xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision f6a8eb98b13ee50c67ecf4804461a23fba7398aa)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUAsmUtils.h"
25 #include "Utils/AMDGPUBaseInfo.h"
26 #include "llvm-c/DisassemblerTypes.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDecoderOps.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/MC/MCSubtargetInfo.h"
35 #include "llvm/MC/TargetRegistry.h"
36 #include "llvm/Support/AMDHSAKernelDescriptor.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "amdgpu-disassembler"
41 
42 #define SGPR_MAX                                                               \
43   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
44                  : AMDGPU::EncValues::SGPR_MAX_SI)
45 
46 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
47 
48 static const MCSubtargetInfo &addDefaultWaveSize(const MCSubtargetInfo &STI,
49                                                  MCContext &Ctx) {
50   if (!STI.hasFeature(AMDGPU::FeatureWavefrontSize64) &&
51       !STI.hasFeature(AMDGPU::FeatureWavefrontSize32)) {
52     MCSubtargetInfo &STICopy = Ctx.getSubtargetCopy(STI);
53     // If there is no default wave size it must be a generation before gfx10,
54     // these have FeatureWavefrontSize64 in their definition already. For gfx10+
55     // set wave32 as a default.
56     STICopy.ToggleFeature(AMDGPU::FeatureWavefrontSize32);
57     return STICopy;
58   }
59 
60   return STI;
61 }
62 
63 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
64                                        MCContext &Ctx, MCInstrInfo const *MCII)
65     : MCDisassembler(addDefaultWaveSize(STI, Ctx), Ctx), MCII(MCII),
66       MRI(*Ctx.getRegisterInfo()), MAI(*Ctx.getAsmInfo()),
67       TargetMaxInstBytes(MAI.getMaxInstLength(&STI)),
68       CodeObjectVersion(AMDGPU::getDefaultAMDHSACodeObjectVersion()) {
69   // ToDo: AMDGPUDisassembler supports only VI ISA.
70   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
71     report_fatal_error("Disassembly not yet supported for subtarget");
72 
73   for (auto [Symbol, Code] : AMDGPU::UCVersion::getGFXVersions())
74     createConstantSymbolExpr(Symbol, Code);
75 
76   UCVersionW64Expr = createConstantSymbolExpr("UC_VERSION_W64_BIT", 0x2000);
77   UCVersionW32Expr = createConstantSymbolExpr("UC_VERSION_W32_BIT", 0x4000);
78   UCVersionMDPExpr = createConstantSymbolExpr("UC_VERSION_MDP_BIT", 0x8000);
79 }
80 
81 void AMDGPUDisassembler::setABIVersion(unsigned Version) {
82   CodeObjectVersion = AMDGPU::getAMDHSACodeObjectVersion(Version);
83 }
84 
85 inline static MCDisassembler::DecodeStatus
86 addOperand(MCInst &Inst, const MCOperand& Opnd) {
87   Inst.addOperand(Opnd);
88   return Opnd.isValid() ?
89     MCDisassembler::Success :
90     MCDisassembler::Fail;
91 }
92 
93 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
94                                 uint16_t NameIdx) {
95   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
96   if (OpIdx != -1) {
97     auto I = MI.begin();
98     std::advance(I, OpIdx);
99     MI.insert(I, Op);
100   }
101   return OpIdx;
102 }
103 
104 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
105                                        uint64_t Addr,
106                                        const MCDisassembler *Decoder) {
107   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
108 
109   // Our branches take a simm16.
110   int64_t Offset = SignExtend64<16>(Imm) * 4 + 4 + Addr;
111 
112   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
113     return MCDisassembler::Success;
114   return addOperand(Inst, MCOperand::createImm(Imm));
115 }
116 
117 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
118                                      const MCDisassembler *Decoder) {
119   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
120   int64_t Offset;
121   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
122     Offset = SignExtend64<24>(Imm);
123   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
124     Offset = Imm & 0xFFFFF;
125   } else { // GFX9+ supports 21-bit signed offsets.
126     Offset = SignExtend64<21>(Imm);
127   }
128   return addOperand(Inst, MCOperand::createImm(Offset));
129 }
130 
131 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
132                                   const MCDisassembler *Decoder) {
133   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
134   return addOperand(Inst, DAsm->decodeBoolReg(Val));
135 }
136 
137 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
138                                        uint64_t Addr,
139                                        const MCDisassembler *Decoder) {
140   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
141   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
142 }
143 
144 static DecodeStatus decodeDpp8FI(MCInst &Inst, unsigned Val, uint64_t Addr,
145                                  const MCDisassembler *Decoder) {
146   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
147   return addOperand(Inst, DAsm->decodeDpp8FI(Val));
148 }
149 
150 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
151   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
152                                         uint64_t /*Addr*/,                     \
153                                         const MCDisassembler *Decoder) {       \
154     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
155     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
156   }
157 
158 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
159 // number of register. Used by VGPR only and AGPR only operands.
160 #define DECODE_OPERAND_REG_8(RegClass)                                         \
161   static DecodeStatus Decode##RegClass##RegisterClass(                         \
162       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
163       const MCDisassembler *Decoder) {                                         \
164     assert(Imm < (1 << 8) && "8-bit encoding");                                \
165     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
166     return addOperand(                                                         \
167         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
168   }
169 
170 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
171                      ImmWidth)                                                 \
172   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
173                            const MCDisassembler *Decoder) {                    \
174     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
175     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
176     return addOperand(Inst,                                                    \
177                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
178                                         MandatoryLiteral, ImmWidth));          \
179   }
180 
181 static DecodeStatus decodeSrcOp(MCInst &Inst, unsigned EncSize,
182                                 AMDGPUDisassembler::OpWidthTy OpWidth,
183                                 unsigned Imm, unsigned EncImm,
184                                 bool MandatoryLiteral, unsigned ImmWidth,
185                                 AMDGPU::OperandSemantics Sema,
186                                 const MCDisassembler *Decoder) {
187   assert(Imm < (1U << EncSize) && "Operand doesn't fit encoding!");
188   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
189   return addOperand(Inst, DAsm->decodeSrcOp(OpWidth, EncImm, MandatoryLiteral,
190                                             ImmWidth, Sema));
191 }
192 
193 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
194 // get register class. Used by SGPR only operands.
195 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
196   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
197 
198 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
199 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
200 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
201 // Used by AV_ register classes (AGPR or VGPR only register operands).
202 template <AMDGPUDisassembler::OpWidthTy OpWidth>
203 static DecodeStatus decodeAV10(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
204                                const MCDisassembler *Decoder) {
205   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm | AMDGPU::EncValues::IS_VGPR,
206                      false, 0, AMDGPU::OperandSemantics::INT, Decoder);
207 }
208 
209 // Decoder for Src(9-bit encoding) registers only.
210 template <AMDGPUDisassembler::OpWidthTy OpWidth>
211 static DecodeStatus decodeSrcReg9(MCInst &Inst, unsigned Imm,
212                                   uint64_t /* Addr */,
213                                   const MCDisassembler *Decoder) {
214   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, 0,
215                      AMDGPU::OperandSemantics::INT, Decoder);
216 }
217 
218 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
219 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
220 // only.
221 template <AMDGPUDisassembler::OpWidthTy OpWidth>
222 static DecodeStatus decodeSrcA9(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
223                                 const MCDisassembler *Decoder) {
224   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, 0,
225                      AMDGPU::OperandSemantics::INT, Decoder);
226 }
227 
228 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
229 // Imm{9} is acc, registers only.
230 template <AMDGPUDisassembler::OpWidthTy OpWidth>
231 static DecodeStatus decodeSrcAV10(MCInst &Inst, unsigned Imm,
232                                   uint64_t /* Addr */,
233                                   const MCDisassembler *Decoder) {
234   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm, false, 0,
235                      AMDGPU::OperandSemantics::INT, Decoder);
236 }
237 
238 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
239 // register from RegClass or immediate. Registers that don't belong to RegClass
240 // will be decoded and InstPrinter will report warning. Immediate will be
241 // decoded into constant of size ImmWidth, should match width of immediate used
242 // by OperandType (important for floating point types).
243 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
244           unsigned OperandSemantics>
245 static DecodeStatus decodeSrcRegOrImm9(MCInst &Inst, unsigned Imm,
246                                        uint64_t /* Addr */,
247                                        const MCDisassembler *Decoder) {
248   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, ImmWidth,
249                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
250 }
251 
252 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
253 // and decode using 'enum10' from decodeSrcOp.
254 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
255           unsigned OperandSemantics>
256 static DecodeStatus decodeSrcRegOrImmA9(MCInst &Inst, unsigned Imm,
257                                         uint64_t /* Addr */,
258                                         const MCDisassembler *Decoder) {
259   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, ImmWidth,
260                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
261 }
262 
263 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
264           unsigned OperandSemantics>
265 static DecodeStatus decodeSrcRegOrImmDeferred9(MCInst &Inst, unsigned Imm,
266                                                uint64_t /* Addr */,
267                                                const MCDisassembler *Decoder) {
268   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, true, ImmWidth,
269                      (AMDGPU::OperandSemantics)OperandSemantics, Decoder);
270 }
271 
272 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
273 // when RegisterClass is used as an operand. Most often used for destination
274 // operands.
