1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements hazard recognizers for scheduling on GCN processors. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUSubtarget.h" 15 #include "GCNHazardRecognizer.h" 16 #include "SIDefines.h" 17 #include "SIInstrInfo.h" 18 #include "SIRegisterInfo.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/ScheduleDAG.h" 25 #include "llvm/MC/MCInstrDesc.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include <algorithm> 28 #include <cassert> 29 #include <limits> 30 #include <set> 31 #include <vector> 32 33 using namespace llvm; 34 35 //===----------------------------------------------------------------------===// 36 // Hazard Recoginizer Implementation 37 //===----------------------------------------------------------------------===// 38 39 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 40 CurrCycleInstr(nullptr), 41 MF(MF), 42 ST(MF.getSubtarget<SISubtarget>()) { 43 MaxLookAhead = 5; 44 } 45 46 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 47 EmitInstruction(SU->getInstr()); 48 } 49 50 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 51 CurrCycleInstr = MI; 52 } 53 54 static bool isDivFMas(unsigned Opcode) { 55 return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64; 56 } 57 58 static bool isSGetReg(unsigned Opcode) { 59 return Opcode == AMDGPU::S_GETREG_B32; 60 } 61 62 static bool isSSetReg(unsigned Opcode) { 63 return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32; 64 } 65 66 static bool isRWLane(unsigned Opcode) { 67 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 68 } 69 70 static bool isRFE(unsigned Opcode) { 71 return Opcode == AMDGPU::S_RFE_B64; 72 } 73 74 static bool isSMovRel(unsigned Opcode) { 75 return Opcode == AMDGPU::S_MOVRELS_B32 || AMDGPU::S_MOVRELS_B64 || 76 Opcode == AMDGPU::S_MOVRELD_B32 || AMDGPU::S_MOVRELD_B64; 77 } 78 79 static bool isVInterp(unsigned Opcode) { 80 return Opcode == AMDGPU::V_INTERP_P1_F32 || 81 Opcode == AMDGPU::V_INTERP_P1_F32_16bank || 82 Opcode == AMDGPU::V_INTERP_P2_F32 || 83 Opcode == AMDGPU::V_INTERP_MOV_F32; 84 } 85 86 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 87 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 88 AMDGPU::OpName::simm16); 89 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 90 } 91 92 ScheduleHazardRecognizer::HazardType 93 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 94 MachineInstr *MI = SU->getInstr(); 95 96 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 97 return NoopHazard; 98 99 if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0) 100 return NoopHazard; 101 102 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 103 return NoopHazard; 104 105 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 106 return NoopHazard; 107 108 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 109 return NoopHazard; 110 111 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 112 return NoopHazard; 113 114 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 115 return NoopHazard; 116 117 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 118 return NoopHazard; 119 120 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 121 return NoopHazard; 122 123 if ((isVInterp(MI->getOpcode()) || isSMovRel(MI->getOpcode())) && 124 checkReadM0Hazards(MI) > 0) 125 return NoopHazard; 126 127 if (checkAnyInstHazards(MI) > 0) 128 return NoopHazard; 129 130 return NoHazard; 131 } 132 133 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) { 134 return PreEmitNoops(SU->getInstr()); 135 } 136 137 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 138 int WaitStates = std::max(0, checkAnyInstHazards(MI)); 139 140 if (SIInstrInfo::isSMRD(*MI)) 141 return std::max(WaitStates, checkSMRDHazards(MI)); 142 143 if (SIInstrInfo::isVALU(*MI)) { 144 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 145 146 if (SIInstrInfo::isVMEM(*MI)) 147 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 148 149 if (SIInstrInfo::isDPP(*MI)) 150 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 151 152 if (isDivFMas(MI->getOpcode())) 153 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 154 155 if (isRWLane(MI->getOpcode())) 156 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 157 158 if (isVInterp(MI->getOpcode())) 159 WaitStates = std::max(WaitStates, checkReadM0Hazards(MI)); 160 161 return WaitStates; 162 } 163 164 if (isSGetReg(MI->getOpcode())) 165 return std::max(WaitStates, checkGetRegHazards(MI)); 166 167 if (isSSetReg(MI->getOpcode())) 168 return std::max(WaitStates, checkSetRegHazards(MI)); 169 170 if (isRFE(MI->getOpcode())) 171 return std::max(WaitStates, checkRFEHazards(MI)); 172 173 if (isSMovRel(MI->getOpcode())) 174 return std::max(WaitStates, checkReadM0Hazards(MI)); 175 176 return WaitStates; 177 } 178 179 void GCNHazardRecognizer::EmitNoop() { 180 EmittedInstrs.push_front(nullptr); 181 } 182 183 void GCNHazardRecognizer::AdvanceCycle() { 184 // When the scheduler detects a stall, it will call AdvanceCycle() without 185 // emitting any instructions. 