xref: /llvm-project/llvm/lib/Target/AMDGPU/GCNHazardRecognizer.cpp (revision 2232243863bc5f3f3632a9adeab9bf3293543d42)
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements hazard recognizers for scheduling on GCN processors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "GCNHazardRecognizer.h"
15 #include "AMDGPUSubtarget.h"
16 #include "SIDefines.h"
17 #include "SIInstrInfo.h"
18 #include "SIRegisterInfo.h"
19 #include "Utils/AMDGPUBaseInfo.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/ScheduleDAG.h"
25 #include "llvm/MC/MCInstrDesc.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include <algorithm>
28 #include <cassert>
29 #include <limits>
30 #include <set>
31 #include <vector>
32 
33 using namespace llvm;
34 
35 //===----------------------------------------------------------------------===//
36 // Hazard Recoginizer Implementation
37 //===----------------------------------------------------------------------===//
38 
39 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
40   CurrCycleInstr(nullptr),
41   MF(MF),
42   ST(MF.getSubtarget<SISubtarget>()),
43   TII(*ST.getInstrInfo()) {
44   MaxLookAhead = 5;
45 }
46 
47 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
48   EmitInstruction(SU->getInstr());
49 }
50 
51 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
52   CurrCycleInstr = MI;
53 }
54 
55 static bool isDivFMas(unsigned Opcode) {
56   return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64;
57 }
58 
59 static bool isSGetReg(unsigned Opcode) {
60   return Opcode == AMDGPU::S_GETREG_B32;
61 }
62 
63 static bool isSSetReg(unsigned Opcode) {
64   return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32;
65 }
66 
67 static bool isRWLane(unsigned Opcode) {
68   return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
69 }
70 
71 static bool isRFE(unsigned Opcode) {
72   return Opcode == AMDGPU::S_RFE_B64;
73 }
74 
75 static bool isSMovRel(unsigned Opcode) {
76   switch (Opcode) {
77   case AMDGPU::S_MOVRELS_B32:
78   case AMDGPU::S_MOVRELS_B64:
79   case AMDGPU::S_MOVRELD_B32:
80   case AMDGPU::S_MOVRELD_B64:
81     return true;
82   default:
83     return false;
84   }
85 }
86 
87 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
88   const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
89                                                      AMDGPU::OpName::simm16);
90   return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
91 }
92 
93 ScheduleHazardRecognizer::HazardType
94 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
95   MachineInstr *MI = SU->getInstr();
96 
97   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
98     return NoopHazard;
99 
100   if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0)
101     return NoopHazard;
102 
103   if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
104     return NoopHazard;
105 
106   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
107     return NoopHazard;
108 
109   if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
110     return NoopHazard;
111 
112   if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
113     return NoopHazard;
114 
115   if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
116     return NoopHazard;
117 
118   if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
119     return NoopHazard;
120 
121   if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
122     return NoopHazard;
123 
124   if ((TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) &&
125       checkReadM0Hazards(MI) > 0)
126     return NoopHazard;
127 
128   if (checkAnyInstHazards(MI) > 0)
129     return NoopHazard;
130 
131   return NoHazard;
132 }
133 
134 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
135   return PreEmitNoops(SU->getInstr());
136 }
137 
138 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
139   int WaitStates = std::max(0, checkAnyInstHazards(MI));
140 
141   if (SIInstrInfo::isSMRD(*MI))
142     return std::max(WaitStates, checkSMRDHazards(MI));
143 
144   if (SIInstrInfo::isVALU(*MI)) {
145       WaitStates = std::max(WaitStates, checkVALUHazards(MI));
146 
147     if (SIInstrInfo::isVMEM(*MI))
148       WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
149 
150     if (SIInstrInfo::isDPP(*MI))
151       WaitStates = std::max(WaitStates, checkDPPHazards(MI));
152 
153     if (isDivFMas(MI->getOpcode()))
154       WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
155 
156     if (isRWLane(MI->getOpcode()))
157       WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
158 
159     if (TII.isVINTRP(*MI))
160       WaitStates = std::max(WaitStates, checkReadM0Hazards(MI));
161 
162     return WaitStates;
163   }
164 
165   if (isSGetReg(MI->getOpcode()))
166     return std::max(WaitStates, checkGetRegHazards(MI));
167 
168   if (isSSetReg(MI->getOpcode()))
169     return std::max(WaitStates, checkSetRegHazards(MI));
170 
171   if (isRFE(MI->getOpcode()))
172     return std::max(WaitStates, checkRFEHazards(MI));
173 
174   if (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()))
175     return std::max(WaitStates, checkReadM0Hazards(MI));
176 
177   return WaitStates;
178 }
179 
180 void GCNHazardRecognizer::EmitNoop() {
181   EmittedInstrs.push_front(nullptr);
182 }
183 
184 void GCNHazardRecognizer::AdvanceCycle() {
185   // When the scheduler detects a stall, it will call AdvanceCycle() without
186   // emitting any instructions.
