xref: /llvm-project/llvm/lib/Target/AMDGPU/GCNHazardRecognizer.cpp (revision 734bb7bb09aaca99e4cce142404fef3202b423a7)
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements hazard recognizers for scheduling on GCN processors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPUSubtarget.h"
15 #include "GCNHazardRecognizer.h"
16 #include "SIDefines.h"
17 #include "SIInstrInfo.h"
18 #include "SIRegisterInfo.h"
19 #include "Utils/AMDGPUBaseInfo.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/ScheduleDAG.h"
25 #include "llvm/MC/MCInstrDesc.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include <algorithm>
28 #include <cassert>
29 #include <limits>
30 #include <set>
31 #include <vector>
32 
33 using namespace llvm;
34 
35 //===----------------------------------------------------------------------===//
36 // Hazard Recoginizer Implementation
37 //===----------------------------------------------------------------------===//
38 
39 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
40   CurrCycleInstr(nullptr),
41   MF(MF),
42   ST(MF.getSubtarget<SISubtarget>()) {
43   MaxLookAhead = 5;
44 }
45 
46 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
47   EmitInstruction(SU->getInstr());
48 }
49 
50 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
51   CurrCycleInstr = MI;
52 }
53 
54 static bool isDivFMas(unsigned Opcode) {
55   return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64;
56 }
57 
58 static bool isSGetReg(unsigned Opcode) {
59   return Opcode == AMDGPU::S_GETREG_B32;
60 }
61 
62 static bool isSSetReg(unsigned Opcode) {
63   return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32;
64 }
65 
66 static bool isRWLane(unsigned Opcode) {
67   return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
68 }
69 
70 static bool isRFE(unsigned Opcode) {
71   return Opcode == AMDGPU::S_RFE_B64;
72 }
73 
74 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
75   const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
76                                                      AMDGPU::OpName::simm16);
77   return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
78 }
79 
80 ScheduleHazardRecognizer::HazardType
81 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
82   MachineInstr *MI = SU->getInstr();
83 
84   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
85     return NoopHazard;
86 
87   if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0)
88     return NoopHazard;
89 
90   if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
91     return NoopHazard;
92 
93   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
94     return NoopHazard;
95 
96   if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
97     return NoopHazard;
98 
99   if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
100     return NoopHazard;
101 
102   if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
103     return NoopHazard;
104 
105   if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
106     return NoopHazard;
107 
108   if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
109     return NoopHazard;
110 
111   return NoHazard;
112 }
113 
114 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
115   return PreEmitNoops(SU->getInstr());
116 }
117 
118 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
119   if (SIInstrInfo::isSMRD(*MI))
120     return std::max(0, checkSMRDHazards(MI));
121 
122   if (SIInstrInfo::isVALU(*MI)) {
123     int WaitStates = std::max(0, checkVALUHazards(MI));
124 
125     if (SIInstrInfo::isVMEM(*MI))
126       WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
127 
128     if (SIInstrInfo::isDPP(*MI))
129       WaitStates = std::max(WaitStates, checkDPPHazards(MI));
130 
131     if (isDivFMas(MI->getOpcode()))
132       WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
133 
134     if (isRWLane(MI->getOpcode()))
135       WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
136 
137     return WaitStates;
138   }
139 
140   if (isSGetReg(MI->getOpcode()))
141     return std::max(0, checkGetRegHazards(MI));
142 
143   if (isSSetReg(MI->getOpcode()))
144     return std::max(0, checkSetRegHazards(MI));
145 
146   if (isRFE(MI->getOpcode()))
147     return std::max(0, checkRFEHazards(MI));
148 
149   return 0;
150 }
151 
152 void GCNHazardRecognizer::EmitNoop() {
153   EmittedInstrs.push_front(nullptr);
154 }
155 
156 void GCNHazardRecognizer::AdvanceCycle() {
157   // When the scheduler detects a stall, it will call AdvanceCycle() without
158   // emitting any instructions.
159   if (!CurrCycleInstr)
160     return;
161 
162   const SIInstrInfo *TII = ST.getInstrInfo();
163   unsigned NumWaitStates = TII->getNumWaitStates(*CurrCycleInstr);
164 
165   // Keep track of emitted instructions
166   EmittedInstrs.push_front(CurrCycleInstr);
167 
168   // Add a nullptr for each additional wait state after the first.  Make sure
169   // not to add more than getMaxLookAhead() items to the list, since we
170   // truncate the list to that size right after this loop.
171   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
172        i < e; ++i) {
173     EmittedInstrs.push_front(nullptr);
174   }
175 
176   // getMaxLookahead() is the largest number of wait states we will ever need
177   // to insert, so there is no point in keeping track of more than that many
178   // wait states.
