xref: /llvm-project/llvm/lib/Target/AMDGPU/GCNHazardRecognizer.cpp (revision 6778b8f7155d562c9808e9b91fdaeebbccb38a19)
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements hazard recognizers for scheduling on GCN processors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPUSubtarget.h"
15 #include "GCNHazardRecognizer.h"
16 #include "SIDefines.h"
17 #include "SIInstrInfo.h"
18 #include "SIRegisterInfo.h"
19 #include "Utils/AMDGPUBaseInfo.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/ScheduleDAG.h"
25 #include "llvm/MC/MCInstrDesc.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include <algorithm>
28 #include <cassert>
29 #include <limits>
30 #include <set>
31 #include <vector>
32 
33 using namespace llvm;
34 
35 //===----------------------------------------------------------------------===//
36 // Hazard Recoginizer Implementation
37 //===----------------------------------------------------------------------===//
38 
39 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
40   CurrCycleInstr(nullptr),
41   MF(MF),
42   ST(MF.getSubtarget<SISubtarget>()) {
43   MaxLookAhead = 5;
44 }
45 
46 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
47   EmitInstruction(SU->getInstr());
48 }
49 
50 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
51   CurrCycleInstr = MI;
52 }
53 
54 static bool isDivFMas(unsigned Opcode) {
55   return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64;
56 }
57 
58 static bool isSGetReg(unsigned Opcode) {
59   return Opcode == AMDGPU::S_GETREG_B32;
60 }
61 
62 static bool isSSetReg(unsigned Opcode) {
63   return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32;
64 }
65 
66 static bool isRWLane(unsigned Opcode) {
67   return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
68 }
69 
70 static bool isRFE(unsigned Opcode) {
71   return Opcode == AMDGPU::S_RFE_B64;
72 }
73 
74 static bool isSMovRel(unsigned Opcode) {
75   return Opcode == AMDGPU::S_MOVRELS_B32 || AMDGPU::S_MOVRELS_B64 ||
76          Opcode == AMDGPU::S_MOVRELD_B32 || AMDGPU::S_MOVRELD_B64;
77 }
78 
79 static bool isVInterp(unsigned Opcode) {
80   return Opcode == AMDGPU::V_INTERP_P1_F32 ||
81          Opcode == AMDGPU::V_INTERP_P1_F32_16bank ||
82          Opcode == AMDGPU::V_INTERP_P2_F32 ||
83          Opcode == AMDGPU::V_INTERP_MOV_F32;
84 }
85 
86 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
87   const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
88                                                      AMDGPU::OpName::simm16);
89   return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
90 }
91 
92 ScheduleHazardRecognizer::HazardType
93 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
94   MachineInstr *MI = SU->getInstr();
95 
96   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
97     return NoopHazard;
98 
99   if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0)
100     return NoopHazard;
101 
102   if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
103     return NoopHazard;
104 
105   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
106     return NoopHazard;
107 
108   if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
109     return NoopHazard;
110 
111   if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
112     return NoopHazard;
113 
114   if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
115     return NoopHazard;
116 
117   if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
118     return NoopHazard;
119 
120   if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
121     return NoopHazard;
122 
123   if ((isVInterp(MI->getOpcode()) || isSMovRel(MI->getOpcode())) &&
124       checkReadM0Hazards(MI) > 0)
125     return NoopHazard;
126 
127   if (checkAnyInstHazards(MI) > 0)
128     return NoopHazard;
129 
130   return NoHazard;
131 }
132 
133 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
134   return PreEmitNoops(SU->getInstr());
135 }
136 
137 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
138   int WaitStates = std::max(0, checkAnyInstHazards(MI));
139 
140   if (SIInstrInfo::isSMRD(*MI))
141     return std::max(WaitStates, checkSMRDHazards(MI));
142 
143   if (SIInstrInfo::isVALU(*MI)) {
144       WaitStates = std::max(WaitStates, checkVALUHazards(MI));
145 
146     if (SIInstrInfo::isVMEM(*MI))
147       WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
148 
149     if (SIInstrInfo::isDPP(*MI))
150       WaitStates = std::max(WaitStates, checkDPPHazards(MI));
151 
152     if (isDivFMas(MI->getOpcode()))
153       WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
154 
155     if (isRWLane(MI->getOpcode()))
156       WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
157 
158     if (isVInterp(MI->getOpcode()))
159       WaitStates = std::max(WaitStates, checkReadM0Hazards(MI));
160 
161     return WaitStates;
162   }
163 
164   if (isSGetReg(MI->getOpcode()))
165     return std::max(WaitStates, checkGetRegHazards(MI));
166 
167   if (isSSetReg(MI->getOpcode()))
168     return std::max(WaitStates, checkSetRegHazards(MI));
169 
170   if (isRFE(MI->getOpcode()))
171     return std::max(WaitStates, checkRFEHazards(MI));
172 
173   if (isSMovRel(MI->getOpcode()))
174     return std::max(WaitStates, checkReadM0Hazards(MI));
175 
176   return WaitStates;
177 }
178 
179 void GCNHazardRecognizer::EmitNoop() {
180   EmittedInstrs.push_front(nullptr);
181 }
182 
183 void GCNHazardRecognizer::AdvanceCycle() {
184   // When the scheduler detects a stall, it will call AdvanceCycle() without
185   // emitting any instructions.