186 if (!CurrCycleInstr) 187 return; 188 189 const SIInstrInfo *TII = ST.getInstrInfo(); 190 unsigned NumWaitStates = TII->getNumWaitStates(*CurrCycleInstr); 191 192 // Keep track of emitted instructions 193 EmittedInstrs.push_front(CurrCycleInstr); 194 195 // Add a nullptr for each additional wait state after the first. Make sure 196 // not to add more than getMaxLookAhead() items to the list, since we 197 // truncate the list to that size right after this loop. 198 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 199 i < e; ++i) { 200 EmittedInstrs.push_front(nullptr); 201 } 202 203 // getMaxLookahead() is the largest number of wait states we will ever need 204 // to insert, so there is no point in keeping track of more than that many 205 // wait states. 206 EmittedInstrs.resize(getMaxLookAhead()); 207 208 CurrCycleInstr = nullptr; 209 } 210 211 void GCNHazardRecognizer::RecedeCycle() { 212 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 213 } 214 215 //===----------------------------------------------------------------------===// 216 // Helper Functions 217 //===----------------------------------------------------------------------===// 218 219 int GCNHazardRecognizer::getWaitStatesSince( 220 function_ref<bool(MachineInstr *)> IsHazard) { 221 int WaitStates = -1; 222 for (MachineInstr *MI : EmittedInstrs) { 223 ++WaitStates; 224 if (!MI || !IsHazard(MI)) 225 continue; 226 return WaitStates; 227 } 228 return std::numeric_limits<int>::max(); 229 } 230 231 int GCNHazardRecognizer::getWaitStatesSinceDef( 232 unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) { 233 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 234 235 auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) { 236 return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI); 237 }; 238 239 return getWaitStatesSince(IsHazardFn); 240 } 241 242 int GCNHazardRecognizer::getWaitStatesSinceSetReg( 243 function_ref<bool(MachineInstr *)> IsHazard) { 244 auto IsHazardFn = [IsHazard] (MachineInstr *MI) { 245 return isSSetReg(MI->getOpcode()) && IsHazard(MI); 246 }; 247 248 return getWaitStatesSince(IsHazardFn); 249 } 250 251 //===----------------------------------------------------------------------===// 252 // No-op Hazard Detection 253 //===----------------------------------------------------------------------===// 254 255 static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops, 256 std::set<unsigned> &Set) { 257 for (const MachineOperand &Op : Ops) { 258 if (Op.isReg()) 259 Set.insert(Op.getReg()); 260 } 261 } 262 263 int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) { 264 // SMEM soft clause are only present on VI+ 265 if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) 266 return 0; 267 268 // A soft-clause is any group of consecutive SMEM instructions. The 269 // instructions in this group may return out of order and/or may be 270 // replayed (i.e. the same instruction issued more than once). 271 // 272 // In order to handle these situations correctly we need to make sure 273 // that when a clause has more than one instruction, no instruction in the 274 // clause writes to a register that is read another instruction in the clause 275 // (including itself). If we encounter this situaion, we need to break the 276 // clause by inserting a non SMEM instruction. 277 278 std::set<unsigned> ClauseDefs; 279 std::set<unsigned> ClauseUses; 280 281 for (MachineInstr *MI : EmittedInstrs) { 282 283 // When we hit a non-SMEM instruction then we have passed the start of the 284 // clause and we can stop. 285 if (!MI || !SIInstrInfo::isSMRD(*MI)) 286 break; 287 288 addRegsToSet(MI->defs(), ClauseDefs); 289 addRegsToSet(MI->uses(), ClauseUses); 290 } 291 292 if (ClauseDefs.empty()) 293 return 0; 294 295 // FIXME: When we support stores, we need to make sure not to put loads and 296 // stores in the same clause if they use the same address. For now, just 297 // start a new clause whenever we see a store. 