xref: /llvm-project/llvm/lib/Target/AMDGPU/GCNHazardRecognizer.cpp (revision 3d76824b7f493e722ae4c160b47978834226c43c)
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements hazard recognizers for scheduling on GCN processors.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "GCNHazardRecognizer.h"
14 #include "AMDGPUSubtarget.h"
15 #include "SIDefines.h"
16 #include "SIInstrInfo.h"
17 #include "SIRegisterInfo.h"
18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19 #include "Utils/AMDGPUBaseInfo.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <limits>
31 #include <set>
32 #include <vector>
33 
34 using namespace llvm;
35 
36 //===----------------------------------------------------------------------===//
37 // Hazard Recoginizer Implementation
38 //===----------------------------------------------------------------------===//
39 
40 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
41   IsHazardRecognizerMode(false),
42   CurrCycleInstr(nullptr),
43   MF(MF),
44   ST(MF.getSubtarget<GCNSubtarget>()),
45   TII(*ST.getInstrInfo()),
46   TRI(TII.getRegisterInfo()),
47   ClauseUses(TRI.getNumRegUnits()),
48   ClauseDefs(TRI.getNumRegUnits()) {
49   MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 18 : 5;
50   TSchedModel.init(&ST);
51 }
52 
53 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
54   EmitInstruction(SU->getInstr());
55 }
56 
57 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
58   CurrCycleInstr = MI;
59 }
60 
61 static bool isDivFMas(unsigned Opcode) {
62   return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64;
63 }
64 
65 static bool isSGetReg(unsigned Opcode) {
66   return Opcode == AMDGPU::S_GETREG_B32;
67 }
68 
69 static bool isSSetReg(unsigned Opcode) {
70   return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32;
71 }
72 
73 static bool isRWLane(unsigned Opcode) {
74   return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
75 }
76 
77 static bool isRFE(unsigned Opcode) {
78   return Opcode == AMDGPU::S_RFE_B64;
79 }
80 
81 static bool isSMovRel(unsigned Opcode) {
82   switch (Opcode) {
83   case AMDGPU::S_MOVRELS_B32:
84   case AMDGPU::S_MOVRELS_B64:
85   case AMDGPU::S_MOVRELD_B32:
86   case AMDGPU::S_MOVRELD_B64:
87     return true;
88   default:
89     return false;
90   }
91 }
92 
93 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII,
94                                     const MachineInstr &MI) {
95   if (TII.isAlwaysGDS(MI.getOpcode()))
96     return true;
97 
98   switch (MI.getOpcode()) {
99   case AMDGPU::S_SENDMSG:
100   case AMDGPU::S_SENDMSGHALT:
101   case AMDGPU::S_TTRACEDATA:
102     return true;
103   // These DS opcodes don't support GDS.
104   case AMDGPU::DS_NOP:
105   case AMDGPU::DS_PERMUTE_B32:
106   case AMDGPU::DS_BPERMUTE_B32:
107     return false;
108   default:
109     if (TII.isDS(MI.getOpcode())) {
110       int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
111                                            AMDGPU::OpName::gds);
112       if (MI.getOperand(GDS).getImm())
113         return true;
114     }
115     return false;
116   }
117 }
118 
119 static bool isPermlane(const MachineInstr &MI) {
120   unsigned Opcode = MI.getOpcode();
121   return Opcode == AMDGPU::V_PERMLANE16_B32 ||
122          Opcode == AMDGPU::V_PERMLANEX16_B32;
123 }
124 
125 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
126   const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
127                                                      AMDGPU::OpName::simm16);
128   return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
129 }
130 
131 ScheduleHazardRecognizer::HazardType
132 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
133   MachineInstr *MI = SU->getInstr();
134   if (MI->isBundle())
135    return NoHazard;
136 
137   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
138     return NoopHazard;
139 
140   // FIXME: Should flat be considered vmem?
141   if ((SIInstrInfo::isVMEM(*MI) ||
142        SIInstrInfo::isFLAT(*MI))
143       && checkVMEMHazards(MI) > 0)
144     return NoopHazard;
145 
146   if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0)
147     return NoopHazard;
148 
149   if (checkFPAtomicToDenormModeHazard(MI) > 0)
150     return NoopHazard;
151 
152   if (ST.hasNoDataDepHazard())
153     return NoHazard;
154 
155   if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
156     return NoopHazard;
157 
158   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
159     return NoopHazard;
160 
161   if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
162     return NoopHazard;
163 
164   if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
165     return NoopHazard;
166 
167   if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
168     return NoopHazard;
169 
170   if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
171     return NoopHazard;
172 
173   if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
174     return NoopHazard;
175 
176   if (ST.hasReadM0MovRelInterpHazard() &&
177       (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) &&
178       checkReadM0Hazards(MI) > 0)
179     return NoopHazard;
180 
181   if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) &&
182       checkReadM0Hazards(MI) > 0)
183     return NoopHazard;
184 
185   if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0)
186     return NoopHazard;
187 
188   if (MI->mayLoadOrStore() && checkMAILdStHazards(MI) > 0)
189     return NoopHazard;
190 
191   if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
192     return NoopHazard;
193 
194   if (checkAnyInstHazards(MI) > 0)
195     return NoopHazard;
196 
197   return NoHazard;
198 }
199 
200 static void insertNoopInBundle(MachineInstr *MI, const SIInstrInfo &TII) {
201   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP))
202       .addImm(0);
203 }
204 
205 void GCNHazardRecognizer::processBundle() {
206   MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator());
207   MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end();
208   // Check bundled MachineInstr's for hazards.
