xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision fab28e0e140eb55da25b7923a548ab357a9da544)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
95     Offset = Imm & 0xFFFFF;
96   } else {                    // GFX9+ supports 21-bit signed offsets.
97     Offset = SignExtend64<21>(Imm);
98   }
99   return addOperand(Inst, MCOperand::createImm(Offset));
100 }
101 
102 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
103                                   const MCDisassembler *Decoder) {
104   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
105   return addOperand(Inst, DAsm->decodeBoolReg(Val));
106 }
107 
108 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
109   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
110                                         uint64_t /*Addr*/,                     \
111                                         const MCDisassembler *Decoder) {       \
112     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
113     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
114   }
115 
116 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
117 // number of register. Used by VGPR only and AGPR only operands.
118 #define DECODE_OPERAND_REG_8(RegClass)                                         \
119   static DecodeStatus Decode##RegClass##RegisterClass(                         \
120       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
121       const MCDisassembler *Decoder) {                                         \
122     assert(Imm < (1 << 8) && "8-bit encoding");                                \
123     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
124     return addOperand(                                                         \
125         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
126   }
127 
128 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
129                      ImmWidth)                                                 \
130   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
131                            const MCDisassembler *Decoder) {                    \
132     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
133     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
134     return addOperand(Inst,                                                    \
135                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
136                                         MandatoryLiteral, ImmWidth));          \
137   }
138 
139 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
140 // get register class. Used by SGPR only operands.
141 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
142   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
143 
144 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
145 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
146 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
147 // Used by AV_ register classes (AGPR or VGPR only register operands).
148 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
149   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
150                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
151 
152 // Decoder for Src(9-bit encoding) registers only.
153 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
154   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
155 
156 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
157 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
158 // only.
159 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
160   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
161 
162 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
163 // Imm{9} is acc, registers only.
164 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
165   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
166 
167 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
168 // register from RegClass or immediate. Registers that don't belong to RegClass
169 // will be decoded and InstPrinter will report warning. Immediate will be
170 // decoded into constant of size ImmWidth, should match width of immediate used
171 // by OperandType (important for floating point types).
172 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
173   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
174                false, ImmWidth)
175 
176 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
177 // and decode using 'enum10' from decodeSrcOp.
178 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
179   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
180                Imm | 512, false, ImmWidth)
181 
182 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
183   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
184                OpWidth, Imm, true, ImmWidth)
185 
186 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
187 // when RegisterClass is used as an operand. Most often used for destination
188 // operands.
189 
190 DECODE_OPERAND_REG_8(VGPR_32)
191 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
192 DECODE_OPERAND_REG_8(VReg_64)
193 DECODE_OPERAND_REG_8(VReg_96)
194 DECODE_OPERAND_REG_8(VReg_128)
195 DECODE_OPERAND_REG_8(VReg_256)
196 DECODE_OPERAND_REG_8(VReg_288)
197 DECODE_OPERAND_REG_8(VReg_352)
198 DECODE_OPERAND_REG_8(VReg_384)
199 DECODE_OPERAND_REG_8(VReg_512)
200 DECODE_OPERAND_REG_8(VReg_1024)
201 
202 DECODE_OPERAND_REG_7(SReg_32, OPW32)
203 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
204 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
205 DECODE_OPERAND_REG_7(SReg_64, OPW64)
206 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
207 DECODE_OPERAND_REG_7(SReg_128, OPW128)
208 DECODE_OPERAND_REG_7(SReg_256, OPW256)
209 DECODE_OPERAND_REG_7(SReg_512, OPW512)
210 
211 DECODE_OPERAND_REG_8(AGPR_32)
212 DECODE_OPERAND_REG_8(AReg_64)
213 DECODE_OPERAND_REG_8(AReg_128)
214 DECODE_OPERAND_REG_8(AReg_256)
215 DECODE_OPERAND_REG_8(AReg_512)
216 DECODE_OPERAND_REG_8(AReg_1024)
217 
218 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
219 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
220 
221 // Decoders for register only source RegisterOperands that use use 9-bit Src
222 // encoding: 'decodeOperand_<RegClass>'.
223 
224 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
225 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
226 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
227 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
228 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
229 
230 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
231 
232 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
233 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
234 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
235 
236 // Decoders for register or immediate RegisterOperands that use 9-bit Src
237 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
238 
239 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
240 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
243 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
253 
254 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
259 
260 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
264 
265 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
266                                          uint64_t Addr,
267                                          const MCDisassembler *Decoder) {
268   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
269   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
270 }
271 
272 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
273                                           uint64_t Addr, const void *Decoder) {
274   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
275   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
276 }
277 
278 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
279                           const MCRegisterInfo *MRI) {
280   if (OpIdx < 0)
281     return false;
282 
283   const MCOperand &Op = Inst.getOperand(OpIdx);
284   if (!Op.isReg())
285     return false;
286 
287   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
288   auto Reg = Sub ? Sub : Op.getReg();
289   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
290 }
291 
292 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
293                                              AMDGPUDisassembler::OpWidthTy Opw,
294                                              const MCDisassembler *Decoder) {
295   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
296   if (!DAsm->isGFX90A()) {
297     Imm &= 511;
298   } else {
299     // If atomic has both vdata and vdst their register classes are tied.
300     // The bit is decoded along with the vdst, first operand. We need to
301     // change register class to AGPR if vdst was AGPR.
302     // If a DS instruction has both data0 and data1 their register classes
303     // are also tied.