275 
276 DECODE_OPERAND_REG_8(VGPR_32)
277 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
278 DECODE_OPERAND_REG_8(VReg_64)
279 DECODE_OPERAND_REG_8(VReg_96)
280 DECODE_OPERAND_REG_8(VReg_128)
281 DECODE_OPERAND_REG_8(VReg_256)
282 DECODE_OPERAND_REG_8(VReg_288)
283 DECODE_OPERAND_REG_8(VReg_352)
284 DECODE_OPERAND_REG_8(VReg_384)
285 DECODE_OPERAND_REG_8(VReg_512)
286 DECODE_OPERAND_REG_8(VReg_1024)
287 
288 DECODE_OPERAND_REG_7(SReg_32, OPW32)
289 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
290 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
291 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
292 DECODE_OPERAND_REG_7(SReg_64, OPW64)
293 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
294 DECODE_OPERAND_REG_7(SReg_64_XEXEC_XNULL, OPW64)
295 DECODE_OPERAND_REG_7(SReg_96, OPW96)
296 DECODE_OPERAND_REG_7(SReg_128, OPW128)
297 DECODE_OPERAND_REG_7(SReg_256, OPW256)
298 DECODE_OPERAND_REG_7(SReg_512, OPW512)
299 
300 DECODE_OPERAND_REG_8(AGPR_32)
301 DECODE_OPERAND_REG_8(AReg_64)
302 DECODE_OPERAND_REG_8(AReg_128)
303 DECODE_OPERAND_REG_8(AReg_256)
304 DECODE_OPERAND_REG_8(AReg_512)
305 DECODE_OPERAND_REG_8(AReg_1024)
306 
307 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
308                                                uint64_t /*Addr*/,
309                                                const MCDisassembler *Decoder) {
310   assert(isUInt<10>(Imm) && "10-bit encoding expected");
311   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
312 
313   bool IsHi = Imm & (1 << 9);
314   unsigned RegIdx = Imm & 0xff;
315   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
316   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
317 }
318 
319 static DecodeStatus
320 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
321                                  const MCDisassembler *Decoder) {
322   assert(isUInt<8>(Imm) && "8-bit encoding expected");
323 
324   bool IsHi = Imm & (1 << 7);
325   unsigned RegIdx = Imm & 0x7f;
326   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
327   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
328 }
329 
330 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
331           unsigned OperandSemantics>
332 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
333                                                 uint64_t /*Addr*/,
334                                                 const MCDisassembler *Decoder) {
335   assert(isUInt<9>(Imm) && "9-bit encoding expected");
336 
337   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
338   if (Imm & AMDGPU::EncValues::IS_VGPR) {
339     bool IsHi = Imm & (1 << 7);
340     unsigned RegIdx = Imm & 0x7f;
341     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
342   }
343   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(
344                               OpWidth, Imm & 0xFF, false, ImmWidth,
345                               (AMDGPU::OperandSemantics)OperandSemantics));
346 }
347 
348 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth,
349           unsigned OperandSemantics>
350 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
351                                           uint64_t /*Addr*/,
352                                           const MCDisassembler *Decoder) {
353   assert(isUInt<10>(Imm) && "10-bit encoding expected");
354 
355   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
356   if (Imm & AMDGPU::EncValues::IS_VGPR) {
357     bool IsHi = Imm & (1 << 9);
358     unsigned RegIdx = Imm & 0xff;
359     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
360   }
361   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(
362                               OpWidth, Imm & 0xFF, false, ImmWidth,
363                               (AMDGPU::OperandSemantics)OperandSemantics));
364 }
365 
366 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
367                                          uint64_t Addr,
368                                          const MCDisassembler *Decoder) {
369   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
370   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
371 }
372 
373 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
374                                           uint64_t Addr, const void *Decoder) {
375   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
376   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
377 }
378 
379 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
380                           const MCRegisterInfo *MRI) {
381   if (OpIdx < 0)
382     return false;
383 
384   const MCOperand &Op = Inst.getOperand(OpIdx);
385   if (!Op.isReg())
386     return false;
387 
388   MCRegister Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
389   auto Reg = Sub ? Sub : Op.getReg();
390   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
391 }
392 
393 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
394                                  AMDGPUDisassembler::OpWidthTy Opw,
395                                  const MCDisassembler *Decoder) {
396   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
397   if (!DAsm->isGFX90A()) {
398     Imm &= 511;
399   } else {
400     // If atomic has both vdata and vdst their register classes are tied.
401     // The bit is decoded along with the vdst, first operand. We need to
402     // change register class to AGPR if vdst was AGPR.
403     // If a DS instruction has both data0 and data1 their register classes
404     // are also tied.
405     unsigned Opc = Inst.getOpcode();
406     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
407     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
408                                                         : AMDGPU::OpName::vdata;
409     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
410     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
411     if ((int)Inst.getNumOperands() == DataIdx) {
412       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
413       if (IsAGPROperand(Inst, DstIdx, MRI))
414         Imm |= 512;
415     }
416 
417     if (TSFlags & SIInstrFlags::DS) {
418       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
419       if ((int)Inst.getNumOperands() == Data2Idx &&
420           IsAGPROperand(Inst, DataIdx, MRI))
421         Imm |= 512;
422     }
423   }
424   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
425 }
426 
427 template <AMDGPUDisassembler::OpWidthTy Opw>
428 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
429                                  uint64_t /* Addr */,
430                                  const MCDisassembler *Decoder) {
431   return decodeAVLdSt(Inst, Imm, Opw, Decoder);
432 }
433 
434 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
435                                            uint64_t Addr,
436                                            const MCDisassembler *Decoder) {
437   assert(Imm < (1 << 9) && "9-bit encoding");
438   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
439   return addOperand(Inst,
440                     DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64,
441                                       AMDGPU::OperandSemantics::FP64));
442 }
443 
444 #define DECODE_SDWA(DecName) \
445 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
446 
447 DECODE_SDWA(Src32)
448 DECODE_SDWA(Src16)
449 DECODE_SDWA(VopcDst)
450 
451 static DecodeStatus decodeVersionImm(MCInst &Inst, unsigned Imm,
452                                      uint64_t /* Addr */,
453                                      const MCDisassembler *Decoder) {
454   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
455   return addOperand(Inst, DAsm->decodeVersionImm(Imm));
456 }
457 
458 #include "AMDGPUGenDisassemblerTables.inc"
459 
460 //===----------------------------------------------------------------------===//
461 //
462 //===----------------------------------------------------------------------===//
463 
464 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
465   assert(Bytes.size() >= sizeof(T));
466   const auto Res =
467       support::endian::read<T, llvm::endianness::little>(Bytes.data());
468   Bytes = Bytes.slice(sizeof(T));
469   return Res;
470 }
471 
472 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
473   assert(Bytes.size() >= 12);
474   uint64_t Lo =
475       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
476   Bytes = Bytes.slice(8);
477   uint64_t Hi =
478       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
479   Bytes = Bytes.slice(4);
480   return DecoderUInt128(Lo, Hi);
481 }
482 
483 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
484                                                 ArrayRef<uint8_t> Bytes_,
485                                                 uint64_t Address,
486                                                 raw_ostream &CS) const {
487   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
488   Bytes = Bytes_.slice(0, MaxInstBytesNum);
489 
490   // In case the opcode is not recognized we'll assume a Size of 4 bytes (unless
491   // there are fewer bytes left). This will be overridden on success.
492   Size = std::min((size_t)4, Bytes_.size());
493 
494   do {
495     // ToDo: better to switch encoding length using some bit predicate
496     // but it is unknown yet, so try all we can
497 
498     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
499     // encodings
500     if (isGFX11Plus() && Bytes.size() >= 12 ) {
501       DecoderUInt128 DecW = eat12Bytes(Bytes);
502 
503       if (isGFX11() &&
504           tryDecodeInst(DecoderTableGFX1196, DecoderTableGFX11_FAKE1696, MI,
505                         DecW, Address, CS))
506         break;
507 
508       if (isGFX12() &&
509           tryDecodeInst(DecoderTableGFX1296, DecoderTableGFX12_FAKE1696, MI,
510                         DecW, Address, CS))
511         break;
512 
513       if (isGFX12() &&
514           tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS))
515         break;
516 
517       // Reinitialize Bytes
518       Bytes = Bytes_.slice(0, MaxInstBytesNum);
519     }
520 
521     if (Bytes.size() >= 8) {
522       const uint64_t QW = eatBytes<uint64_t>(Bytes);
523 
524       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) &&
525           tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS))
526         break;
527 
528       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem) &&
529           tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS))
530         break;
531 
532       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
533       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
534       // table first so we print the correct name.
535       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts) &&
536           tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS))
537         break;
538 
539       if (STI.hasFeature(AMDGPU::FeatureGFX940Insts) &&
540           tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS))
541         break;
542 
543       if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) &&
544           tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS))
545         break;
546 
547       if ((isVI() || isGFX9()) &&
548           tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS))
549         break;
550 
551       if (isGFX9() && tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS))
552         break;
553 
554       if (isGFX10() && tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS))
555         break;
556 
557       if (isGFX12() &&
558           tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
559                         Address, CS))
560         break;
561 
562       if (isGFX11() &&
563           tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
564                         Address, CS))
565         break;
566 
567       if (isGFX11() &&
568           tryDecodeInst(DecoderTableGFX11W6464, MI, QW, Address, CS))
569         break;
570 
571       if (isGFX12() &&
572           tryDecodeInst(DecoderTableGFX12W6464, MI, QW, Address, CS))
573         break;
574 
575       // Reinitialize Bytes
576       Bytes = Bytes_.slice(0, MaxInstBytesNum);
577     }
578 
579     // Try decode 32-bit instruction
580     if (Bytes.size() >= 4) {
581       const uint32_t DW = eatBytes<uint32_t>(Bytes);
582 
583       if ((isVI() || isGFX9()) &&
584           tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS))
585         break;
586 
587       if (tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS))
588         break;
589 
590       if (isGFX9() && tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS))
591         break;
592 
593       if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) &&
594           tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS))
595         break;
596 
597       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) &&
598           tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS))
599         break;
600 
601       if (isGFX10() && tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS))
602         break;
603 
604       if (isGFX11() &&
605           tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
606                         Address, CS))
607         break;
608 
609       if (isGFX12() &&
610           tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
611                         Address, CS))
612         break;
613     }
614 
615     return MCDisassembler::Fail;
616   } while (false);
617 
618   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DPP) {
619     if (isMacDPP(MI))
620       convertMacDPPInst(MI);
621 
622     if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
623       convertVOP3PDPPInst(MI);
624     else if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) ||
625              AMDGPU::isVOPC64DPP(MI.getOpcode()))
626       convertVOPCDPPInst(MI); // Special VOP3 case
627     else if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) !=
628              -1)
629       convertDPP8Inst(MI);
630     else if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3)
631       convertVOP3DPPInst(MI); // Regular VOP3 case
632   }
633 
634   convertTrue16OpSel(MI);
635 
636   if (AMDGPU::isMAC(MI.getOpcode())) {
637     // Insert dummy unused src2_modifiers.