209   for (; MI != E && MI->isInsideBundle(); ++MI) {
210     CurrCycleInstr = &*MI;
211     unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr);
212 
213     if (IsHazardRecognizerMode)
214       fixHazards(CurrCycleInstr);
215 
216     for (unsigned i = 0; i < WaitStates; ++i)
217       insertNoopInBundle(CurrCycleInstr, TII);
218 
219     // It’s unnecessary to track more than MaxLookAhead instructions. Since we
220     // include the bundled MI directly after, only add a maximum of
221     // (MaxLookAhead - 1) noops to EmittedInstrs.
222     for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i)
223       EmittedInstrs.push_front(nullptr);
224 
225     EmittedInstrs.push_front(CurrCycleInstr);
226     EmittedInstrs.resize(MaxLookAhead);
227   }
228   CurrCycleInstr = nullptr;
229 }
230 
231 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
232   IsHazardRecognizerMode = false;
233   return PreEmitNoopsCommon(SU->getInstr());
234 }
235 
236 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
237   IsHazardRecognizerMode = true;
238   CurrCycleInstr = MI;
239   unsigned W = PreEmitNoopsCommon(MI);
240   fixHazards(MI);
241   CurrCycleInstr = nullptr;
242   return W;
243 }
244 
245 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) {
246   if (MI->isBundle())
247     return 0;
248 
249   int WaitStates = std::max(0, checkAnyInstHazards(MI));
250 
251   if (SIInstrInfo::isSMRD(*MI))
252     return std::max(WaitStates, checkSMRDHazards(MI));
253 
254   if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
255     WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
256 
257   if (ST.hasNSAtoVMEMBug())
258     WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI));
259 
260   WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI));
261 
262   if (ST.hasNoDataDepHazard())
263     return WaitStates;
264 
265   if (SIInstrInfo::isVALU(*MI))
266     WaitStates = std::max(WaitStates, checkVALUHazards(MI));
267 
268   if (SIInstrInfo::isDPP(*MI))
269     WaitStates = std::max(WaitStates, checkDPPHazards(MI));
270 
271   if (isDivFMas(MI->getOpcode()))
272     WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
273 
274   if (isRWLane(MI->getOpcode()))
275     WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
276 
277   if (MI->isInlineAsm())
278     return std::max(WaitStates, checkInlineAsmHazards(MI));
279 
280   if (isSGetReg(MI->getOpcode()))
281     return std::max(WaitStates, checkGetRegHazards(MI));
282 
283   if (isSSetReg(MI->getOpcode()))
284     return std::max(WaitStates, checkSetRegHazards(MI));
285 
286   if (isRFE(MI->getOpcode()))
287     return std::max(WaitStates, checkRFEHazards(MI));
288 
289   if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) ||
290                                            isSMovRel(MI->getOpcode())))
291     return std::max(WaitStates, checkReadM0Hazards(MI));
292 
293   if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI))
294     return std::max(WaitStates, checkReadM0Hazards(MI));
295 
296   if (SIInstrInfo::isMAI(*MI))
297     return std::max(WaitStates, checkMAIHazards(MI));
298 
299   if (MI->mayLoadOrStore())
300     return std::max(WaitStates, checkMAILdStHazards(MI));
301 
302   return WaitStates;
303 }
304 
305 void GCNHazardRecognizer::EmitNoop() {
306   EmittedInstrs.push_front(nullptr);
307 }
308 
309 void GCNHazardRecognizer::AdvanceCycle() {
310   // When the scheduler detects a stall, it will call AdvanceCycle() without
311   // emitting any instructions.
312   if (!CurrCycleInstr)
313     return;
314 
315   // Do not track non-instructions which do not affect the wait states.
316   // If included, these instructions can lead to buffer overflow such that
317   // detectable hazards are missed.
318   if (CurrCycleInstr->isImplicitDef() || CurrCycleInstr->isDebugInstr() ||
319       CurrCycleInstr->isKill())
320     return;
321 
322   if (CurrCycleInstr->isBundle()) {
323     processBundle();
324     return;
325   }
326 
327   unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
328 
329   // Keep track of emitted instructions
330   EmittedInstrs.push_front(CurrCycleInstr);
331 
332   // Add a nullptr for each additional wait state after the first.  Make sure
333   // not to add more than getMaxLookAhead() items to the list, since we
334   // truncate the list to that size right after this loop.
335   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
336        i < e; ++i) {
337     EmittedInstrs.push_front(nullptr);
338   }
339 
340   // getMaxLookahead() is the largest number of wait states we will ever need
341   // to insert, so there is no point in keeping track of more than that many
342   // wait states.
343   EmittedInstrs.resize(getMaxLookAhead());
344 
345   CurrCycleInstr = nullptr;
346 }
347 
348 void GCNHazardRecognizer::RecedeCycle() {
349   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
350 }
351 
352 //===----------------------------------------------------------------------===//
353 // Helper Functions
354 //===----------------------------------------------------------------------===//
355 
356 typedef function_ref<bool(MachineInstr *, int WaitStates)> IsExpiredFn;
357 
358 // Returns a minimum wait states since \p I walking all predecessors.
359 // Only scans until \p IsExpired does not return true.
360 // Can only be run in a hazard recognizer mode.
361 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
362                               MachineBasicBlock *MBB,
363                               MachineBasicBlock::reverse_instr_iterator I,
364                               int WaitStates,
365                               IsExpiredFn IsExpired,
366                               DenseSet<const MachineBasicBlock *> &Visited) {
367   for (auto E = MBB->instr_rend(); I != E; ++I) {
368     // Don't add WaitStates for parent BUNDLE instructions.