304     unsigned Opc = Inst.getOpcode();
305     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
306     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
307                                                         : AMDGPU::OpName::vdata;
308     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
309     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
310     if ((int)Inst.getNumOperands() == DataIdx) {
311       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
312       if (IsAGPROperand(Inst, DstIdx, MRI))
313         Imm |= 512;
314     }
315 
316     if (TSFlags & SIInstrFlags::DS) {
317       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
318       if ((int)Inst.getNumOperands() == Data2Idx &&
319           IsAGPROperand(Inst, DataIdx, MRI))
320         Imm |= 512;
321     }
322   }
323   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
324 }
325 
326 static DecodeStatus
327 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
328                              const MCDisassembler *Decoder) {
329   return decodeOperand_AVLdSt_Any(Inst, Imm,
330                                   AMDGPUDisassembler::OPW32, Decoder);
331 }
332 
333 static DecodeStatus
334 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
335                              const MCDisassembler *Decoder) {
336   return decodeOperand_AVLdSt_Any(Inst, Imm,
337                                   AMDGPUDisassembler::OPW64, Decoder);
338 }
339 
340 static DecodeStatus
341 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
342                              const MCDisassembler *Decoder) {
343   return decodeOperand_AVLdSt_Any(Inst, Imm,
344                                   AMDGPUDisassembler::OPW96, Decoder);
345 }
346 
347 static DecodeStatus
348 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
349                               const MCDisassembler *Decoder) {
350   return decodeOperand_AVLdSt_Any(Inst, Imm,
351                                   AMDGPUDisassembler::OPW128, Decoder);
352 }
353 
354 static DecodeStatus
355 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
356                               const MCDisassembler *Decoder) {
357   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
358                                   Decoder);
359 }
360 
361 #define DECODE_SDWA(DecName) \
362 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
363 
364 DECODE_SDWA(Src32)
365 DECODE_SDWA(Src16)
366 DECODE_SDWA(VopcDst)
367 
368 #include "AMDGPUGenDisassemblerTables.inc"
369 
370 //===----------------------------------------------------------------------===//
371 //
372 //===----------------------------------------------------------------------===//
373 
374 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
375   assert(Bytes.size() >= sizeof(T));
376   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
377   Bytes = Bytes.slice(sizeof(T));
378   return Res;
379 }
380 
381 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
382   assert(Bytes.size() >= 12);
383   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
384       Bytes.data());
385   Bytes = Bytes.slice(8);
386   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
387       Bytes.data());
388   Bytes = Bytes.slice(4);
389   return DecoderUInt128(Lo, Hi);
390 }
391 
392 // The disassembler is greedy, so we need to check FI operand value to
393 // not parse a dpp if the correct literal is not set. For dpp16 the
394 // autogenerated decoder checks the dpp literal
395 static bool isValidDPP8(const MCInst &MI) {
396   using namespace llvm::AMDGPU::DPP;
397   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
398   assert(FiIdx != -1);
399   if ((unsigned)FiIdx >= MI.getNumOperands())
400     return false;
401   unsigned Fi = MI.getOperand(FiIdx).getImm();
402   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
403 }
404 
405 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
406                                                 ArrayRef<uint8_t> Bytes_,
407                                                 uint64_t Address,
408                                                 raw_ostream &CS) const {
409   bool IsSDWA = false;
410 
411   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
412   Bytes = Bytes_.slice(0, MaxInstBytesNum);
413 
414   DecodeStatus Res = MCDisassembler::Fail;
415   do {
416     // ToDo: better to switch encoding length using some bit predicate
417     // but it is unknown yet, so try all we can
418 
419     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
420     // encodings
421     if (isGFX11Plus() && Bytes.size() >= 12 ) {
422       DecoderUInt128 DecW = eat12Bytes(Bytes);
423       Res =
424           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
425                         MI, DecW, Address, CS);
426       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
427         break;
428       MI = MCInst(); // clear
429       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
430                           MI, DecW, Address, CS);
431       if (Res) {
432         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
433           convertVOP3PDPPInst(MI);
434         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
435           convertVOPCDPPInst(MI); // Special VOP3 case
436         else {
437           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
438           convertVOP3DPPInst(MI); // Regular VOP3 case
439         }
440         break;
441       }
442       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
443       if (Res)
444         break;
445     }
446     // Reinitialize Bytes
447     Bytes = Bytes_.slice(0, MaxInstBytesNum);
448 
449     if (Bytes.size() >= 8) {
450       const uint64_t QW = eatBytes<uint64_t>(Bytes);
451 
452       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
453         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
454         if (Res) {
455           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
456               == -1)
457             break;
458           if (convertDPP8Inst(MI) == MCDisassembler::Success)
459             break;
460           MI = MCInst(); // clear
461         }
462       }
463 
464       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
465       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
466         break;
467       MI = MCInst(); // clear
468 
469       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
470                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
471       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
472         break;
473       MI = MCInst(); // clear
474 
475       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
476       if (Res) break;
477 
478       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
479                           MI, QW, Address, CS);
480       if (Res) {
481         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
482           convertVOPCDPPInst(MI);
483         break;
484       }
485 
486       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
487       if (Res) { IsSDWA = true;  break; }
488 
489       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
490       if (Res) { IsSDWA = true;  break; }
491 
492       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
493       if (Res) { IsSDWA = true;  break; }
494 
495       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
496         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
497         if (Res)
498           break;
499       }
500 
501       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
502       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
503       // table first so we print the correct name.
504       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
505         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
506         if (Res)
507           break;
508       }
509     }
510 
511     // Reinitialize Bytes as DPP64 could have eaten too much
512     Bytes = Bytes_.slice(0, MaxInstBytesNum);
513 
514     // Try decode 32-bit instruction
515     if (Bytes.size() < 4) break;
516     const uint32_t DW = eatBytes<uint32_t>(Bytes);
517     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
518     if (Res) break;
519 
520     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
521     if (Res) break;
522 
523     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
524     if (Res) break;
525 
526     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
527       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
528       if (Res)
529         break;
530     }
531 
532     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
533       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
534       if (Res) break;
535     }
536 
537     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
538     if (Res) break;
539 
540     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
541                         Address, CS);
542     if (Res) break;
543 
544     if (Bytes.size() < 4) break;
545     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
546 
547     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
548       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
549       if (Res)
550         break;
551     }
552 
553     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
554       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
555       if (Res)
556         break;
557     }
558 
559     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
560     if (Res) break;
561 
562     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
563     if (Res) break;
564 
565     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
566     if (Res) break;
567 
568     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
569     if (Res) break;
570 
571     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
572                         Address, CS);
573     if (Res)
574       break;
575 
576     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
577   } while (false);
578 
579   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
580     // Insert dummy unused src2_modifiers.
581     insertNamedMCOperand(MI, MCOperand::createImm(0),
582                          AMDGPU::OpName::src2_modifiers);
583   }
584 
585   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
586           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
587     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
588                                              AMDGPU::OpName::cpol);
589     if (CPolPos != -1) {
590       unsigned CPol =
591           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
592               AMDGPU::CPol::GLC : 0;
593       if (MI.getNumOperands() <= (unsigned)CPolPos) {
594         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
595                              AMDGPU::OpName::cpol);
596       } else if (CPol) {
597         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
598       }
599     }
600   }
601 
602   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
603               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
604              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
605     // GFX90A lost TFE, its place is occupied by ACC.