638     insertNamedMCOperand(MI, MCOperand::createImm(0),
639                          AMDGPU::OpName::src2_modifiers);
640   }
641 
642   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp ||
643       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp) {
644     // Insert dummy unused src2_modifiers.
645     insertNamedMCOperand(MI, MCOperand::createImm(0),
646                          AMDGPU::OpName::src2_modifiers);
647   }
648 
649   if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
650       !AMDGPU::hasGDS(STI)) {
651     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
652   }
653 
654   if (MCII->get(MI.getOpcode()).TSFlags &
655       (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD)) {
656     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
657                                              AMDGPU::OpName::cpol);
658     if (CPolPos != -1) {
659       unsigned CPol =
660           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
661               AMDGPU::CPol::GLC : 0;
662       if (MI.getNumOperands() <= (unsigned)CPolPos) {
663         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
664                              AMDGPU::OpName::cpol);
665       } else if (CPol) {
666         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
667       }
668     }
669   }
670 
671   if ((MCII->get(MI.getOpcode()).TSFlags &
672        (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
673       (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
674     // GFX90A lost TFE, its place is occupied by ACC.
675     int TFEOpIdx =
676         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
677     if (TFEOpIdx != -1) {
678       auto TFEIter = MI.begin();
679       std::advance(TFEIter, TFEOpIdx);
680       MI.insert(TFEIter, MCOperand::createImm(0));
681     }
682   }
683 
684   if (MCII->get(MI.getOpcode()).TSFlags &
685       (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) {
686     int SWZOpIdx =
687         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
688     if (SWZOpIdx != -1) {
689       auto SWZIter = MI.begin();
690       std::advance(SWZIter, SWZOpIdx);
691       MI.insert(SWZIter, MCOperand::createImm(0));
692     }
693   }
694 
695   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG) {
696     int VAddr0Idx =
697         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
698     int RsrcIdx =
699         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
700     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
701     if (VAddr0Idx >= 0 && NSAArgs > 0) {
702       unsigned NSAWords = (NSAArgs + 3) / 4;
703       if (Bytes.size() < 4 * NSAWords)
704         return MCDisassembler::Fail;
705       for (unsigned i = 0; i < NSAArgs; ++i) {
706         const unsigned VAddrIdx = VAddr0Idx + 1 + i;
707         auto VAddrRCID =
708             MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
709         MI.insert(MI.begin() + VAddrIdx, createRegOperand(VAddrRCID, Bytes[i]));
710       }
711       Bytes = Bytes.slice(4 * NSAWords);
712     }
713 
714     convertMIMGInst(MI);
715   }
716 
717   if (MCII->get(MI.getOpcode()).TSFlags &
718       (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE))
719     convertMIMGInst(MI);
720 
721   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)
722     convertEXPInst(MI);
723 
724   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)
725     convertVINTERPInst(MI);
726 
727   if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SDWA)
728     convertSDWAInst(MI);
729 
730   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
731                                               AMDGPU::OpName::vdst_in);
732   if (VDstIn_Idx != -1) {
733     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
734                            MCOI::OperandConstraint::TIED_TO);
735     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
736          !MI.getOperand(VDstIn_Idx).isReg() ||
737          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
738       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
739         MI.erase(&MI.getOperand(VDstIn_Idx));
740       insertNamedMCOperand(MI,
741         MCOperand::createReg(MI.getOperand(Tied).getReg()),
742         AMDGPU::OpName::vdst_in);
743     }
744   }
745 
746   int ImmLitIdx =
747       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
748   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
749   if (ImmLitIdx != -1 && !IsSOPK)
750     convertFMAanyK(MI, ImmLitIdx);
751 
752   Size = MaxInstBytesNum - Bytes.size();
753   return MCDisassembler::Success;
754 }
755 
756 void AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
757   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
758     // The MCInst still has these fields even though they are no longer encoded
759     // in the GFX11 instruction.
760     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
761     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
762   }
763 }
764 
765 void AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
766   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
767       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
768       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
769       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
770       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
771       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
772       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
773       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
774     // The MCInst has this field that is not directly encoded in the
775     // instruction.
776     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
777   }
778 }
779 
780 void AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
781   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
782       STI.hasFeature(AMDGPU::FeatureGFX10)) {
783     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
784       // VOPC - insert clamp
785       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
786   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
787     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
788     if (SDst != -1) {
789       // VOPC - insert VCC register as sdst
790       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
791                            AMDGPU::OpName::sdst);
792     } else {
793       // VOP1/2 - insert omod if present in instruction
794       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
795     }
796   }
797 }
798 
799 struct VOPModifiers {
800   unsigned OpSel = 0;
801   unsigned OpSelHi = 0;
802   unsigned NegLo = 0;
803   unsigned NegHi = 0;
804 };
805 
806 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
807 // Note that these values do not affect disassembler output,
808 // so this is only necessary for consistency with src_modifiers.
809 static VOPModifiers collectVOPModifiers(const MCInst &MI,
810                                         bool IsVOP3P = false) {
811   VOPModifiers Modifiers;
812   unsigned Opc = MI.getOpcode();
813   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
814                         AMDGPU::OpName::src1_modifiers,
815                         AMDGPU::OpName::src2_modifiers};
816   for (int J = 0; J < 3; ++J) {
817     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
818     if (OpIdx == -1)
819       continue;
820 
821     unsigned Val = MI.getOperand(OpIdx).getImm();
822 
823     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
824     if (IsVOP3P) {
825       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
826       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
827       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
828     } else if (J == 0) {
829       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
830     }
831   }
832 
833   return Modifiers;
834 }
835 
836 // Instructions decode the op_sel/suffix bits into the src_modifier
837 // operands. Copy those bits into the src operands for true16 VGPRs.
838 void AMDGPUDisassembler::convertTrue16OpSel(MCInst &MI) const {
839   const unsigned Opc = MI.getOpcode();
840   const MCRegisterClass &ConversionRC =
841       MRI.getRegClass(AMDGPU::VGPR_16RegClassID);
842   constexpr std::array<std::tuple<int, int, unsigned>, 4> OpAndOpMods = {
843       {{AMDGPU::OpName::src0, AMDGPU::OpName::src0_modifiers,
844         SISrcMods::OP_SEL_0},
845        {AMDGPU::OpName::src1, AMDGPU::OpName::src1_modifiers,
846         SISrcMods::OP_SEL_0},
847        {AMDGPU::OpName::src2, AMDGPU::OpName::src2_modifiers,
848         SISrcMods::OP_SEL_0},
849        {AMDGPU::OpName::vdst, AMDGPU::OpName::src0_modifiers,
850         SISrcMods::DST_OP_SEL}}};
851   for (const auto &[OpName, OpModsName, OpSelMask] : OpAndOpMods) {
852     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, OpName);
853     int OpModsIdx = AMDGPU::getNamedOperandIdx(Opc, OpModsName);
854     if (OpIdx == -1 || OpModsIdx == -1)
855       continue;
856     MCOperand &Op = MI.getOperand(OpIdx);
857     if (!Op.isReg())
858       continue;
859     if (!ConversionRC.contains(Op.getReg()))
860       continue;
861     unsigned OpEnc = MRI.getEncodingValue(Op.getReg());
862     const MCOperand &OpMods = MI.getOperand(OpModsIdx);
863     unsigned ModVal = OpMods.getImm();
864     if (ModVal & OpSelMask) { // isHi
865       unsigned RegIdx = OpEnc & AMDGPU::HWEncoding::REG_IDX_MASK;
866       Op.setReg(ConversionRC.getRegister(RegIdx * 2 + 1));
867     }
868   }
869 }
870 
871 // MAC opcodes have special old and src2 operands.
872 // src2 is tied to dst, while old is not tied (but assumed to be).
873 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
874   constexpr int DST_IDX = 0;
875   auto Opcode = MI.getOpcode();
876   const auto &Desc = MCII->get(Opcode);
877   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
878 
879   if (OldIdx != -1 && Desc.getOperandConstraint(
880                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
881     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
882     assert(Desc.getOperandConstraint(
883                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
884                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
885     (void)DST_IDX;
886     return true;
887   }
888 
889   return false;
890 }
891 
892 // Create dummy old operand and insert dummy unused src2_modifiers
893 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
894   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
895   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
896   insertNamedMCOperand(MI, MCOperand::createImm(0),
897                        AMDGPU::OpName::src2_modifiers);
898 }
899 
900 void AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
901   unsigned Opc = MI.getOpcode();
902 
903   int VDstInIdx =
904       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
905   if (VDstInIdx != -1)
906     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
907 
908   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
909   if (MI.getNumOperands() < DescNumOps &&
910       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
911     convertTrue16OpSel(MI);
912     auto Mods = collectVOPModifiers(MI);
913     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
914                          AMDGPU::OpName::op_sel);
915   } else {
916     // Insert dummy unused src modifiers.
