xref: /llvm-project/llvm/lib/Target/AMDGPU/GCNHazardRecognizer.cpp (revision 13107c2770dfdbb95ad07fa9235116fbf26e38f0)
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements hazard recognizers for scheduling on GCN processors.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "GCNHazardRecognizer.h"
14 #include "GCNSubtarget.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "SIMachineFunctionInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/ScheduleDAG.h"
19 #include "llvm/Support/TargetParser.h"
20 
21 using namespace llvm;
22 
23 namespace {
24 
25 struct MFMAPaddingRatioParser : public cl::parser<unsigned> {
26   MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {}
27 
28   bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) {
29     if (Arg.getAsInteger(0, Value))
30       return O.error("'" + Arg + "' value invalid for uint argument!");
31 
32     if (Value > 100)
33       return O.error("'" + Arg + "' value must be in the range [0, 100]!");
34 
35     return false;
36   }
37 };
38 
39 } // end anonymous namespace
40 
41 static cl::opt<unsigned, false, MFMAPaddingRatioParser>
42     MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden,
43                      cl::desc("Fill a percentage of the latency between "
44                               "neighboring MFMA with s_nops."));
45 
46 //===----------------------------------------------------------------------===//
47 // Hazard Recognizer Implementation
48 //===----------------------------------------------------------------------===//
49 
50 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
51                                                  const GCNSubtarget &ST);
52 
53 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
54   IsHazardRecognizerMode(false),
55   CurrCycleInstr(nullptr),
56   MF(MF),
57   ST(MF.getSubtarget<GCNSubtarget>()),
58   TII(*ST.getInstrInfo()),
59   TRI(TII.getRegisterInfo()),
60   ClauseUses(TRI.getNumRegUnits()),
61   ClauseDefs(TRI.getNumRegUnits()) {
62   MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5;
63   TSchedModel.init(&ST);
64   RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST);
65 }
66 
67 void GCNHazardRecognizer::Reset() {
68   EmittedInstrs.clear();
69 }
70 
71 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
72   EmitInstruction(SU->getInstr());
73 }
74 
75 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
76   CurrCycleInstr = MI;
77 }
78 
79 static bool isDivFMas(unsigned Opcode) {
80   return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64;
81 }
82 
83 static bool isSGetReg(unsigned Opcode) {
84   return Opcode == AMDGPU::S_GETREG_B32;
85 }
86 
87 static bool isSSetReg(unsigned Opcode) {
88   switch (Opcode) {
89   case AMDGPU::S_SETREG_B32:
90   case AMDGPU::S_SETREG_B32_mode:
91   case AMDGPU::S_SETREG_IMM32_B32:
92   case AMDGPU::S_SETREG_IMM32_B32_mode:
93     return true;
94   }
95   return false;
96 }
97 
98 static bool isRWLane(unsigned Opcode) {
99   return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
100 }
101 
102 static bool isRFE(unsigned Opcode) {
103   return Opcode == AMDGPU::S_RFE_B64;
104 }
105 
106 static bool isSMovRel(unsigned Opcode) {
107   switch (Opcode) {
108   case AMDGPU::S_MOVRELS_B32:
109   case AMDGPU::S_MOVRELS_B64:
110   case AMDGPU::S_MOVRELD_B32:
111   case AMDGPU::S_MOVRELD_B64:
112     return true;
113   default:
114     return false;
115   }
116 }
117 
118 static bool isDGEMM(unsigned Opcode) {
119   return AMDGPU::getMAIIsDGEMM(Opcode);
120 }
121 
122 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) {
123   unsigned Opcode = MI.getOpcode();
124 
125   if (!SIInstrInfo::isMAI(MI) ||
126       isDGEMM(Opcode) ||
127       Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
128       Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64)
129     return false;
130 
131   if (!ST.hasGFX940Insts())
132     return true;
133 
134   return AMDGPU::getMAIIsGFX940XDL(Opcode);
135 }
136 
137 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII,
138                                     const MachineInstr &MI) {
139   if (TII.isAlwaysGDS(MI.getOpcode()))
140     return true;
141 
142   switch (MI.getOpcode()) {
143   case AMDGPU::S_SENDMSG:
144   case AMDGPU::S_SENDMSGHALT:
145   case AMDGPU::S_TTRACEDATA:
146     return true;
147   // These DS opcodes don't support GDS.
148   case AMDGPU::DS_NOP:
149   case AMDGPU::DS_PERMUTE_B32:
150   case AMDGPU::DS_BPERMUTE_B32:
151     return false;
152   default:
153     if (TII.isDS(MI.getOpcode())) {
154       int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
155                                            AMDGPU::OpName::gds);
156       if (MI.getOperand(GDS).getImm())
157         return true;
158     }
159     return false;
160   }
161 }
162 
163 static bool isPermlane(const MachineInstr &MI) {
164   unsigned Opcode = MI.getOpcode();
165   return Opcode == AMDGPU::V_PERMLANE16_B32_e64 ||
166          Opcode == AMDGPU::V_PERMLANEX16_B32_e64;
167 }
168 
169 static bool isLdsDma(const MachineInstr &MI) {
170   return SIInstrInfo::isVALU(MI) &&
171          (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI));
172 }
173 
174 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
175   const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
176                                                      AMDGPU::OpName::simm16);
177   return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
178 }
179 
180 ScheduleHazardRecognizer::HazardType
181 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
182   MachineInstr *MI = SU->getInstr();
183   // If we are not in "HazardRecognizerMode" and therefore not being run from
184   // the scheduler, track possible stalls from hazards but don't insert noops.
185   auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard;
186 
187   if (MI->isBundle())
188    return NoHazard;
189 
190   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
191     return HazardType;
192 
193   if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0)
194     return HazardType;
195 
196   if (checkFPAtomicToDenormModeHazard(MI) > 0)
197     return HazardType;
198 
199   if (ST.hasNoDataDepHazard())
200     return NoHazard;
201 
202   // FIXME: Should flat be considered vmem?
203   if ((SIInstrInfo::isVMEM(*MI) ||
204        SIInstrInfo::isFLAT(*MI))
205       && checkVMEMHazards(MI) > 0)
206     return HazardType;
207 
208   if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
209     return HazardType;
210 
211   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
212     return HazardType;
213 
214   if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
215     return HazardType;
216 
217   if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
218     return HazardType;
219 
220   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
221        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
222        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
223     return HazardType;
224 
225   if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
226     return HazardType;
227 
228   if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
229     return HazardType;
230 
231   if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
232     return HazardType;
233 
234   if (((ST.hasReadM0MovRelInterpHazard() &&
235         (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()))) ||
236        (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) ||
237        (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) ||
238        (ST.hasReadM0LdsDirectHazard() &&
239         MI->readsRegister(AMDGPU::LDS_DIRECT))) &&
240       checkReadM0Hazards(MI) > 0)
241     return HazardType;
242 
243   if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0)
244     return HazardType;
245 
246   if ((SIInstrInfo::isVMEM(*MI) ||
247        SIInstrInfo::isFLAT(*MI) ||
248        SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0)
249     return HazardType;
250 
251   if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
252     return HazardType;
253 
254   return NoHazard;
255 }
256 
257 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII,
258                                 unsigned Quantity) {
259   while (Quantity > 0) {
260     unsigned Arg = std::min(Quantity, 8u);
261     Quantity -= Arg;
262     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP))
263         .addImm(Arg - 1);
264   }
265 }
266 
267 unsigned
268 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const {
269   const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI);
270   assert(TSchedModel.getWriteProcResBegin(SC) !=
271          TSchedModel.getWriteProcResEnd(SC));
272   return TSchedModel.getWriteProcResBegin(SC)->Cycles;
273 }
274 
275 void GCNHazardRecognizer::processBundle() {
276   MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator());
277   MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end();
278   // Check bundled MachineInstr's for hazards.
279   for (; MI != E && MI->isInsideBundle(); ++MI) {
280     CurrCycleInstr = &*MI;
281     unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr);
282 
283     if (IsHazardRecognizerMode) {
284       fixHazards(CurrCycleInstr);
285 
286       insertNoopsInBundle(CurrCycleInstr, TII, WaitStates);
287     }
288 
289     // It’s unnecessary to track more than MaxLookAhead instructions. Since we
290     // include the bundled MI directly after, only add a maximum of
291     // (MaxLookAhead - 1) noops to EmittedInstrs.
292     for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i)
293       EmittedInstrs.push_front(nullptr);
294 
295     EmittedInstrs.push_front(CurrCycleInstr);
296     EmittedInstrs.resize(MaxLookAhead);
297   }
298   CurrCycleInstr = nullptr;
299 }
300 
301 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
302   IsHazardRecognizerMode = true;
303   CurrCycleInstr = MI;
304   unsigned W = PreEmitNoopsCommon(MI);
305   fixHazards(MI);
306   CurrCycleInstr = nullptr;
307   return W;
308 }
309 
310 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) {
311   if (MI->isBundle())
312     return 0;
313 
314   int WaitStates = 0;
315 
316   if (SIInstrInfo::isSMRD(*MI))
317     return std::max(WaitStates, checkSMRDHazards(MI));
318 
319   if (ST.hasNSAtoVMEMBug())
320     WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI));
321 
322   WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI));
323 
324   if (ST.hasNoDataDepHazard())
325     return WaitStates;
326 
327   if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
328     WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
329 
330   if (SIInstrInfo::isVALU(*MI))
331     WaitStates = std::max(WaitStates, checkVALUHazards(MI));
332 
333   if (SIInstrInfo::isDPP(*MI))
334     WaitStates = std::max(WaitStates, checkDPPHazards(MI));
335 
336   if (isDivFMas(MI->getOpcode()))
337     WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
338 
339   if (isRWLane(MI->getOpcode()))
340     WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
341 
342   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
343        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
344        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
345     WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI));
346 
347   if (MI->isInlineAsm())
348     return std::max(WaitStates, checkInlineAsmHazards(MI));
349 
350   if (isSGetReg(MI->getOpcode()))
351     return std::max(WaitStates, checkGetRegHazards(MI));
352 
353   if (isSSetReg(MI->getOpcode()))
354     return std::max(WaitStates, checkSetRegHazards(MI));
355 
356   if (isRFE(MI->getOpcode()))
357     return std::max(WaitStates, checkRFEHazards(MI));
358 
359   if ((ST.hasReadM0MovRelInterpHazard() &&
360        (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()))) ||
361       (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) ||
362       (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) ||
363       (ST.hasReadM0LdsDirectHazard() && MI->readsRegister(AMDGPU::LDS_DIRECT)))
364     return std::max(WaitStates, checkReadM0Hazards(MI));
365 
366   if (SIInstrInfo::isMAI(*MI))
367     return std::max(WaitStates, checkMAIHazards(MI));
368 
369   if (SIInstrInfo::isVMEM(*MI) ||
370       SIInstrInfo::isFLAT(*MI) ||
371       SIInstrInfo::isDS(*MI))
372     return std::max(WaitStates, checkMAILdStHazards(MI));
373 
374   return WaitStates;
375 }
376 
377 void GCNHazardRecognizer::EmitNoop() {
378   EmittedInstrs.push_front(nullptr);
379 }
380 
381 void GCNHazardRecognizer::AdvanceCycle() {
382   // When the scheduler detects a stall, it will call AdvanceCycle() without
383   // emitting any instructions.
