xref: /llvm-project/llvm/lib/Target/AMDGPU/GCNHazardRecognizer.cpp (revision 5ab6154dc35007b7e0159be22e66d511df61471d)
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements hazard recognizers for scheduling on GCN processors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "GCNHazardRecognizer.h"
15 #include "AMDGPUSubtarget.h"
16 #include "SIInstrInfo.h"
17 #include "llvm/CodeGen/ScheduleDAG.h"
18 #include "llvm/Support/Debug.h"
19 
20 using namespace llvm;
21 
22 //===----------------------------------------------------------------------===//
23 // Hazard Recoginizer Implementation
24 //===----------------------------------------------------------------------===//
25 
26 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
27   CurrCycleInstr(nullptr),
28   MF(MF),
29   ST(MF.getSubtarget<SISubtarget>()) {
30   MaxLookAhead = 5;
31 }
32 
33 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
34   EmitInstruction(SU->getInstr());
35 }
36 
37 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
38   CurrCycleInstr = MI;
39 }
40 
41 static bool isDivFMas(unsigned Opcode) {
42   return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64;
43 }
44 
45 ScheduleHazardRecognizer::HazardType
46 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
47   MachineInstr *MI = SU->getInstr();
48 
49   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
50     return NoopHazard;
51 
52   if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0)
53     return NoopHazard;
54 
55   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
56     return NoopHazard;
57 
58   if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
59     return NoopHazard;
60 
61   return NoHazard;
62 }
63 
64 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
65   return PreEmitNoops(SU->getInstr());
66 }
67 
68 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
69   if (SIInstrInfo::isSMRD(*MI))
70     return std::max(0, checkSMRDHazards(MI));
71 
72   if (SIInstrInfo::isVMEM(*MI))
73     return std::max(0, checkVMEMHazards(MI));
74 
75   if (SIInstrInfo::isDPP(*MI))
76     return std::max(0, checkDPPHazards(MI));
77 
78   if (isDivFMas(MI->getOpcode()))
79     return std::max(0, checkDivFMasHazards(MI));
80 
81   return 0;
82 }
83 
84 void GCNHazardRecognizer::EmitNoop() {
85   EmittedInstrs.push_front(nullptr);
86 }
87 
88 void GCNHazardRecognizer::AdvanceCycle() {
89 
90   // When the scheduler detects a stall, it will call AdvanceCycle() without
91   // emitting any instructions.
92   if (!CurrCycleInstr)
93     return;
94 
95   const SIInstrInfo *TII = ST.getInstrInfo();
96   unsigned NumWaitStates = TII->getNumWaitStates(*CurrCycleInstr);
97 
98   // Keep track of emitted instructions
99   EmittedInstrs.push_front(CurrCycleInstr);
100 
101   // Add a nullptr for each additional wait state after the first.  Make sure
102   // not to add more than getMaxLookAhead() items to the list, since we
103   // truncate the list to that size right after this loop.
104   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
105        i < e; ++i) {
106     EmittedInstrs.push_front(nullptr);
107   }
108 
109   // getMaxLookahead() is the largest number of wait states we will ever need
110   // to insert, so there is no point in keeping track of more than that many
111   // wait states.
112   EmittedInstrs.resize(getMaxLookAhead());
113 
114   CurrCycleInstr = nullptr;
115 }
116 
117 void GCNHazardRecognizer::RecedeCycle() {
118   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
119 }
120 
121 //===----------------------------------------------------------------------===//
122 // Helper Functions
123 //===----------------------------------------------------------------------===//
124 
125 int GCNHazardRecognizer::getWaitStatesSinceDef(
126     unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) {
127   const SIRegisterInfo *TRI = ST.getRegisterInfo();
128 
129   int WaitStates = -1;
130   for (MachineInstr *MI : EmittedInstrs) {
131     ++WaitStates;
132     if (!MI || !IsHazardDef(MI))
133       continue;
134     if (MI->modifiesRegister(Reg, TRI))
135       return WaitStates;
136   }
137   return std::numeric_limits<int>::max();
138 }
139 
140 //===----------------------------------------------------------------------===//
141 // No-op Hazard Detection
142 //===----------------------------------------------------------------------===//
143 
144 static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops,
145                          std::set<unsigned> &Set) {
146   for (const MachineOperand &Op : Ops) {
147     if (Op.isReg())
148       Set.insert(Op.getReg());
149   }
150 }
151 
152 int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) {
153   // SMEM soft clause are only present on VI+
154   if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
155     return 0;
156 
157   // A soft-clause is any group of consecutive SMEM instructions.  The
158   // instructions in this group may return out of order and/or may be
159   // replayed (i.e. the same instruction issued more than once).