917     if (MI.getNumOperands() < DescNumOps &&
918         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
919       insertNamedMCOperand(MI, MCOperand::createImm(0),
920                            AMDGPU::OpName::src0_modifiers);
921 
922     if (MI.getNumOperands() < DescNumOps &&
923         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
924       insertNamedMCOperand(MI, MCOperand::createImm(0),
925                            AMDGPU::OpName::src1_modifiers);
926   }
927 }
928 
929 void AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
930   convertTrue16OpSel(MI);
931 
932   int VDstInIdx =
933       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
934   if (VDstInIdx != -1)
935     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
936 
937   unsigned Opc = MI.getOpcode();
938   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
939   if (MI.getNumOperands() < DescNumOps &&
940       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
941     auto Mods = collectVOPModifiers(MI);
942     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
943                          AMDGPU::OpName::op_sel);
944   }
945 }
946 
947 // Note that before gfx10, the MIMG encoding provided no information about
948 // VADDR size. Consequently, decoded instructions always show address as if it
949 // has 1 dword, which could be not really so.
950 void AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
951   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
952 
953   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
954                                            AMDGPU::OpName::vdst);
955 
956   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
957                                             AMDGPU::OpName::vdata);
958   int VAddr0Idx =
959       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
960   int RsrcOpName = (TSFlags & SIInstrFlags::MIMG) ? AMDGPU::OpName::srsrc
961                                                   : AMDGPU::OpName::rsrc;
962   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
963   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
964                                             AMDGPU::OpName::dmask);
965 
966   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
967                                             AMDGPU::OpName::tfe);
968   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
969                                             AMDGPU::OpName::d16);
970 
971   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
972   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
973       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
974 
975   assert(VDataIdx != -1);
976   if (BaseOpcode->BVH) {
977     // Add A16 operand for intersect_ray instructions
978     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
979     return;
980   }
981 
982   bool IsAtomic = (VDstIdx != -1);
983   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
984   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
985   bool IsNSA = false;
986   bool IsPartialNSA = false;
987   unsigned AddrSize = Info->VAddrDwords;
988 
989   if (isGFX10Plus()) {
990     unsigned DimIdx =
991         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
992     int A16Idx =
993         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
994     const AMDGPU::MIMGDimInfo *Dim =
995         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
996     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
997 
998     AddrSize =
999         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
1000 
1001     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
1002     // VIMAGE insts other than BVH never use vaddr4.
1003     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
1004             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
1005             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
1006     if (!IsNSA) {
1007       if (!IsVSample && AddrSize > 12)
1008         AddrSize = 16;
1009     } else {
1010       if (AddrSize > Info->VAddrDwords) {
1011         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1012           // The NSA encoding does not contain enough operands for the
1013           // combination of base opcode / dimension. Should this be an error?
1014           return;
1015         }
1016         IsPartialNSA = true;
1017       }
1018     }
1019   }
1020 
1021   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1022   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1023 
1024   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1025   if (D16 && AMDGPU::hasPackedD16(STI)) {
1026     DstSize = (DstSize + 1) / 2;
1027   }
1028 
1029   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1030     DstSize += 1;
1031 
1032   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1033     return;
1034 
1035   int NewOpcode =
1036       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1037   if (NewOpcode == -1)
1038     return;
1039 
1040   // Widen the register to the correct number of enabled channels.
1041   unsigned NewVdata = AMDGPU::NoRegister;
1042   if (DstSize != Info->VDataDwords) {
1043     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1044 
1045     // Get first subregister of VData
1046     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1047     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1048     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1049 
1050     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1051                                        &MRI.getRegClass(DataRCID));
1052     if (NewVdata == AMDGPU::NoRegister) {
1053       // It's possible to encode this such that the low register + enabled
1054       // components exceeds the register count.
1055       return;
1056     }
1057   }
1058 
1059   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1060   // If using partial NSA on GFX11+ widen last address register.
1061   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1062   unsigned NewVAddrSA = AMDGPU::NoRegister;
1063   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1064       AddrSize != Info->VAddrDwords) {
1065     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1066     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1067     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1068 
1069     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1070     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1071                                         &MRI.getRegClass(AddrRCID));
1072     if (!NewVAddrSA)
1073       return;
1074   }
1075 
1076   MI.setOpcode(NewOpcode);
1077 
1078   if (NewVdata != AMDGPU::NoRegister) {
1079     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1080 
1081     if (IsAtomic) {
1082       // Atomic operations have an additional operand (a copy of data)
1083       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1084     }
1085   }
1086 
1087   if (NewVAddrSA) {
1088     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1089   } else if (IsNSA) {
1090     assert(AddrSize <= Info->VAddrDwords);
1091     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1092              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1093   }
1094 }
1095 
1096 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1097 // decoder only adds to src_modifiers, so manually add the bits to the other
1098 // operands.
1099 void AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1100   unsigned Opc = MI.getOpcode();
1101   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1102   auto Mods = collectVOPModifiers(MI, true);
1103 
1104   if (MI.getNumOperands() < DescNumOps &&
1105       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1106     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1107 
1108   if (MI.getNumOperands() < DescNumOps &&
1109       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1110     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1111                          AMDGPU::OpName::op_sel);
1112   if (MI.getNumOperands() < DescNumOps &&
1113       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1114     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1115                          AMDGPU::OpName::op_sel_hi);
1116   if (MI.getNumOperands() < DescNumOps &&
1117       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1118     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1119                          AMDGPU::OpName::neg_lo);
1120   if (MI.getNumOperands() < DescNumOps &&
1121       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1122     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1123                          AMDGPU::OpName::neg_hi);
1124 }
1125 
1126 // Create dummy old operand and insert optional operands
1127 void AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1128   unsigned Opc = MI.getOpcode();
1129   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1130 
1131   if (MI.getNumOperands() < DescNumOps &&
1132       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1133     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1134 
1135   if (MI.getNumOperands() < DescNumOps &&
1136       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1137     insertNamedMCOperand(MI, MCOperand::createImm(0),
1138                          AMDGPU::OpName::src0_modifiers);
1139 
1140   if (MI.getNumOperands() < DescNumOps &&
1141       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1142     insertNamedMCOperand(MI, MCOperand::createImm(0),
1143                          AMDGPU::OpName::src1_modifiers);
1144 }
1145 
1146 void AMDGPUDisassembler::convertFMAanyK(MCInst &MI, int ImmLitIdx) const {
1147   assert(HasLiteral && "Should have decoded a literal");
1148   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1149   unsigned DescNumOps = Desc.getNumOperands();
1150   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1151                        AMDGPU::OpName::immDeferred);
1152   assert(DescNumOps == MI.getNumOperands());
1153   for (unsigned I = 0; I < DescNumOps; ++I) {
1154     auto &Op = MI.getOperand(I);
1155     auto OpType = Desc.operands()[I].OperandType;
1156     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1157                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1158     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1159         IsDeferredOp)
1160       Op.setImm(Literal);
1161   }
1162 }
1163 
1164 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1165   return getContext().getRegisterInfo()->
1166     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1167 }
1168 
1169 inline
1170 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1171                                          const Twine& ErrMsg) const {
1172   *CommentStream << "Error: " + ErrMsg;
1173 
1174   // ToDo: add support for error operands to MCInst.h
1175   // return MCOperand::createError(V);
1176   return MCOperand();
1177 }
1178 
1179 inline
1180 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1181   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1182 }
1183 
1184 inline
1185 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1186                                                unsigned Val) const {
1187   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1188   if (Val >= RegCl.getNumRegs())
1189     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1190                            ": unknown register " + Twine(Val));
1191   return createRegOperand(RegCl.getRegister(Val));
1192 }
1193 
1194 inline
1195 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1196                                                 unsigned Val) const {
1197   // ToDo: SI/CI have 104 SGPRs, VI - 102
1198   // Valery: here we accepting as much as we can, let assembler sort it out
1199   int shift = 0;
1200   switch (SRegClassID) {
1201   case AMDGPU::SGPR_32RegClassID:
1202   case AMDGPU::TTMP_32RegClassID:
1203     break;
1204   case AMDGPU::SGPR_64RegClassID:
1205   case AMDGPU::TTMP_64RegClassID:
1206     shift = 1;
1207     break;
1208   case AMDGPU::SGPR_96RegClassID:
1209   case AMDGPU::TTMP_96RegClassID:
1210   case AMDGPU::SGPR_128RegClassID:
1211   case AMDGPU::TTMP_128RegClassID:
1212   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1213   // this bundle?
1214   case AMDGPU::SGPR_256RegClassID:
1215   case AMDGPU::TTMP_256RegClassID:
1216     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1217   // this bundle?
1218   case AMDGPU::SGPR_288RegClassID:
1219   case AMDGPU::TTMP_288RegClassID:
1220   case AMDGPU::SGPR_320RegClassID:
1221   case AMDGPU::TTMP_320RegClassID:
1222   case AMDGPU::SGPR_352RegClassID:
1223   case AMDGPU::TTMP_352RegClassID:
1224   case AMDGPU::SGPR_384RegClassID:
1225   case AMDGPU::TTMP_384RegClassID:
1226   case AMDGPU::SGPR_512RegClassID:
1227   case AMDGPU::TTMP_512RegClassID:
1228     shift = 2;
1229     break;
1230   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1231   // this bundle?