187   if (!CurrCycleInstr)
188     return;
189 
190   unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
191 
192   // Keep track of emitted instructions
193   EmittedInstrs.push_front(CurrCycleInstr);
194 
195   // Add a nullptr for each additional wait state after the first.  Make sure
196   // not to add more than getMaxLookAhead() items to the list, since we
197   // truncate the list to that size right after this loop.
198   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
199        i < e; ++i) {
200     EmittedInstrs.push_front(nullptr);
201   }
202 
203   // getMaxLookahead() is the largest number of wait states we will ever need
204   // to insert, so there is no point in keeping track of more than that many
205   // wait states.
206   EmittedInstrs.resize(getMaxLookAhead());
207 
208   CurrCycleInstr = nullptr;
209 }
210 
211 void GCNHazardRecognizer::RecedeCycle() {
212   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
213 }
214 
215 //===----------------------------------------------------------------------===//
216 // Helper Functions
217 //===----------------------------------------------------------------------===//
218 
219 int GCNHazardRecognizer::getWaitStatesSince(
220     function_ref<bool(MachineInstr *)> IsHazard) {
221   int WaitStates = 0;
222   for (MachineInstr *MI : EmittedInstrs) {
223     if (MI) {
224       if (IsHazard(MI))
225         return WaitStates;
226 
227       unsigned Opcode = MI->getOpcode();
228       if (Opcode == AMDGPU::DBG_VALUE || Opcode == AMDGPU::IMPLICIT_DEF ||
229           Opcode == AMDGPU::INLINEASM)
230         continue;
231     }
232     ++WaitStates;
233   }
234   return std::numeric_limits<int>::max();
235 }
236 
237 int GCNHazardRecognizer::getWaitStatesSinceDef(
238     unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) {
239   const SIRegisterInfo *TRI = ST.getRegisterInfo();
240 
241   auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) {
242     return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI);
243   };
244 
245   return getWaitStatesSince(IsHazardFn);
246 }
247 
248 int GCNHazardRecognizer::getWaitStatesSinceSetReg(
249     function_ref<bool(MachineInstr *)> IsHazard) {
250   auto IsHazardFn = [IsHazard] (MachineInstr *MI) {
251     return isSSetReg(MI->getOpcode()) && IsHazard(MI);
252   };
253 
254   return getWaitStatesSince(IsHazardFn);
255 }
256 
257 //===----------------------------------------------------------------------===//
258 // No-op Hazard Detection
259 //===----------------------------------------------------------------------===//
260 
261 static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops,
262                          std::set<unsigned> &Set) {
263   for (const MachineOperand &Op : Ops) {
264     if (Op.isReg())
265       Set.insert(Op.getReg());
266   }
267 }
268 
269 int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) {
270   // SMEM soft clause are only present on VI+
271   if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
272     return 0;
273 
274   // A soft-clause is any group of consecutive SMEM instructions.  The
275   // instructions in this group may return out of order and/or may be
276   // replayed (i.e. the same instruction issued more than once).
277   //
278   // In order to handle these situations correctly we need to make sure
279   // that when a clause has more than one instruction, no instruction in the
280   // clause writes to a register that is read another instruction in the clause
281   // (including itself). If we encounter this situaion, we need to break the
282   // clause by inserting a non SMEM instruction.
283 
284   std::set<unsigned> ClauseDefs;
285   std::set<unsigned> ClauseUses;
286 
287   for (MachineInstr *MI : EmittedInstrs) {
288 
289     // When we hit a non-SMEM instruction then we have passed the start of the
290     // clause and we can stop.
291     if (!MI || !SIInstrInfo::isSMRD(*MI))
292       break;
293 
294     addRegsToSet(MI->defs(), ClauseDefs);
295     addRegsToSet(MI->uses(), ClauseUses);
296   }
297 
298   if (ClauseDefs.empty())
299     return 0;
300 
301   // FIXME: When we support stores, we need to make sure not to put loads and
302   // stores in the same clause if they use the same address.  For now, just
303   // start a new clause whenever we see a store.
304   if (SMEM->mayStore())
305     return 1;
306 
307   addRegsToSet(SMEM->defs(), ClauseDefs);
308   addRegsToSet(SMEM->uses(), ClauseUses);
309 
310   std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size()));
311   std::vector<unsigned>::iterator End;
312 
313   End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(),
314                               ClauseUses.begin(), ClauseUses.end(), Result.begin());
315 
316   // If the set of defs and uses intersect then we cannot add this instruction
317   // to the clause, so we have a hazard.