298 if (SMEM->mayStore()) 299 return 1; 300 301 addRegsToSet(SMEM->defs(), ClauseDefs); 302 addRegsToSet(SMEM->uses(), ClauseUses); 303 304 std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size())); 305 std::vector<unsigned>::iterator End; 306 307 End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(), 308 ClauseUses.begin(), ClauseUses.end(), Result.begin()); 309 310 // If the set of defs and uses intersect then we cannot add this instruction 311 // to the clause, so we have a hazard. 312 if (End != Result.begin()) 313 return 1; 314 315 return 0; 316 } 317 318 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 319 const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); 320 const SIInstrInfo *TII = ST.getInstrInfo(); 321 int WaitStatesNeeded = 0; 322 323 WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD); 324 325 // This SMRD hazard only affects SI. 326 if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS) 327 return WaitStatesNeeded; 328 329 // A read of an SGPR by SMRD instruction requires 4 wait states when the 330 // SGPR was written by a VALU instruction. 331 int SmrdSgprWaitStates = 4; 332 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 333 334 for (const MachineOperand &Use : SMRD->uses()) { 335 if (!Use.isReg()) 336 continue; 337 int WaitStatesNeededForUse = 338 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); 339 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 340 } 341 return WaitStatesNeeded; 342 } 343 344 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 345 const SIInstrInfo *TII = ST.getInstrInfo(); 346 347 if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) 348 return 0; 349 350 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 351 352 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 353 // SGPR was written by a VALU Instruction. 354 int VmemSgprWaitStates = 5; 355 int WaitStatesNeeded = 0; 356 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 357 358 for (const MachineOperand &Use : VMEM->uses()) { 359 if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 360 continue; 361 362 int WaitStatesNeededForUse = 363 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); 364 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 365 } 366 return WaitStatesNeeded; 367 } 368 369 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 370 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 371 372 // Check for DPP VGPR read after VALU VGPR write. 373 int DppVgprWaitStates = 2; 374 int WaitStatesNeeded = 0; 375 376 for (const MachineOperand &Use : DPP->uses()) { 377 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 378 continue; 379 int WaitStatesNeededForUse = 380 DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg()); 381 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 382 } 383 384 return WaitStatesNeeded; 385 } 386 387 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 388 const SIInstrInfo *TII = ST.getInstrInfo(); 389 390 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 391 // instruction. 392 const int DivFMasWaitStates = 4; 393 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 394 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn); 395 396 return DivFMasWaitStates - WaitStatesNeeded; 397 } 398 399 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 400 const SIInstrInfo *TII = ST.getInstrInfo(); 401 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 402 403 const int GetRegWaitStates = 2; 404 auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) { 405 return GetRegHWReg == getHWReg(TII, *MI); 406 }; 407 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 408 409 return GetRegWaitStates - WaitStatesNeeded; 410 } 411 412 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 413 const SIInstrInfo *TII = ST.getInstrInfo(); 414 unsigned HWReg = getHWReg(TII, *SetRegInstr); 415 416 const int SetRegWaitStates = 417 ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2; 418 auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) { 419 return HWReg == getHWReg(TII, *MI); 420 }; 421 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 422 return SetRegWaitStates - WaitStatesNeeded; 423 } 424 425 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 426 if (!MI.mayStore()) 427 return -1; 428 429 const SIInstrInfo *TII = ST.getInstrInfo(); 430 unsigned Opcode = MI.getOpcode(); 431 const MCInstrDesc &Desc = MI.getDesc(); 432 433 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 434 int VDataRCID = -1; 435 if (VDataIdx != -1) 436 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 437 438 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 439 // There is no hazard if the instruction does not use vector regs 440 // (like wbinvl1) 441 if (VDataIdx == -1) 442 return -1; 443 // For MUBUF/MTBUF instructions this hazard only exists if the 444 // instruction is not using a register in the soffset field. 