1232   default:
1233     llvm_unreachable("unhandled register class");
1234   }
1235 
1236   if (Val % (1 << shift)) {
1237     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1238                    << ": scalar reg isn't aligned " << Val;
1239   }
1240 
1241   return createRegOperand(SRegClassID, Val >> shift);
1242 }
1243 
1244 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1245                                                   bool IsHi) const {
1246   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1247   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1248 }
1249 
1250 // Decode Literals for insts which always have a literal in the encoding
1251 MCOperand
1252 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1253   if (HasLiteral) {
1254     assert(
1255         AMDGPU::hasVOPD(STI) &&
1256         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1257     if (Literal != Val)
1258       return errOperand(Val, "More than one unique literal is illegal");
1259   }
1260   HasLiteral = true;
1261   Literal = Val;
1262   return MCOperand::createImm(Literal);
1263 }
1264 
1265 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1266   // For now all literal constants are supposed to be unsigned integer
1267   // ToDo: deal with signed/unsigned 64-bit integer constants
1268   // ToDo: deal with float/double constants
1269   if (!HasLiteral) {
1270     if (Bytes.size() < 4) {
1271       return errOperand(0, "cannot read literal, inst bytes left " +
1272                         Twine(Bytes.size()));
1273     }
1274     HasLiteral = true;
1275     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1276     if (ExtendFP64)
1277       Literal64 <<= 32;
1278   }
1279   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1280 }
1281 
1282 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1283   using namespace AMDGPU::EncValues;
1284 
1285   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1286   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1287     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1288     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1289       // Cast prevents negative overflow.
1290 }
1291 
1292 static int64_t getInlineImmVal32(unsigned Imm) {
1293   switch (Imm) {
1294   case 240:
1295     return llvm::bit_cast<uint32_t>(0.5f);
1296   case 241:
1297     return llvm::bit_cast<uint32_t>(-0.5f);
1298   case 242:
1299     return llvm::bit_cast<uint32_t>(1.0f);
1300   case 243:
1301     return llvm::bit_cast<uint32_t>(-1.0f);
1302   case 244:
1303     return llvm::bit_cast<uint32_t>(2.0f);
1304   case 245:
1305     return llvm::bit_cast<uint32_t>(-2.0f);
1306   case 246:
1307     return llvm::bit_cast<uint32_t>(4.0f);
1308   case 247:
1309     return llvm::bit_cast<uint32_t>(-4.0f);
1310   case 248: // 1 / (2 * PI)
1311     return 0x3e22f983;
1312   default:
1313     llvm_unreachable("invalid fp inline imm");
1314   }
1315 }
1316 
1317 static int64_t getInlineImmVal64(unsigned Imm) {
1318   switch (Imm) {
1319   case 240:
1320     return llvm::bit_cast<uint64_t>(0.5);
1321   case 241:
1322     return llvm::bit_cast<uint64_t>(-0.5);
1323   case 242:
1324     return llvm::bit_cast<uint64_t>(1.0);
1325   case 243:
1326     return llvm::bit_cast<uint64_t>(-1.0);
1327   case 244:
1328     return llvm::bit_cast<uint64_t>(2.0);
1329   case 245:
1330     return llvm::bit_cast<uint64_t>(-2.0);
1331   case 246:
1332     return llvm::bit_cast<uint64_t>(4.0);
1333   case 247:
1334     return llvm::bit_cast<uint64_t>(-4.0);
1335   case 248: // 1 / (2 * PI)
1336     return 0x3fc45f306dc9c882;
1337   default:
1338     llvm_unreachable("invalid fp inline imm");
1339   }
1340 }
1341 
1342 static int64_t getInlineImmValF16(unsigned Imm) {
1343   switch (Imm) {
1344   case 240:
1345     return 0x3800;
1346   case 241:
1347     return 0xB800;
1348   case 242:
1349     return 0x3C00;
1350   case 243:
1351     return 0xBC00;
1352   case 244:
1353     return 0x4000;
1354   case 245:
1355     return 0xC000;
1356   case 246:
1357     return 0x4400;
1358   case 247:
1359     return 0xC400;
1360   case 248: // 1 / (2 * PI)
1361     return 0x3118;
1362   default:
1363     llvm_unreachable("invalid fp inline imm");
1364   }
1365 }
1366 
1367 static int64_t getInlineImmValBF16(unsigned Imm) {
1368   switch (Imm) {
1369   case 240:
1370     return 0x3F00;
1371   case 241:
1372     return 0xBF00;
1373   case 242:
1374     return 0x3F80;
1375   case 243:
1376     return 0xBF80;
1377   case 244:
1378     return 0x4000;
1379   case 245:
1380     return 0xC000;
1381   case 246:
1382     return 0x4080;
1383   case 247:
1384     return 0xC080;
1385   case 248: // 1 / (2 * PI)
1386     return 0x3E22;
1387   default:
1388     llvm_unreachable("invalid fp inline imm");
1389   }
1390 }
1391 
1392 static int64_t getInlineImmVal16(unsigned Imm, AMDGPU::OperandSemantics Sema) {
1393   return (Sema == AMDGPU::OperandSemantics::BF16) ? getInlineImmValBF16(Imm)
1394                                                   : getInlineImmValF16(Imm);
1395 }
1396 
1397 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm,
1398                                             AMDGPU::OperandSemantics Sema) {
1399   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN &&
1400          Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1401 
1402   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1403   // ImmWidth 0 is a default case where operand should not allow immediates.
1404   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1405   // use it to print verbose error message.
1406   switch (ImmWidth) {
1407   case 0:
1408   case 32:
1409     return MCOperand::createImm(getInlineImmVal32(Imm));
1410   case 64:
1411     return MCOperand::createImm(getInlineImmVal64(Imm));
1412   case 16:
1413     return MCOperand::createImm(getInlineImmVal16(Imm, Sema));
1414   default:
1415     llvm_unreachable("implement me");
1416   }
1417 }
1418 
1419 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1420   using namespace AMDGPU;
1421 
1422   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1423   switch (Width) {
1424   default: // fall
1425   case OPW32:
1426   case OPW16:
1427   case OPWV216:
1428     return VGPR_32RegClassID;
1429   case OPW64:
1430   case OPWV232: return VReg_64RegClassID;
1431   case OPW96: return VReg_96RegClassID;
1432   case OPW128: return VReg_128RegClassID;
1433   case OPW160: return VReg_160RegClassID;
1434   case OPW256: return VReg_256RegClassID;
1435   case OPW288: return VReg_288RegClassID;
1436   case OPW320: return VReg_320RegClassID;
1437   case OPW352: return VReg_352RegClassID;
1438   case OPW384: return VReg_384RegClassID;
1439   case OPW512: return VReg_512RegClassID;
1440   case OPW1024: return VReg_1024RegClassID;
1441   }
1442 }
1443 
1444 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1445   using namespace AMDGPU;
1446 
1447   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1448   switch (Width) {
1449   default: // fall
1450   case OPW32:
1451   case OPW16:
1452   case OPWV216:
1453     return AGPR_32RegClassID;
1454   case OPW64:
1455   case OPWV232: return AReg_64RegClassID;
1456   case OPW96: return AReg_96RegClassID;
1457   case OPW128: return AReg_128RegClassID;
1458   case OPW160: return AReg_160RegClassID;
1459   case OPW256: return AReg_256RegClassID;
1460   case OPW288: return AReg_288RegClassID;
1461   case OPW320: return AReg_320RegClassID;
1462   case OPW352: return AReg_352RegClassID;
1463   case OPW384: return AReg_384RegClassID;
1464   case OPW512: return AReg_512RegClassID;
1465   case OPW1024: return AReg_1024RegClassID;
1466   }
1467 }
1468 
1469 
1470 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1471   using namespace AMDGPU;
1472 
1473   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1474   switch (Width) {
1475   default: // fall
1476   case OPW32:
1477   case OPW16:
1478   case OPWV216:
1479     return SGPR_32RegClassID;
1480   case OPW64:
1481   case OPWV232: return SGPR_64RegClassID;
1482   case OPW96: return SGPR_96RegClassID;
1483   case OPW128: return SGPR_128RegClassID;
1484   case OPW160: return SGPR_160RegClassID;
1485   case OPW256: return SGPR_256RegClassID;
1486   case OPW288: return SGPR_288RegClassID;
1487   case OPW320: return SGPR_320RegClassID;
1488   case OPW352: return SGPR_352RegClassID;
1489   case OPW384: return SGPR_384RegClassID;
1490   case OPW512: return SGPR_512RegClassID;
1491   }
1492 }
1493 
1494 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1495   using namespace AMDGPU;
1496 
1497   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1498   switch (Width) {
1499   default: // fall
1500   case OPW32:
1501   case OPW16:
1502   case OPWV216:
1503     return TTMP_32RegClassID;
1504   case OPW64:
1505   case OPWV232: return TTMP_64RegClassID;
1506   case OPW128: return TTMP_128RegClassID;
1507   case OPW256: return TTMP_256RegClassID;
1508   case OPW288: return TTMP_288RegClassID;
1509   case OPW320: return TTMP_320RegClassID;
1510   case OPW352: return TTMP_352RegClassID;
1511   case OPW384: return TTMP_384RegClassID;
1512   case OPW512: return TTMP_512RegClassID;
1513   }
1514 }
1515 
1516 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1517   using namespace AMDGPU::EncValues;
1518 
1519   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1520   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1521 
1522   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1523 }
1524 
1525 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1526                                           bool MandatoryLiteral,
1527                                           unsigned ImmWidth,
1528                                           AMDGPU::OperandSemantics Sema) const {
1529   using namespace AMDGPU::EncValues;
1530 
1531   assert(Val < 1024); // enum10
1532 
1533   bool IsAGPR = Val & 512;
1534   Val &= 511;
1535 
1536   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1537     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1538                                    : getVgprClassId(Width), Val - VGPR_MIN);
1539   }
1540   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1541                             Sema);
1542 }
1543 
1544 MCOperand
1545 AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, unsigned Val,
1546                                        bool MandatoryLiteral, unsigned ImmWidth,
1547                                        AMDGPU::OperandSemantics Sema) const {
1548   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1549   // decoded earlier.