384   if (!CurrCycleInstr) {
385     EmittedInstrs.push_front(nullptr);
386     return;
387   }
388 
389   if (CurrCycleInstr->isBundle()) {
390     processBundle();
391     return;
392   }
393 
394   unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
395   if (!NumWaitStates) {
396     CurrCycleInstr = nullptr;
397     return;
398   }
399 
400   // Keep track of emitted instructions
401   EmittedInstrs.push_front(CurrCycleInstr);
402 
403   // Add a nullptr for each additional wait state after the first.  Make sure
404   // not to add more than getMaxLookAhead() items to the list, since we
405   // truncate the list to that size right after this loop.
406   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
407        i < e; ++i) {
408     EmittedInstrs.push_front(nullptr);
409   }
410 
411   // getMaxLookahead() is the largest number of wait states we will ever need
412   // to insert, so there is no point in keeping track of more than that many
413   // wait states.
414   EmittedInstrs.resize(getMaxLookAhead());
415 
416   CurrCycleInstr = nullptr;
417 }
418 
419 void GCNHazardRecognizer::RecedeCycle() {
420   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
421 }
422 
423 //===----------------------------------------------------------------------===//
424 // Helper Functions
425 //===----------------------------------------------------------------------===//
426 
427 typedef enum { HazardFound, HazardExpired, NoHazardFound } HazardFnResult;
428 
429 typedef function_ref<bool(const MachineInstr &, int WaitStates)> IsExpiredFn;
430 typedef function_ref<unsigned int(const MachineInstr &)> GetNumWaitStatesFn;
431 
432 // Search for a hazard in a block and its predecessors.
433 template <typename StateT>
434 static bool
435 hasHazard(StateT State,
436           function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard,
437           function_ref<void(StateT &, const MachineInstr &)> UpdateState,
438           const MachineBasicBlock *MBB,
439           MachineBasicBlock::const_reverse_instr_iterator I,
440           DenseSet<const MachineBasicBlock *> &Visited) {
441   for (auto E = MBB->instr_rend(); I != E; ++I) {
442     // No need to look at parent BUNDLE instructions.
443     if (I->isBundle())
444       continue;
445 
446     switch (IsHazard(State, *I)) {
447     case HazardFound:
448       return true;
449     case HazardExpired:
450       return false;
451     default:
452       // Continue search
453       break;
454     }
455 
456     if (I->isInlineAsm() || I->isMetaInstruction())
457       continue;
458 
459     UpdateState(State, *I);
460   }
461 
462   for (MachineBasicBlock *Pred : MBB->predecessors()) {
463     if (!Visited.insert(Pred).second)
464       continue;
465 
466     if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(),
467                   Visited))
468       return true;
469   }
470 
471   return false;
472 }
473 
474 // Returns a minimum wait states since \p I walking all predecessors.
475 // Only scans until \p IsExpired does not return true.
476 // Can only be run in a hazard recognizer mode.
477 static int getWaitStatesSince(
478     GCNHazardRecognizer::IsHazardFn IsHazard, const MachineBasicBlock *MBB,
479     MachineBasicBlock::const_reverse_instr_iterator I, int WaitStates,
480     IsExpiredFn IsExpired, DenseSet<const MachineBasicBlock *> &Visited,
481     GetNumWaitStatesFn GetNumWaitStates = SIInstrInfo::getNumWaitStates) {
482   for (auto E = MBB->instr_rend(); I != E; ++I) {
483     // Don't add WaitStates for parent BUNDLE instructions.
484     if (I->isBundle())
485       continue;
486 
487     if (IsHazard(*I))
488       return WaitStates;
489 
490     if (I->isInlineAsm())
491       continue;
492 
493     WaitStates += GetNumWaitStates(*I);
494 
495     if (IsExpired(*I, WaitStates))
496       return std::numeric_limits<int>::max();
497   }
498 
499   int MinWaitStates = std::numeric_limits<int>::max();
500   for (MachineBasicBlock *Pred : MBB->predecessors()) {
501     if (!Visited.insert(Pred).second)
502       continue;
503 
504     int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), WaitStates,
505                                IsExpired, Visited, GetNumWaitStates);
506 
507     MinWaitStates = std::min(MinWaitStates, W);
508   }
509 
510   return MinWaitStates;
511 }
512 
513 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
514                               const MachineInstr *MI, IsExpiredFn IsExpired) {
515   DenseSet<const MachineBasicBlock *> Visited;
516   return getWaitStatesSince(IsHazard, MI->getParent(),
517                             std::next(MI->getReverseIterator()),
518                             0, IsExpired, Visited);
519 }
520 
521 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) {
522   if (IsHazardRecognizerMode) {
523     auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) {
524       return WaitStates >= Limit;
525     };
526     return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn);
527   }
528 
529   int WaitStates = 0;
530   for (MachineInstr *MI : EmittedInstrs) {
531     if (MI) {
532       if (IsHazard(*MI))
533         return WaitStates;
534 
535       if (MI->isInlineAsm())
536         continue;
537     }
538     ++WaitStates;
539 
540     if (WaitStates >= Limit)
541       break;
542   }
543   return std::numeric_limits<int>::max();
544 }
545 
546 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg,
547                                                IsHazardFn IsHazardDef,
548                                                int Limit) {
549   const SIRegisterInfo *TRI = ST.getRegisterInfo();
550 
551   auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) {
552     return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI);
553   };
554 
555   return getWaitStatesSince(IsHazardFn, Limit);
556 }
557 
558 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard,
559                                                   int Limit) {
560   auto IsHazardFn = [IsHazard](const MachineInstr &MI) {
561     return isSSetReg(MI.getOpcode()) && IsHazard(MI);
562   };
563 
564   return getWaitStatesSince(IsHazardFn, Limit);
565 }
566 
567 //===----------------------------------------------------------------------===//
568 // No-op Hazard Detection
569 //===----------------------------------------------------------------------===//
570 
571 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV,
572                         MCRegister Reg) {
573   for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI)
574     BV.set(*RUI);
575 }
576 
577 static void addRegsToSet(const SIRegisterInfo &TRI,
578                          iterator_range<MachineInstr::const_mop_iterator> Ops,
579                          BitVector &Set) {
580   for (const MachineOperand &Op : Ops) {
581     if (Op.isReg())
582       addRegUnits(TRI, Set, Op.getReg().asMCReg());
583   }
584 }
585 
586 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
587   // XXX: Do we need to worry about implicit operands
588   addRegsToSet(TRI, MI.defs(), ClauseDefs);
589   addRegsToSet(TRI, MI.uses(), ClauseUses);
590 }
591 
592 static bool breaksSMEMSoftClause(MachineInstr *MI) {
593   return !SIInstrInfo::isSMRD(*MI);
594 }
595 
596 static bool breaksVMEMSoftClause(MachineInstr *MI) {
597   return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI);
598 }
599 
600 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
601   // SMEM soft clause are only present on VI+, and only matter if xnack is
602   // enabled.
603   if (!ST.isXNACKEnabled())
604     return 0;
605 
606   bool IsSMRD = TII.isSMRD(*MEM);
607 
608   resetClause();
609 
610   // A soft-clause is any group of consecutive SMEM instructions.  The
611   // instructions in this group may return out of order and/or may be
612   // replayed (i.e. the same instruction issued more than once).
613   //
614   // In order to handle these situations correctly we need to make sure that
615   // when a clause has more than one instruction, no instruction in the clause
616   // writes to a register that is read by another instruction in the clause
617   // (including itself). If we encounter this situation, we need to break the
618   // clause by inserting a non SMEM instruction.
619 
620   for (MachineInstr *MI : EmittedInstrs) {
621     // When we hit a non-SMEM instruction then we have passed the start of the
622     // clause and we can stop.
623     if (!MI)
624       break;
625 
626     if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI))
627       break;
628 
629     addClauseInst(*MI);
630   }
631 
632   if (ClauseDefs.none())
633     return 0;
634 
635   // We need to make sure not to put loads and stores in the same clause if they
636   // use the same address. For now, just start a new clause whenever we see a
637   // store.
638   if (MEM->mayStore())
639     return 1;
640 
641   addClauseInst(*MEM);
642 
643   // If the set of defs and uses intersect then we cannot add this instruction
644   // to the clause, so we have a hazard.
645   return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
646 }
647 
648 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
649   int WaitStatesNeeded = 0;
650 
651   WaitStatesNeeded = checkSoftClauseHazards(SMRD);
652 
653   // This SMRD hazard only affects SI.
654   if (!ST.hasSMRDReadVALUDefHazard())
655     return WaitStatesNeeded;
656 
657   // A read of an SGPR by SMRD instruction requires 4 wait states when the
658   // SGPR was written by a VALU instruction.