606     int TFEOpIdx =
607         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
608     if (TFEOpIdx != -1) {
609       auto TFEIter = MI.begin();
610       std::advance(TFEIter, TFEOpIdx);
611       MI.insert(TFEIter, MCOperand::createImm(0));
612     }
613   }
614 
615   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
616               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
617     int SWZOpIdx =
618         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
619     if (SWZOpIdx != -1) {
620       auto SWZIter = MI.begin();
621       std::advance(SWZIter, SWZOpIdx);
622       MI.insert(SWZIter, MCOperand::createImm(0));
623     }
624   }
625 
626   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
627     int VAddr0Idx =
628         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
629     int RsrcIdx =
630         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
631     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
632     if (VAddr0Idx >= 0 && NSAArgs > 0) {
633       unsigned NSAWords = (NSAArgs + 3) / 4;
634       if (Bytes.size() < 4 * NSAWords) {
635         Res = MCDisassembler::Fail;
636       } else {
637         for (unsigned i = 0; i < NSAArgs; ++i) {
638           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
639           auto VAddrRCID =
640               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
641           MI.insert(MI.begin() + VAddrIdx,
642                     createRegOperand(VAddrRCID, Bytes[i]));
643         }
644         Bytes = Bytes.slice(4 * NSAWords);
645       }
646     }
647 
648     if (Res)
649       Res = convertMIMGInst(MI);
650   }
651 
652   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
653     Res = convertEXPInst(MI);
654 
655   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
656     Res = convertVINTERPInst(MI);
657 
658   if (Res && IsSDWA)
659     Res = convertSDWAInst(MI);
660 
661   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
662                                               AMDGPU::OpName::vdst_in);
663   if (VDstIn_Idx != -1) {
664     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
665                            MCOI::OperandConstraint::TIED_TO);
666     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
667          !MI.getOperand(VDstIn_Idx).isReg() ||
668          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
669       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
670         MI.erase(&MI.getOperand(VDstIn_Idx));
671       insertNamedMCOperand(MI,
672         MCOperand::createReg(MI.getOperand(Tied).getReg()),
673         AMDGPU::OpName::vdst_in);
674     }
675   }
676 
677   int ImmLitIdx =
678       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
679   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
680   if (Res && ImmLitIdx != -1 && !IsSOPK)
681     Res = convertFMAanyK(MI, ImmLitIdx);
682 
683   // if the opcode was not recognized we'll assume a Size of 4 bytes
684   // (unless there are fewer bytes left)
685   Size = Res ? (MaxInstBytesNum - Bytes.size())
686              : std::min((size_t)4, Bytes_.size());
687   return Res;
688 }
689 
690 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
691   if (STI.hasFeature(AMDGPU::FeatureGFX11)) {
692     // The MCInst still has these fields even though they are no longer encoded
693     // in the GFX11 instruction.
694     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
695     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
696   }
697   return MCDisassembler::Success;
698 }
699 
700 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
701   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
702       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
703       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
704       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
705     // The MCInst has this field that is not directly encoded in the
706     // instruction.
707     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
708   }
709   return MCDisassembler::Success;
710 }
711 
712 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
713   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
714       STI.hasFeature(AMDGPU::FeatureGFX10)) {
715     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
716       // VOPC - insert clamp
717       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
718   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
719     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
720     if (SDst != -1) {
721       // VOPC - insert VCC register as sdst
722       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
723                            AMDGPU::OpName::sdst);
724     } else {
725       // VOP1/2 - insert omod if present in instruction
726       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
727     }
728   }
729   return MCDisassembler::Success;
730 }
731 
732 struct VOPModifiers {
733   unsigned OpSel = 0;
734   unsigned OpSelHi = 0;
735   unsigned NegLo = 0;
736   unsigned NegHi = 0;
737 };
738 
739 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
740 // Note that these values do not affect disassembler output,
741 // so this is only necessary for consistency with src_modifiers.
742 static VOPModifiers collectVOPModifiers(const MCInst &MI,
743                                         bool IsVOP3P = false) {
744   VOPModifiers Modifiers;
745   unsigned Opc = MI.getOpcode();
746   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
747                         AMDGPU::OpName::src1_modifiers,
748                         AMDGPU::OpName::src2_modifiers};
749   for (int J = 0; J < 3; ++J) {
750     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
751     if (OpIdx == -1)
752       continue;
753 
754     unsigned Val = MI.getOperand(OpIdx).getImm();
755 
756     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
757     if (IsVOP3P) {
758       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
759       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
760       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
761     } else if (J == 0) {
762       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
763     }
764   }
765 
766   return Modifiers;
767 }
768 
769 // MAC opcodes have special old and src2 operands.
770 // src2 is tied to dst, while old is not tied (but assumed to be).
771 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
772   constexpr int DST_IDX = 0;
773   auto Opcode = MI.getOpcode();
774   const auto &Desc = MCII->get(Opcode);
775   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
776 
777   if (OldIdx != -1 && Desc.getOperandConstraint(
778                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
779     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
780     assert(Desc.getOperandConstraint(
781                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
782                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
783     (void)DST_IDX;
784     return true;
785   }
786 
787   return false;
788 }
789 
790 // Create dummy old operand and insert dummy unused src2_modifiers
791 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
792   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
793   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
794   insertNamedMCOperand(MI, MCOperand::createImm(0),
795                        AMDGPU::OpName::src2_modifiers);
796 }
797 
798 // We must check FI == literal to reject not genuine dpp8 insts, and we must
799 // first add optional MI operands to check FI
800 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
801   unsigned Opc = MI.getOpcode();
802   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
803     convertVOP3PDPPInst(MI);
804   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
805              AMDGPU::isVOPC64DPP(Opc)) {
806     convertVOPCDPPInst(MI);
807   } else {
808     if (isMacDPP(MI))
809       convertMacDPPInst(MI);
810 
811     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
812     if (MI.getNumOperands() < DescNumOps &&
813         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
814       auto Mods = collectVOPModifiers(MI);
815       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
816                            AMDGPU::OpName::op_sel);
817     } else {
818       // Insert dummy unused src modifiers.
819       if (MI.getNumOperands() < DescNumOps &&
820           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
821         insertNamedMCOperand(MI, MCOperand::createImm(0),
822                              AMDGPU::OpName::src0_modifiers);
823 
824       if (MI.getNumOperands() < DescNumOps &&
825           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
826         insertNamedMCOperand(MI, MCOperand::createImm(0),
827                              AMDGPU::OpName::src1_modifiers);
828     }
829   }
830   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
831 }
832 
833 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
834   if (isMacDPP(MI))
835     convertMacDPPInst(MI);
836 
837   unsigned Opc = MI.getOpcode();
838   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
839   if (MI.getNumOperands() < DescNumOps &&
840       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
841     auto Mods = collectVOPModifiers(MI);
842     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
843                          AMDGPU::OpName::op_sel);
844   }
845   return MCDisassembler::Success;
846 }
847 
848 // Note that before gfx10, the MIMG encoding provided no information about
849 // VADDR size. Consequently, decoded instructions always show address as if it
850 // has 1 dword, which could be not really so.
851 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
852 
853   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
854                                            AMDGPU::OpName::vdst);
855 
856   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
857                                             AMDGPU::OpName::vdata);
858   int VAddr0Idx =
859       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
860   int RsrcIdx =
861       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
862   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
863                                             AMDGPU::OpName::dmask);
864 
865   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
866                                             AMDGPU::OpName::tfe);
867   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
868                                             AMDGPU::OpName::d16);
869 
870   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
871   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
872       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
873 
874   assert(VDataIdx != -1);
875   if (BaseOpcode->BVH) {
876     // Add A16 operand for intersect_ray instructions
877     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
878     return MCDisassembler::Success;
879   }
880 
881   bool IsAtomic = (VDstIdx != -1);
882   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
883   bool IsNSA = false;
884   bool IsPartialNSA = false;
885   unsigned AddrSize = Info->VAddrDwords;
886 
887   if (isGFX10Plus()) {
888     unsigned DimIdx =
889         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
890     int A16Idx =
891         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
892     const AMDGPU::MIMGDimInfo *Dim =
893         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
894     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
895 
896     AddrSize =
897         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
898 
899     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
900             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
901     if (!IsNSA) {
902       if (AddrSize > 12)
903         AddrSize = 16;
904     } else {
905       if (AddrSize > Info->VAddrDwords) {
906         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
907           // The NSA encoding does not contain enough operands for the
908           // combination of base opcode / dimension. Should this be an error?