318   if (End != Result.begin())
319     return 1;
320 
321   return 0;
322 }
323 
324 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
325   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
326   int WaitStatesNeeded = 0;
327 
328   WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD);
329 
330   // This SMRD hazard only affects SI.
331   if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS)
332     return WaitStatesNeeded;
333 
334   // A read of an SGPR by SMRD instruction requires 4 wait states when the
335   // SGPR was written by a VALU instruction.
336   int SmrdSgprWaitStates = 4;
337   auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
338   auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); };
339 
340   bool IsBufferSMRD = SMRD->getOpcode() == AMDGPU::S_BUFFER_LOAD_DWORD_IMM ||
341                       SMRD->getOpcode() == AMDGPU::S_BUFFER_LOAD_DWORDX2_IMM ||
342                       SMRD->getOpcode() == AMDGPU::S_BUFFER_LOAD_DWORDX4_IMM ||
343                       SMRD->getOpcode() == AMDGPU::S_BUFFER_LOAD_DWORDX8_IMM ||
344                       SMRD->getOpcode() == AMDGPU::S_BUFFER_LOAD_DWORDX16_IMM ||
345                       SMRD->getOpcode() == AMDGPU::S_BUFFER_LOAD_DWORD_SGPR ||
346                       SMRD->getOpcode() == AMDGPU::S_BUFFER_LOAD_DWORDX2_SGPR ||
347                       SMRD->getOpcode() == AMDGPU::S_BUFFER_LOAD_DWORDX4_SGPR ||
348                       SMRD->getOpcode() == AMDGPU::S_BUFFER_LOAD_DWORDX8_SGPR ||
349                       SMRD->getOpcode() == AMDGPU::S_BUFFER_LOAD_DWORDX16_SGPR;
350 
351   for (const MachineOperand &Use : SMRD->uses()) {
352     if (!Use.isReg())
353       continue;
354     int WaitStatesNeededForUse =
355         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
356     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
357 
358     // This fixes what appears to be undocumented hardware behavior in SI where
359     // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
360     // needs some number of nops in between. We don't know how many we need, but
361     // let's use 4. This wasn't discovered before probably because the only
362     // case when this happens is when we expand a 64-bit pointer into a full
363     // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
364     // probably never encountered in the closed-source land.
365     if (IsBufferSMRD) {
366       int WaitStatesNeededForUse =
367         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
368                                                    IsBufferHazardDefFn);
369       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
370     }
371   }
372 
373   return WaitStatesNeeded;
374 }
375 
376 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
377   const SIInstrInfo *TII = ST.getInstrInfo();
378 
379   if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
380     return 0;
381 
382   const SIRegisterInfo &TRI = TII->getRegisterInfo();
383 
384   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
385   // SGPR was written by a VALU Instruction.
386   int VmemSgprWaitStates = 5;
387   int WaitStatesNeeded = 0;
388   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
389 
390   for (const MachineOperand &Use : VMEM->uses()) {
391     if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
392       continue;
393 
394     int WaitStatesNeededForUse =
395         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
396     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
397   }
398   return WaitStatesNeeded;
399 }
400 
401 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
402   const SIRegisterInfo *TRI = ST.getRegisterInfo();
403   const SIInstrInfo *TII = ST.getInstrInfo();
404 
405   // Check for DPP VGPR read after VALU VGPR write and EXEC write.
406   int DppVgprWaitStates = 2;
407   int DppExecWaitStates = 5;
408   int WaitStatesNeeded = 0;
409   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
410 
411   for (const MachineOperand &Use : DPP->uses()) {
412     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
413       continue;
414     int WaitStatesNeededForUse =
415         DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg());
416     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
417   }
418 
419   WaitStatesNeeded = std::max(
420       WaitStatesNeeded,
421       DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn));
422 
423   return WaitStatesNeeded;
424 }
425 
426 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
427   const SIInstrInfo *TII = ST.getInstrInfo();
428 
429   // v_div_fmas requires 4 wait states after a write to vcc from a VALU
430   // instruction.
431   const int DivFMasWaitStates = 4;
432   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
433   int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn);
434 
435   return DivFMasWaitStates - WaitStatesNeeded;
436 }
437 
438 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
439   const SIInstrInfo *TII = ST.getInstrInfo();
440   unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
441 
442   const int GetRegWaitStates = 2;
443   auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) {
444     return GetRegHWReg == getHWReg(TII, *MI);
445   };
446   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
447 
448   return GetRegWaitStates - WaitStatesNeeded;
449 }
450 
451 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
452   const SIInstrInfo *TII = ST.getInstrInfo();
453   unsigned HWReg = getHWReg(TII, *SetRegInstr);
454 
455   const int SetRegWaitStates =
456       ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2;
457   auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) {
458     return HWReg == getHWReg(TII, *MI);
459   };
460   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
461   return SetRegWaitStates - WaitStatesNeeded;
462 }
463 
464 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
465   if (!MI.mayStore())
466     return -1;
467 
468   const SIInstrInfo *TII = ST.getInstrInfo();
469   unsigned Opcode = MI.getOpcode();
470   const MCInstrDesc &Desc = MI.getDesc();
471 
472   int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
473   int VDataRCID = -1;
474   if (VDataIdx != -1)
475     VDataRCID = Desc.OpInfo[VDataIdx].RegClass;
476 
477   if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
478     // There is no hazard if the instruction does not use vector regs
479     // (like wbinvl1)
480     if (VDataIdx == -1)
481       return -1;
482     // For MUBUF/MTBUF instructions this hazard only exists if the
483     // instruction is not using a register in the soffset field.