659   int SmrdSgprWaitStates = 4;
660   auto IsHazardDefFn = [this](const MachineInstr &MI) {
661     return TII.isVALU(MI);
662   };
663   auto IsBufferHazardDefFn = [this](const MachineInstr &MI) {
664     return TII.isSALU(MI);
665   };
666 
667   bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);
668 
669   for (const MachineOperand &Use : SMRD->uses()) {
670     if (!Use.isReg())
671       continue;
672     int WaitStatesNeededForUse =
673         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
674                                                    SmrdSgprWaitStates);
675     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
676 
677     // This fixes what appears to be undocumented hardware behavior in SI where
678     // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
679     // needs some number of nops in between. We don't know how many we need, but
680     // let's use 4. This wasn't discovered before probably because the only
681     // case when this happens is when we expand a 64-bit pointer into a full
682     // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
683     // probably never encountered in the closed-source land.
684     if (IsBufferSMRD) {
685       int WaitStatesNeededForUse =
686         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
687                                                    IsBufferHazardDefFn,
688                                                    SmrdSgprWaitStates);
689       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
690     }
691   }
692 
693   return WaitStatesNeeded;
694 }
695 
696 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
697   if (!ST.hasVMEMReadSGPRVALUDefHazard())
698     return 0;
699 
700   int WaitStatesNeeded = checkSoftClauseHazards(VMEM);
701 
702   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
703   // SGPR was written by a VALU Instruction.
704   const int VmemSgprWaitStates = 5;
705   auto IsHazardDefFn = [this](const MachineInstr &MI) {
706     return TII.isVALU(MI);
707   };
708   for (const MachineOperand &Use : VMEM->uses()) {
709     if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg()))
710       continue;
711 
712     int WaitStatesNeededForUse =
713         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
714                                                    VmemSgprWaitStates);
715     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
716   }
717   return WaitStatesNeeded;
718 }
719 
720 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
721   const SIRegisterInfo *TRI = ST.getRegisterInfo();
722   const SIInstrInfo *TII = ST.getInstrInfo();
723 
724   // Check for DPP VGPR read after VALU VGPR write and EXEC write.
725   int DppVgprWaitStates = 2;
726   int DppExecWaitStates = 5;
727   int WaitStatesNeeded = 0;
728   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
729     return TII->isVALU(MI);
730   };
731 
732   for (const MachineOperand &Use : DPP->uses()) {
733     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
734       continue;
735     int WaitStatesNeededForUse =
736         DppVgprWaitStates - getWaitStatesSinceDef(
737                                 Use.getReg(),
738                                 [](const MachineInstr &) { return true; },
739                                 DppVgprWaitStates);
740     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
741   }
742 
743   WaitStatesNeeded = std::max(
744       WaitStatesNeeded,
745       DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn,
746                                                 DppExecWaitStates));
747 
748   return WaitStatesNeeded;
749 }
750 
751 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
752   const SIInstrInfo *TII = ST.getInstrInfo();
753 
754   // v_div_fmas requires 4 wait states after a write to vcc from a VALU
755   // instruction.
756   const int DivFMasWaitStates = 4;
757   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
758     return TII->isVALU(MI);
759   };
760   int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn,
761                                                DivFMasWaitStates);
762 
763   return DivFMasWaitStates - WaitStatesNeeded;
764 }
765 
766 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
767   const SIInstrInfo *TII = ST.getInstrInfo();
768   unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
769 
770   const int GetRegWaitStates = 2;
771   auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) {
772     return GetRegHWReg == getHWReg(TII, MI);
773   };
774   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates);
775 
776   return GetRegWaitStates - WaitStatesNeeded;
777 }
778 
779 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
780   const SIInstrInfo *TII = ST.getInstrInfo();
781   unsigned HWReg = getHWReg(TII, *SetRegInstr);
782 
783   const int SetRegWaitStates = ST.getSetRegWaitStates();
784   auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) {
785     return HWReg == getHWReg(TII, MI);
786   };
787   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates);
788   return SetRegWaitStates - WaitStatesNeeded;
789 }
790 
791 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
792   if (!MI.mayStore())
793     return -1;
794 
795   const SIInstrInfo *TII = ST.getInstrInfo();
796   unsigned Opcode = MI.getOpcode();
797   const MCInstrDesc &Desc = MI.getDesc();
798 
799   int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
800   int VDataRCID = -1;
801   if (VDataIdx != -1)
802     VDataRCID = Desc.OpInfo[VDataIdx].RegClass;
803 
804   if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
805     // There is no hazard if the instruction does not use vector regs
806     // (like wbinvl1)
807     if (VDataIdx == -1)
808       return -1;
809     // For MUBUF/MTBUF instructions this hazard only exists if the
810     // instruction is not using a register in the soffset field.
811     const MachineOperand *SOffset =
812         TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
813     // If we have no soffset operand, then assume this field has been
814     // hardcoded to zero.
815     if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
816         (!SOffset || !SOffset->isReg()))
817       return VDataIdx;
818   }
819 
820   // MIMG instructions create a hazard if they don't use a 256-bit T# and
821   // the store size is greater than 8 bytes and they have more than two bits
822   // of their dmask set.
823   // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
824   if (TII->isMIMG(MI)) {
825     int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
826     assert(SRsrcIdx != -1 &&
827            AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
828     (void)SRsrcIdx;
829   }
830 
831   if (TII->isFLAT(MI)) {
832     int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
833     if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
834       return DataIdx;
835   }
836 
837   return -1;
838 }
839 
840 int
841 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
842                                             const MachineRegisterInfo &MRI) {
843   // Helper to check for the hazard where VMEM instructions that store more than
844   // 8 bytes can have there store data over written by the next instruction.
845   const SIRegisterInfo *TRI = ST.getRegisterInfo();
846 
847   const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1;
848   int WaitStatesNeeded = 0;
849 
850   if (!TRI->isVectorRegister(MRI, Def.getReg()))
851     return WaitStatesNeeded;
852   Register Reg = Def.getReg();
853   auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) {
854     int DataIdx = createsVALUHazard(MI);
855     return DataIdx >= 0 &&
856            TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg);
857   };
858   int WaitStatesNeededForDef =
859     VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates);
860   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
861 
862   return WaitStatesNeeded;
863 }
864 
865 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
866   int WaitStatesNeeded = 0;
867 
868   if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) {
869     const int TransDefWaitstates = 1;
870 
871     auto IsTransDefFn = [this, VALU](const MachineInstr &MI) {
872       if (!SIInstrInfo::isTRANS(MI))
873         return false;
874       const SIRegisterInfo *TRI = ST.getRegisterInfo();
875       const SIInstrInfo *TII = ST.getInstrInfo();
876       Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg();
877 
878       for (const MachineOperand &Use : VALU->explicit_uses()) {
879         if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg()))
880           return true;
881       }
882 
883       return false;
884     };
885 
886     int WaitStatesNeededForDef =
887         TransDefWaitstates -
888         getWaitStatesSince(IsTransDefFn, TransDefWaitstates);
889     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
890   }
891 
892   if (ST.hasDstSelForwardingHazard()) {
893     const int Shift16DefWaitstates = 1;
894 
895     auto IsShift16BitDefFn = [this, VALU](const MachineInstr &MI) {
896       if (!SIInstrInfo::isVALU(MI))
897         return false;
898       const SIInstrInfo *TII = ST.getInstrInfo();
899       if (SIInstrInfo::isSDWA(MI)) {
900         if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel))
901           if (DstSel->getImm() == AMDGPU::SDWA::DWORD)
902             return false;
903       } else {
904         if ((AMDGPU::getNamedOperandIdx(MI.getOpcode(),
905                                         AMDGPU::OpName::op_sel) == -1) ||
906             !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)
907                   ->getImm() &
908               SISrcMods::DST_OP_SEL))
909           return false;
910       }
911       const SIRegisterInfo *TRI = ST.getRegisterInfo();
912       if (auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) {
913         Register Def = Dst->getReg();
914 
915         for (const MachineOperand &Use : VALU->explicit_uses()) {
916           if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg()))
917             return true;
918         }
919       }
920 
921       return false;
922     };
923 
924     int WaitStatesNeededForDef =
925         Shift16DefWaitstates -
926         getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates);
927     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
928   }
929 
930   if (ST.hasVDecCoExecHazard()) {
931     const int VALUWriteSGPRVALUReadWaitstates = 2;
932     const int VALUWriteEXECRWLane = 4;
933     const int VALUWriteVGPRReadlaneRead = 1;
934 
935     const SIRegisterInfo *TRI = ST.getRegisterInfo();
936     const MachineRegisterInfo &MRI = MF.getRegInfo();
937     Register UseReg;
938     auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) {
939       if (!SIInstrInfo::isVALU(MI))
940         return false;
941       return MI.modifiesRegister(UseReg, TRI);
942     };
943 
944     for (const MachineOperand &Use : VALU->explicit_uses()) {
945       if (!Use.isReg())
946         continue;
947 
948       UseReg = Use.getReg();
949       if (TRI->isSGPRReg(MRI, UseReg)) {
950         int WaitStatesNeededForDef =
951             VALUWriteSGPRVALUReadWaitstates -
952             getWaitStatesSince(IsVALUDefSGPRFn,
953                                VALUWriteSGPRVALUReadWaitstates);
954         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
955       }
956     }
957 
958     if (VALU->readsRegister(AMDGPU::VCC, TRI)) {
959       UseReg = AMDGPU::VCC;
960       int WaitStatesNeededForDef =
961           VALUWriteSGPRVALUReadWaitstates -
962           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates);
963       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
964     }
965 
966     switch (VALU->getOpcode()) {
967     case AMDGPU::V_READLANE_B32:
968     case AMDGPU::V_READFIRSTLANE_B32: {
969       MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0);
970       UseReg = Src->getReg();
971       int WaitStatesNeededForDef =
972           VALUWriteVGPRReadlaneRead -
973           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead);
974       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
975     }
976       LLVM_FALLTHROUGH;
977     case AMDGPU::V_WRITELANE_B32: {
978       UseReg = AMDGPU::EXEC;
979       int WaitStatesNeededForDef =
980           VALUWriteEXECRWLane -
981           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane);
982       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
983       break;
984     }
985     default:
986       break;
987     }
988   }
989 
990   // This checks for the hazard where VMEM instructions that store more than
991   // 8 bytes can have there store data over written by the next instruction.