909           return MCDisassembler::Success;
910         }
911         IsPartialNSA = true;
912       }
913     }
914   }
915 
916   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
917   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
918 
919   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
920   if (D16 && AMDGPU::hasPackedD16(STI)) {
921     DstSize = (DstSize + 1) / 2;
922   }
923 
924   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
925     DstSize += 1;
926 
927   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
928     return MCDisassembler::Success;
929 
930   int NewOpcode =
931       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
932   if (NewOpcode == -1)
933     return MCDisassembler::Success;
934 
935   // Widen the register to the correct number of enabled channels.
936   unsigned NewVdata = AMDGPU::NoRegister;
937   if (DstSize != Info->VDataDwords) {
938     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
939 
940     // Get first subregister of VData
941     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
942     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
943     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
944 
945     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
946                                        &MRI.getRegClass(DataRCID));
947     if (NewVdata == AMDGPU::NoRegister) {
948       // It's possible to encode this such that the low register + enabled
949       // components exceeds the register count.
950       return MCDisassembler::Success;
951     }
952   }
953 
954   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
955   // If using partial NSA on GFX11+ widen last address register.
956   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
957   unsigned NewVAddrSA = AMDGPU::NoRegister;
958   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
959       AddrSize != Info->VAddrDwords) {
960     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
961     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
962     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
963 
964     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
965     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
966                                         &MRI.getRegClass(AddrRCID));
967     if (!NewVAddrSA)
968       return MCDisassembler::Success;
969   }
970 
971   MI.setOpcode(NewOpcode);
972 
973   if (NewVdata != AMDGPU::NoRegister) {
974     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
975 
976     if (IsAtomic) {
977       // Atomic operations have an additional operand (a copy of data)
978       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
979     }
980   }
981 
982   if (NewVAddrSA) {
983     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
984   } else if (IsNSA) {
985     assert(AddrSize <= Info->VAddrDwords);
986     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
987              MI.begin() + VAddr0Idx + Info->VAddrDwords);
988   }
989 
990   return MCDisassembler::Success;
991 }
992 
993 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
994 // decoder only adds to src_modifiers, so manually add the bits to the other
995 // operands.
996 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
997   unsigned Opc = MI.getOpcode();
998   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
999   auto Mods = collectVOPModifiers(MI, true);
1000 
1001   if (MI.getNumOperands() < DescNumOps &&
1002       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1003     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1004 
1005   if (MI.getNumOperands() < DescNumOps &&
1006       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1007     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1008                          AMDGPU::OpName::op_sel);
1009   if (MI.getNumOperands() < DescNumOps &&
1010       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1011     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1012                          AMDGPU::OpName::op_sel_hi);
1013   if (MI.getNumOperands() < DescNumOps &&
1014       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1015     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1016                          AMDGPU::OpName::neg_lo);
1017   if (MI.getNumOperands() < DescNumOps &&
1018       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1019     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1020                          AMDGPU::OpName::neg_hi);
1021 
1022   return MCDisassembler::Success;
1023 }
1024 
1025 // Create dummy old operand and insert optional operands
1026 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1027   unsigned Opc = MI.getOpcode();
1028   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1029 
1030   if (MI.getNumOperands() < DescNumOps &&
1031       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1032     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1033 
1034   if (MI.getNumOperands() < DescNumOps &&
1035       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1036     insertNamedMCOperand(MI, MCOperand::createImm(0),
1037                          AMDGPU::OpName::src0_modifiers);
1038 
1039   if (MI.getNumOperands() < DescNumOps &&
1040       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1041     insertNamedMCOperand(MI, MCOperand::createImm(0),
1042                          AMDGPU::OpName::src1_modifiers);
1043   return MCDisassembler::Success;
1044 }
1045 
1046 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1047                                                 int ImmLitIdx) const {
1048   assert(HasLiteral && "Should have decoded a literal");
1049   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1050   unsigned DescNumOps = Desc.getNumOperands();
1051   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1052                        AMDGPU::OpName::immDeferred);
1053   assert(DescNumOps == MI.getNumOperands());
1054   for (unsigned I = 0; I < DescNumOps; ++I) {
1055     auto &Op = MI.getOperand(I);
1056     auto OpType = Desc.operands()[I].OperandType;
1057     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1058                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1059     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1060         IsDeferredOp)
1061       Op.setImm(Literal);
1062   }
1063   return MCDisassembler::Success;
1064 }
1065 
1066 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1067   return getContext().getRegisterInfo()->
1068     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1069 }
1070 
1071 inline
1072 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1073                                          const Twine& ErrMsg) const {
1074   *CommentStream << "Error: " + ErrMsg;
1075 
1076   // ToDo: add support for error operands to MCInst.h
1077   // return MCOperand::createError(V);
1078   return MCOperand();
1079 }
1080 
1081 inline
1082 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1083   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1084 }
1085 
1086 inline
1087 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1088                                                unsigned Val) const {
1089   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1090   if (Val >= RegCl.getNumRegs())
1091     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1092                            ": unknown register " + Twine(Val));
1093   return createRegOperand(RegCl.getRegister(Val));
1094 }
1095 
1096 inline
1097 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1098                                                 unsigned Val) const {
1099   // ToDo: SI/CI have 104 SGPRs, VI - 102
1100   // Valery: here we accepting as much as we can, let assembler sort it out
1101   int shift = 0;
1102   switch (SRegClassID) {
1103   case AMDGPU::SGPR_32RegClassID:
1104   case AMDGPU::TTMP_32RegClassID:
1105     break;
1106   case AMDGPU::SGPR_64RegClassID:
1107   case AMDGPU::TTMP_64RegClassID:
1108     shift = 1;
1109     break;
1110   case AMDGPU::SGPR_128RegClassID:
1111   case AMDGPU::TTMP_128RegClassID:
1112   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1113   // this bundle?
1114   case AMDGPU::SGPR_256RegClassID:
1115   case AMDGPU::TTMP_256RegClassID:
1116     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1117   // this bundle?
1118   case AMDGPU::SGPR_288RegClassID:
1119   case AMDGPU::TTMP_288RegClassID:
1120   case AMDGPU::SGPR_320RegClassID:
1121   case AMDGPU::TTMP_320RegClassID:
1122   case AMDGPU::SGPR_352RegClassID:
1123   case AMDGPU::TTMP_352RegClassID:
1124   case AMDGPU::SGPR_384RegClassID:
1125   case AMDGPU::TTMP_384RegClassID:
1126   case AMDGPU::SGPR_512RegClassID:
1127   case AMDGPU::TTMP_512RegClassID:
1128     shift = 2;
1129     break;
1130   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1131   // this bundle?
