1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements hazard recognizers for scheduling on GCN processors. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "GCNHazardRecognizer.h" 15 #include "AMDGPUSubtarget.h" 16 #include "SIDefines.h" 17 #include "SIInstrInfo.h" 18 #include "SIRegisterInfo.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/ScheduleDAG.h" 25 #include "llvm/MC/MCInstrDesc.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include <algorithm> 28 #include <cassert> 29 #include <limits> 30 #include <set> 31 #include <vector> 32 33 using namespace llvm; 34 35 //===----------------------------------------------------------------------===// 36 // Hazard Recoginizer Implementation 37 //===----------------------------------------------------------------------===// 38 39 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 40 CurrCycleInstr(nullptr), 41 MF(MF), 42 ST(MF.getSubtarget<SISubtarget>()), 43 TII(*ST.getInstrInfo()), 44 TRI(TII.getRegisterInfo()), 45 ClauseUses(TRI.getNumRegUnits()), 46 ClauseDefs(TRI.getNumRegUnits()) { 47 MaxLookAhead = 5; 48 } 49 50 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 51 EmitInstruction(SU->getInstr()); 52 } 53 54 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 55 CurrCycleInstr = MI; 56 } 57 58 static bool isDivFMas(unsigned Opcode) { 59 return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64; 60 } 61 62 static bool isSGetReg(unsigned Opcode) { 63 return Opcode == AMDGPU::S_GETREG_B32; 64 } 65 66 static bool isSSetReg(unsigned Opcode) { 67 return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32; 68 } 69 70 static bool isRWLane(unsigned Opcode) { 71 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 72 } 73 74 static bool isRFE(unsigned Opcode) { 75 return Opcode == AMDGPU::S_RFE_B64; 76 } 77 78 static bool isSMovRel(unsigned Opcode) { 79 switch (Opcode) { 80 case AMDGPU::S_MOVRELS_B32: 81 case AMDGPU::S_MOVRELS_B64: 82 case AMDGPU::S_MOVRELD_B32: 83 case AMDGPU::S_MOVRELD_B64: 84 return true; 85 default: 86 return false; 87 } 88 } 89 90 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 91 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 92 AMDGPU::OpName::simm16); 93 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 94 } 95 96 ScheduleHazardRecognizer::HazardType 97 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 98 MachineInstr *MI = SU->getInstr(); 99 100 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 101 return NoopHazard; 102 103 if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0) 104 return NoopHazard; 105 106 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 107 return NoopHazard; 108 109 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 110 return NoopHazard; 111 112 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 113 return NoopHazard; 114 115 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 116 return NoopHazard; 117 118 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 119 return NoopHazard; 120 121 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 122 return NoopHazard; 123 124 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 125 return NoopHazard; 126 127 if ((TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) && 128 checkReadM0Hazards(MI) > 0) 129 return NoopHazard; 130 131 if (checkAnyInstHazards(MI) > 0) 132 return NoopHazard; 133 134 return NoHazard; 135 } 136 137 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) { 138 return PreEmitNoops(SU->getInstr()); 139 } 140 141 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 142 int WaitStates = std::max(0, checkAnyInstHazards(MI)); 143 144 if (SIInstrInfo::isSMRD(*MI)) 145 return std::max(WaitStates, checkSMRDHazards(MI)); 146 147 if (SIInstrInfo::isVALU(*MI)) { 148 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 149 150 if (SIInstrInfo::isVMEM(*MI)) 151 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 152 153 if (SIInstrInfo::isDPP(*MI)) 154 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 155 156 if (isDivFMas(MI->getOpcode())) 157 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 158 159 if (isRWLane(MI->getOpcode())) 160 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 161 162 if (TII.isVINTRP(*MI)) 163 WaitStates = std::max(WaitStates, checkReadM0Hazards(MI)); 164 165 return WaitStates; 166 } 167 168 if (isSGetReg(MI->getOpcode())) 169 return std::max(WaitStates, checkGetRegHazards(MI)); 170 171 if (isSSetReg(MI->getOpcode())) 172 return std::max(WaitStates, checkSetRegHazards(MI)); 173 174 if (isRFE(MI->getOpcode())) 175 return std::max(WaitStates, checkRFEHazards(MI)); 176 177 if (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) 178 return std::max(WaitStates, checkReadM0Hazards(MI)); 179 180 return WaitStates; 181 } 182 183 void GCNHazardRecognizer::EmitNoop() { 184 EmittedInstrs.push_front(nullptr); 185 } 186 187 void GCNHazardRecognizer::AdvanceCycle() { 188 // When the scheduler detects a stall, it will call AdvanceCycle() without 189 // emitting any instructions. 