369     if (I->isBundle())
370       continue;
371 
372     if (IsHazard(&*I))
373       return WaitStates;
374 
375     if (I->isInlineAsm() || I->isImplicitDef() || I->isDebugInstr())
376       continue;
377 
378     WaitStates += SIInstrInfo::getNumWaitStates(*I);
379 
380     if (IsExpired(&*I, WaitStates))
381       return std::numeric_limits<int>::max();
382   }
383 
384   int MinWaitStates = WaitStates;
385   bool Found = false;
386   for (MachineBasicBlock *Pred : MBB->predecessors()) {
387     if (!Visited.insert(Pred).second)
388       continue;
389 
390     int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(),
391                                WaitStates, IsExpired, Visited);
392 
393     if (W == std::numeric_limits<int>::max())
394       continue;
395 
396     MinWaitStates = Found ? std::min(MinWaitStates, W) : W;
397     if (IsExpired(nullptr, MinWaitStates))
398       return MinWaitStates;
399 
400     Found = true;
401   }
402 
403   if (Found)
404     return MinWaitStates;
405 
406   return std::numeric_limits<int>::max();
407 }
408 
409 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
410                               MachineInstr *MI,
411                               IsExpiredFn IsExpired) {
412   DenseSet<const MachineBasicBlock *> Visited;
413   return getWaitStatesSince(IsHazard, MI->getParent(),
414                             std::next(MI->getReverseIterator()),
415                             0, IsExpired, Visited);
416 }
417 
418 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) {
419   if (IsHazardRecognizerMode) {
420     auto IsExpiredFn = [Limit] (MachineInstr *, int WaitStates) {
421       return WaitStates >= Limit;
422     };
423     return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn);
424   }
425 
426   int WaitStates = 0;
427   for (MachineInstr *MI : EmittedInstrs) {
428     if (MI) {
429       if (IsHazard(MI))
430         return WaitStates;
431 
432       if (MI->isInlineAsm())
433         continue;
434     }
435     ++WaitStates;
436 
437     if (WaitStates >= Limit)
438       break;
439   }
440   return std::numeric_limits<int>::max();
441 }
442 
443 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg,
444                                                IsHazardFn IsHazardDef,
445                                                int Limit) {
446   const SIRegisterInfo *TRI = ST.getRegisterInfo();
447 
448   auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) {
449     return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI);
450   };
451 
452   return getWaitStatesSince(IsHazardFn, Limit);
453 }
454 
455 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard,
456                                                   int Limit) {
457   auto IsHazardFn = [IsHazard] (MachineInstr *MI) {
458     return isSSetReg(MI->getOpcode()) && IsHazard(MI);
459   };
460 
461   return getWaitStatesSince(IsHazardFn, Limit);
462 }
463 
464 //===----------------------------------------------------------------------===//
465 // No-op Hazard Detection
466 //===----------------------------------------------------------------------===//
467 
468 static void addRegUnits(const SIRegisterInfo &TRI,
469                         BitVector &BV, unsigned Reg) {
470   for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI)
471     BV.set(*RUI);
472 }
473 
474 static void addRegsToSet(const SIRegisterInfo &TRI,
475                          iterator_range<MachineInstr::const_mop_iterator> Ops,
476                          BitVector &Set) {
477   for (const MachineOperand &Op : Ops) {
478     if (Op.isReg())
479       addRegUnits(TRI, Set, Op.getReg());
480   }
481 }
482 
483 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
484   // XXX: Do we need to worry about implicit operands
485   addRegsToSet(TRI, MI.defs(), ClauseDefs);
486   addRegsToSet(TRI, MI.uses(), ClauseUses);
487 }
488 
489 static bool breaksSMEMSoftClause(MachineInstr *MI) {
490   return !SIInstrInfo::isSMRD(*MI);
491 }
492 
493 static bool breaksVMEMSoftClause(MachineInstr *MI) {
494   return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI);
495 }
496 
497 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
498   // SMEM soft clause are only present on VI+, and only matter if xnack is
499   // enabled.
500   if (!ST.isXNACKEnabled())
501     return 0;
502 
503   bool IsSMRD = TII.isSMRD(*MEM);
504 
505   resetClause();
506 
507   // A soft-clause is any group of consecutive SMEM instructions.  The
508   // instructions in this group may return out of order and/or may be
509   // replayed (i.e. the same instruction issued more than once).
510   //
511   // In order to handle these situations correctly we need to make sure that
512   // when a clause has more than one instruction, no instruction in the clause
513   // writes to a register that is read by another instruction in the clause
514   // (including itself). If we encounter this situaion, we need to break the
515   // clause by inserting a non SMEM instruction.
516 
517   for (MachineInstr *MI : EmittedInstrs) {
518     // When we hit a non-SMEM instruction then we have passed the start of the
519     // clause and we can stop.
520     if (!MI)
521       break;
522 
523     if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI))
524       break;
525 
526     addClauseInst(*MI);
527   }
528 
529   if (ClauseDefs.none())
530     return 0;
531 
532   // We need to make sure not to put loads and stores in the same clause if they
533   // use the same address. For now, just start a new clause whenever we see a
534   // store.
535   if (MEM->mayStore())
536     return 1;
537 
538   addClauseInst(*MEM);
539 
540   // If the set of defs and uses intersect then we cannot add this instruction
541   // to the clause, so we have a hazard.
542   return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
543 }
544 
545 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
546   int WaitStatesNeeded = 0;
547 
548   WaitStatesNeeded = checkSoftClauseHazards(SMRD);
549 
550   // This SMRD hazard only affects SI.
551   if (!ST.hasSMRDReadVALUDefHazard())
552     return WaitStatesNeeded;
553 
554   // A read of an SGPR by SMRD instruction requires 4 wait states when the
555   // SGPR was written by a VALU instruction.