1132   default:
1133     llvm_unreachable("unhandled register class");
1134   }
1135 
1136   if (Val % (1 << shift)) {
1137     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1138                    << ": scalar reg isn't aligned " << Val;
1139   }
1140 
1141   return createRegOperand(SRegClassID, Val >> shift);
1142 }
1143 
1144 // Decode Literals for insts which always have a literal in the encoding
1145 MCOperand
1146 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1147   if (HasLiteral) {
1148     assert(
1149         AMDGPU::hasVOPD(STI) &&
1150         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1151     if (Literal != Val)
1152       return errOperand(Val, "More than one unique literal is illegal");
1153   }
1154   HasLiteral = true;
1155   Literal = Val;
1156   return MCOperand::createImm(Literal);
1157 }
1158 
1159 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1160   // For now all literal constants are supposed to be unsigned integer
1161   // ToDo: deal with signed/unsigned 64-bit integer constants
1162   // ToDo: deal with float/double constants
1163   if (!HasLiteral) {
1164     if (Bytes.size() < 4) {
1165       return errOperand(0, "cannot read literal, inst bytes left " +
1166                         Twine(Bytes.size()));
1167     }
1168     HasLiteral = true;
1169     Literal = eatBytes<uint32_t>(Bytes);
1170   }
1171   return MCOperand::createImm(Literal);
1172 }
1173 
1174 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1175   using namespace AMDGPU::EncValues;
1176 
1177   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1178   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1179     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1180     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1181       // Cast prevents negative overflow.
1182 }
1183 
1184 static int64_t getInlineImmVal32(unsigned Imm) {
1185   switch (Imm) {
1186   case 240:
1187     return llvm::bit_cast<uint32_t>(0.5f);
1188   case 241:
1189     return llvm::bit_cast<uint32_t>(-0.5f);
1190   case 242:
1191     return llvm::bit_cast<uint32_t>(1.0f);
1192   case 243:
1193     return llvm::bit_cast<uint32_t>(-1.0f);
1194   case 244:
1195     return llvm::bit_cast<uint32_t>(2.0f);
1196   case 245:
1197     return llvm::bit_cast<uint32_t>(-2.0f);
1198   case 246:
1199     return llvm::bit_cast<uint32_t>(4.0f);
1200   case 247:
1201     return llvm::bit_cast<uint32_t>(-4.0f);
1202   case 248: // 1 / (2 * PI)
1203     return 0x3e22f983;
1204   default:
1205     llvm_unreachable("invalid fp inline imm");
1206   }
1207 }
1208 
1209 static int64_t getInlineImmVal64(unsigned Imm) {
1210   switch (Imm) {
1211   case 240:
1212     return llvm::bit_cast<uint64_t>(0.5);
1213   case 241:
1214     return llvm::bit_cast<uint64_t>(-0.5);
1215   case 242:
1216     return llvm::bit_cast<uint64_t>(1.0);
1217   case 243:
1218     return llvm::bit_cast<uint64_t>(-1.0);
1219   case 244:
1220     return llvm::bit_cast<uint64_t>(2.0);
1221   case 245:
1222     return llvm::bit_cast<uint64_t>(-2.0);
1223   case 246:
1224     return llvm::bit_cast<uint64_t>(4.0);
1225   case 247:
1226     return llvm::bit_cast<uint64_t>(-4.0);
1227   case 248: // 1 / (2 * PI)
1228     return 0x3fc45f306dc9c882;
1229   default:
1230     llvm_unreachable("invalid fp inline imm");
1231   }
1232 }
1233 
1234 static int64_t getInlineImmVal16(unsigned Imm) {
1235   switch (Imm) {
1236   case 240:
1237     return 0x3800;
1238   case 241:
1239     return 0xB800;
1240   case 242:
1241     return 0x3C00;
1242   case 243:
1243     return 0xBC00;
1244   case 244:
1245     return 0x4000;
1246   case 245:
1247     return 0xC000;
1248   case 246:
1249     return 0x4400;
1250   case 247:
1251     return 0xC400;
1252   case 248: // 1 / (2 * PI)
1253     return 0x3118;
1254   default:
1255     llvm_unreachable("invalid fp inline imm");
1256   }
1257 }
1258 
1259 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1260   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1261       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1262 
1263   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1264   // ImmWidth 0 is a default case where operand should not allow immediates.
1265   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1266   // use it to print verbose error message.
1267   switch (ImmWidth) {
1268   case 0:
1269   case 32:
1270     return MCOperand::createImm(getInlineImmVal32(Imm));
1271   case 64:
1272     return MCOperand::createImm(getInlineImmVal64(Imm));
1273   case 16:
1274     return MCOperand::createImm(getInlineImmVal16(Imm));
1275   default:
1276     llvm_unreachable("implement me");
1277   }
1278 }
1279 
1280 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1281   using namespace AMDGPU;
1282 
1283   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1284   switch (Width) {
1285   default: // fall
1286   case OPW32:
1287   case OPW16:
1288   case OPWV216:
1289     return VGPR_32RegClassID;
1290   case OPW64:
1291   case OPWV232: return VReg_64RegClassID;
1292   case OPW96: return VReg_96RegClassID;
1293   case OPW128: return VReg_128RegClassID;
1294   case OPW160: return VReg_160RegClassID;
1295   case OPW256: return VReg_256RegClassID;
1296   case OPW288: return VReg_288RegClassID;
1297   case OPW320: return VReg_320RegClassID;
1298   case OPW352: return VReg_352RegClassID;
1299   case OPW384: return VReg_384RegClassID;
1300   case OPW512: return VReg_512RegClassID;
1301   case OPW1024: return VReg_1024RegClassID;
1302   }
1303 }
1304 
1305 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1306   using namespace AMDGPU;
1307 
1308   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1309   switch (Width) {
1310   default: // fall
1311   case OPW32:
1312   case OPW16:
1313   case OPWV216:
1314     return AGPR_32RegClassID;
1315   case OPW64:
1316   case OPWV232: return AReg_64RegClassID;
1317   case OPW96: return AReg_96RegClassID;
1318   case OPW128: return AReg_128RegClassID;
1319   case OPW160: return AReg_160RegClassID;
1320   case OPW256: return AReg_256RegClassID;
1321   case OPW288: return AReg_288RegClassID;
1322   case OPW320: return AReg_320RegClassID;
1323   case OPW352: return AReg_352RegClassID;
1324   case OPW384: return AReg_384RegClassID;
1325   case OPW512: return AReg_512RegClassID;
1326   case OPW1024: return AReg_1024RegClassID;
1327   }
1328 }
1329 
1330 
1331 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1332   using namespace AMDGPU;
1333 
1334   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1335   switch (Width) {
1336   default: // fall
1337   case OPW32:
1338   case OPW16:
1339   case OPWV216:
1340     return SGPR_32RegClassID;
1341   case OPW64:
1342   case OPWV232: return SGPR_64RegClassID;
1343   case OPW96: return SGPR_96RegClassID;
1344   case OPW128: return SGPR_128RegClassID;
1345   case OPW160: return SGPR_160RegClassID;
1346   case OPW256: return SGPR_256RegClassID;
1347   case OPW288: return SGPR_288RegClassID;
1348   case OPW320: return SGPR_320RegClassID;
1349   case OPW352: return SGPR_352RegClassID;
1350   case OPW384: return SGPR_384RegClassID;
1351   case OPW512: return SGPR_512RegClassID;
1352   }
1353 }
1354 
1355 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1356   using namespace AMDGPU;
1357 
1358   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1359   switch (Width) {
1360   default: // fall
1361   case OPW32:
1362   case OPW16:
1363   case OPWV216:
1364     return TTMP_32RegClassID;
1365   case OPW64:
1366   case OPWV232: return TTMP_64RegClassID;
1367   case OPW128: return TTMP_128RegClassID;
1368   case OPW256: return TTMP_256RegClassID;
1369   case OPW288: return TTMP_288RegClassID;
1370   case OPW320: return TTMP_320RegClassID;
1371   case OPW352: return TTMP_352RegClassID;
1372   case OPW384: return TTMP_384RegClassID;
1373   case OPW512: return TTMP_512RegClassID;
1374   }
1375 }
1376 
1377 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1378   using namespace AMDGPU::EncValues;
1379 
1380   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1381   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1382 
1383   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1384 }
1385 
1386 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1387                                           bool MandatoryLiteral,
1388                                           unsigned ImmWidth) const {
1389   using namespace AMDGPU::EncValues;
1390 
1391   assert(Val < 1024); // enum10
1392 
1393   bool IsAGPR = Val & 512;
1394   Val &= 511;
1395 
1396   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1397     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1398                                    : getVgprClassId(Width), Val - VGPR_MIN);
1399   }
1400   if (Val <= SGPR_MAX) {
1401     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1402     static_assert(SGPR_MIN == 0);
1403     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1404   }
1405 
1406   int TTmpIdx = getTTmpIdx(Val);
1407   if (TTmpIdx >= 0) {
1408     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1409   }
1410 
1411   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1412     return decodeIntImmed(Val);
1413 
1414   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1415     return decodeFPImmed(ImmWidth, Val);
1416 
1417   if (Val == LITERAL_CONST) {
1418     if (MandatoryLiteral)
1419       // Keep a sentinel value for deferred setting