190 if (!CurrCycleInstr) 191 return; 192 193 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 194 195 // Keep track of emitted instructions 196 EmittedInstrs.push_front(CurrCycleInstr); 197 198 // Add a nullptr for each additional wait state after the first. Make sure 199 // not to add more than getMaxLookAhead() items to the list, since we 200 // truncate the list to that size right after this loop. 201 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 202 i < e; ++i) { 203 EmittedInstrs.push_front(nullptr); 204 } 205 206 // getMaxLookahead() is the largest number of wait states we will ever need 207 // to insert, so there is no point in keeping track of more than that many 208 // wait states. 209 EmittedInstrs.resize(getMaxLookAhead()); 210 211 CurrCycleInstr = nullptr; 212 } 213 214 void GCNHazardRecognizer::RecedeCycle() { 215 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 216 } 217 218 //===----------------------------------------------------------------------===// 219 // Helper Functions 220 //===----------------------------------------------------------------------===// 221 222 int GCNHazardRecognizer::getWaitStatesSince( 223 function_ref<bool(MachineInstr *)> IsHazard) { 224 int WaitStates = 0; 225 for (MachineInstr *MI : EmittedInstrs) { 226 if (MI) { 227 if (IsHazard(MI)) 228 return WaitStates; 229 230 unsigned Opcode = MI->getOpcode(); 231 if (Opcode == AMDGPU::DBG_VALUE || Opcode == AMDGPU::IMPLICIT_DEF || 232 Opcode == AMDGPU::INLINEASM) 233 continue; 234 } 235 ++WaitStates; 236 } 237 return std::numeric_limits<int>::max(); 238 } 239 240 int GCNHazardRecognizer::getWaitStatesSinceDef( 241 unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) { 242 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 243 244 auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) { 245 return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI); 246 }; 247 248 return getWaitStatesSince(IsHazardFn); 249 } 250 251 int GCNHazardRecognizer::getWaitStatesSinceSetReg( 252 function_ref<bool(MachineInstr *)> IsHazard) { 253 auto IsHazardFn = [IsHazard] (MachineInstr *MI) { 254 return isSSetReg(MI->getOpcode()) && IsHazard(MI); 255 }; 256 257 return getWaitStatesSince(IsHazardFn); 258 } 259 260 //===----------------------------------------------------------------------===// 261 // No-op Hazard Detection 262 //===----------------------------------------------------------------------===// 263 264 static void addRegUnits(const SIRegisterInfo &TRI, 265 BitVector &BV, unsigned Reg) { 266 for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI) 267 BV.set(*RUI); 268 } 269 270 static void addRegsToSet(const SIRegisterInfo &TRI, 271 iterator_range<MachineInstr::const_mop_iterator> Ops, 272 BitVector &Set) { 273 for (const MachineOperand &Op : Ops) { 274 if (Op.isReg()) 275 addRegUnits(TRI, Set, Op.getReg()); 276 } 277 } 278 279 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 280 // XXX: Do we need to worry about implicit operands 281 addRegsToSet(TRI, MI.defs(), ClauseDefs); 282 addRegsToSet(TRI, MI.uses(), ClauseUses); 283 } 284 285 int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) { 286 // SMEM soft clause are only present on VI+, and only matter if xnack is 287 // enabled. 288 if (!ST.isXNACKEnabled()) 289 return 0; 290 291 resetClause(); 292 293 // A soft-clause is any group of consecutive SMEM instructions. The 294 // instructions in this group may return out of order and/or may be 295 // replayed (i.e. the same instruction issued more than once). 296 // 297 // In order to handle these situations correctly we need to make sure 298 // that when a clause has more than one instruction, no instruction in the 299 // clause writes to a register that is read another instruction in the clause 300 // (including itself). If we encounter this situaion, we need to break the 301 // clause by inserting a non SMEM instruction. 302 303 for (MachineInstr *MI : EmittedInstrs) { 304 // When we hit a non-SMEM instruction then we have passed the start of the 305 // clause and we can stop. 306 if (!MI || !SIInstrInfo::isSMRD(*MI)) 307 break; 308 309 addClauseInst(*MI); 310 } 311 312 if (ClauseDefs.none()) 313 return 0; 314 315 // FIXME: When we support stores, we need to make sure not to put loads and 316 // stores in the same clause if they use the same address. For now, just 317 // start a new clause whenever we see a store. 318 if (SMEM->mayStore()) 319 return 1; 320 321 addClauseInst(*SMEM); 322 323 // If the set of defs and uses intersect then we cannot add this instruction 324 // to the clause, so we have a hazard. 