186   if (!CurrCycleInstr)
187     return;
188 
189   const SIInstrInfo *TII = ST.getInstrInfo();
190   unsigned NumWaitStates = TII->getNumWaitStates(*CurrCycleInstr);
191 
192   // Keep track of emitted instructions
193   EmittedInstrs.push_front(CurrCycleInstr);
194 
195   // Add a nullptr for each additional wait state after the first.  Make sure
196   // not to add more than getMaxLookAhead() items to the list, since we
197   // truncate the list to that size right after this loop.
198   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
199        i < e; ++i) {
200     EmittedInstrs.push_front(nullptr);
201   }
202 
203   // getMaxLookahead() is the largest number of wait states we will ever need
204   // to insert, so there is no point in keeping track of more than that many
205   // wait states.
206   EmittedInstrs.resize(getMaxLookAhead());
207 
208   CurrCycleInstr = nullptr;
209 }
210 
211 void GCNHazardRecognizer::RecedeCycle() {
212   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
213 }
214 
215 //===----------------------------------------------------------------------===//
216 // Helper Functions
217 //===----------------------------------------------------------------------===//
218 
219 int GCNHazardRecognizer::getWaitStatesSince(
220     function_ref<bool(MachineInstr *)> IsHazard) {
221   int WaitStates = -1;
222   for (MachineInstr *MI : EmittedInstrs) {
223     ++WaitStates;
224     if (!MI || !IsHazard(MI))
225       continue;
226     return WaitStates;
227   }
228   return std::numeric_limits<int>::max();
229 }
230 
231 int GCNHazardRecognizer::getWaitStatesSinceDef(
232     unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) {
233   const SIRegisterInfo *TRI = ST.getRegisterInfo();
234 
235   auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) {
236     return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI);
237   };
238 
239   return getWaitStatesSince(IsHazardFn);
240 }
241 
242 int GCNHazardRecognizer::getWaitStatesSinceSetReg(
243     function_ref<bool(MachineInstr *)> IsHazard) {
244   auto IsHazardFn = [IsHazard] (MachineInstr *MI) {
245     return isSSetReg(MI->getOpcode()) && IsHazard(MI);
246   };
247 
248   return getWaitStatesSince(IsHazardFn);
249 }
250 
251 //===----------------------------------------------------------------------===//
252 // No-op Hazard Detection
253 //===----------------------------------------------------------------------===//
254 
255 static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops,
256                          std::set<unsigned> &Set) {
257   for (const MachineOperand &Op : Ops) {
258     if (Op.isReg())
259       Set.insert(Op.getReg());
260   }
261 }
262 
263 int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) {
264   // SMEM soft clause are only present on VI+
265   if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
266     return 0;
267 
268   // A soft-clause is any group of consecutive SMEM instructions.  The
269   // instructions in this group may return out of order and/or may be
270   // replayed (i.e. the same instruction issued more than once).
271   //
272   // In order to handle these situations correctly we need to make sure
273   // that when a clause has more than one instruction, no instruction in the
274   // clause writes to a register that is read another instruction in the clause
275   // (including itself). If we encounter this situaion, we need to break the
276   // clause by inserting a non SMEM instruction.
277 
278   std::set<unsigned> ClauseDefs;
279   std::set<unsigned> ClauseUses;
280 
281   for (MachineInstr *MI : EmittedInstrs) {
282 
283     // When we hit a non-SMEM instruction then we have passed the start of the
284     // clause and we can stop.