1420       return MCOperand::createImm(LITERAL_CONST);
1421     else
1422       return decodeLiteralConstant();
1423   }
1424 
1425   switch (Width) {
1426   case OPW32:
1427   case OPW16:
1428   case OPWV216:
1429     return decodeSpecialReg32(Val);
1430   case OPW64:
1431   case OPWV232:
1432     return decodeSpecialReg64(Val);
1433   default:
1434     llvm_unreachable("unexpected immediate type");
1435   }
1436 }
1437 
1438 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1439 // opposite of bit 0 of DstX.
1440 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1441                                                unsigned Val) const {
1442   int VDstXInd =
1443       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1444   assert(VDstXInd != -1);
1445   assert(Inst.getOperand(VDstXInd).isReg());
1446   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1447   Val |= ~XDstReg & 1;
1448   auto Width = llvm::AMDGPUDisassembler::OPW32;
1449   return createRegOperand(getVgprClassId(Width), Val);
1450 }
1451 
1452 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1453   using namespace AMDGPU;
1454 
1455   switch (Val) {
1456   // clang-format off
1457   case 102: return createRegOperand(FLAT_SCR_LO);
1458   case 103: return createRegOperand(FLAT_SCR_HI);
1459   case 104: return createRegOperand(XNACK_MASK_LO);
1460   case 105: return createRegOperand(XNACK_MASK_HI);
1461   case 106: return createRegOperand(VCC_LO);
1462   case 107: return createRegOperand(VCC_HI);
1463   case 108: return createRegOperand(TBA_LO);
1464   case 109: return createRegOperand(TBA_HI);
1465   case 110: return createRegOperand(TMA_LO);
1466   case 111: return createRegOperand(TMA_HI);
1467   case 124:
1468     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1469   case 125:
1470     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1471   case 126: return createRegOperand(EXEC_LO);
1472   case 127: return createRegOperand(EXEC_HI);
1473   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1474   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1475   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1476   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1477   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1478   case 251: return createRegOperand(SRC_VCCZ);
1479   case 252: return createRegOperand(SRC_EXECZ);
1480   case 253: return createRegOperand(SRC_SCC);
1481   case 254: return createRegOperand(LDS_DIRECT);
1482   default: break;
1483     // clang-format on
1484   }
1485   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1486 }
1487 
1488 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1489   using namespace AMDGPU;
1490 
1491   switch (Val) {
1492   case 102: return createRegOperand(FLAT_SCR);
1493   case 104: return createRegOperand(XNACK_MASK);
1494   case 106: return createRegOperand(VCC);
1495   case 108: return createRegOperand(TBA);
1496   case 110: return createRegOperand(TMA);
1497   case 124:
1498     if (isGFX11Plus())
1499       return createRegOperand(SGPR_NULL);
1500     break;
1501   case 125:
1502     if (!isGFX11Plus())
1503       return createRegOperand(SGPR_NULL);
1504     break;
1505   case 126: return createRegOperand(EXEC);
1506   case 235: return createRegOperand(SRC_SHARED_BASE);
1507   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1508   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1509   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1510   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1511   case 251: return createRegOperand(SRC_VCCZ);
1512   case 252: return createRegOperand(SRC_EXECZ);
1513   case 253: return createRegOperand(SRC_SCC);
1514   default: break;
1515   }
1516   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1517 }
1518 
1519 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1520                                             const unsigned Val,
1521                                             unsigned ImmWidth) const {
1522   using namespace AMDGPU::SDWA;
1523   using namespace AMDGPU::EncValues;
1524 
1525   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1526       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1527     // XXX: cast to int is needed to avoid stupid warning:
1528     // compare with unsigned is always true
1529     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1530         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1531       return createRegOperand(getVgprClassId(Width),
1532                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1533     }
1534     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1535         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1536                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1537       return createSRegOperand(getSgprClassId(Width),
1538                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1539     }
1540     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1541         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1542       return createSRegOperand(getTtmpClassId(Width),
1543                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1544     }
1545 
1546     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1547 
1548     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1549       return decodeIntImmed(SVal);
1550 
1551     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1552       return decodeFPImmed(ImmWidth, SVal);
1553 
1554     return decodeSpecialReg32(SVal);
1555   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1556     return createRegOperand(getVgprClassId(Width), Val);
1557   }
1558   llvm_unreachable("unsupported target");
1559 }
1560 
1561 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1562   return decodeSDWASrc(OPW16, Val, 16);
1563 }
1564 
1565 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1566   return decodeSDWASrc(OPW32, Val, 32);
1567 }
1568 
1569 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1570   using namespace AMDGPU::SDWA;
1571 
1572   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1573           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1574          "SDWAVopcDst should be present only on GFX9+");
1575 
1576   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1577 
1578   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1579     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1580 
1581     int TTmpIdx = getTTmpIdx(Val);
1582     if (TTmpIdx >= 0) {
1583       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1584       return createSRegOperand(TTmpClsId, TTmpIdx);
1585     } else if (Val > SGPR_MAX) {
1586       return IsWave64 ? decodeSpecialReg64(Val)
1587                       : decodeSpecialReg32(Val);
1588     } else {
1589       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1590     }
1591   } else {
1592     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1593   }
1594 }
1595 
1596 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1597   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1598              ? decodeSrcOp(OPW64, Val)
1599              : decodeSrcOp(OPW32, Val);
1600 }
1601 
1602 bool AMDGPUDisassembler::isVI() const {
1603   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1604 }
1605 
1606 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1607 
1608 bool AMDGPUDisassembler::isGFX90A() const {
1609   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1610 }
1611 
1612 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1613 
1614 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1615 
1616 bool AMDGPUDisassembler::isGFX10Plus() const {
1617   return AMDGPU::isGFX10Plus(STI);
1618 }
1619 
1620 bool AMDGPUDisassembler::isGFX11() const {
1621   return STI.hasFeature(AMDGPU::FeatureGFX11);
1622 }
1623 
1624 bool AMDGPUDisassembler::isGFX11Plus() const {
1625   return AMDGPU::isGFX11Plus(STI);
1626 }
1627 
1628 
1629 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1630   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1631 }
1632 
1633 bool AMDGPUDisassembler::hasKernargPreload() const {
1634   return AMDGPU::hasKernargPreload(STI);
1635 }
1636 
1637 //===----------------------------------------------------------------------===//
1638 // AMDGPU specific symbol handling
1639 //===----------------------------------------------------------------------===//
1640 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1641 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1642   do {                                                                         \
1643     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1644   } while (0)
1645 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1646   do {                                                                         \
1647     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1648              << GET_FIELD(MASK) << '\n';                                       \
1649   } while (0)
1650 
1651 // NOLINTNEXTLINE(readability-identifier-naming)
1652 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1653     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1654   using namespace amdhsa;
1655   StringRef Indent = "\t";
1656 
1657   // We cannot accurately backward compute #VGPRs used from
1658   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1659   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1660   // simply calculate the inverse of what the assembler does.