992   if (!ST.has12DWordStoreHazard())
993     return WaitStatesNeeded;
994 
995   const MachineRegisterInfo &MRI = MF.getRegInfo();
996 
997   for (const MachineOperand &Def : VALU->defs()) {
998     WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
999   }
1000 
1001   return WaitStatesNeeded;
1002 }
1003 
1004 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
1005   // This checks for hazards associated with inline asm statements.
1006   // Since inline asms can contain just about anything, we use this
1007   // to call/leverage other check*Hazard routines. Note that
1008   // this function doesn't attempt to address all possible inline asm
1009   // hazards (good luck), but is a collection of what has been
1010   // problematic thus far.
1011 
1012   // see checkVALUHazards()
1013   if (!ST.has12DWordStoreHazard())
1014     return 0;
1015 
1016   const MachineRegisterInfo &MRI = MF.getRegInfo();
1017   int WaitStatesNeeded = 0;
1018 
1019   for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands();
1020        I != E; ++I) {
1021     const MachineOperand &Op = IA->getOperand(I);
1022     if (Op.isReg() && Op.isDef()) {
1023       WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
1024     }
1025   }
1026 
1027   return WaitStatesNeeded;
1028 }
1029 
1030 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
1031   const SIInstrInfo *TII = ST.getInstrInfo();
1032   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1033   const MachineRegisterInfo &MRI = MF.getRegInfo();
1034 
1035   const MachineOperand *LaneSelectOp =
1036       TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
1037 
1038   if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
1039     return 0;
1040 
1041   Register LaneSelectReg = LaneSelectOp->getReg();
1042   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); };
1043 
1044   const int RWLaneWaitStates = 4;
1045   int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn,
1046                                               RWLaneWaitStates);
1047   return RWLaneWaitStates - WaitStatesSince;
1048 }
1049 
1050 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
1051   if (!ST.hasRFEHazards())
1052     return 0;
1053 
1054   const SIInstrInfo *TII = ST.getInstrInfo();
1055 
1056   const int RFEWaitStates = 1;
1057 
1058   auto IsHazardFn = [TII](const MachineInstr &MI) {
1059     return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS;
1060   };
1061   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates);
1062   return RFEWaitStates - WaitStatesNeeded;
1063 }
1064 
1065 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
1066   const SIInstrInfo *TII = ST.getInstrInfo();
1067   const int ReadM0WaitStates = 1;
1068   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); };
1069   return ReadM0WaitStates -
1070          getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, ReadM0WaitStates);
1071 }
1072 
1073 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) {
1074   fixVMEMtoScalarWriteHazards(MI);
1075   fixVcmpxPermlaneHazards(MI);
1076   fixSMEMtoVectorWriteHazards(MI);
1077   fixVcmpxExecWARHazard(MI);
1078   fixLdsBranchVmemWARHazard(MI);
1079   if (ST.hasLdsDirect()) {
1080     fixLdsDirectVALUHazard(MI);
1081     fixLdsDirectVMEMHazard(MI);
1082   }
1083   fixVALUPartialForwardingHazard(MI);
1084   fixVALUTransUseHazard(MI);
1085 }
1086 
1087 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) {
1088   if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI))
1089     return false;
1090 
1091   const SIInstrInfo *TII = ST.getInstrInfo();
1092   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1093   auto IsHazardFn = [TII, TRI](const MachineInstr &MI) {
1094     return (TII->isVOPC(MI) ||
1095             ((TII->isVOP3(MI) || TII->isSDWA(MI)) && MI.isCompare())) &&
1096            MI.modifiesRegister(AMDGPU::EXEC, TRI);
1097   };
1098 
1099   auto IsExpiredFn = [](const MachineInstr &MI, int) {
1100     unsigned Opc = MI.getOpcode();
1101     return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 &&
1102            Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa;
1103   };
1104 
1105   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1106       std::numeric_limits<int>::max())
1107     return false;
1108 
1109   // V_NOP will be discarded by SQ.
1110   // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE*
1111   // which is always a VGPR and available.
1112   auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
1113   Register Reg = Src0->getReg();
1114   bool IsUndef = Src0->isUndef();
1115   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1116           TII->get(AMDGPU::V_MOV_B32_e32))
1117     .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0))
1118     .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill);
1119 
1120   return true;
1121 }
1122 
1123 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) {
1124   if (!ST.hasVMEMtoScalarWriteHazard())
1125     return false;
1126 
1127   if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI))
1128     return false;
1129 
1130   if (MI->getNumDefs() == 0)
1131     return false;
1132 
1133   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1134 
1135   auto IsHazardFn = [TRI, MI](const MachineInstr &I) {
1136     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) &&
1137         !SIInstrInfo::isFLAT(I))
1138       return false;
1139 
1140     for (const MachineOperand &Def : MI->defs()) {
1141       const MachineOperand *Op =
1142           I.findRegisterUseOperand(Def.getReg(), false, TRI);
1143       if (!Op)
1144         continue;
1145       return true;
1146     }
1147     return false;
1148   };
1149 
1150   auto IsExpiredFn = [](const MachineInstr &MI, int) {
1151     return SIInstrInfo::isVALU(MI) ||
1152            (MI.getOpcode() == AMDGPU::S_WAITCNT &&
1153             !MI.getOperand(0).getImm()) ||
1154            (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1155             MI.getOperand(0).getImm() == 0xffe3);
1156   };
1157 
1158   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1159       std::numeric_limits<int>::max())
1160     return false;
1161 
1162   const SIInstrInfo *TII = ST.getInstrInfo();
1163   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1164           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
1165       .addImm(0xffe3);
1166   return true;
1167 }
1168 
1169 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) {
1170   if (!ST.hasSMEMtoVectorWriteHazard())
1171     return false;
1172 
1173   if (!SIInstrInfo::isVALU(*MI))
1174     return false;
1175 
1176   unsigned SDSTName;
1177   switch (MI->getOpcode()) {
1178   case AMDGPU::V_READLANE_B32:
1179   case AMDGPU::V_READFIRSTLANE_B32:
1180     SDSTName = AMDGPU::OpName::vdst;
1181     break;
1182   default:
1183     SDSTName = AMDGPU::OpName::sdst;
1184     break;
1185   }
1186 
1187   const SIInstrInfo *TII = ST.getInstrInfo();
1188   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1189   const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU());
1190   const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName);
1191   if (!SDST) {
1192     for (const auto &MO : MI->implicit_operands()) {
1193       if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) {
1194         SDST = &MO;
1195         break;
1196       }
1197     }
1198   }
1199 
1200   if (!SDST)
1201     return false;
1202 
1203   const Register SDSTReg = SDST->getReg();
1204   auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) {
1205     return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI);
1206   };
1207 
1208   auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) {
1209     if (TII->isSALU(MI)) {
1210       switch (MI.getOpcode()) {
1211       case AMDGPU::S_SETVSKIP:
1212       case AMDGPU::S_VERSION:
1213       case AMDGPU::S_WAITCNT_VSCNT:
1214       case AMDGPU::S_WAITCNT_VMCNT:
1215       case AMDGPU::S_WAITCNT_EXPCNT:
1216         // These instructions cannot not mitigate the hazard.
1217         return false;
1218       case AMDGPU::S_WAITCNT_LGKMCNT:
1219         // Reducing lgkmcnt count to 0 always mitigates the hazard.
1220         return (MI.getOperand(1).getImm() == 0) &&
1221                (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1222       case AMDGPU::S_WAITCNT: {
1223         const int64_t Imm = MI.getOperand(0).getImm();
1224         AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm);
1225         return (Decoded.LgkmCnt == 0);
1226       }
1227       default:
1228         // SOPP instructions cannot mitigate the hazard.
1229         if (TII->isSOPP(MI))
1230           return false;
1231         // At this point the SALU can be assumed to mitigate the hazard
1232         // because either:
1233         // (a) it is independent of the at risk SMEM (breaking chain),
1234         // or
1235         // (b) it is dependent on the SMEM, in which case an appropriate
1236         //     s_waitcnt lgkmcnt _must_ exist between it and the at risk
1237         //     SMEM instruction.
1238         return true;
1239       }
1240     }
1241     return false;
1242   };
1243 
1244   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1245       std::numeric_limits<int>::max())
1246     return false;
1247 
1248   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1249           TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL)
1250       .addImm(0);
1251   return true;
1252 }
1253 
1254 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) {
1255   if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI))
1256     return false;
1257 
1258   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1259   if (!MI->modifiesRegister(AMDGPU::EXEC, TRI))
1260     return false;
1261 
1262   auto IsHazardFn = [TRI](const MachineInstr &I) {
1263     if (SIInstrInfo::isVALU(I))
1264       return false;
1265     return I.readsRegister(AMDGPU::EXEC, TRI);
1266   };
1267 
1268   const SIInstrInfo *TII = ST.getInstrInfo();
1269   auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) {
1270     if (SIInstrInfo::isVALU(MI)) {
1271       if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst))
1272         return true;
1273       for (auto MO : MI.implicit_operands())
1274         if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg())))
1275           return true;
1276     }
1277     if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1278         (MI.getOperand(0).getImm() & 0xfffe) == 0xfffe)
1279       return true;
1280     return false;
1281   };
1282 
1283   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1284       std::numeric_limits<int>::max())
1285     return false;
1286 
1287   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1288           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
1289     .addImm(0xfffe);
1290   return true;
1291 }
1292 
1293 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
1294                                                  const GCNSubtarget &ST) {
1295   if (!ST.hasLdsBranchVmemWARHazard())
1296     return false;
1297 
1298   // Check if the necessary condition for the hazard is met: both LDS and VMEM
1299   // instructions need to appear in the same function.