1550   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1551   using namespace AMDGPU::EncValues;
1552 
1553   if (Val <= SGPR_MAX) {
1554     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1555     static_assert(SGPR_MIN == 0);
1556     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1557   }
1558 
1559   int TTmpIdx = getTTmpIdx(Val);
1560   if (TTmpIdx >= 0) {
1561     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1562   }
1563 
1564   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1565     return decodeIntImmed(Val);
1566 
1567   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1568     return decodeFPImmed(ImmWidth, Val, Sema);
1569 
1570   if (Val == LITERAL_CONST) {
1571     if (MandatoryLiteral)
1572       // Keep a sentinel value for deferred setting
1573       return MCOperand::createImm(LITERAL_CONST);
1574     return decodeLiteralConstant(Sema == AMDGPU::OperandSemantics::FP64);
1575   }
1576 
1577   switch (Width) {
1578   case OPW32:
1579   case OPW16:
1580   case OPWV216:
1581     return decodeSpecialReg32(Val);
1582   case OPW64:
1583   case OPWV232:
1584     return decodeSpecialReg64(Val);
1585   default:
1586     llvm_unreachable("unexpected immediate type");
1587   }
1588 }
1589 
1590 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1591 // opposite of bit 0 of DstX.
1592 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1593                                                unsigned Val) const {
1594   int VDstXInd =
1595       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1596   assert(VDstXInd != -1);
1597   assert(Inst.getOperand(VDstXInd).isReg());
1598   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1599   Val |= ~XDstReg & 1;
1600   auto Width = llvm::AMDGPUDisassembler::OPW32;
1601   return createRegOperand(getVgprClassId(Width), Val);
1602 }
1603 
1604 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1605   using namespace AMDGPU;
1606 
1607   switch (Val) {
1608   // clang-format off
1609   case 102: return createRegOperand(FLAT_SCR_LO);
1610   case 103: return createRegOperand(FLAT_SCR_HI);
1611   case 104: return createRegOperand(XNACK_MASK_LO);
1612   case 105: return createRegOperand(XNACK_MASK_HI);
1613   case 106: return createRegOperand(VCC_LO);
1614   case 107: return createRegOperand(VCC_HI);
1615   case 108: return createRegOperand(TBA_LO);
1616   case 109: return createRegOperand(TBA_HI);
1617   case 110: return createRegOperand(TMA_LO);
1618   case 111: return createRegOperand(TMA_HI);
1619   case 124:
1620     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1621   case 125:
1622     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1623   case 126: return createRegOperand(EXEC_LO);
1624   case 127: return createRegOperand(EXEC_HI);
1625   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1626   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1627   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1628   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1629   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1630   case 251: return createRegOperand(SRC_VCCZ);
1631   case 252: return createRegOperand(SRC_EXECZ);
1632   case 253: return createRegOperand(SRC_SCC);
1633   case 254: return createRegOperand(LDS_DIRECT);
1634   default: break;
1635     // clang-format on
1636   }
1637   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1638 }
1639 
1640 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1641   using namespace AMDGPU;
1642 
1643   switch (Val) {
1644   case 102: return createRegOperand(FLAT_SCR);
1645   case 104: return createRegOperand(XNACK_MASK);
1646   case 106: return createRegOperand(VCC);
1647   case 108: return createRegOperand(TBA);
1648   case 110: return createRegOperand(TMA);
1649   case 124:
1650     if (isGFX11Plus())
1651       return createRegOperand(SGPR_NULL);
1652     break;
1653   case 125:
1654     if (!isGFX11Plus())
1655       return createRegOperand(SGPR_NULL);
1656     break;
1657   case 126: return createRegOperand(EXEC);
1658   case 235: return createRegOperand(SRC_SHARED_BASE);
1659   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1660   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1661   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1662   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1663   case 251: return createRegOperand(SRC_VCCZ);
1664   case 252: return createRegOperand(SRC_EXECZ);
1665   case 253: return createRegOperand(SRC_SCC);
1666   default: break;
1667   }
1668   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1669 }
1670 
1671 MCOperand
1672 AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, const unsigned Val,
1673                                   unsigned ImmWidth,
1674                                   AMDGPU::OperandSemantics Sema) const {
1675   using namespace AMDGPU::SDWA;
1676   using namespace AMDGPU::EncValues;
1677 
1678   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1679       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1680     // XXX: cast to int is needed to avoid stupid warning:
1681     // compare with unsigned is always true
1682     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1683         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1684       return createRegOperand(getVgprClassId(Width),
1685                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1686     }
1687     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1688         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1689                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1690       return createSRegOperand(getSgprClassId(Width),
1691                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1692     }
1693     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1694         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1695       return createSRegOperand(getTtmpClassId(Width),
1696                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1697     }
1698 
1699     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1700 
1701     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1702       return decodeIntImmed(SVal);
1703 
1704     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1705       return decodeFPImmed(ImmWidth, SVal, Sema);
1706 
1707     return decodeSpecialReg32(SVal);
1708   }
1709   if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands))
1710     return createRegOperand(getVgprClassId(Width), Val);
1711   llvm_unreachable("unsupported target");
1712 }
1713 
1714 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1715   return decodeSDWASrc(OPW16, Val, 16, AMDGPU::OperandSemantics::FP16);
1716 }
1717 
1718 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1719   return decodeSDWASrc(OPW32, Val, 32, AMDGPU::OperandSemantics::FP32);
1720 }
1721 
1722 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1723   using namespace AMDGPU::SDWA;
1724 
1725   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1726           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1727          "SDWAVopcDst should be present only on GFX9+");
1728 
1729   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1730 
1731   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1732     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1733 
1734     int TTmpIdx = getTTmpIdx(Val);
1735     if (TTmpIdx >= 0) {
1736       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1737       return createSRegOperand(TTmpClsId, TTmpIdx);
1738     }
1739     if (Val > SGPR_MAX) {
1740       return IsWave64 ? decodeSpecialReg64(Val) : decodeSpecialReg32(Val);
1741     }
1742     return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1743   }
1744   return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1745 }
1746 
1747 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1748   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1749              ? decodeSrcOp(OPW64, Val)
1750              : decodeSrcOp(OPW32, Val);
1751 }
1752 
1753 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1754   return decodeSrcOp(OPW32, Val);
1755 }
1756 
1757 MCOperand AMDGPUDisassembler::decodeDpp8FI(unsigned Val) const {
1758   if (Val != AMDGPU::DPP::DPP8_FI_0 && Val != AMDGPU::DPP::DPP8_FI_1)
1759     return MCOperand();
1760   return MCOperand::createImm(Val);
1761 }
1762 
1763 MCOperand AMDGPUDisassembler::decodeVersionImm(unsigned Imm) const {
1764   using VersionField = AMDGPU::EncodingField<7, 0>;
1765   using W64Bit = AMDGPU::EncodingBit<13>;
1766   using W32Bit = AMDGPU::EncodingBit<14>;
1767   using MDPBit = AMDGPU::EncodingBit<15>;
1768   using Encoding = AMDGPU::EncodingFields<VersionField, W64Bit, W32Bit, MDPBit>;
1769 
1770   auto [Version, W64, W32, MDP] = Encoding::decode(Imm);
1771 
1772   // Decode into a plain immediate if any unused bits are raised.
1773   if (Encoding::encode(Version, W64, W32, MDP) != Imm)
1774     return MCOperand::createImm(Imm);
1775 
1776   const auto &Versions = AMDGPU::UCVersion::getGFXVersions();
1777   auto I = find_if(Versions,
1778                    [Version = Version](const AMDGPU::UCVersion::GFXVersion &V) {
1779                      return V.Code == Version;
1780                    });
1781   MCContext &Ctx = getContext();
1782   const MCExpr *E;
1783   if (I == Versions.end())
1784     E = MCConstantExpr::create(Version, Ctx);
1785   else
1786     E = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(I->Symbol), Ctx);
1787 
1788   if (W64)
1789     E = MCBinaryExpr::createOr(E, UCVersionW64Expr, Ctx);
1790   if (W32)
1791     E = MCBinaryExpr::createOr(E, UCVersionW32Expr, Ctx);
1792   if (MDP)
1793     E = MCBinaryExpr::createOr(E, UCVersionMDPExpr, Ctx);
1794 
1795   return MCOperand::createExpr(E);
1796 }
1797 
1798 bool AMDGPUDisassembler::isVI() const {
1799   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1800 }
1801 
1802 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1803 
1804 bool AMDGPUDisassembler::isGFX90A() const {
1805   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1806 }
1807 
1808 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1809 
1810 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1811 
1812 bool AMDGPUDisassembler::isGFX10Plus() const {
1813   return AMDGPU::isGFX10Plus(STI);
1814 }
1815 
1816 bool AMDGPUDisassembler::isGFX11() const {
1817   return STI.hasFeature(AMDGPU::FeatureGFX11);
1818 }
1819 
1820 bool AMDGPUDisassembler::isGFX11Plus() const {
1821   return AMDGPU::isGFX11Plus(STI);
1822 }
1823 
1824 bool AMDGPUDisassembler::isGFX12() const {
1825   return STI.hasFeature(AMDGPU::FeatureGFX12);
1826 }
1827 
1828 bool AMDGPUDisassembler::isGFX12Plus() const {
1829   return AMDGPU::isGFX12Plus(STI);
1830 }
1831 
1832 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1833   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1834 }
1835 
1836 bool AMDGPUDisassembler::hasKernargPreload() const {
1837   return AMDGPU::hasKernargPreload(STI);
1838 }
1839 
1840 //===----------------------------------------------------------------------===//
1841 // AMDGPU specific symbol handling
1842 //===----------------------------------------------------------------------===//
1843 
1844 /// Print a string describing the reserved bit range specified by Mask with
1845 /// offset BaseBytes for use in error comments. Mask is a single continuous
1846 /// range of 1s surrounded by zeros. The format here is meant to align with the
1847 /// tables that describe these bits in llvm.org/docs/AMDGPUUsage.html.