445 const MachineOperand *SOffset = 446 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 447 // If we have no soffset operand, then assume this field has been 448 // hardcoded to zero. 449 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 450 (!SOffset || !SOffset->isReg())) 451 return VDataIdx; 452 } 453 454 // MIMG instructions create a hazard if they don't use a 256-bit T# and 455 // the store size is greater than 8 bytes and they have more than two bits 456 // of their dmask set. 457 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 458 if (TII->isMIMG(MI)) { 459 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 460 assert(SRsrcIdx != -1 && 461 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 462 (void)SRsrcIdx; 463 } 464 465 if (TII->isFLAT(MI)) { 466 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 467 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 468 return DataIdx; 469 } 470 471 return -1; 472 } 473 474 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 475 // This checks for the hazard where VMEM instructions that store more than 476 // 8 bytes can have there store data over written by the next instruction. 477 if (!ST.has12DWordStoreHazard()) 478 return 0; 479 480 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 481 const MachineRegisterInfo &MRI = VALU->getParent()->getParent()->getRegInfo(); 482 483 const int VALUWaitStates = 1; 484 int WaitStatesNeeded = 0; 485 486 for (const MachineOperand &Def : VALU->defs()) { 487 if (!TRI->isVGPR(MRI, Def.getReg())) 488 continue; 489 unsigned Reg = Def.getReg(); 490 auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) { 491 int DataIdx = createsVALUHazard(*MI); 492 return DataIdx >= 0 && 493 TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg); 494 }; 495 int WaitStatesNeededForDef = 496 VALUWaitStates - getWaitStatesSince(IsHazardFn); 497 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 498 } 499 return WaitStatesNeeded; 500 } 501 502 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 503 const SIInstrInfo *TII = ST.getInstrInfo(); 504 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 505 const MachineRegisterInfo &MRI = 506 RWLane->getParent()->getParent()->getRegInfo(); 507 508 const MachineOperand *LaneSelectOp = 509 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 510 511 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 512 return 0; 513 514 unsigned LaneSelectReg = LaneSelectOp->getReg(); 515 auto IsHazardFn = [TII] (MachineInstr *MI) { 516 return TII->isVALU(*MI); 517 }; 518 519 const int RWLaneWaitStates = 4; 520 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn); 521 return RWLaneWaitStates - WaitStatesSince; 522 } 523 524 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 525 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 526 return 0; 527 528 const SIInstrInfo *TII = ST.getInstrInfo(); 529 530 const int RFEWaitStates = 1; 531 532 auto IsHazardFn = [TII] (MachineInstr *MI) { 533 return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS; 534 }; 535 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 536 return RFEWaitStates - WaitStatesNeeded; 537 } 538 539 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) { 540 if (MI->isDebugValue()) 541 return 0; 542 543 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 544 if (!ST.hasSMovFedHazard()) 545 return 0; 546 547 // Check for any instruction reading an SGPR after a write from 548 // s_mov_fed_b32. 549 int MovFedWaitStates = 1; 550 int WaitStatesNeeded = 0; 551 552 for (const MachineOperand &Use : MI->uses()) { 553 if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 554 continue; 555 auto IsHazardFn = [] (MachineInstr *MI) { 556 return MI->getOpcode() == AMDGPU::S_MOV_FED_B32; 557 }; 558 int WaitStatesNeededForUse = 559 MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn); 560 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 561 } 562 563 return WaitStatesNeeded; 564 } 565 566 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 567 if (!ST.hasReadM0Hazard()) 568 return 0; 569 570 const SIInstrInfo *TII = ST.getInstrInfo(); 571 int SMovRelWaitStates = 1; 572 auto IsHazardFn = [TII] (MachineInstr *MI) { 573 return TII->isSALU(*MI); 574 }; 575 return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn); 576 } 577