285     if (!MI || !SIInstrInfo::isSMRD(*MI))
286       break;
287 
288     addRegsToSet(MI->defs(), ClauseDefs);
289     addRegsToSet(MI->uses(), ClauseUses);
290   }
291 
292   if (ClauseDefs.empty())
293     return 0;
294 
295   // FIXME: When we support stores, we need to make sure not to put loads and
296   // stores in the same clause if they use the same address.  For now, just
297   // start a new clause whenever we see a store.
298   if (SMEM->mayStore())
299     return 1;
300 
301   addRegsToSet(SMEM->defs(), ClauseDefs);
302   addRegsToSet(SMEM->uses(), ClauseUses);
303 
304   std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size()));
305   std::vector<unsigned>::iterator End;
306 
307   End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(),
308                               ClauseUses.begin(), ClauseUses.end(), Result.begin());
309 
310   // If the set of defs and uses intersect then we cannot add this instruction
311   // to the clause, so we have a hazard.
312   if (End != Result.begin())
313     return 1;
314 
315   return 0;
316 }
317 
318 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
319   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
320   const SIInstrInfo *TII = ST.getInstrInfo();
321   int WaitStatesNeeded = 0;
322 
323   WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD);
324 
325   // This SMRD hazard only affects SI.
326   if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS)
327     return WaitStatesNeeded;
328 
329   // A read of an SGPR by SMRD instruction requires 4 wait states when the
330   // SGPR was written by a VALU instruction.
331   int SmrdSgprWaitStates = 4;
332   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
333 
334   for (const MachineOperand &Use : SMRD->uses()) {
335     if (!Use.isReg())
336       continue;
337     int WaitStatesNeededForUse =
338         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
339     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
340   }
341   return WaitStatesNeeded;
342 }
343 
344 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
345   const SIInstrInfo *TII = ST.getInstrInfo();
346 
347   if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
348     return 0;
349 
350   const SIRegisterInfo &TRI = TII->getRegisterInfo();
351 
352   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
353   // SGPR was written by a VALU Instruction.
354   int VmemSgprWaitStates = 5;
355   int WaitStatesNeeded = 0;
356   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
357 
358   for (const MachineOperand &Use : VMEM->uses()) {
359     if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
360       continue;
361 
362     int WaitStatesNeededForUse =
363         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
364     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
365   }
366   return WaitStatesNeeded;
367 }
368 
369 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
370   const SIRegisterInfo *TRI = ST.getRegisterInfo();
371 
372   // Check for DPP VGPR read after VALU VGPR write.
373   int DppVgprWaitStates = 2;
374   int WaitStatesNeeded = 0;
375 
376   for (const MachineOperand &Use : DPP->uses()) {
377     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
378       continue;
379     int WaitStatesNeededForUse =
380         DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg());
381     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
382   }
383 
384   return WaitStatesNeeded;
385 }
386 
387 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
388   const SIInstrInfo *TII = ST.getInstrInfo();
389 
390   // v_div_fmas requires 4 wait states after a write to vcc from a VALU
391   // instruction.
392   const int DivFMasWaitStates = 4;
393   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
394   int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn);
395 
396   return DivFMasWaitStates - WaitStatesNeeded;
397 }
398 
399 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
400   const SIInstrInfo *TII = ST.getInstrInfo();
401   unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
402 
403   const int GetRegWaitStates = 2;
404   auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) {
405     return GetRegHWReg == getHWReg(TII, *MI);
406   };
407   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
408 
409   return GetRegWaitStates - WaitStatesNeeded;
410 }
411 
412 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
413   const SIInstrInfo *TII = ST.getInstrInfo();
414   unsigned HWReg = getHWReg(TII, *SetRegInstr);
415 
416   const int SetRegWaitStates =
417       ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2;
418   auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) {
419     return HWReg == getHWReg(TII, *MI);
420   };
421   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
422   return SetRegWaitStates - WaitStatesNeeded;
423 }
424 
425 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
426   if (!MI.mayStore())
427     return -1;
428 
429   const SIInstrInfo *TII = ST.getInstrInfo();
430   unsigned Opcode = MI.getOpcode();
431   const MCInstrDesc &Desc = MI.getDesc();
432 
433   int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
434   int VDataRCID = -1;
435   if (VDataIdx != -1)
436     VDataRCID = Desc.OpInfo[VDataIdx].RegClass;
437 
438   if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
439     // There is no hazard if the instruction does not use vector regs
440     // (like wbinvl1)
441     if (VDataIdx == -1)
442       return -1;
443     // For MUBUF/MTBUF instructions this hazard only exists if the
444     // instruction is not using a register in the soffset field.