325 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 326 } 327 328 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 329 const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); 330 int WaitStatesNeeded = 0; 331 332 WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD); 333 334 // This SMRD hazard only affects SI. 335 if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS) 336 return WaitStatesNeeded; 337 338 // A read of an SGPR by SMRD instruction requires 4 wait states when the 339 // SGPR was written by a VALU instruction. 340 int SmrdSgprWaitStates = 4; 341 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 342 auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); }; 343 344 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 345 346 for (const MachineOperand &Use : SMRD->uses()) { 347 if (!Use.isReg()) 348 continue; 349 int WaitStatesNeededForUse = 350 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); 351 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 352 353 // This fixes what appears to be undocumented hardware behavior in SI where 354 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 355 // needs some number of nops in between. We don't know how many we need, but 356 // let's use 4. This wasn't discovered before probably because the only 357 // case when this happens is when we expand a 64-bit pointer into a full 358 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 359 // probably never encountered in the closed-source land. 360 if (IsBufferSMRD) { 361 int WaitStatesNeededForUse = 362 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 363 IsBufferHazardDefFn); 364 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 365 } 366 } 367 368 return WaitStatesNeeded; 369 } 370 371 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 372 const SIInstrInfo *TII = ST.getInstrInfo(); 373 374 if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) 375 return 0; 376 377 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 378 379 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 380 // SGPR was written by a VALU Instruction. 381 int VmemSgprWaitStates = 5; 382 int WaitStatesNeeded = 0; 383 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 384 385 for (const MachineOperand &Use : VMEM->uses()) { 386 if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 387 continue; 388 389 int WaitStatesNeededForUse = 390 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn); 391 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 392 } 393 return WaitStatesNeeded; 394 } 395 396 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 397 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 398 const SIInstrInfo *TII = ST.getInstrInfo(); 399 400 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 401 int DppVgprWaitStates = 2; 402 int DppExecWaitStates = 5; 403 int WaitStatesNeeded = 0; 404 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 405 406 for (const MachineOperand &Use : DPP->uses()) { 407 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 408 continue; 409 int WaitStatesNeededForUse = 410 DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg()); 411 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 412 } 413 414 WaitStatesNeeded = std::max( 415 WaitStatesNeeded, 416 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn)); 417 418 return WaitStatesNeeded; 419 } 420 421 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 422 const SIInstrInfo *TII = ST.getInstrInfo(); 423 424 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 425 // instruction. 426 const int DivFMasWaitStates = 4; 427 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 428 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn); 429 430 return DivFMasWaitStates - WaitStatesNeeded; 431 } 432 433 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 434 const SIInstrInfo *TII = ST.getInstrInfo(); 435 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 436 437 const int GetRegWaitStates = 2; 438 auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) { 439 return GetRegHWReg == getHWReg(TII, *MI); 440 }; 441 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 442 443 return GetRegWaitStates - WaitStatesNeeded; 444 } 445 446 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 447 const SIInstrInfo *TII = ST.getInstrInfo(); 448 unsigned HWReg = getHWReg(TII, *SetRegInstr); 449 450 const int SetRegWaitStates = 451 ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2; 452 auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) { 453 return HWReg == getHWReg(TII, *MI); 454 }; 455 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 456 return SetRegWaitStates - WaitStatesNeeded; 457 } 458 459 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 460 if (!MI.mayStore()) 461 return -1; 462 463 const SIInstrInfo *TII = ST.getInstrInfo(); 464 unsigned Opcode = MI.getOpcode(); 465 const MCInstrDesc &Desc = MI.getDesc(); 466 467 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 468 int VDataRCID = -1; 469 if (VDataIdx != -1) 470 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 471 472 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 473 // There is no hazard if the instruction does not use vector regs 474 // (like wbinvl1) 475 if (VDataIdx == -1) 476 return -1; 477 // For MUBUF/MTBUF instructions this hazard only exists if the 478 // instruction is not using a register in the soffset field. 