1661 
1662   uint32_t GranulatedWorkitemVGPRCount =
1663       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1664 
1665   uint32_t NextFreeVGPR =
1666       (GranulatedWorkitemVGPRCount + 1) *
1667       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1668 
1669   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1670 
1671   // We cannot backward compute values used to calculate
1672   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1673   // directives can't be computed:
1674   // .amdhsa_reserve_vcc
1675   // .amdhsa_reserve_flat_scratch
1676   // .amdhsa_reserve_xnack_mask
1677   // They take their respective default values if not specified in the assembly.
1678   //
1679   // GRANULATED_WAVEFRONT_SGPR_COUNT
1680   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1681   //
1682   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1683   // are set to 0. So while disassembling we consider that:
1684   //
1685   // GRANULATED_WAVEFRONT_SGPR_COUNT
1686   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1687   //
1688   // The disassembler cannot recover the original values of those 3 directives.
1689 
1690   uint32_t GranulatedWavefrontSGPRCount =
1691       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1692 
1693   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1694     return MCDisassembler::Fail;
1695 
1696   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1697                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1698 
1699   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1700   if (!hasArchitectedFlatScratch())
1701     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1702   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1703   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1704 
1705   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1706     return MCDisassembler::Fail;
1707 
1708   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1709                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1710   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1711                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1712   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1713                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1714   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1715                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1716 
1717   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1718     return MCDisassembler::Fail;
1719 
1720   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1721 
1722   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1723     return MCDisassembler::Fail;
1724 
1725   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1726 
1727   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1728     return MCDisassembler::Fail;
1729 
1730   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1731     return MCDisassembler::Fail;
1732 
1733   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1734 
1735   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1736     return MCDisassembler::Fail;
1737 
1738   if (isGFX10Plus()) {
1739     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1740                     COMPUTE_PGM_RSRC1_WGP_MODE);
1741     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1742     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1743   }
1744   return MCDisassembler::Success;
1745 }
1746 
1747 // NOLINTNEXTLINE(readability-identifier-naming)
1748 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1749     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1750   using namespace amdhsa;
1751   StringRef Indent = "\t";
1752   if (hasArchitectedFlatScratch())
1753     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1754                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1755   else
1756     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1757                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1758   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1759                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1760   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1761                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1762   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1763                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1764   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1765                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1766   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1767                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1768 
1769   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1770     return MCDisassembler::Fail;
1771 
1772   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1773     return MCDisassembler::Fail;
1774 
1775   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1776     return MCDisassembler::Fail;
1777 
1778   PRINT_DIRECTIVE(
1779       ".amdhsa_exception_fp_ieee_invalid_op",
1780       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1781   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1782                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1783   PRINT_DIRECTIVE(
1784       ".amdhsa_exception_fp_ieee_div_zero",
1785       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1786   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1787                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1788   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1789                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1790   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1791                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1792   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1793                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1794 
1795   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1796     return MCDisassembler::Fail;
1797 
1798   return MCDisassembler::Success;
1799 }
1800 
1801 // NOLINTNEXTLINE(readability-identifier-naming)
1802 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1803     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1804   using namespace amdhsa;
1805   StringRef Indent = "\t";
1806   if (isGFX90A()) {
1807     KdStream << Indent << ".amdhsa_accum_offset "
1808              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
1809              << '\n';
1810     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
1811       return MCDisassembler::Fail;
1812     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
1813     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
1814       return MCDisassembler::Fail;
1815   } else if (isGFX10Plus()) {
1816     if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
1817       PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
1818                       COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1819     } else {
1820       PRINT_PSEUDO_DIRECTIVE_COMMENT(
1821           "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT);
1822     }
1823     PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
1824                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_INST_PREF_SIZE);
1825     PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
1826                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START);
1827     PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
1828                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_END);
1829     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED0)
1830       return MCDisassembler::Fail;
1831     PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
1832                                    COMPUTE_PGM_RSRC3_GFX10_PLUS_TRAP_ON_START);
1833   } else if (FourByteBuffer) {
1834     return MCDisassembler::Fail;
1835   }
1836   return MCDisassembler::Success;
1837 }
1838 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
1839 #undef PRINT_DIRECTIVE
1840 #undef GET_FIELD
1841 
1842 MCDisassembler::DecodeStatus
1843 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1844     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1845     raw_string_ostream &KdStream) const {
1846 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1847   do {                                                                         \
1848     KdStream << Indent << DIRECTIVE " "                                        \
1849              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1850   } while (0)
1851 
1852   uint16_t TwoByteBuffer = 0;
1853   uint32_t FourByteBuffer = 0;
1854 
1855   StringRef ReservedBytes;
1856   StringRef Indent = "\t";
1857 
1858   assert(Bytes.size() == 64);
1859   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1860 
1861   switch (Cursor.tell()) {
1862   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1863     FourByteBuffer = DE.getU32(Cursor);
1864     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1865              << '\n';
1866     return MCDisassembler::Success;
1867 
1868   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1869     FourByteBuffer = DE.getU32(Cursor);
1870     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1871              << FourByteBuffer << '\n';
1872     return MCDisassembler::Success;
1873 
1874   case amdhsa::KERNARG_SIZE_OFFSET:
1875     FourByteBuffer = DE.getU32(Cursor);
1876     KdStream << Indent << ".amdhsa_kernarg_size "
1877              << FourByteBuffer << '\n';
1878     return MCDisassembler::Success;
1879 
1880   case amdhsa::RESERVED0_OFFSET:
1881     // 4 reserved bytes, must be 0.