556   int SmrdSgprWaitStates = 4;
557   auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
558   auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); };
559 
560   bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);
561 
562   for (const MachineOperand &Use : SMRD->uses()) {
563     if (!Use.isReg())
564       continue;
565     int WaitStatesNeededForUse =
566         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
567                                                    SmrdSgprWaitStates);
568     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
569 
570     // This fixes what appears to be undocumented hardware behavior in SI where
571     // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
572     // needs some number of nops in between. We don't know how many we need, but
573     // let's use 4. This wasn't discovered before probably because the only
574     // case when this happens is when we expand a 64-bit pointer into a full
575     // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
576     // probably never encountered in the closed-source land.
577     if (IsBufferSMRD) {
578       int WaitStatesNeededForUse =
579         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
580                                                    IsBufferHazardDefFn,
581                                                    SmrdSgprWaitStates);
582       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
583     }
584   }
585 
586   return WaitStatesNeeded;
587 }
588 
589 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
590   if (!ST.hasVMEMReadSGPRVALUDefHazard())
591     return 0;
592 
593   int WaitStatesNeeded = checkSoftClauseHazards(VMEM);
594 
595   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
596   // SGPR was written by a VALU Instruction.
597   const int VmemSgprWaitStates = 5;
598   auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
599   for (const MachineOperand &Use : VMEM->uses()) {
600     if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
601       continue;
602 
603     int WaitStatesNeededForUse =
604         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
605                                                    VmemSgprWaitStates);
606     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
607   }
608   return WaitStatesNeeded;
609 }
610 
611 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
612   const SIRegisterInfo *TRI = ST.getRegisterInfo();
613   const SIInstrInfo *TII = ST.getInstrInfo();
614 
615   // Check for DPP VGPR read after VALU VGPR write and EXEC write.
616   int DppVgprWaitStates = 2;
617   int DppExecWaitStates = 5;
618   int WaitStatesNeeded = 0;
619   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
620 
621   for (const MachineOperand &Use : DPP->uses()) {
622     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
623       continue;
624     int WaitStatesNeededForUse =
625         DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
626                               [](MachineInstr *) { return true; },
627                               DppVgprWaitStates);
628     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
629   }
630 
631   WaitStatesNeeded = std::max(
632       WaitStatesNeeded,
633       DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn,
634                                                 DppExecWaitStates));
635 
636   return WaitStatesNeeded;
637 }
638 
639 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
640   const SIInstrInfo *TII = ST.getInstrInfo();
641 
642   // v_div_fmas requires 4 wait states after a write to vcc from a VALU
643   // instruction.
644   const int DivFMasWaitStates = 4;
645   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
646   int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn,
647                                                DivFMasWaitStates);
648 
649   return DivFMasWaitStates - WaitStatesNeeded;
650 }
651 
652 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
653   const SIInstrInfo *TII = ST.getInstrInfo();
654   unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
655 
656   const int GetRegWaitStates = 2;
657   auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) {
658     return GetRegHWReg == getHWReg(TII, *MI);
659   };
660   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates);
661 
662   return GetRegWaitStates - WaitStatesNeeded;
663 }
664 
665 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
666   const SIInstrInfo *TII = ST.getInstrInfo();
667   unsigned HWReg = getHWReg(TII, *SetRegInstr);
668 
669   const int SetRegWaitStates = ST.getSetRegWaitStates();
670   auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) {
671     return HWReg == getHWReg(TII, *MI);
672   };
673   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates);
674   return SetRegWaitStates - WaitStatesNeeded;
675 }
676 
677 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
678   if (!MI.mayStore())
679     return -1;
680 
681   const SIInstrInfo *TII = ST.getInstrInfo();
682   unsigned Opcode = MI.getOpcode();
683   const MCInstrDesc &Desc = MI.getDesc();
684 
685   int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
686   int VDataRCID = -1;
687   if (VDataIdx != -1)
688     VDataRCID = Desc.OpInfo[VDataIdx].RegClass;
689 
690   if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
691     // There is no hazard if the instruction does not use vector regs
692     // (like wbinvl1)
693     if (VDataIdx == -1)
694       return -1;
695     // For MUBUF/MTBUF instructions this hazard only exists if the
696     // instruction is not using a register in the soffset field.
697     const MachineOperand *SOffset =
698         TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
699     // If we have no soffset operand, then assume this field has been
700     // hardcoded to zero.
701     if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
702         (!SOffset || !SOffset->isReg()))
703       return VDataIdx;
704   }
705 
706   // MIMG instructions create a hazard if they don't use a 256-bit T# and
707   // the store size is greater than 8 bytes and they have more than two bits
708   // of their dmask set.
709   // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
710   if (TII->isMIMG(MI)) {
711     int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
712     assert(SRsrcIdx != -1 &&
713            AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
714     (void)SRsrcIdx;
715   }
716 
717   if (TII->isFLAT(MI)) {
718     int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
719     if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
720       return DataIdx;
721   }
722 
723   return -1;
724 }
725 
726 int GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
727 						const MachineRegisterInfo &MRI) {
728   // Helper to check for the hazard where VMEM instructions that store more than
729   // 8 bytes can have there store data over written by the next instruction.
730   const SIRegisterInfo *TRI = ST.getRegisterInfo();
731 
732   const int VALUWaitStates = 1;
733   int WaitStatesNeeded = 0;
734 
735   if (!TRI->isVGPR(MRI, Def.getReg()))
736     return WaitStatesNeeded;
737   Register Reg = Def.getReg();
738   auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) {
739     int DataIdx = createsVALUHazard(*MI);
740     return DataIdx >= 0 &&
741     TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg);
742   };
743   int WaitStatesNeededForDef =
744     VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates);
745   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
746 
747   return WaitStatesNeeded;
748 }
749 
750 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
751   // This checks for the hazard where VMEM instructions that store more than
752   // 8 bytes can have there store data over written by the next instruction.