1848 static SmallString<32> getBitRangeFromMask(uint32_t Mask, unsigned BaseBytes) {
1849   SmallString<32> Result;
1850   raw_svector_ostream S(Result);
1851 
1852   int TrailingZeros = llvm::countr_zero(Mask);
1853   int PopCount = llvm::popcount(Mask);
1854 
1855   if (PopCount == 1) {
1856     S << "bit (" << (TrailingZeros + BaseBytes * CHAR_BIT) << ')';
1857   } else {
1858     S << "bits in range ("
1859       << (TrailingZeros + PopCount - 1 + BaseBytes * CHAR_BIT) << ':'
1860       << (TrailingZeros + BaseBytes * CHAR_BIT) << ')';
1861   }
1862 
1863   return Result;
1864 }
1865 
1866 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1867 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1868   do {                                                                         \
1869     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1870   } while (0)
1871 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1872   do {                                                                         \
1873     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1874              << GET_FIELD(MASK) << '\n';                                       \
1875   } while (0)
1876 
1877 #define CHECK_RESERVED_BITS_IMPL(MASK, DESC, MSG)                              \
1878   do {                                                                         \
1879     if (FourByteBuffer & (MASK)) {                                             \
1880       return createStringError(std::errc::invalid_argument,                    \
1881                                "kernel descriptor " DESC                       \
1882                                " reserved %s set" MSG,                         \
1883                                getBitRangeFromMask((MASK), 0).c_str());        \
1884     }                                                                          \
1885   } while (0)
1886 
1887 #define CHECK_RESERVED_BITS(MASK) CHECK_RESERVED_BITS_IMPL(MASK, #MASK, "")
1888 #define CHECK_RESERVED_BITS_MSG(MASK, MSG)                                     \
1889   CHECK_RESERVED_BITS_IMPL(MASK, #MASK, ", " MSG)
1890 #define CHECK_RESERVED_BITS_DESC(MASK, DESC)                                   \
1891   CHECK_RESERVED_BITS_IMPL(MASK, DESC, "")
1892 #define CHECK_RESERVED_BITS_DESC_MSG(MASK, DESC, MSG)                          \
1893   CHECK_RESERVED_BITS_IMPL(MASK, DESC, ", " MSG)
1894 
1895 // NOLINTNEXTLINE(readability-identifier-naming)
1896 Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1897     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1898   using namespace amdhsa;
1899   StringRef Indent = "\t";
1900 
1901   // We cannot accurately backward compute #VGPRs used from
1902   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1903   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1904   // simply calculate the inverse of what the assembler does.
1905 
1906   uint32_t GranulatedWorkitemVGPRCount =
1907       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1908 
1909   uint32_t NextFreeVGPR =
1910       (GranulatedWorkitemVGPRCount + 1) *
1911       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1912 
1913   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1914 
1915   // We cannot backward compute values used to calculate
1916   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1917   // directives can't be computed:
1918   // .amdhsa_reserve_vcc
1919   // .amdhsa_reserve_flat_scratch
1920   // .amdhsa_reserve_xnack_mask
1921   // They take their respective default values if not specified in the assembly.
1922   //
1923   // GRANULATED_WAVEFRONT_SGPR_COUNT
1924   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1925   //
1926   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1927   // are set to 0. So while disassembling we consider that:
1928   //
1929   // GRANULATED_WAVEFRONT_SGPR_COUNT
1930   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1931   //
1932   // The disassembler cannot recover the original values of those 3 directives.
1933 
1934   uint32_t GranulatedWavefrontSGPRCount =
1935       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1936 
1937   if (isGFX10Plus())
1938     CHECK_RESERVED_BITS_MSG(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT,
1939                             "must be zero on gfx10+");
1940 
1941   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1942                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1943 
1944   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1945   if (!hasArchitectedFlatScratch())
1946     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1947   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1948   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1949 
1950   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_PRIORITY);
1951 
1952   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1953                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1954   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1955                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1956   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1957                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1958   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1959                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1960 
1961   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_PRIV);
1962 
1963   if (!isGFX12Plus())
1964     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1965                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1966 
1967   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_DEBUG_MODE);
1968 
1969   if (!isGFX12Plus())
1970     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1971                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1972 
1973   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_BULKY);
1974   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_CDBG_USER);
1975 
1976   if (isGFX9Plus())
1977     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1978 
1979   if (!isGFX9Plus())
1980     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0,
1981                                  "COMPUTE_PGM_RSRC1", "must be zero pre-gfx9");
1982 
1983   CHECK_RESERVED_BITS_DESC(COMPUTE_PGM_RSRC1_RESERVED1, "COMPUTE_PGM_RSRC1");
1984 
1985   if (!isGFX10Plus())
1986     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2,
1987                                  "COMPUTE_PGM_RSRC1", "must be zero pre-gfx10");
1988 
1989   if (isGFX10Plus()) {
1990     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1991                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1992     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1993     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1994   }
1995 
1996   if (isGFX12Plus())
1997     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1998                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1999 
2000   return true;
2001 }
2002 
2003 // NOLINTNEXTLINE(readability-identifier-naming)
2004 Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
2005     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
2006   using namespace amdhsa;
2007   StringRef Indent = "\t";
2008   if (hasArchitectedFlatScratch())
2009     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
2010                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
2011   else
2012     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
2013                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
2014   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
2015                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
2016   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
2017                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
2018   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
2019                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
2020   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
2021                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
2022   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
2023                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
2024 
2025   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH);
2026   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY);
2027   CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE);
2028 
2029   PRINT_DIRECTIVE(
2030       ".amdhsa_exception_fp_ieee_invalid_op",
2031       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
2032   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
2033                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
2034   PRINT_DIRECTIVE(
2035       ".amdhsa_exception_fp_ieee_div_zero",
2036       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
2037   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
2038                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
2039   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
2040                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
2041   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
2042                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
2043   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
2044                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
2045 
2046   CHECK_RESERVED_BITS_DESC(COMPUTE_PGM_RSRC2_RESERVED0, "COMPUTE_PGM_RSRC2");
2047 
2048   return true;
2049 }
2050 
2051 // NOLINTNEXTLINE(readability-identifier-naming)
2052 Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
2053     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
2054   using namespace amdhsa;
2055   StringRef Indent = "\t";
2056   if (isGFX90A()) {
2057     KdStream << Indent << ".amdhsa_accum_offset "
2058              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
2059              << '\n';
2060 
2061     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
2062 
2063     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX90A_RESERVED0,
2064                                  "COMPUTE_PGM_RSRC3", "must be zero on gfx90a");
2065     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX90A_RESERVED1,
2066                                  "COMPUTE_PGM_RSRC3", "must be zero on gfx90a");
2067   } else if (isGFX10Plus()) {
2068     // Bits [0-3].
2069     if (!isGFX12Plus()) {
2070       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
2071         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
2072                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2073       } else {
2074         PRINT_PSEUDO_DIRECTIVE_COMMENT(
2075             "SHARED_VGPR_COUNT",
2076             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2077       }
2078     } else {
2079       CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0,
2080                                    "COMPUTE_PGM_RSRC3",
2081                                    "must be zero on gfx12+");
2082     }
2083 
2084     // Bits [4-11].
2085     if (isGFX11()) {
2086       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
2087                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
2088       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
2089                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
2090       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
2091                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
2092     } else if (isGFX12Plus()) {
2093       PRINT_PSEUDO_DIRECTIVE_COMMENT(
2094           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
2095     } else {
2096       CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_RESERVED1,
2097                                    "COMPUTE_PGM_RSRC3",
2098                                    "must be zero on gfx10");
2099     }
2100 
2101     // Bits [12].
2102     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2,
2103                                  "COMPUTE_PGM_RSRC3", "must be zero on gfx10+");
2104 
2105     // Bits [13].
2106     if (isGFX12Plus()) {
2107       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
2108                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
2109     } else {
2110       CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3,
2111                                    "COMPUTE_PGM_RSRC3",
2112                                    "must be zero on gfx10 or gfx11");
2113     }
2114 
2115     // Bits [14-30].
2116     CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4,
2117                                  "COMPUTE_PGM_RSRC3", "must be zero on gfx10+");
2118 
2119     // Bits [31].
2120     if (isGFX11Plus()) {
2121       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2122                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2123     } else {
2124       CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_RESERVED5,
2125                                    "COMPUTE_PGM_RSRC3",
2126                                    "must be zero on gfx10");
2127     }
2128   } else if (FourByteBuffer) {
2129     return createStringError(
2130         std::errc::invalid_argument,
2131         "kernel descriptor COMPUTE_PGM_RSRC3 must be all zero before gfx9");
2132   }
2133   return true;
2134 }
2135 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2136 #undef PRINT_DIRECTIVE
2137 #undef GET_FIELD
2138 #undef CHECK_RESERVED_BITS_IMPL
2139 #undef CHECK_RESERVED_BITS
2140 #undef CHECK_RESERVED_BITS_MSG
2141 #undef CHECK_RESERVED_BITS_DESC
2142 #undef CHECK_RESERVED_BITS_DESC_MSG
2143 
2144 /// Create an error object to return from onSymbolStart for reserved kernel
2145 /// descriptor bits being set.
2146 static Error createReservedKDBitsError(uint32_t Mask, unsigned BaseBytes,
2147                                        const char *Msg = "") {
2148   return createStringError(
2149       std::errc::invalid_argument, "kernel descriptor reserved %s set%s%s",
2150       getBitRangeFromMask(Mask, BaseBytes).c_str(), *Msg ? ", " : "", Msg);
2151 }
2152 
2153 /// Create an error object to return from onSymbolStart for reserved kernel
2154 /// descriptor bytes being set.
2155 static Error createReservedKDBytesError(unsigned BaseInBytes,
2156                                         unsigned WidthInBytes) {
2157   // Create an error comment in the same format as the "Kernel Descriptor"
2158   // table here: https://llvm.org/docs/AMDGPUUsage.html#kernel-descriptor .