160   //
161   // In order to handle these situations correctly we need to make sure
162   // that when a clause has more than one instruction, no instruction in the
163   // clause writes to a register that is read another instruction in the clause
164   // (including itself). If we encounter this situaion, we need to break the
165   // clause by inserting a non SMEM instruction.
166 
167   std::set<unsigned> ClauseDefs;
168   std::set<unsigned> ClauseUses;
169 
170   for (MachineInstr *MI : EmittedInstrs) {
171 
172     // When we hit a non-SMEM instruction then we have passed the start of the
173     // clause and we can stop.
174     if (!MI || !SIInstrInfo::isSMRD(*MI))
175       break;
176 
177     addRegsToSet(MI->defs(), ClauseDefs);
178     addRegsToSet(MI->uses(), ClauseUses);
179   }
180 
181   if (ClauseDefs.empty())
182     return 0;
183 
184   // FIXME: When we support stores, we need to make sure not to put loads and
185   // stores in the same clause if they use the same address.  For now, just
186   // start a new clause whenever we see a store.
187   if (SMEM->mayStore())
188     return 1;
189 
190   addRegsToSet(SMEM->defs(), ClauseDefs);
191   addRegsToSet(SMEM->uses(), ClauseUses);
192 
193   std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size()));
194   std::vector<unsigned>::iterator End;
195 
196   End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(),
197                               ClauseUses.begin(), ClauseUses.end(), Result.begin());
198 
199   // If the set of defs and uses intersect then we cannot add this instruction
200   // to the clause, so we have a hazard.
201   if (End != Result.begin())
202     return 1;
203 
204   return 0;
205 }
206 
207 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
208   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
209   const SIInstrInfo *TII = ST.getInstrInfo();
210   int WaitStatesNeeded = 0;
211 
212   WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD);
213 
214   // This SMRD hazard only affects SI.
215   if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS)
216     return WaitStatesNeeded;
217 
218   // A read of an SGPR by SMRD instruction requires 4 wait states when the
219   // SGPR was written by a VALU instruction.
220   int SmrdSgprWaitStates = 4;
221   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
222 
223   for (const MachineOperand &Use : SMRD->uses()) {
224     if (!Use.isReg())
225       continue;
226     int WaitStatesNeededForUse =
227         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
228     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
229   }
230   return WaitStatesNeeded;
231 }
232 
233 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
234   const SIInstrInfo *TII = ST.getInstrInfo();
235 
236   if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
237     return 0;
238 
239   const SIRegisterInfo &TRI = TII->getRegisterInfo();
240 
241   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
242   // SGPR was written by a VALU Instruction.
243   int VmemSgprWaitStates = 5;
244   int WaitStatesNeeded = 0;
245   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
246 
247   for (const MachineOperand &Use : VMEM->uses()) {
248     if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
249       continue;
250 
251     int WaitStatesNeededForUse =
252         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
253     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
254   }
255   return WaitStatesNeeded;
256 }
257 
258 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
259   const SIRegisterInfo *TRI = ST.getRegisterInfo();
260 
261   // Check for DPP VGPR read after VALU VGPR write.
262   int DppVgprWaitStates = 2;
263   int WaitStatesNeeded = 0;
264 
265   for (const MachineOperand &Use : DPP->uses()) {
266     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
267       continue;
268     int WaitStatesNeededForUse =
269         DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg());
270     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
271   }
272 
273   return WaitStatesNeeded;
274 }
275 
276 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
277   const SIInstrInfo *TII = ST.getInstrInfo();
278 
279   // v_div_fmas requires 4 wait states after a write to vcc from a VALU
280   // instruction.
281   const int DivFMasWaitStates = 4;
282   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
283   int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn);
284 
285   return DivFMasWaitStates - WaitStatesNeeded;
286 }
287