1300   bool HasLds = false;
1301   bool HasVmem = false;
1302   for (auto &MBB : MF) {
1303     for (auto &MI : MBB) {
1304       HasLds |= SIInstrInfo::isDS(MI);
1305       HasVmem |=
1306           SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI);
1307       if (HasLds && HasVmem)
1308         return true;
1309     }
1310   }
1311   return false;
1312 }
1313 
1314 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) {
1315   if (!RunLdsBranchVmemWARHazardFixup)
1316     return false;
1317 
1318   assert(ST.hasLdsBranchVmemWARHazard());
1319 
1320   auto IsHazardInst = [](const MachineInstr &MI) {
1321     if (SIInstrInfo::isDS(MI))
1322       return 1;
1323     if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI))
1324       return 2;
1325     return 0;
1326   };
1327 
1328   auto InstType = IsHazardInst(*MI);
1329   if (!InstType)
1330     return false;
1331 
1332   auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) {
1333     return IsHazardInst(I) || (I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1334                                I.getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
1335                                !I.getOperand(1).getImm());
1336   };
1337 
1338   auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) {
1339     if (!I.isBranch())
1340       return false;
1341 
1342     auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) {
1343       auto InstType2 = IsHazardInst(I);
1344       return InstType2 && InstType != InstType2;
1345     };
1346 
1347     auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) {
1348       auto InstType2 = IsHazardInst(I);
1349       if (InstType == InstType2)
1350         return true;
1351 
1352       return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1353              I.getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
1354              !I.getOperand(1).getImm();
1355     };
1356 
1357     return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) !=
1358            std::numeric_limits<int>::max();
1359   };
1360 
1361   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1362       std::numeric_limits<int>::max())
1363     return false;
1364 
1365   const SIInstrInfo *TII = ST.getInstrInfo();
1366   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1367           TII->get(AMDGPU::S_WAITCNT_VSCNT))
1368     .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1369     .addImm(0);
1370 
1371   return true;
1372 }
1373 
1374 bool GCNHazardRecognizer::fixLdsDirectVALUHazard(MachineInstr *MI) {
1375   if (!SIInstrInfo::isLDSDIR(*MI))
1376     return false;
1377 
1378   const int NoHazardWaitStates = 15;
1379   const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst);
1380   const Register VDSTReg = VDST->getReg();
1381 
1382   bool VisitedTrans = false;
1383   auto IsHazardFn = [this, VDSTReg, &VisitedTrans](const MachineInstr &I) {
1384     if (!SIInstrInfo::isVALU(I))
1385       return false;
1386     VisitedTrans = VisitedTrans || SIInstrInfo::isTRANS(I);
1387     // Cover both WAR and WAW
1388     return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI);
1389   };
1390   auto IsExpiredFn = [&](const MachineInstr &I, int WaitStates) {
1391     if (WaitStates >= NoHazardWaitStates)
1392       return true;
1393     // Instructions which cause va_vdst==0 expire hazard
1394     return SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1395            SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I);
1396   };
1397   auto GetWaitStatesFn = [](const MachineInstr &MI) {
1398     return SIInstrInfo::isVALU(MI) ? 1 : 0;
1399   };
1400 
1401   DenseSet<const MachineBasicBlock *> Visited;
1402   auto Count = ::getWaitStatesSince(IsHazardFn, MI->getParent(),
1403                                     std::next(MI->getReverseIterator()), 0,
1404                                     IsExpiredFn, Visited, GetWaitStatesFn);
1405 
1406   // Transcendentals can execute in parallel to other VALUs.
1407   // This makes va_vdst count unusable with a mixture of VALU and TRANS.
1408   if (VisitedTrans)
1409     Count = 0;
1410 
1411   MachineOperand *WaitVdstOp =
1412       TII.getNamedOperand(*MI, AMDGPU::OpName::waitvdst);
1413   WaitVdstOp->setImm(std::min(Count, NoHazardWaitStates));
1414 
1415   return true;
1416 }
1417 
1418 bool GCNHazardRecognizer::fixLdsDirectVMEMHazard(MachineInstr *MI) {
1419   if (!SIInstrInfo::isLDSDIR(*MI))
1420     return false;
1421 
1422   const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst);
1423   const Register VDSTReg = VDST->getReg();
1424 
1425   auto IsHazardFn = [this, VDSTReg](const MachineInstr &I) {
1426     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I) &&
1427         !SIInstrInfo::isDS(I))
1428       return false;
1429     return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI);
1430   };
1431   auto IsExpiredFn = [](const MachineInstr &I, int) {
1432     return SIInstrInfo::isVALU(I) || SIInstrInfo::isEXP(I) ||
1433            (I.getOpcode() == AMDGPU::S_WAITCNT && !I.getOperand(0).getImm()) ||
1434            (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1435             I.getOperand(0).getImm() == 0xffe3);
1436   };
1437 
1438   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1439       std::numeric_limits<int>::max())
1440     return false;
1441 
1442   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1443           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1444       .addImm(0xffe3);
1445 
1446   return true;
1447 }
1448 
1449 bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) {
1450   if (!ST.isWave64())
1451     return false;
1452   if (!ST.hasVALUPartialForwardingHazard())
1453     return false;
1454   if (!SIInstrInfo::isVALU(*MI))
1455     return false;
1456 
1457   SmallSetVector<Register, 4> SrcVGPRs;
1458 
1459   for (const MachineOperand &Use : MI->explicit_uses()) {
1460     if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1461       SrcVGPRs.insert(Use.getReg());
1462   }
1463 
1464   // Only applies with >= 2 unique VGPR sources
1465   if (SrcVGPRs.size() <= 1)
1466     return false;
1467 
1468   // Look for the following pattern:
1469   //   Va <- VALU [PreExecPos]
1470   //   intv1
1471   //   Exec <- SALU [ExecPos]
1472   //   intv2
1473   //   Vb <- VALU [PostExecPos]
1474   //   intv3
1475   //   MI Va, Vb (WaitState = 0)
1476   //
1477   // Where:
1478   // intv1 + intv2 <= 2 VALUs
1479   // intv3 <= 4 VALUs
1480   //
1481   // If found, insert an appropriate S_WAITCNT_DEPCTR before MI.
1482 
1483   const int Intv1plus2MaxVALUs = 2;
1484   const int Intv3MaxVALUs = 4;
1485   const int IntvMaxVALUs = 6;
1486   const int NoHazardVALUWaitStates = IntvMaxVALUs + 2;
1487 
1488   struct StateType {
1489     SmallDenseMap<Register, int, 4> DefPos;
1490     int ExecPos = std::numeric_limits<int>::max();
1491     int VALUs = 0;
1492   };
1493 
1494   StateType State;
1495 
1496   // This overloads expiry testing with all the hazard detection
1497   auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) {
1498     // Too many VALU states have passed
1499     if (State.VALUs > NoHazardVALUWaitStates)
1500       return HazardExpired;
1501 
1502     // Instructions which cause va_vdst==0 expire hazard
1503     if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1504         SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) ||
1505         (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1506          I.getOperand(0).getImm() == 0x0fff))
1507       return HazardExpired;
1508 
1509     // Track registers writes
1510     bool Changed = false;
1511     if (SIInstrInfo::isVALU(I)) {
1512       for (Register Src : SrcVGPRs) {
1513         if (!State.DefPos.count(Src) && I.modifiesRegister(Src, &TRI)) {
1514           State.DefPos[Src] = State.VALUs;
1515           Changed = true;
1516         }
1517       }
1518     } else if (SIInstrInfo::isSALU(I)) {
1519       if (State.ExecPos == std::numeric_limits<int>::max()) {
1520         if (!State.DefPos.empty() && I.modifiesRegister(AMDGPU::EXEC, &TRI)) {
1521           State.ExecPos = State.VALUs;
1522           Changed = true;
1523         }
1524       }
1525     }
1526 
1527     // Early expiration: too many VALUs in intv3
1528     if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty())
1529       return HazardExpired;
1530 
1531     // Only evaluate state if something changed
1532     if (!Changed)
1533       return NoHazardFound;
1534 
1535     // Determine positions of VALUs pre/post exec change
1536     if (State.ExecPos == std::numeric_limits<int>::max())
1537       return NoHazardFound;
1538 
1539     int PreExecPos = std::numeric_limits<int>::max();
1540     int PostExecPos = std::numeric_limits<int>::max();
1541 
1542     for (auto Entry : State.DefPos) {
1543       int DefVALUs = Entry.second;
1544       if (DefVALUs != std::numeric_limits<int>::max()) {
1545         if (DefVALUs >= State.ExecPos)
1546           PreExecPos = std::min(PreExecPos, DefVALUs);
1547         else if (DefVALUs < State.ExecPos)
1548           PostExecPos = std::min(PostExecPos, DefVALUs);
1549       }
1550     }
1551 
1552     // Need a VALUs post exec change
1553     if (PostExecPos == std::numeric_limits<int>::max())
1554       return NoHazardFound;
1555 
1556     // Too many VALUs in intv3?
1557     int Intv3VALUs = PostExecPos;
1558     if (Intv3VALUs > Intv3MaxVALUs)
1559       return HazardExpired;
1560 
1561     // Too many VALUs in intv2?
1562     int Intv2VALUs = (State.ExecPos - PostExecPos) - 1;
1563     if (Intv2VALUs > Intv1plus2MaxVALUs)
1564       return HazardExpired;
1565 
1566     // Need a VALUs pre exec change
1567     if (PreExecPos == std::numeric_limits<int>::max())
1568       return NoHazardFound;
1569 
1570     // Too many VALUs in intv1?