2159   return createStringError(
2160       std::errc::invalid_argument,
2161       "kernel descriptor reserved bits in range (%u:%u) set",
2162       (BaseInBytes + WidthInBytes) * CHAR_BIT - 1, BaseInBytes * CHAR_BIT);
2163 }
2164 
2165 Expected<bool> AMDGPUDisassembler::decodeKernelDescriptorDirective(
2166     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2167     raw_string_ostream &KdStream) const {
2168 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2169   do {                                                                         \
2170     KdStream << Indent << DIRECTIVE " "                                        \
2171              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2172   } while (0)
2173 
2174   uint16_t TwoByteBuffer = 0;
2175   uint32_t FourByteBuffer = 0;
2176 
2177   StringRef ReservedBytes;
2178   StringRef Indent = "\t";
2179 
2180   assert(Bytes.size() == 64);
2181   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2182 
2183   switch (Cursor.tell()) {
2184   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2185     FourByteBuffer = DE.getU32(Cursor);
2186     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2187              << '\n';
2188     return true;
2189 
2190   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2191     FourByteBuffer = DE.getU32(Cursor);
2192     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2193              << FourByteBuffer << '\n';
2194     return true;
2195 
2196   case amdhsa::KERNARG_SIZE_OFFSET:
2197     FourByteBuffer = DE.getU32(Cursor);
2198     KdStream << Indent << ".amdhsa_kernarg_size "
2199              << FourByteBuffer << '\n';
2200     return true;
2201 
2202   case amdhsa::RESERVED0_OFFSET:
2203     // 4 reserved bytes, must be 0.
2204     ReservedBytes = DE.getBytes(Cursor, 4);
2205     for (int I = 0; I < 4; ++I) {
2206       if (ReservedBytes[I] != 0)
2207         return createReservedKDBytesError(amdhsa::RESERVED0_OFFSET, 4);
2208     }
2209     return true;
2210 
2211   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2212     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2213     // So far no directive controls this for Code Object V3, so simply skip for
2214     // disassembly.
2215     DE.skip(Cursor, 8);
2216     return true;
2217 
2218   case amdhsa::RESERVED1_OFFSET:
2219     // 20 reserved bytes, must be 0.
2220     ReservedBytes = DE.getBytes(Cursor, 20);
2221     for (int I = 0; I < 20; ++I) {
2222       if (ReservedBytes[I] != 0)
2223         return createReservedKDBytesError(amdhsa::RESERVED1_OFFSET, 20);
2224     }
2225     return true;
2226 
2227   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2228     FourByteBuffer = DE.getU32(Cursor);
2229     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2230 
2231   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2232     FourByteBuffer = DE.getU32(Cursor);
2233     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2234 
2235   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2236     FourByteBuffer = DE.getU32(Cursor);
2237     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2238 
2239   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2240     using namespace amdhsa;
2241     TwoByteBuffer = DE.getU16(Cursor);
2242 
2243     if (!hasArchitectedFlatScratch())
2244       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2245                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2246     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2247                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2248     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2249                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2250     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2251                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2252     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2253                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2254     if (!hasArchitectedFlatScratch())
2255       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2256                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2257     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2258                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2259 
2260     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2261       return createReservedKDBitsError(KERNEL_CODE_PROPERTY_RESERVED0,
2262                                        amdhsa::KERNEL_CODE_PROPERTIES_OFFSET);
2263 
2264     // Reserved for GFX9
2265     if (isGFX9() &&
2266         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2267       return createReservedKDBitsError(
2268           KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
2269           amdhsa::KERNEL_CODE_PROPERTIES_OFFSET, "must be zero on gfx9");
2270     }
2271     if (isGFX10Plus()) {
2272       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2273                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2274     }
2275 
2276     if (CodeObjectVersion >= AMDGPU::AMDHSA_COV5)
2277       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2278                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2279 
2280     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) {
2281       return createReservedKDBitsError(KERNEL_CODE_PROPERTY_RESERVED1,
2282                                        amdhsa::KERNEL_CODE_PROPERTIES_OFFSET);
2283     }
2284 
2285     return true;
2286 
2287   case amdhsa::KERNARG_PRELOAD_OFFSET:
2288     using namespace amdhsa;
2289     TwoByteBuffer = DE.getU16(Cursor);
2290     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2291       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2292                       KERNARG_PRELOAD_SPEC_LENGTH);
2293     }
2294 
2295     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2296       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2297                       KERNARG_PRELOAD_SPEC_OFFSET);
2298     }
2299     return true;
2300 
2301   case amdhsa::RESERVED3_OFFSET:
2302     // 4 bytes from here are reserved, must be 0.
2303     ReservedBytes = DE.getBytes(Cursor, 4);
2304     for (int I = 0; I < 4; ++I) {
2305       if (ReservedBytes[I] != 0)
2306         return createReservedKDBytesError(amdhsa::RESERVED3_OFFSET, 4);
2307     }
2308     return true;
2309 
2310   default:
2311     llvm_unreachable("Unhandled index. Case statements cover everything.");
2312     return true;
2313   }
2314 #undef PRINT_DIRECTIVE
2315 }
2316 
2317 Expected<bool> AMDGPUDisassembler::decodeKernelDescriptor(
2318     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2319 
2320   // CP microcode requires the kernel descriptor to be 64 aligned.
2321   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2322     return createStringError(std::errc::invalid_argument,
2323                              "kernel descriptor must be 64-byte aligned");
2324 
2325   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2326   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2327   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2328   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2329   // when required.
2330   if (isGFX10Plus()) {
2331     uint16_t KernelCodeProperties =
2332         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2333                                 llvm::endianness::little);
2334     EnableWavefrontSize32 =
2335         AMDHSA_BITS_GET(KernelCodeProperties,
2336                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2337   }
2338 
2339   std::string Kd;
2340   raw_string_ostream KdStream(Kd);
2341   KdStream << ".amdhsa_kernel " << KdName << '\n';
2342 
2343   DataExtractor::Cursor C(0);
2344   while (C && C.tell() < Bytes.size()) {
2345     Expected<bool> Res = decodeKernelDescriptorDirective(C, Bytes, KdStream);
2346 
2347     cantFail(C.takeError());
2348 
2349     if (!Res)
2350       return Res;
2351   }
2352   KdStream << ".end_amdhsa_kernel\n";
2353   outs() << KdStream.str();
2354   return true;
2355 }
2356 
2357 Expected<bool> AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol,
2358                                                  uint64_t &Size,
2359                                                  ArrayRef<uint8_t> Bytes,
2360                                                  uint64_t Address) const {
2361   // Right now only kernel descriptor needs to be handled.
2362   // We ignore all other symbols for target specific handling.
2363   // TODO:
2364   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2365   // Object V2 and V3 when symbols are marked protected.
2366 
2367   // amd_kernel_code_t for Code Object V2.
2368   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2369     Size = 256;
2370     return createStringError(std::errc::invalid_argument,
2371                              "code object v2 is not supported");
2372   }
2373 
2374   // Code Object V3 kernel descriptors.
2375   StringRef Name = Symbol.Name;
2376   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2377     Size = 64; // Size = 64 regardless of success or failure.
2378     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2379   }
2380 
2381   return false;
2382 }
2383 
2384 const MCExpr *AMDGPUDisassembler::createConstantSymbolExpr(StringRef Id,
2385                                                            int64_t Val) {
2386   MCContext &Ctx = getContext();
2387   MCSymbol *Sym = Ctx.getOrCreateSymbol(Id);
2388   // Note: only set value to Val on a new symbol in case an dissassembler
2389   // has already been initialized in this context.
2390   if (!Sym->isVariable()) {
2391     Sym->setVariableValue(MCConstantExpr::create(Val, Ctx));
2392   } else {
2393     int64_t Res = ~Val;
2394     bool Valid = Sym->getVariableValue()->evaluateAsAbsolute(Res);
2395     if (!Valid || Res != Val)
2396       Ctx.reportWarning(SMLoc(), "unsupported redefinition of " + Id);
2397   }
2398   return MCSymbolRefExpr::create(Sym, Ctx);
2399 }
2400 
2401 //===----------------------------------------------------------------------===//
2402 // AMDGPUSymbolizer
2403 //===----------------------------------------------------------------------===//
2404 
2405 // Try to find symbol name for specified label
2406 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2407     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2408     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2409     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2410 
2411   if (!IsBranch) {
2412     return false;
2413   }
2414 
2415   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2416   if (!Symbols)
2417     return false;
2418 
2419   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2420     return Val.Addr == static_cast<uint64_t>(Value) &&
2421            Val.Type == ELF::STT_NOTYPE;
2422   });
2423   if (Result != Symbols->end()) {
2424     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2425     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2426     Inst.addOperand(MCOperand::createExpr(Add));
2427     return true;
2428   }
2429   // Add to list of referenced addresses, so caller can synthesize a label.
2430   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2431   return false;
2432 }
2433 
2434 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2435                                                        int64_t Value,
2436                                                        uint64_t Address) {
2437   llvm_unreachable("unimplemented");
2438 }
2439 
2440 //===----------------------------------------------------------------------===//
2441 // Initialization
2442 //===----------------------------------------------------------------------===//
2443 
2444 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2445                               LLVMOpInfoCallback /*GetOpInfo*/,
2446                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2447                               void *DisInfo,
2448                               MCContext *Ctx,
2449                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2450   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2451 }
2452 
2453 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2454                                                 const MCSubtargetInfo &STI,
2455                                                 MCContext &Ctx) {
2456   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2457 }
2458 
2459 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2460   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2461                                          createAMDGPUDisassembler);
2462   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2463                                        createAMDGPUSymbolizer);
2464 }
2465