179   EmittedInstrs.resize(getMaxLookAhead());
180 
181   CurrCycleInstr = nullptr;
182 }
183 
184 void GCNHazardRecognizer::RecedeCycle() {
185   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
186 }
187 
188 //===----------------------------------------------------------------------===//
189 // Helper Functions
190 //===----------------------------------------------------------------------===//
191 
192 int GCNHazardRecognizer::getWaitStatesSince(
193     function_ref<bool(MachineInstr *)> IsHazard) {
194   int WaitStates = -1;
195   for (MachineInstr *MI : EmittedInstrs) {
196     ++WaitStates;
197     if (!MI || !IsHazard(MI))
198       continue;
199     return WaitStates;
200   }
201   return std::numeric_limits<int>::max();
202 }
203 
204 int GCNHazardRecognizer::getWaitStatesSinceDef(
205     unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) {
206   const SIRegisterInfo *TRI = ST.getRegisterInfo();
207 
208   auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) {
209     return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI);
210   };
211 
212   return getWaitStatesSince(IsHazardFn);
213 }
214 
215 int GCNHazardRecognizer::getWaitStatesSinceSetReg(
216     function_ref<bool(MachineInstr *)> IsHazard) {
217   auto IsHazardFn = [IsHazard] (MachineInstr *MI) {
218     return isSSetReg(MI->getOpcode()) && IsHazard(MI);
219   };
220 
221   return getWaitStatesSince(IsHazardFn);
222 }
223 
224 //===----------------------------------------------------------------------===//
225 // No-op Hazard Detection
226 //===----------------------------------------------------------------------===//
227 
228 static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops,
229                          std::set<unsigned> &Set) {
230   for (const MachineOperand &Op : Ops) {
231     if (Op.isReg())
232       Set.insert(Op.getReg());
233   }
234 }
235 
236 int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) {
237   // SMEM soft clause are only present on VI+
238   if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
239     return 0;
240 
241   // A soft-clause is any group of consecutive SMEM instructions.  The
242   // instructions in this group may return out of order and/or may be
243   // replayed (i.e. the same instruction issued more than once).
244   //
245   // In order to handle these situations correctly we need to make sure
246   // that when a clause has more than one instruction, no instruction in the
247   // clause writes to a register that is read another instruction in the clause
248   // (including itself). If we encounter this situaion, we need to break the
249   // clause by inserting a non SMEM instruction.
250 
251   std::set<unsigned> ClauseDefs;
252   std::set<unsigned> ClauseUses;
253 
254   for (MachineInstr *MI : EmittedInstrs) {
255 
256     // When we hit a non-SMEM instruction then we have passed the start of the
257     // clause and we can stop.
258     if (!MI || !SIInstrInfo::isSMRD(*MI))
259       break;
260 
261     addRegsToSet(MI->defs(), ClauseDefs);
262     addRegsToSet(MI->uses(), ClauseUses);
263   }
264 
265   if (ClauseDefs.empty())
266     return 0;
267 
268   // FIXME: When we support stores, we need to make sure not to put loads and
269   // stores in the same clause if they use the same address.  For now, just
270   // start a new clause whenever we see a store.
271   if (SMEM->mayStore())
272     return 1;
273 
274   addRegsToSet(SMEM->defs(), ClauseDefs);
275   addRegsToSet(SMEM->uses(), ClauseUses);
276 
277   std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size()));
278   std::vector<unsigned>::iterator End;
279 
280   End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(),
281                               ClauseUses.begin(), ClauseUses.end(), Result.begin());
282 
283   // If the set of defs and uses intersect then we cannot add this instruction
284   // to the clause, so we have a hazard.
285   if (End != Result.begin())
286     return 1;
287 
288   return 0;
289 }
290 
291 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
292   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
293   const SIInstrInfo *TII = ST.getInstrInfo();
294   int WaitStatesNeeded = 0;
295 
296   WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD);
297 
298   // This SMRD hazard only affects SI.
299   if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS)
300     return WaitStatesNeeded;
301 
302   // A read of an SGPR by SMRD instruction requires 4 wait states when the
303   // SGPR was written by a VALU instruction.
304   int SmrdSgprWaitStates = 4;
305   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
306 
307   for (const MachineOperand &Use : SMRD->uses()) {
308     if (!Use.isReg())
309       continue;
310     int WaitStatesNeededForUse =
311         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
312     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
313   }
314   return WaitStatesNeeded;
315 }
316 
317 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
318   const SIInstrInfo *TII = ST.getInstrInfo();
319 
320   if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
321     return 0;
322 
323   const SIRegisterInfo &TRI = TII->getRegisterInfo();
324 
325   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
326   // SGPR was written by a VALU Instruction.
327   int VmemSgprWaitStates = 5;
328   int WaitStatesNeeded = 0;
329   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
330 
331   for (const MachineOperand &Use : VMEM->uses()) {
332     if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
333       continue;
334 
335     int WaitStatesNeededForUse =
336         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
337     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
338   }
339   return WaitStatesNeeded;
340 }
341 
342 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
343   const SIRegisterInfo *TRI = ST.getRegisterInfo();
344 
345   // Check for DPP VGPR read after VALU VGPR write.