753   if (!ST.has12DWordStoreHazard())
754     return 0;
755 
756   const MachineRegisterInfo &MRI = MF.getRegInfo();
757   int WaitStatesNeeded = 0;
758 
759   for (const MachineOperand &Def : VALU->defs()) {
760     WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
761   }
762 
763   return WaitStatesNeeded;
764 }
765 
766 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
767   // This checks for hazards associated with inline asm statements.
768   // Since inline asms can contain just about anything, we use this
769   // to call/leverage other check*Hazard routines. Note that
770   // this function doesn't attempt to address all possible inline asm
771   // hazards (good luck), but is a collection of what has been
772   // problematic thus far.
773 
774   // see checkVALUHazards()
775   if (!ST.has12DWordStoreHazard())
776     return 0;
777 
778   const MachineRegisterInfo &MRI = MF.getRegInfo();
779   int WaitStatesNeeded = 0;
780 
781   for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands();
782        I != E; ++I) {
783     const MachineOperand &Op = IA->getOperand(I);
784     if (Op.isReg() && Op.isDef()) {
785       WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
786     }
787   }
788 
789   return WaitStatesNeeded;
790 }
791 
792 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
793   const SIInstrInfo *TII = ST.getInstrInfo();
794   const SIRegisterInfo *TRI = ST.getRegisterInfo();
795   const MachineRegisterInfo &MRI = MF.getRegInfo();
796 
797   const MachineOperand *LaneSelectOp =
798       TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
799 
800   if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
801     return 0;
802 
803   Register LaneSelectReg = LaneSelectOp->getReg();
804   auto IsHazardFn = [TII] (MachineInstr *MI) {
805     return TII->isVALU(*MI);
806   };
807 
808   const int RWLaneWaitStates = 4;
809   int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn,
810                                               RWLaneWaitStates);
811   return RWLaneWaitStates - WaitStatesSince;
812 }
813 
814 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
815   if (!ST.hasRFEHazards())
816     return 0;
817 
818   const SIInstrInfo *TII = ST.getInstrInfo();
819 
820   const int RFEWaitStates = 1;
821 
822   auto IsHazardFn = [TII] (MachineInstr *MI) {
823     return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS;
824   };
825   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates);
826   return RFEWaitStates - WaitStatesNeeded;
827 }
828 
829 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) {
830   if (MI->isDebugInstr())
831     return 0;
832 
833   const SIRegisterInfo *TRI = ST.getRegisterInfo();
834   if (!ST.hasSMovFedHazard())
835     return 0;
836 
837   // Check for any instruction reading an SGPR after a write from
838   // s_mov_fed_b32.
839   int MovFedWaitStates = 1;
840   int WaitStatesNeeded = 0;
841 
842   for (const MachineOperand &Use : MI->uses()) {
843     if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
844       continue;
845     auto IsHazardFn = [] (MachineInstr *MI) {
846       return MI->getOpcode() == AMDGPU::S_MOV_FED_B32;
847     };
848     int WaitStatesNeededForUse =
849         MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn,
850                                                  MovFedWaitStates);
851     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
852   }
853 
854   return WaitStatesNeeded;
855 }
856 
857 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
858   const SIInstrInfo *TII = ST.getInstrInfo();
859   const int SMovRelWaitStates = 1;
860   auto IsHazardFn = [TII] (MachineInstr *MI) {
861     return TII->isSALU(*MI);
862   };
863   return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn,
864                                                    SMovRelWaitStates);
865 }
866 
867 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) {
868   fixVMEMtoScalarWriteHazards(MI);
869   fixVcmpxPermlaneHazards(MI);
870   fixSMEMtoVectorWriteHazards(MI);
871   fixVcmpxExecWARHazard(MI);
872   fixLdsBranchVmemWARHazard(MI);
873 }
874 
875 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) {
876   if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI))
877     return false;
878 
879   const SIInstrInfo *TII = ST.getInstrInfo();
880   auto IsHazardFn = [TII] (MachineInstr *MI) {
881     return TII->isVOPC(*MI);
882   };
883 
884   auto IsExpiredFn = [] (MachineInstr *MI, int) {
885     if (!MI)
886       return false;
887     unsigned Opc = MI->getOpcode();
888     return SIInstrInfo::isVALU(*MI) &&
889            Opc != AMDGPU::V_NOP_e32 &&
890            Opc != AMDGPU::V_NOP_e64 &&
891            Opc != AMDGPU::V_NOP_sdwa;
892   };
893 
894   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
895       std::numeric_limits<int>::max())
896     return false;
897 
898   // V_NOP will be discarded by SQ.
899   // Use V_MOB_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE*
900   // which is always a VGPR and available.