1882     ReservedBytes = DE.getBytes(Cursor, 4);
1883     for (int I = 0; I < 4; ++I) {
1884       if (ReservedBytes[I] != 0) {
1885         return MCDisassembler::Fail;
1886       }
1887     }
1888     return MCDisassembler::Success;
1889 
1890   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1891     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1892     // So far no directive controls this for Code Object V3, so simply skip for
1893     // disassembly.
1894     DE.skip(Cursor, 8);
1895     return MCDisassembler::Success;
1896 
1897   case amdhsa::RESERVED1_OFFSET:
1898     // 20 reserved bytes, must be 0.
1899     ReservedBytes = DE.getBytes(Cursor, 20);
1900     for (int I = 0; I < 20; ++I) {
1901       if (ReservedBytes[I] != 0) {
1902         return MCDisassembler::Fail;
1903       }
1904     }
1905     return MCDisassembler::Success;
1906 
1907   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1908     FourByteBuffer = DE.getU32(Cursor);
1909     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
1910 
1911   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1912     FourByteBuffer = DE.getU32(Cursor);
1913     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
1914 
1915   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1916     FourByteBuffer = DE.getU32(Cursor);
1917     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
1918 
1919   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1920     using namespace amdhsa;
1921     TwoByteBuffer = DE.getU16(Cursor);
1922 
1923     if (!hasArchitectedFlatScratch())
1924       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1925                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1926     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1927                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1928     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1929                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1930     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1931                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1932     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1933                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1934     if (!hasArchitectedFlatScratch())
1935       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1936                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1937     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1938                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1939 
1940     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1941       return MCDisassembler::Fail;
1942 
1943     // Reserved for GFX9
1944     if (isGFX9() &&
1945         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1946       return MCDisassembler::Fail;
1947     } else if (isGFX10Plus()) {
1948       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1949                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1950     }
1951 
1952     if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
1953       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
1954                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
1955 
1956     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1957       return MCDisassembler::Fail;
1958 
1959     return MCDisassembler::Success;
1960 
1961   case amdhsa::KERNARG_PRELOAD_OFFSET:
1962     using namespace amdhsa;
1963     TwoByteBuffer = DE.getU16(Cursor);
1964     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
1965       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
1966                       KERNARG_PRELOAD_SPEC_LENGTH);
1967     }
1968 
1969     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
1970       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
1971                       KERNARG_PRELOAD_SPEC_OFFSET);
1972     }
1973     return MCDisassembler::Success;
1974 
1975   case amdhsa::RESERVED3_OFFSET:
1976     // 4 bytes from here are reserved, must be 0.
1977     ReservedBytes = DE.getBytes(Cursor, 4);
1978     for (int I = 0; I < 4; ++I) {
1979       if (ReservedBytes[I] != 0)
1980         return MCDisassembler::Fail;
1981     }
1982     return MCDisassembler::Success;
1983 
1984   default:
1985     llvm_unreachable("Unhandled index. Case statements cover everything.");
1986     return MCDisassembler::Fail;
1987   }
1988 #undef PRINT_DIRECTIVE
1989 }
1990 
1991 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1992     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1993   // CP microcode requires the kernel descriptor to be 64 aligned.
1994   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1995     return MCDisassembler::Fail;
1996 
1997   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
1998   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
1999   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2000   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2001   // when required.
2002   if (isGFX10Plus()) {
2003     uint16_t KernelCodeProperties =
2004         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2005                                 support::endianness::little);
2006     EnableWavefrontSize32 =
2007         AMDHSA_BITS_GET(KernelCodeProperties,
2008                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2009   }
2010 
2011   std::string Kd;
2012   raw_string_ostream KdStream(Kd);
2013   KdStream << ".amdhsa_kernel " << KdName << '\n';
2014 
2015   DataExtractor::Cursor C(0);
2016   while (C && C.tell() < Bytes.size()) {
2017     MCDisassembler::DecodeStatus Status =
2018         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2019 
2020     cantFail(C.takeError());
2021 
2022     if (Status == MCDisassembler::Fail)
2023       return MCDisassembler::Fail;
2024   }
2025   KdStream << ".end_amdhsa_kernel\n";
2026   outs() << KdStream.str();
2027   return MCDisassembler::Success;
2028 }
2029 
2030 std::optional<MCDisassembler::DecodeStatus>
2031 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2032                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2033                                   raw_ostream &CStream) const {
2034   // Right now only kernel descriptor needs to be handled.
2035   // We ignore all other symbols for target specific handling.
2036   // TODO:
2037   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2038   // Object V2 and V3 when symbols are marked protected.
2039 
2040   // amd_kernel_code_t for Code Object V2.
2041   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2042     Size = 256;
2043     return MCDisassembler::Fail;
2044   }
2045 
2046   // Code Object V3 kernel descriptors.
2047   StringRef Name = Symbol.Name;
2048   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2049     Size = 64; // Size = 64 regardless of success or failure.
2050     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2051   }
2052   return std::nullopt;
2053 }
2054 
2055 //===----------------------------------------------------------------------===//
2056 // AMDGPUSymbolizer
2057 //===----------------------------------------------------------------------===//
2058 
2059 // Try to find symbol name for specified label
2060 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2061     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2062     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2063     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2064 
2065   if (!IsBranch) {
2066     return false;
2067   }
2068 
2069   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2070   if (!Symbols)
2071     return false;
2072 
2073   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2074     return Val.Addr == static_cast<uint64_t>(Value) &&
2075            Val.Type == ELF::STT_NOTYPE;
2076   });
2077   if (Result != Symbols->end()) {
2078     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2079     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2080     Inst.addOperand(MCOperand::createExpr(Add));
2081     return true;
2082   }
2083   // Add to list of referenced addresses, so caller can synthesize a label.
2084   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2085   return false;
2086 }
2087 
2088 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2089                                                        int64_t Value,
2090                                                        uint64_t Address) {
2091   llvm_unreachable("unimplemented");
2092 }
2093 
2094 //===----------------------------------------------------------------------===//
2095 // Initialization
2096 //===----------------------------------------------------------------------===//
2097 
2098 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2099                               LLVMOpInfoCallback /*GetOpInfo*/,
2100                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2101                               void *DisInfo,
2102                               MCContext *Ctx,
2103                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2104   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2105 }
2106 
2107 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2108                                                 const MCSubtargetInfo &STI,
2109                                                 MCContext &Ctx) {
2110   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2111 }
2112 
2113 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2114   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2115                                          createAMDGPUDisassembler);
2116   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2117                                        createAMDGPUSymbolizer);
2118 }
2119