346   int DppVgprWaitStates = 2;
347   int WaitStatesNeeded = 0;
348 
349   for (const MachineOperand &Use : DPP->uses()) {
350     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
351       continue;
352     int WaitStatesNeededForUse =
353         DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg());
354     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
355   }
356 
357   return WaitStatesNeeded;
358 }
359 
360 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
361   const SIInstrInfo *TII = ST.getInstrInfo();
362 
363   // v_div_fmas requires 4 wait states after a write to vcc from a VALU
364   // instruction.
365   const int DivFMasWaitStates = 4;
366   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
367   int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn);
368 
369   return DivFMasWaitStates - WaitStatesNeeded;
370 }
371 
372 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
373   const SIInstrInfo *TII = ST.getInstrInfo();
374   unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
375 
376   const int GetRegWaitStates = 2;
377   auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) {
378     return GetRegHWReg == getHWReg(TII, *MI);
379   };
380   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
381 
382   return GetRegWaitStates - WaitStatesNeeded;
383 }
384 
385 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
386   const SIInstrInfo *TII = ST.getInstrInfo();
387   unsigned HWReg = getHWReg(TII, *SetRegInstr);
388 
389   const int SetRegWaitStates =
390       ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2;
391   auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) {
392     return HWReg == getHWReg(TII, *MI);
393   };
394   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
395   return SetRegWaitStates - WaitStatesNeeded;
396 }
397 
398 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
399   if (!MI.mayStore())
400     return -1;
401 
402   const SIInstrInfo *TII = ST.getInstrInfo();
403   unsigned Opcode = MI.getOpcode();
404   const MCInstrDesc &Desc = MI.getDesc();
405 
406   int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
407   int VDataRCID = -1;
408   if (VDataIdx != -1)
409     VDataRCID = Desc.OpInfo[VDataIdx].RegClass;
410 
411   if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
412     // There is no hazard if the instruction does not use vector regs
413     // (like wbinvl1)
414     if (VDataIdx == -1)
415       return -1;
416     // For MUBUF/MTBUF instructions this hazard only exists if the
417     // instruction is not using a register in the soffset field.
418     const MachineOperand *SOffset =
419         TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
420     // If we have no soffset operand, then assume this field has been
421     // hardcoded to zero.
422     if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
423         (!SOffset || !SOffset->isReg()))
424       return VDataIdx;
425   }
426 
427   // MIMG instructions create a hazard if they don't use a 256-bit T# and
428   // the store size is greater than 8 bytes and they have more than two bits
429   // of their dmask set.
430   // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
431   if (TII->isMIMG(MI)) {
432     int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
433     assert(SRsrcIdx != -1 &&
434            AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
435     (void)SRsrcIdx;
436   }
437 
438   if (TII->isFLAT(MI)) {
439     int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
440     if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
441       return DataIdx;
442   }
443 
444   return -1;
445 }
446 
447 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
448   // This checks for the hazard where VMEM instructions that store more than
449   // 8 bytes can have there store data over written by the next instruction.
450   if (!ST.has12DWordStoreHazard())
451     return 0;
452 
453   const SIRegisterInfo *TRI = ST.getRegisterInfo();
454   const MachineRegisterInfo &MRI = VALU->getParent()->getParent()->getRegInfo();
455 
456   const int VALUWaitStates = 1;
457   int WaitStatesNeeded = 0;
458 
459   for (const MachineOperand &Def : VALU->defs()) {
460     if (!TRI->isVGPR(MRI, Def.getReg()))
461       continue;
462     unsigned Reg = Def.getReg();
463     auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) {
464       int DataIdx = createsVALUHazard(*MI);
465       return DataIdx >= 0 &&
466              TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg);
467     };
468     int WaitStatesNeededForDef =
469         VALUWaitStates - getWaitStatesSince(IsHazardFn);
470     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
471   }
472   return WaitStatesNeeded;
473 }
474 
475 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
476   const SIInstrInfo *TII = ST.getInstrInfo();
477   const SIRegisterInfo *TRI = ST.getRegisterInfo();
478   const MachineRegisterInfo &MRI =
479       RWLane->getParent()->getParent()->getRegInfo();
480 
481   const MachineOperand *LaneSelectOp =
482       TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
483 
484   if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
485     return 0;
486 
487   unsigned LaneSelectReg = LaneSelectOp->getReg();
488   auto IsHazardFn = [TII] (MachineInstr *MI) {
489     return TII->isVALU(*MI);
490   };
491 
492   const int RWLaneWaitStates = 4;
493   int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn);
494   return RWLaneWaitStates - WaitStatesSince;
495 }
496 
497 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
498   if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
499     return 0;
500 
501   const SIInstrInfo *TII = ST.getInstrInfo();
502 
503   const int RFEWaitStates = 1;
504 
505   auto IsHazardFn = [TII] (MachineInstr *MI) {
506     return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS;
507   };
508   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
509   return RFEWaitStates - WaitStatesNeeded;
510 }
511