445     const MachineOperand *SOffset =
446         TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
447     // If we have no soffset operand, then assume this field has been
448     // hardcoded to zero.
449     if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
450         (!SOffset || !SOffset->isReg()))
451       return VDataIdx;
452   }
453 
454   // MIMG instructions create a hazard if they don't use a 256-bit T# and
455   // the store size is greater than 8 bytes and they have more than two bits
456   // of their dmask set.
457   // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
458   if (TII->isMIMG(MI)) {
459     int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
460     assert(SRsrcIdx != -1 &&
461            AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
462     (void)SRsrcIdx;
463   }
464 
465   if (TII->isFLAT(MI)) {
466     int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
467     if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
468       return DataIdx;
469   }
470 
471   return -1;
472 }
473 
474 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
475   // This checks for the hazard where VMEM instructions that store more than
476   // 8 bytes can have there store data over written by the next instruction.
477   if (!ST.has12DWordStoreHazard())
478     return 0;
479 
480   const SIRegisterInfo *TRI = ST.getRegisterInfo();
481   const MachineRegisterInfo &MRI = VALU->getParent()->getParent()->getRegInfo();
482 
483   const int VALUWaitStates = 1;
484   int WaitStatesNeeded = 0;
485 
486   for (const MachineOperand &Def : VALU->defs()) {
487     if (!TRI->isVGPR(MRI, Def.getReg()))
488       continue;
489     unsigned Reg = Def.getReg();
490     auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) {
491       int DataIdx = createsVALUHazard(*MI);
492       return DataIdx >= 0 &&
493              TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg);
494     };
495     int WaitStatesNeededForDef =
496         VALUWaitStates - getWaitStatesSince(IsHazardFn);
497     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
498   }
499   return WaitStatesNeeded;
500 }
501 
502 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
503   const SIInstrInfo *TII = ST.getInstrInfo();
504   const SIRegisterInfo *TRI = ST.getRegisterInfo();
505   const MachineRegisterInfo &MRI =
506       RWLane->getParent()->getParent()->getRegInfo();
507 
508   const MachineOperand *LaneSelectOp =
509       TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
510 
511   if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
512     return 0;
513 
514   unsigned LaneSelectReg = LaneSelectOp->getReg();
515   auto IsHazardFn = [TII] (MachineInstr *MI) {
516     return TII->isVALU(*MI);
517   };
518 
519   const int RWLaneWaitStates = 4;
520   int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn);
521   return RWLaneWaitStates - WaitStatesSince;
522 }
523 
524 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
525   if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
526     return 0;
527 
528   const SIInstrInfo *TII = ST.getInstrInfo();
529 
530   const int RFEWaitStates = 1;
531 
532   auto IsHazardFn = [TII] (MachineInstr *MI) {
533     return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS;
534   };
535   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
536   return RFEWaitStates - WaitStatesNeeded;
537 }
538 
539 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) {
540   if (MI->isDebugValue())
541     return 0;
542 
543   const SIRegisterInfo *TRI = ST.getRegisterInfo();
544   if (!ST.hasSMovFedHazard())
545     return 0;
546 
547   // Check for any instruction reading an SGPR after a write from
548   // s_mov_fed_b32.
549   int MovFedWaitStates = 1;
550   int WaitStatesNeeded = 0;
551 
552   for (const MachineOperand &Use : MI->uses()) {
553     if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
554       continue;
555     auto IsHazardFn = [] (MachineInstr *MI) {
556       return MI->getOpcode() == AMDGPU::S_MOV_FED_B32;
557     };
558     int WaitStatesNeededForUse =
559         MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn);
560     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
561   }
562 
563   return WaitStatesNeeded;
564 }
565 
566 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
567   if (!ST.hasReadM0Hazard())
568     return 0;
569 
570   const SIInstrInfo *TII = ST.getInstrInfo();
571   int SMovRelWaitStates = 1;
572   auto IsHazardFn = [TII] (MachineInstr *MI) {
573     return TII->isSALU(*MI);
574   };
575   return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn);
576 }
577