901   auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
902   Register Reg = Src0->getReg();
903   bool IsUndef = Src0->isUndef();
904   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
905           TII->get(AMDGPU::V_MOV_B32_e32))
906     .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0))
907     .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill);
908 
909   return true;
910 }
911 
912 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) {
913   if (!ST.hasVMEMtoScalarWriteHazard())
914     return false;
915 
916   if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI))
917     return false;
918 
919   if (MI->getNumDefs() == 0)
920     return false;
921 
922   const SIRegisterInfo *TRI = ST.getRegisterInfo();
923 
924   auto IsHazardFn = [TRI, MI] (MachineInstr *I) {
925     if (!SIInstrInfo::isVMEM(*I) && !SIInstrInfo::isDS(*I) &&
926         !SIInstrInfo::isFLAT(*I))
927       return false;
928 
929     for (const MachineOperand &Def : MI->defs()) {
930       MachineOperand *Op = I->findRegisterUseOperand(Def.getReg(), false, TRI);
931       if (!Op)
932         continue;
933       return true;
934     }
935     return false;
936   };
937 
938   auto IsExpiredFn = [] (MachineInstr *MI, int) {
939     return MI && (SIInstrInfo::isVALU(*MI) ||
940                   (MI->getOpcode() == AMDGPU::S_WAITCNT &&
941                    !MI->getOperand(0).getImm()));
942   };
943 
944   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
945       std::numeric_limits<int>::max())
946     return false;
947 
948   const SIInstrInfo *TII = ST.getInstrInfo();
949   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32));
950   return true;
951 }
952 
953 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) {
954   if (!ST.hasSMEMtoVectorWriteHazard())
955     return false;
956 
957   if (!SIInstrInfo::isVALU(*MI))
958     return false;
959 
960   unsigned SDSTName;
961   switch (MI->getOpcode()) {
962   case AMDGPU::V_READLANE_B32:
963   case AMDGPU::V_READLANE_B32_gfx10:
964   case AMDGPU::V_READFIRSTLANE_B32:
965     SDSTName = AMDGPU::OpName::vdst;
966     break;
967   default:
968     SDSTName = AMDGPU::OpName::sdst;
969     break;
970   }
971 
972   const SIInstrInfo *TII = ST.getInstrInfo();
973   const SIRegisterInfo *TRI = ST.getRegisterInfo();
974   const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU());
975   const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName);
976   if (!SDST) {
977     for (const auto &MO : MI->implicit_operands()) {
978       if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) {
979         SDST = &MO;
980         break;
981       }
982     }
983   }
984 
985   if (!SDST)
986     return false;
987 
988   const Register SDSTReg = SDST->getReg();
989   auto IsHazardFn = [SDSTReg, TRI] (MachineInstr *I) {
990     return SIInstrInfo::isSMRD(*I) && I->readsRegister(SDSTReg, TRI);
991   };
992 
993   auto IsExpiredFn = [TII, IV] (MachineInstr *MI, int) {
994     if (MI) {
995       if (TII->isSALU(*MI)) {
996         switch (MI->getOpcode()) {
997         case AMDGPU::S_SETVSKIP:
998         case AMDGPU::S_VERSION:
999         case AMDGPU::S_WAITCNT_VSCNT:
1000         case AMDGPU::S_WAITCNT_VMCNT:
1001         case AMDGPU::S_WAITCNT_EXPCNT:
1002           // These instructions cannot not mitigate the hazard.
1003           return false;
1004         case AMDGPU::S_WAITCNT_LGKMCNT:
1005           // Reducing lgkmcnt count to 0 always mitigates the hazard.
1006           return (MI->getOperand(1).getImm() == 0) &&
1007                  (MI->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1008         case AMDGPU::S_WAITCNT: {
1009           const int64_t Imm = MI->getOperand(0).getImm();
1010           AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm);
1011           return (Decoded.LgkmCnt == 0);
1012         }
1013         default:
1014           // SOPP instructions cannot mitigate the hazard.
1015           if (TII->isSOPP(*MI))
1016             return false;
1017           // At this point the SALU can be assumed to mitigate the hazard
1018           // because either:
1019           // (a) it is independent of the at risk SMEM (breaking chain),
1020           // or
1021           // (b) it is dependent on the SMEM, in which case an appropriate
1022           //     s_waitcnt lgkmcnt _must_ exist between it and the at risk
1023           //     SMEM instruction.
1024           return true;
1025         }
1026       }
1027     }
1028     return false;
1029   };
1030 
1031   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1032       std::numeric_limits<int>::max())
1033     return false;
1034 
1035   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1036           TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL)
1037       .addImm(0);
1038   return true;
1039 }
1040 
1041 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) {
1042   if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI))
1043     return false;
1044 
1045   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1046   if (!MI->modifiesRegister(AMDGPU::EXEC, TRI))
1047     return false;
1048 
1049   auto IsHazardFn = [TRI] (MachineInstr *I) {
1050     if (SIInstrInfo::isVALU(*I))
1051       return false;
1052     return I->readsRegister(AMDGPU::EXEC, TRI);
1053   };
1054 
1055   const SIInstrInfo *TII = ST.getInstrInfo();
1056   auto IsExpiredFn = [TII, TRI] (MachineInstr *MI, int) {
1057     if (!MI)
1058       return false;
1059     if (SIInstrInfo::isVALU(*MI)) {
1060       if (TII->getNamedOperand(*MI, AMDGPU::OpName::sdst))
1061         return true;
1062       for (auto MO : MI->implicit_operands())
1063         if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg())))
1064           return true;
1065     }
1066     if (MI->getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1067         (MI->getOperand(0).getImm() & 0xfffe) == 0xfffe)
1068       return true;
1069     return false;
1070   };
1071 
1072   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1073       std::numeric_limits<int>::max())
1074     return false;
1075 
1076   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1077           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
1078     .addImm(0xfffe);
1079   return true;
1080 }
1081 
1082 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) {
1083   if (!ST.hasLdsBranchVmemWARHazard())
1084     return false;
1085 
1086   auto IsHazardInst = [] (const MachineInstr *MI) {
1087     if (SIInstrInfo::isDS(*MI))
1088       return 1;
1089     if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isSegmentSpecificFLAT(*MI))
1090       return 2;
1091     return 0;
1092   };
1093 
1094   auto InstType = IsHazardInst(MI);
1095   if (!InstType)
1096     return false;
1097 
1098   auto IsExpiredFn = [&IsHazardInst] (MachineInstr *I, int) {
1099     return I && (IsHazardInst(I) ||
1100                  (I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1101                   I->getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
1102                   !I->getOperand(1).getImm()));
1103   };
1104 
1105   auto IsHazardFn = [InstType, &IsHazardInst] (MachineInstr *I) {
1106     if (!I->isBranch())
1107       return false;
1108 
1109     auto IsHazardFn = [InstType, IsHazardInst] (MachineInstr *I) {
1110       auto InstType2 = IsHazardInst(I);
1111       return InstType2 && InstType != InstType2;
1112     };
1113 