1571     int Intv1VALUs = PreExecPos - State.ExecPos;
1572     if (Intv1VALUs > Intv1plus2MaxVALUs)
1573       return HazardExpired;
1574 
1575     // Too many VALUs in intv1 + intv2
1576     if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs)
1577       return HazardExpired;
1578 
1579     return HazardFound;
1580   };
1581   auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) {
1582     if (SIInstrInfo::isVALU(MI))
1583       State.VALUs += 1;
1584   };
1585 
1586   DenseSet<const MachineBasicBlock *> Visited;
1587   if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(),
1588                             std::next(MI->getReverseIterator()), Visited))
1589     return false;
1590 
1591   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1592           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1593       .addImm(0x0fff);
1594 
1595   return true;
1596 }
1597 
1598 bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) {
1599   if (!ST.hasVALUTransUseHazard())
1600     return false;
1601   if (!SIInstrInfo::isVALU(*MI))
1602     return false;
1603 
1604   SmallSet<Register, 4> SrcVGPRs;
1605 
1606   for (const MachineOperand &Use : MI->explicit_uses()) {
1607     if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1608       SrcVGPRs.insert(Use.getReg());
1609   }
1610 
1611   // Look for the following pattern:
1612   //   Va <- TRANS VALU
1613   //   intv
1614   //   MI Va (WaitState = 0)
1615   //
1616   // Where:
1617   // intv <= 5 VALUs / 1 TRANS
1618   //
1619   // If found, insert an appropriate S_WAITCNT_DEPCTR before MI.
1620 
1621   const int IntvMaxVALUs = 5;
1622   const int IntvMaxTRANS = 1;
1623 
1624   struct StateType {
1625     int VALUs = 0;
1626     int TRANS = 0;
1627   };
1628 
1629   StateType State;
1630 
1631   // This overloads expiry testing with all the hazard detection
1632   auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) {
1633     // Too many VALU states have passed
1634     if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS)
1635       return HazardExpired;
1636 
1637     // Instructions which cause va_vdst==0 expire hazard
1638     if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1639         SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) ||
1640         (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1641          I.getOperand(0).getImm() == 0x0fff))
1642       return HazardExpired;
1643 
1644     // Track registers writes
1645     if (SIInstrInfo::isTRANS(I)) {
1646       for (Register Src : SrcVGPRs) {
1647         if (I.modifiesRegister(Src, &TRI)) {
1648           return HazardFound;
1649         }
1650       }
1651     }
1652 
1653     return NoHazardFound;
1654   };
1655   auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) {
1656     if (SIInstrInfo::isVALU(MI))
1657       State.VALUs += 1;
1658     if (SIInstrInfo::isTRANS(MI))
1659       State.TRANS += 1;
1660   };
1661 
1662   DenseSet<const MachineBasicBlock *> Visited;
1663   if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(),
1664                             std::next(MI->getReverseIterator()), Visited))
1665     return false;
1666 
1667   // Hazard is observed - insert a wait on va_dst counter to ensure hazard is
1668   // avoided (mask 0x0fff achieves this).
1669   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1670           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1671       .addImm(0x0fff);
1672 
1673   return true;
1674 }
1675 
1676 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) {
1677   int NSAtoVMEMWaitStates = 1;
1678 
1679   if (!ST.hasNSAtoVMEMBug())
1680     return 0;
1681 
1682   if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI))
1683     return 0;
1684 
1685   const SIInstrInfo *TII = ST.getInstrInfo();
1686   const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset);
1687   if (!Offset || (Offset->getImm() & 6) == 0)
1688     return 0;
1689 
1690   auto IsHazardFn = [TII](const MachineInstr &I) {
1691     if (!SIInstrInfo::isMIMG(I))
1692       return false;
1693     const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode());
1694     return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA &&
1695            TII->getInstSizeInBytes(I) >= 16;
1696   };
1697 
1698   return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1);
1699 }
1700 
1701 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) {
1702   int FPAtomicToDenormModeWaitStates = 3;
1703 
1704   if (MI->getOpcode() != AMDGPU::S_DENORM_MODE)
1705     return 0;
1706 
1707   auto IsHazardFn = [](const MachineInstr &I) {
1708     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I))
1709       return false;
1710     return SIInstrInfo::isFPAtomic(I);
1711   };
1712 
1713   auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) {
1714     if (WaitStates >= 3 || SIInstrInfo::isVALU(MI))
1715       return true;
1716 
1717     switch (MI.getOpcode()) {
1718     case AMDGPU::S_WAITCNT:
1719     case AMDGPU::S_WAITCNT_VSCNT:
1720     case AMDGPU::S_WAITCNT_VMCNT:
1721     case AMDGPU::S_WAITCNT_EXPCNT:
1722     case AMDGPU::S_WAITCNT_LGKMCNT:
1723     case AMDGPU::S_WAIT_IDLE:
1724       return true;
1725     default:
1726       break;
1727     }
1728 
1729     return false;
1730   };
1731 
1732   return FPAtomicToDenormModeWaitStates -
1733          ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn);
1734 }
1735 
1736 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) {
1737   assert(SIInstrInfo::isMAI(*MI));
1738 
1739   return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI);
1740 }
1741 
1742 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) {
1743   // Early exit if no padding is requested.
1744   if (MFMAPaddingRatio == 0)
1745     return 0;
1746 
1747   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1748   if (!SIInstrInfo::isMFMA(*MI) || MFI->getOccupancy() < 2)
1749     return 0;
1750 
1751   int NeighborMFMALatency = 0;
1752   auto IsNeighboringMFMA = [&NeighborMFMALatency,
1753                             this](const MachineInstr &MI) {
1754     if (!SIInstrInfo::isMFMA(MI))
1755       return false;
1756 
1757     NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI);
1758     return true;
1759   };
1760 
1761   const int MaxMFMAPipelineWaitStates = 16;
1762   int WaitStatesSinceNeighborMFMA =
1763       getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates);
1764 
1765   int NeighborMFMAPaddingNeeded =
1766       (NeighborMFMALatency * MFMAPaddingRatio / 100) -
1767       WaitStatesSinceNeighborMFMA;
1768 
1769   return std::max(0, NeighborMFMAPaddingNeeded);
1770 }
1771 
1772 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) {
1773   int WaitStatesNeeded = 0;
1774   unsigned Opc = MI->getOpcode();
1775 
1776   auto IsVALUFn = [](const MachineInstr &MI) {
1777     return SIInstrInfo::isVALU(MI);
1778   };
1779 
1780   if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write
1781     const int LegacyVALUWritesVGPRWaitStates = 2;
1782     const int VALUWritesExecWaitStates = 4;
1783     const int MaxWaitStates = 4;
1784 
1785     int WaitStatesNeededForUse = VALUWritesExecWaitStates -
1786       getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates);
1787     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1788 
1789     if (WaitStatesNeeded < MaxWaitStates) {
1790       for (const MachineOperand &Use : MI->explicit_uses()) {
1791         const int MaxWaitStates = 2;
1792 
1793         if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1794           continue;
1795 
1796         int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates -
1797           getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates);
1798         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1799 
1800         if (WaitStatesNeeded == MaxWaitStates)
1801           break;
1802       }
1803     }
1804   }
1805 
1806   for (const MachineOperand &Op : MI->explicit_operands()) {
1807     if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg()))
1808       continue;
1809 
1810     if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
1811       continue;
1812 
1813     const int MFMAWritesAGPROverlappedSrcABWaitStates = 4;
1814     const int MFMAWritesAGPROverlappedSrcCWaitStates = 2;
1815     const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4;
1816     const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10;
1817     const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18;
1818     const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1;
1819     const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7;
1820     const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15;
1821     const int MaxWaitStates = 18;
1822     Register Reg = Op.getReg();
1823     unsigned HazardDefLatency = 0;
1824 
1825     auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency,
1826                                this](const MachineInstr &MI) {
1827       if (!SIInstrInfo::isMFMA(MI))
1828         return false;
1829       Register DstReg = MI.getOperand(0).getReg();
1830       if (DstReg == Reg)
1831         return false;
1832       HazardDefLatency =
1833           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
1834       return TRI.regsOverlap(DstReg, Reg);
1835     };
1836 
1837     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn,
1838                                                    MaxWaitStates);
1839     int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates;
1840     int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1841     int OpNo = MI->getOperandNo(&Op);
1842     if (OpNo == SrcCIdx) {
1843       NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates;
1844     } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) {
1845       switch (HazardDefLatency) {
1846       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates;
1847                break;
1848       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates;
1849                break;
1850       case 16: LLVM_FALLTHROUGH;
1851       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates;
1852                break;
1853       }
1854     } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
1855       switch (HazardDefLatency) {
1856       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates;
1857                break;
1858       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates;
1859                break;
1860       case 16: LLVM_FALLTHROUGH;
1861       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates;
1862                break;
1863       }
1864     }
1865 
1866     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
1867     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1868 
1869     if (WaitStatesNeeded == MaxWaitStates)
1870       return WaitStatesNeeded; // Early exit.
1871 
1872     auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) {
1873       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
1874         return false;
1875       Register DstReg = MI.getOperand(0).getReg();
1876       return TRI.regsOverlap(Reg, DstReg);
1877     };
1878 
1879     const int AccVGPRWriteMFMAReadSrcCWaitStates = 1;
1880     const int AccVGPRWriteMFMAReadSrcABWaitStates = 3;
1881     const int AccVGPRWriteAccVgprReadWaitStates = 3;
1882     NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates;
1883     if (OpNo == SrcCIdx)
1884       NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates;
1885     else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64)
1886       NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates;
1887 
1888     WaitStatesNeededForUse = NeedWaitStates -
1889       getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates);
1890     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1891 
1892     if (WaitStatesNeeded == MaxWaitStates)
1893       return WaitStatesNeeded; // Early exit.
