == getHWReg(TII, *MI); 431 }; 432 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 433 return SetRegWaitStates - WaitStatesNeeded; 434 } 435 436 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 437 if (!MI.mayStore()) 438 return -1; 439 440 const SIInstrInfo *TII = ST.getInstrInfo(); 441 unsigned Opcode = MI.getOpcode(); 442 const MCInstrDesc &Desc = MI.getDesc(); 443 444 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 445 int VDataRCID = -1; 446 if (VDataIdx != -1) 447 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 448 449 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 450 // There is no hazard if the instruction does not use vector regs 451 // (like wbinvl1) 452 if (VDataIdx == -1) 453 return -1; 454 // For MUBUF/MTBUF instructions this hazard only exists if the 455 // instruction is not using a register in the soffset field. 456 const MachineOperand *SOffset = 457 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 458 // If we have no soffset operand, then assume this field has been 459 // hardcoded to zero. 460 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 461 (!SOffset || !SOffset->isReg())) 462 return VDataIdx; 463 } 464 465 // MIMG instructions create a hazard if they don't use a 256-bit T# and 466 // the store size is greater than 8 bytes and they have more than two bits 467 // of their dmask set. 468 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 469 if (TII->isMIMG(MI)) { 470 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 471 assert(SRsrcIdx != -1 && 472 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 473 (void)SRsrcIdx; 474 } 475 476 if (TII->isFLAT(MI)) { 477 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 478 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 479 return DataIdx; 480 } 481 482 return -1; 483 } 484 485 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 486 // This checks for the hazard where VMEM instructions that store more than 487 // 8 bytes can have there store data over written by the next instruction. 488 if (!ST.has12DWordStoreHazard()) 489 return 0; 490 491 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 492 const MachineRegisterInfo &MRI = VALU->getParent()->getParent()->getRegInfo(); 493 494 const int VALUWaitStates = 1; 495 int WaitStatesNeeded = 0; 496 497 for (const MachineOperand &Def : VALU->defs()) { 498 if (!TRI->isVGPR(MRI, Def.getReg())) 499 continue; 500 unsigned Reg = Def.getReg(); 501 auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) { 502 int DataIdx = createsVALUHazard(*MI); 503 return DataIdx >= 0 && 504 TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg); 505 }; 506 int WaitStatesNeededForDef = 507 VALUWaitStates - getWaitStatesSince(IsHazardFn); 508 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 509 } 510 return WaitStatesNeeded; 511 } 512 513 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 514 const SIInstrInfo *TII = ST.getInstrInfo(); 515 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 516 const MachineRegisterInfo &MRI = 517 RWLane->getParent()->getParent()->getRegInfo(); 518 519 const MachineOperand *LaneSelectOp = 520 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 521 522 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 523 return 0; 524 525 unsigned LaneSelectReg = LaneSelectOp->getReg(); 526 auto IsHazardFn = [TII] (MachineInstr *MI) { 527 return TII->isVALU(*MI); 528 }; 529 530 const int RWLaneWaitStates = 4; 531 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn); 532 return RWLaneWaitStates - WaitStatesSince; 533 } 534 535 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 536 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 537 return 0; 538 539 const SIInstrInfo *TII = ST.getInstrInfo(); 540 541 const int RFEWaitStates = 1; 542 543 auto IsHazardFn = [TII] (MachineInstr *MI) { 544 return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS; 545 }; 546 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 547 return RFEWaitStates - WaitStatesNeeded; 548 } 549 550 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) { 551 if (MI->isDebugValue()) 552 return 0; 553 554 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 555 if (!ST.hasSMovFedHazard()) 556 return 0; 557 558 // Check for any instruction reading an SGPR after a write from 559 // s_mov_fed_b32. 560 int MovFedWaitStates = 1; 561 int WaitStatesNeeded = 0; 562 563 for (const MachineOperand &Use : MI->uses()) { 564 if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 565 continue; 566 auto IsHazardFn = [] (MachineInstr *MI) { 567 return MI->getOpcode() == AMDGPU::S_MOV_FED_B32; 568 }; 569 int WaitStatesNeededForUse = 570 MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn); 571 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 572 } 573 574 return WaitStatesNeeded; 575 } 576 577 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 578 if (!ST.hasReadM0Hazard()) 579 return 0; 580 581 const SIInstrInfo *TII = ST.getInstrInfo(); 582 int SMovRelWaitStates = 1; 583 auto IsHazardFn = [TII] (MachineInstr *MI) { 584 return TII->isSALU(*MI); 585 }; 586 return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn); 587 } 588