1114     auto IsExpiredFn = [InstType, &IsHazardInst] (MachineInstr *I, int) {
1115       if (!I)
1116         return false;
1117 
1118       auto InstType2 = IsHazardInst(I);
1119       if (InstType == InstType2)
1120         return true;
1121 
1122       return I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1123              I->getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
1124              !I->getOperand(1).getImm();
1125     };
1126 
1127     return ::getWaitStatesSince(IsHazardFn, I, IsExpiredFn) !=
1128            std::numeric_limits<int>::max();
1129   };
1130 
1131   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1132       std::numeric_limits<int>::max())
1133     return false;
1134 
1135   const SIInstrInfo *TII = ST.getInstrInfo();
1136   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1137           TII->get(AMDGPU::S_WAITCNT_VSCNT))
1138     .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1139     .addImm(0);
1140 
1141   return true;
1142 }
1143 
1144 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) {
1145   int NSAtoVMEMWaitStates = 1;
1146 
1147   if (!ST.hasNSAtoVMEMBug())
1148     return 0;
1149 
1150   if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI))
1151     return 0;
1152 
1153   const SIInstrInfo *TII = ST.getInstrInfo();
1154   const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset);
1155   if (!Offset || (Offset->getImm() & 6) == 0)
1156     return 0;
1157 
1158   auto IsHazardFn = [TII] (MachineInstr *I) {
1159     if (!SIInstrInfo::isMIMG(*I))
1160       return false;
1161     const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I->getOpcode());
1162     return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA &&
1163            TII->getInstSizeInBytes(*I) >= 16;
1164   };
1165 
1166   return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1);
1167 }
1168 
1169 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) {
1170   int FPAtomicToDenormModeWaitStates = 3;
1171 
1172   if (MI->getOpcode() != AMDGPU::S_DENORM_MODE)
1173     return 0;
1174 
1175   auto IsHazardFn = [] (MachineInstr *I) {
1176     if (!SIInstrInfo::isVMEM(*I) && !SIInstrInfo::isFLAT(*I))
1177       return false;
1178     return SIInstrInfo::isFPAtomic(*I);
1179   };
1180 
1181   auto IsExpiredFn = [] (MachineInstr *MI, int WaitStates) {
1182     if (WaitStates >= 3 || SIInstrInfo::isVALU(*MI))
1183       return true;
1184 
1185     switch (MI->getOpcode()) {
1186     case AMDGPU::S_WAITCNT:
1187     case AMDGPU::S_WAITCNT_VSCNT:
1188     case AMDGPU::S_WAITCNT_VMCNT:
1189     case AMDGPU::S_WAITCNT_EXPCNT:
1190     case AMDGPU::S_WAITCNT_LGKMCNT:
1191     case AMDGPU::S_WAITCNT_IDLE:
1192       return true;
1193     default:
1194       break;
1195     }
1196 
1197     return false;
1198   };
1199 
1200 
1201   return FPAtomicToDenormModeWaitStates -
1202          ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn);
1203 }
1204 
1205 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) {
1206   assert(SIInstrInfo::isMAI(*MI));
1207 
1208   int WaitStatesNeeded = 0;
1209   unsigned Opc = MI->getOpcode();
1210 
1211   auto IsVALUFn = [] (MachineInstr *MI) {
1212     return SIInstrInfo::isVALU(*MI);
1213   };
1214 
1215   if (Opc != AMDGPU::V_ACCVGPR_READ_B32) { // MFMA or v_accvgpr_write
1216     const int LegacyVALUWritesVGPRWaitStates = 2;
1217     const int VALUWritesExecWaitStates = 4;
1218     const int MaxWaitStates = 4;
1219 
1220     int WaitStatesNeededForUse = VALUWritesExecWaitStates -
1221       getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates);
1222     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1223 
1224     if (WaitStatesNeeded < MaxWaitStates) {
1225       for (const MachineOperand &Use : MI->explicit_uses()) {
1226         const int MaxWaitStates = 2;
1227 
1228         if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1229           continue;
1230 
1231         int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates -
1232           getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates);
1233         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1234 
1235         if (WaitStatesNeeded == MaxWaitStates)
1236           break;
1237       }
1238     }
1239   }
1240 
1241   auto IsMFMAFn = [] (MachineInstr *MI) {
1242     return SIInstrInfo::isMAI(*MI) &&
1243            MI->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32 &&
1244            MI->getOpcode() != AMDGPU::V_ACCVGPR_READ_B32;
1245   };
1246 
1247   for (const MachineOperand &Op : MI->explicit_operands()) {
1248     if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg()))
1249       continue;
1250 
1251     if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32)
1252       continue;
1253 
1254     const int MFMAWritesAGPROverlappedSrcABWaitStates = 4;
1255     const int MFMAWritesAGPROverlappedSrcCWaitStates = 2;
1256     const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4;
1257     const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10;
1258     const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18;
1259     const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1;
1260     const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7;
1261     const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15;
1262     const int MaxWaitStates = 18;
1263     Register Reg = Op.getReg();
1264     unsigned HazardDefLatency = 0;
1265 
1266     auto IsOverlappedMFMAFn = [Reg, &IsMFMAFn, &HazardDefLatency, this]
1267                               (MachineInstr *MI) {
1268       if (!IsMFMAFn(MI))
1269         return false;
1270       Register DstReg = MI->getOperand(0).getReg();
1271       if (DstReg == Reg)
1272         return false;
1273       HazardDefLatency = std::max(HazardDefLatency,
1274                                   TSchedModel.computeInstrLatency(MI));
1275       return TRI.regsOverlap(DstReg, Reg);
1276     };
1277 
1278     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn,
1279                                                    MaxWaitStates);
1280     int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates;
1281     int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1282     int OpNo = MI->getOperandNo(&Op);
1283     if (OpNo == SrcCIdx) {
1284       NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates;
1285     } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32) {
1286       switch (HazardDefLatency) {
1287       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates;
1288                break;
1289       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates;
1290                break;
1291       case 16: LLVM_FALLTHROUGH;
1292       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates;
1293                break;
1294       }
1295     } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32) {
1296       switch (HazardDefLatency) {
1297       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates;
1298                break;
1299       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates;
1300                break;
1301       case 16: LLVM_FALLTHROUGH;
1302       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates;
1303                break;
1304       }
1305     }
1306 
1307     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
1308     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1309 
1310     if (WaitStatesNeeded == MaxWaitStates)
1311       return WaitStatesNeeded; // Early exit.