1894   }
1895 
1896   if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
1897     const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0;
1898     const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5;
1899     const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13;
1900     const int MaxWaitStates = 13;
1901     Register DstReg = MI->getOperand(0).getReg();
1902     unsigned HazardDefLatency = 0;
1903 
1904     auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency,
1905                          this](const MachineInstr &MI) {
1906       if (!SIInstrInfo::isMFMA(MI))
1907         return false;
1908       Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg();
1909       HazardDefLatency =
1910           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
1911       return TRI.regsOverlap(Reg, DstReg);
1912     };
1913 
1914     int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates);
1915     int NeedWaitStates;
1916     switch (HazardDefLatency) {
1917     case 2:  NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates;
1918              break;
1919     case 8:  NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates;
1920              break;
1921     case 16: LLVM_FALLTHROUGH;
1922     default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates;
1923              break;
1924     }
1925 
1926     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince;
1927     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1928   }
1929 
1930   // Pad neighboring MFMA with noops for better inter-wave performance.
1931   WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI));
1932 
1933   return WaitStatesNeeded;
1934 }
1935 
1936 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) {
1937   int WaitStatesNeeded = 0;
1938   unsigned Opc = MI->getOpcode();
1939 
1940   auto IsLegacyVALUFn = [](const MachineInstr &MI) {
1941     return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI);
1942   };
1943 
1944   auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) {
1945     return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) &&
1946            !SIInstrInfo::isDOT(MI);
1947   };
1948 
1949   if (!SIInstrInfo::isMFMA(*MI))
1950     return WaitStatesNeeded;
1951 
1952   const int VALUWritesExecWaitStates = 4;
1953   int WaitStatesNeededForUse = VALUWritesExecWaitStates -
1954     getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn,
1955                           VALUWritesExecWaitStates);
1956   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1957 
1958   int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1959 
1960   // Loop for both DGEMM and S/HGEMM 2nd instruction.
1961   for (const MachineOperand &Use : MI->explicit_uses()) {
1962     const int LegacyVALUNotDotWritesVGPRWaitStates = 2;
1963     const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2;
1964     const int GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates = 3;
1965     const int GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates = 5;
1966     const int GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates = 4;
1967     const int GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates = 9;
1968     const int GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates = 8;
1969     const int GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates = 17;
1970     const int GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates = 16;
1971     const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8;
1972     const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16;
1973     const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3;
1974     const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9;
1975     const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17;
1976     const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9;
1977     const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4;
1978     const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5;
1979     const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11;
1980     const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19;
1981     const int GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates = 4;
1982     const int GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates = 6;
1983     const int GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates = 10;
1984     const int GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates = 18;
1985     const int GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates = 5;
1986     const int GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates = 7;
1987     const int GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates = 11;
1988     const int GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates = 19;
1989     const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6;
1990     const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11;
1991     const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4;
1992     const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2;
1993     const int MaxWaitStates = 19;
1994 
1995     if (!Use.isReg())
1996       continue;
1997     Register Reg = Use.getReg();
1998     bool FullReg;
1999     const MachineInstr *MI1;
2000 
2001     auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1,
2002                                this](const MachineInstr &MI) {
2003       if (!SIInstrInfo::isMFMA(MI))
2004         return false;
2005       Register DstReg = MI.getOperand(0).getReg();
2006       FullReg = (DstReg == Reg);
2007       MI1 = &MI;
2008       return TRI.regsOverlap(DstReg, Reg);
2009     };
2010 
2011     WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates -
2012       getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates);
2013     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2014 
2015     int NumWaitStates =
2016         getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates);
2017     if (NumWaitStates == std::numeric_limits<int>::max())
2018       continue;
2019 
2020     int OpNo = MI->getOperandNo(&Use);
2021     unsigned Opc1 = MI1->getOpcode();
2022     int NeedWaitStates = 0;
2023     if (OpNo == SrcCIdx) {
2024       if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) {
2025         NeedWaitStates = 0;
2026       } else if (FullReg) {
2027         if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
2028              Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) &&
2029             (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
2030              Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64))
2031           NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates;
2032         else if (ST.hasGFX940Insts() &&
2033                  TSchedModel.computeInstrLatency(MI1) == 2)
2034           NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates;
2035       } else {
2036         switch (Opc1) {
2037         case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
2038         case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
2039         case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64:
2040         case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64:
2041           if (!isXDL(ST, *MI))
2042             NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates;
2043           break;
2044         case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
2045         case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
2046           if (!isXDL(ST, *MI))
2047             NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates;
2048           break;
2049         default:
2050           if (ST.hasGFX940Insts() && isXDL(ST, *MI) && !isXDL(ST, *MI1))
2051             break;
2052           switch (TSchedModel.computeInstrLatency(MI1)) {
2053           case 2:
2054             NeedWaitStates = ST.hasGFX940Insts()
2055               ? isXDL(ST, *MI1)
2056                 ? GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates
2057                 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates
2058               : isDGEMM(Opc)
2059                 ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates
2060                 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates;
2061             break;
2062           case 4:
2063             assert(ST.hasGFX940Insts());
2064             NeedWaitStates = isXDL(ST, *MI1)
2065               ? GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates
2066               : GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates;
2067             break;
2068           case 8:
2069             NeedWaitStates = ST.hasGFX940Insts()
2070               ? isXDL(ST, *MI1)
2071                 ? GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates
2072                 : GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates
2073               : isDGEMM(Opc)
2074                 ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates
2075                 : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates;
2076             break;
2077           case 16: LLVM_FALLTHROUGH;
2078           default:
2079             NeedWaitStates = ST.hasGFX940Insts()
2080               ? isXDL(ST, *MI1)
2081                 ? GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates
2082                 : GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates
2083               : isDGEMM(Opc)
2084                 ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates
2085                 : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates;
2086           }
2087         }
2088       }
2089     } else {
2090       switch (Opc1) {
2091       case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
2092       case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
2093       case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64:
2094       case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64:
2095         NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates;
2096         break;
2097       case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
2098       case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
2099         NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates;
2100         break;
2101       default:
2102         switch (TSchedModel.computeInstrLatency(MI1)) {
2103         case 2:
2104           NeedWaitStates = ST.hasGFX940Insts()
2105             ? isXDL(ST, *MI1)
2106               ? GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates
2107               : GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates
2108             : SMFMA4x4WritesVGPROverlappedSrcABWaitStates;
2109           break;
2110         case 4:
2111           assert(ST.hasGFX940Insts());
2112           NeedWaitStates = isXDL(ST, *MI1)
2113             ? GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates
2114             : GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates;
2115           break;
2116         case 8:
2117           NeedWaitStates = ST.hasGFX940Insts()
2118             ? isXDL(ST, *MI1)
2119               ? GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates
2120               : GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates
2121             : SMFMA16x16WritesVGPROverlappedSrcABWaitStates;
2122           break;
2123         case 16: LLVM_FALLTHROUGH;
2124         default:
2125           NeedWaitStates = ST.hasGFX940Insts()
2126             ? isXDL(ST, *MI1)
2127               ? GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates
2128               : GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates
2129             : SMFMA32x32WritesVGPROverlappedSrcABWaitStates;
2130         }
2131       }
2132     }
2133     if (WaitStatesNeeded >= NeedWaitStates)
2134       continue;
2135 
2136     WaitStatesNeededForUse = NeedWaitStates - NumWaitStates;
2137     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2138 
2139     if (WaitStatesNeeded == MaxWaitStates)
2140       break;
2141   }
2142 
2143   return WaitStatesNeeded;
2144 }
2145 
2146 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) {
2147   // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards()
2148   if (!ST.hasMAIInsts() || ST.hasGFX90AInsts())
2149     return 0;
2150 
2151   int WaitStatesNeeded = 0;
2152 
2153   auto IsAccVgprReadFn = [](const MachineInstr &MI) {
2154     return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64;
2155   };
2156 
2157   for (const MachineOperand &Op : MI->explicit_uses()) {
2158     if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg()))
2159       continue;
2160 
2161     Register Reg = Op.getReg();
2162 
2163     const int AccVgprReadLdStWaitStates = 2;
2164     const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1;
2165     const int MaxWaitStates = 2;
2166 
2167     int WaitStatesNeededForUse = AccVgprReadLdStWaitStates -
2168       getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates);
2169     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2170 
2171     if (WaitStatesNeeded == MaxWaitStates)
2172       return WaitStatesNeeded; // Early exit.