484     const MachineOperand *SOffset =
485         TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
486     // If we have no soffset operand, then assume this field has been
487     // hardcoded to zero.
488     if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
489         (!SOffset || !SOffset->isReg()))
490       return VDataIdx;
491   }
492 
493   // MIMG instructions create a hazard if they don't use a 256-bit T# and
494   // the store size is greater than 8 bytes and they have more than two bits
495   // of their dmask set.
496   // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
497   if (TII->isMIMG(MI)) {
498     int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
499     assert(SRsrcIdx != -1 &&
500            AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
501     (void)SRsrcIdx;
502   }
503 
504   if (TII->isFLAT(MI)) {
505     int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
506     if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
507       return DataIdx;
508   }
509 
510   return -1;
511 }
512 
513 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
514   // This checks for the hazard where VMEM instructions that store more than
515   // 8 bytes can have there store data over written by the next instruction.
516   if (!ST.has12DWordStoreHazard())
517     return 0;
518 
519   const SIRegisterInfo *TRI = ST.getRegisterInfo();
520   const MachineRegisterInfo &MRI = VALU->getParent()->getParent()->getRegInfo();
521 
522   const int VALUWaitStates = 1;
523   int WaitStatesNeeded = 0;
524 
525   for (const MachineOperand &Def : VALU->defs()) {
526     if (!TRI->isVGPR(MRI, Def.getReg()))
527       continue;
528     unsigned Reg = Def.getReg();
529     auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) {
530       int DataIdx = createsVALUHazard(*MI);
531       return DataIdx >= 0 &&
532              TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg);
533     };
534     int WaitStatesNeededForDef =
535         VALUWaitStates - getWaitStatesSince(IsHazardFn);
536     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
537   }
538   return WaitStatesNeeded;
539 }
540 
541 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
542   const SIInstrInfo *TII = ST.getInstrInfo();
543   const SIRegisterInfo *TRI = ST.getRegisterInfo();
544   const MachineRegisterInfo &MRI =
545       RWLane->getParent()->getParent()->getRegInfo();
546 
547   const MachineOperand *LaneSelectOp =
548       TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
549 
550   if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
551     return 0;
552 
553   unsigned LaneSelectReg = LaneSelectOp->getReg();
554   auto IsHazardFn = [TII] (MachineInstr *MI) {
555     return TII->isVALU(*MI);
556   };
557 
558   const int RWLaneWaitStates = 4;
559   int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn);
560   return RWLaneWaitStates - WaitStatesSince;
561 }
562 
563 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
564   if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
565     return 0;
566 
567   const SIInstrInfo *TII = ST.getInstrInfo();
568 
569   const int RFEWaitStates = 1;
570 
571   auto IsHazardFn = [TII] (MachineInstr *MI) {
572     return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS;
573   };
574   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
575   return RFEWaitStates - WaitStatesNeeded;
576 }
577 
578 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) {
579   if (MI->isDebugValue())
580     return 0;
581 
582   const SIRegisterInfo *TRI = ST.getRegisterInfo();
583   if (!ST.hasSMovFedHazard())
584     return 0;
585 
586   // Check for any instruction reading an SGPR after a write from
587   // s_mov_fed_b32.
588   int MovFedWaitStates = 1;
589   int WaitStatesNeeded = 0;
590 
591   for (const MachineOperand &Use : MI->uses()) {
592     if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
593       continue;
594     auto IsHazardFn = [] (MachineInstr *MI) {
595       return MI->getOpcode() == AMDGPU::S_MOV_FED_B32;
596     };
597     int WaitStatesNeededForUse =
598         MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn);
599     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
600   }
601 
602   return WaitStatesNeeded;
603 }
604 
605 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
606   if (!ST.hasReadM0Hazard())
607     return 0;
608 
609   const SIInstrInfo *TII = ST.getInstrInfo();
610   int SMovRelWaitStates = 1;
611   auto IsHazardFn = [TII] (MachineInstr *MI) {
612     return TII->isSALU(*MI);
613   };
614   return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn);
615 }
616