1312 
1313     auto IsAccVgprWriteFn = [Reg, this] (MachineInstr *MI) {
1314       if (MI->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32)
1315         return false;
1316       Register DstReg = MI->getOperand(0).getReg();
1317       return TRI.regsOverlap(Reg, DstReg);
1318     };
1319 
1320     const int AccVGPRWriteMFMAReadSrcCWaitStates = 1;
1321     const int AccVGPRWriteMFMAReadSrcABWaitStates = 3;
1322     const int AccVGPRWriteAccVgprReadWaitStates = 3;
1323     NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates;
1324     if (OpNo == SrcCIdx)
1325       NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates;
1326     else if (Opc == AMDGPU::V_ACCVGPR_READ_B32)
1327       NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates;
1328 
1329     WaitStatesNeededForUse = NeedWaitStates -
1330       getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates);
1331     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1332 
1333     if (WaitStatesNeeded == MaxWaitStates)
1334       return WaitStatesNeeded; // Early exit.
1335   }
1336 
1337   if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32) {
1338     const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0;
1339     const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5;
1340     const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13;
1341     const int MaxWaitStates = 13;
1342     Register DstReg = MI->getOperand(0).getReg();
1343     unsigned HazardDefLatency = 0;
1344 
1345     auto IsSrcCMFMAFn = [DstReg, &IsMFMAFn, &HazardDefLatency, this]
1346                          (MachineInstr *MI) {
1347       if (!IsMFMAFn(MI))
1348         return false;
1349       Register Reg = TII.getNamedOperand(*MI, AMDGPU::OpName::src2)->getReg();
1350       HazardDefLatency = std::max(HazardDefLatency,
1351                                   TSchedModel.computeInstrLatency(MI));
1352       return TRI.regsOverlap(Reg, DstReg);
1353     };
1354 
1355     int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates);
1356     int NeedWaitStates;
1357     switch (HazardDefLatency) {
1358     case 2:  NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates;
1359              break;
1360     case 8:  NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates;
1361              break;
1362     case 16: LLVM_FALLTHROUGH;
1363     default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates;
1364              break;
1365     }
1366 
1367     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince;
1368     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1369   }
1370 
1371   return WaitStatesNeeded;
1372 }
1373 
1374 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) {
1375   if (!ST.hasMAIInsts())
1376     return 0;
1377 
1378   int WaitStatesNeeded = 0;
1379 
1380   auto IsAccVgprReadFn = [] (MachineInstr *MI) {
1381     return MI->getOpcode() == AMDGPU::V_ACCVGPR_READ_B32;
1382   };
1383 
1384   for (const MachineOperand &Op : MI->explicit_uses()) {
1385     if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg()))
1386       continue;
1387 
1388     Register Reg = Op.getReg();
1389 
1390     const int AccVgprReadLdStWaitStates = 2;
1391     const int VALUWriteAccVgprReadLdStDepVALUWaitStates = 1;
1392     const int MaxWaitStates = 2;
1393 
1394     int WaitStatesNeededForUse = AccVgprReadLdStWaitStates -
1395       getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates);
1396     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1397 
1398     if (WaitStatesNeeded == MaxWaitStates)
1399       return WaitStatesNeeded; // Early exit.
1400 
1401     auto IsVALUAccVgprReadCheckFn = [Reg, this] (MachineInstr *MI) {
1402       if (MI->getOpcode() != AMDGPU::V_ACCVGPR_READ_B32)
1403         return false;
1404       auto IsVALUFn = [] (MachineInstr *MI) {
1405         return SIInstrInfo::isVALU(*MI) && !SIInstrInfo::isMAI(*MI);
1406       };
1407       return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) <
1408              std::numeric_limits<int>::max();
1409     };
1410 
1411     WaitStatesNeededForUse = VALUWriteAccVgprReadLdStDepVALUWaitStates -
1412       getWaitStatesSince(IsVALUAccVgprReadCheckFn, MaxWaitStates);
1413     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1414   }
1415 
1416   return WaitStatesNeeded;
1417 }
1418