479 const MachineOperand *SOffset = 480 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 481 // If we have no soffset operand, then assume this field has been 482 // hardcoded to zero. 483 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 484 (!SOffset || !SOffset->isReg())) 485 return VDataIdx; 486 } 487 488 // MIMG instructions create a hazard if they don't use a 256-bit T# and 489 // the store size is greater than 8 bytes and they have more than two bits 490 // of their dmask set. 491 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 492 if (TII->isMIMG(MI)) { 493 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 494 assert(SRsrcIdx != -1 && 495 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 496 (void)SRsrcIdx; 497 } 498 499 if (TII->isFLAT(MI)) { 500 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 501 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 502 return DataIdx; 503 } 504 505 return -1; 506 } 507 508 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 509 // This checks for the hazard where VMEM instructions that store more than 510 // 8 bytes can have there store data over written by the next instruction. 511 if (!ST.has12DWordStoreHazard()) 512 return 0; 513 514 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 515 const MachineRegisterInfo &MRI = VALU->getParent()->getParent()->getRegInfo(); 516 517 const int VALUWaitStates = 1; 518 int WaitStatesNeeded = 0; 519 520 for (const MachineOperand &Def : VALU->defs()) { 521 if (!TRI->isVGPR(MRI, Def.getReg())) 522 continue; 523 unsigned Reg = Def.getReg(); 524 auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) { 525 int DataIdx = createsVALUHazard(*MI); 526 return DataIdx >= 0 && 527 TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg); 528 }; 529 int WaitStatesNeededForDef = 530 VALUWaitStates - getWaitStatesSince(IsHazardFn); 531 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 532 } 533 return WaitStatesNeeded; 534 } 535 536 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 537 const SIInstrInfo *TII = ST.getInstrInfo(); 538 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 539 const MachineRegisterInfo &MRI = 540 RWLane->getParent()->getParent()->getRegInfo(); 541 542 const MachineOperand *LaneSelectOp = 543 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 544 545 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 546 return 0; 547 548 unsigned LaneSelectReg = LaneSelectOp->getReg(); 549 auto IsHazardFn = [TII] (MachineInstr *MI) { 550 return TII->isVALU(*MI); 551 }; 552 553 const int RWLaneWaitStates = 4; 554 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn); 555 return RWLaneWaitStates - WaitStatesSince; 556 } 557 558 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 559 if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) 560 return 0; 561 562 const SIInstrInfo *TII = ST.getInstrInfo(); 563 564 const int RFEWaitStates = 1; 565 566 auto IsHazardFn = [TII] (MachineInstr *MI) { 567 return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS; 568 }; 569 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn); 570 return RFEWaitStates - WaitStatesNeeded; 571 } 572 573 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) { 574 if (MI->isDebugValue()) 575 return 0; 576 577 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 578 if (!ST.hasSMovFedHazard()) 579 return 0; 580 581 // Check for any instruction reading an SGPR after a write from 582 // s_mov_fed_b32. 583 int MovFedWaitStates = 1; 584 int WaitStatesNeeded = 0; 585 586 for (const MachineOperand &Use : MI->uses()) { 587 if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 588 continue; 589 auto IsHazardFn = [] (MachineInstr *MI) { 590 return MI->getOpcode() == AMDGPU::S_MOV_FED_B32; 591 }; 592 int WaitStatesNeededForUse = 593 MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn); 594 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 595 } 596 597 return WaitStatesNeeded; 598 } 599 600 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 601 if (!ST.hasReadM0Hazard()) 602 return 0; 603 604 const SIInstrInfo *TII = ST.getInstrInfo(); 605 int SMovRelWaitStates = 1; 606 auto IsHazardFn = [TII] (MachineInstr *MI) { 607 return TII->isSALU(*MI); 608 }; 609 return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn); 610 } 611