2173 
2174     auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) {
2175       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 &&
2176           MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
2177         return false;
2178       auto IsVALUFn = [](const MachineInstr &MI) {
2179         return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI);
2180       };
2181       return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) <
2182              std::numeric_limits<int>::max();
2183     };
2184 
2185     WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates -
2186       getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates);
2187     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2188   }
2189 
2190   return WaitStatesNeeded;
2191 }
2192 
2193 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) {
2194   if (!ST.hasGFX90AInsts())
2195     return 0;
2196 
2197   auto IsDGEMMFn = [](const MachineInstr &MI) -> bool {
2198     return isDGEMM(MI.getOpcode());
2199   };
2200 
2201   // This is checked in checkMAIHazards90A()
2202   if (SIInstrInfo::isMFMA(*MI))
2203     return 0;
2204 
2205   int WaitStatesNeeded = 0;
2206 
2207   bool IsMemOrExport = SIInstrInfo::isVMEM(*MI) ||
2208                        SIInstrInfo::isFLAT(*MI) ||
2209                        SIInstrInfo::isDS(*MI) ||
2210                        SIInstrInfo::isEXP(*MI);
2211   bool IsVALU = SIInstrInfo::isVALU(*MI);
2212 
2213   const MachineInstr *MFMA = nullptr;
2214   unsigned Reg;
2215   auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) {
2216     if (!SIInstrInfo::isMFMA(MI) ||
2217         !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
2218       return false;
2219     MFMA = &MI;
2220     return true;
2221   };
2222 
2223   const MachineInstr *DOT = nullptr;
2224   auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) {
2225     if (!SIInstrInfo::isDOT(MI) ||
2226         !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
2227       return false;
2228     DOT = &MI;
2229     return true;
2230   };
2231 
2232   int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
2233                                            AMDGPU::OpName::src2);
2234 
2235   if (IsMemOrExport || IsVALU) {
2236     const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5;
2237     const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11;
2238     const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19;
2239     const int GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates = 4;
2240     const int GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates = 6;
2241     const int GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates = 10;
2242     const int GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates = 18;
2243     const int GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates = 5;
2244     const int GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates = 7;
2245     const int GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates = 11;
2246     const int GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates = 19;
2247     const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9;
2248     const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18;
2249     const int DMFMA4x4WriteVgprVALUReadWaitStates = 6;
2250     const int DMFMA16x16WriteVgprVALUReadWaitStates = 11;
2251     const int DotWriteSameDotReadSrcAB = 3;
2252     const int DotWriteDifferentVALURead = 3;
2253     const int MaxWaitStates = 19;
2254 
2255     for (const MachineOperand &Use : MI->explicit_uses()) {
2256       if (!Use.isReg())
2257         continue;
2258       Reg = Use.getReg();
2259 
2260       DOT = nullptr;
2261       int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
2262                                                      MaxWaitStates);
2263       if (DOT) {
2264         int NeedWaitStates = 0;
2265         if (DOT->getOpcode() == MI->getOpcode()) {
2266           if (&Use - &MI->getOperand(0) != SrcCIdx)
2267             NeedWaitStates = DotWriteSameDotReadSrcAB;
2268         } else {
2269           NeedWaitStates = DotWriteDifferentVALURead;
2270         }
2271 
2272         int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2273         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2274       }
2275 
2276       MFMA = nullptr;
2277       WaitStatesSinceDef =
2278           getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates);
2279       if (!MFMA)
2280         continue;
2281 
2282       unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
2283       int NeedWaitStates = MaxWaitStates;
2284       switch (HazardDefLatency) {
2285       case 2:
2286         NeedWaitStates =
2287           ST.hasGFX940Insts()
2288             ? isXDL(ST, *MFMA)
2289               ? GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates
2290               : GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates
2291             : SMFMA4x4WriteVgprVALUMemExpReadWaitStates;
2292         break;
2293       case 4:
2294         assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts());
2295         NeedWaitStates =
2296           isDGEMM(MFMA->getOpcode())
2297             ? IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates
2298                             : DMFMA4x4WriteVgprVALUReadWaitStates
2299             : isXDL(ST, *MFMA)
2300               ? GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates
2301               : GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates;
2302         break;
2303       case 8:
2304         NeedWaitStates =
2305           ST.hasGFX940Insts()
2306             ? isXDL(ST, *MFMA)
2307               ? GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates
2308               : GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates
2309             : SMFMA16x16WriteVgprVALUMemExpReadWaitStates;
2310         break;
2311       case 16: LLVM_FALLTHROUGH;
2312       default:
2313         NeedWaitStates =
2314           isDGEMM(MFMA->getOpcode())
2315             ? IsMemOrExport ? DMFMA16x16WriteVgprMemExpReadWaitStates
2316                             : DMFMA16x16WriteVgprVALUReadWaitStates
2317             : ST.hasGFX940Insts()
2318               ? isXDL(ST, *MFMA)
2319                 ? GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates
2320                 : GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates
2321               : SMFMA32x32WriteVgprVALUMemExpReadWaitStates;
2322         break;
2323       }
2324 
2325       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2326       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2327 
2328       if (WaitStatesNeeded == MaxWaitStates)
2329         break;
2330     }
2331   }
2332 
2333   unsigned Opc = MI->getOpcode();
2334   const int DMFMAToFMA64WaitStates = 2;
2335   if ((Opc == AMDGPU::V_FMA_F64_e64 ||
2336        Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 ||
2337        Opc == AMDGPU::V_FMAC_F64_dpp) &&
2338       WaitStatesNeeded < DMFMAToFMA64WaitStates) {
2339     int WaitStatesNeededForUse = DMFMAToFMA64WaitStates -
2340       getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates);
2341     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2342   }
2343 
2344   if (!IsVALU && !IsMemOrExport)
2345     return WaitStatesNeeded;
2346 
2347   for (const MachineOperand &Def : MI->defs()) {
2348     const int SMFMA4x4WriteVgprVALUWawWaitStates = 5;
2349     const int SMFMA16x16WriteVgprVALUWawWaitStates = 11;
2350     const int SMFMA32x32WriteVgprVALUWawWaitStates = 19;
2351     const int GFX940_SMFMA2PassWriteVgprVALUWawWaitStates = 4;
2352     const int GFX940_SMFMA4PassWriteVgprVALUWawWaitStates = 6;
2353     const int GFX940_SMFMA8PassWriteVgprVALUWawWaitStates = 10;
2354     const int GFX940_SMFMA16PassWriteVgprVALUWawWaitStates = 18;
2355     const int GFX940_XDL2PassWriteVgprVALUWawWaitStates = 5;
2356     const int GFX940_XDL4PassWriteVgprVALUWawWaitStates = 7;
2357     const int GFX940_XDL8PassWriteVgprVALUWawWaitStates = 11;
2358     const int GFX940_XDL16PassWriteVgprVALUWawWaitStates = 19;
2359     const int SMFMA4x4ReadVgprVALUWarWaitStates = 1;
2360     const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3;
2361     const int SMFMA16x16ReadVgprVALUWarWaitStates = 7;
2362     const int SMFMA32x32ReadVgprVALUWarWaitStates = 15;
2363     const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6;
2364     const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11;
2365     const int DotWriteDifferentVALUWrite = 3;
2366     const int MaxWaitStates = 19;
2367     const int MaxWarWaitStates = 15;
2368 
2369     Reg = Def.getReg();
2370 
2371     DOT = nullptr;
2372     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
2373                                                    MaxWaitStates);
2374     if (DOT && DOT->getOpcode() != MI->getOpcode())
2375       WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite -
2376                                                     WaitStatesSinceDef);
2377 
2378     MFMA = nullptr;
2379     WaitStatesSinceDef =
2380         getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates);
2381     if (MFMA) {
2382       int NeedWaitStates = MaxWaitStates;
2383       switch (TSchedModel.computeInstrLatency(MFMA)) {
2384       case 2:
2385         NeedWaitStates = ST.hasGFX940Insts()
2386           ? isXDL(ST, *MFMA)
2387             ? GFX940_XDL2PassWriteVgprVALUWawWaitStates
2388             : GFX940_SMFMA2PassWriteVgprVALUWawWaitStates
2389           : SMFMA4x4WriteVgprVALUWawWaitStates;
2390         break;
2391       case 4:
2392         assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts());
2393         NeedWaitStates = isDGEMM(MFMA->getOpcode())
2394             ? DMFMA4x4WriteVgprVALUWriteWaitStates
2395             : isXDL(ST, *MFMA)
2396               ? GFX940_XDL4PassWriteVgprVALUWawWaitStates
2397               : GFX940_SMFMA4PassWriteVgprVALUWawWaitStates;
2398         break;
2399       case 8:
2400         NeedWaitStates = ST.hasGFX940Insts()
2401           ? isXDL(ST, *MFMA)
2402             ? GFX940_XDL8PassWriteVgprVALUWawWaitStates
2403             : GFX940_SMFMA8PassWriteVgprVALUWawWaitStates
2404           : SMFMA16x16WriteVgprVALUWawWaitStates;
2405         break;
2406       case 16: LLVM_FALLTHROUGH;
2407       default:
2408         NeedWaitStates = isDGEMM(MFMA->getOpcode())
2409                    ? DMFMA16x16WriteVgprVALUWriteWaitStates
2410                    : ST.hasGFX940Insts()
2411                      ? isXDL(ST, *MFMA)
2412                        ? GFX940_XDL16PassWriteVgprVALUWawWaitStates
2413                        : GFX940_SMFMA16PassWriteVgprVALUWawWaitStates
2414                    : SMFMA32x32WriteVgprVALUWawWaitStates;
2415         break;
2416       }
2417 
2418       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2419       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2420 
2421       if (WaitStatesNeeded == MaxWaitStates)
2422         break;
2423     }
2424 
2425     auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) {
2426       if (!SIInstrInfo::isMFMA(MI) || isDGEMM(MI.getOpcode()) ||
2427           !MI.readsRegister(Reg, &TRI))
2428         return false;
2429 
2430       if (ST.hasGFX940Insts() && !isXDL(ST, MI))
2431         return false;
2432 
2433       const MachineOperand *SrcC =
2434           TII.getNamedOperand(MI, AMDGPU::OpName::src2);
2435       assert(SrcC);
2436       if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg))
2437         return false;
2438 
2439       MFMA = &MI;
2440       return true;
2441     };
2442 
2443     MFMA = nullptr;
2444     int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn,
2445                                                 MaxWarWaitStates);
2446     if (!MFMA)
2447       continue;
2448 
2449     unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
2450     int NeedWaitStates = MaxWaitStates;
2451     switch (HazardDefLatency) {
2452     case 2:  NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates;
2453              break;
2454     case 4:  assert(ST.hasGFX940Insts());
2455              NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates;
2456              break;
2457     case 8:  NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates;
2458              break;
2459     case 16: LLVM_FALLTHROUGH;
2460     default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates;
2461              break;
2462     }
2463 
2464     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse;
2465     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2466   }
2467 
2468   return WaitStatesNeeded;
2469 }
2470 
2471 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) {
2472   if (!SU->isInstr())
2473     return false;
2474 
2475   const MachineInstr *MAI = nullptr;
2476 
2477   auto IsMFMAFn = [&MAI](const MachineInstr &MI) {
2478     MAI = nullptr;
2479     if (SIInstrInfo::isMFMA(MI))
2480       MAI = &MI;
2481     return MAI != nullptr;
2482   };
2483 
2484   MachineInstr *MI = SU->getInstr();
2485   if (IsMFMAFn(*MI)) {
2486     int W = getWaitStatesSince(IsMFMAFn, 16);
2487     if (MAI)
2488       return W < (int)TSchedModel.computeInstrLatency(MAI);
2489   }
2490 
2491   return false;
2492 }
2493