xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision f617f89e5b836455f79672f62facbc0eb27b53d5)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 DECODE_OPERAND_REG(VGPR_32)
122 DECODE_OPERAND_REG(VRegOrLds_32)
123 DECODE_OPERAND_REG(VS_32)
124 DECODE_OPERAND_REG(VS_64)
125 DECODE_OPERAND_REG(VS_128)
126 
127 DECODE_OPERAND_REG(VReg_64)
128 DECODE_OPERAND_REG(VReg_96)
129 DECODE_OPERAND_REG(VReg_128)
130 DECODE_OPERAND_REG(VReg_256)
131 DECODE_OPERAND_REG(VReg_512)
132 DECODE_OPERAND_REG(VReg_1024)
133 
134 DECODE_OPERAND_REG(SReg_32)
135 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
136 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
137 DECODE_OPERAND_REG(SRegOrLds_32)
138 DECODE_OPERAND_REG(SReg_64)
139 DECODE_OPERAND_REG(SReg_64_XEXEC)
140 DECODE_OPERAND_REG(SReg_128)
141 DECODE_OPERAND_REG(SReg_256)
142 DECODE_OPERAND_REG(SReg_512)
143 
144 DECODE_OPERAND_REG(AGPR_32)
145 DECODE_OPERAND_REG(AReg_64)
146 DECODE_OPERAND_REG(AReg_128)
147 DECODE_OPERAND_REG(AReg_256)
148 DECODE_OPERAND_REG(AReg_512)
149 DECODE_OPERAND_REG(AReg_1024)
150 DECODE_OPERAND_REG(AV_32)
151 DECODE_OPERAND_REG(AV_64)
152 DECODE_OPERAND_REG(AV_128)
153 DECODE_OPERAND_REG(AVDst_128)
154 DECODE_OPERAND_REG(AVDst_512)
155 
156 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
157                                          uint64_t Addr,
158                                          const MCDisassembler *Decoder) {
159   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
160   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
161 }
162 
163 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
164                                            uint64_t Addr,
165                                            const MCDisassembler *Decoder) {
166   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
167   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
168 }
169 
170 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
171                                            uint64_t Addr,
172                                            const MCDisassembler *Decoder) {
173   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
174   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
175 }
176 
177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
178                                         uint64_t Addr,
179                                         const MCDisassembler *Decoder) {
180   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
181   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
182 }
183 
184 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
185                                         uint64_t Addr,
186                                         const MCDisassembler *Decoder) {
187   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
188   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
189 }
190 
191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
192                                           uint64_t Addr,
193                                           const MCDisassembler *Decoder) {
194   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
195   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
196 }
197 
198 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
199                                            uint64_t Addr,
200                                            const MCDisassembler *Decoder) {
201   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
202   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
203 }
204 
205 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
206                                            uint64_t Addr,
207                                            const MCDisassembler *Decoder) {
208   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
209   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
210 }
211 
212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
213                                            uint64_t Addr,
214                                            const MCDisassembler *Decoder) {
215   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
216   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
217 }
218 
219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
220                                             uint64_t Addr,
221                                             const MCDisassembler *Decoder) {
222   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
223   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
224 }
225 
226 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
227                                           uint64_t Addr,
228                                           const MCDisassembler *Decoder) {
229   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
230   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
231 }
232 
233 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
234                                            uint64_t Addr,
235                                            const MCDisassembler *Decoder) {
236   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
237   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
238 }
239 
240 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
241                                            uint64_t Addr,
242                                            const MCDisassembler *Decoder) {
243   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
244   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
245 }
246 
247 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
248                                            uint64_t Addr,
249                                            const MCDisassembler *Decoder) {
250   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
251   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
252 }
253 
254 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
255                                             uint64_t Addr,
256                                             const MCDisassembler *Decoder) {
257   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
258   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
259 }
260 
261 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
262                                           uint64_t Addr,
263                                           const MCDisassembler *Decoder) {
264   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
265   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
266 }
267 
268 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
269                                           uint64_t Addr,
270                                           const MCDisassembler *Decoder) {
271   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
272   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
273 }
274 
275 static DecodeStatus
276 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
277                              const MCDisassembler *Decoder) {
278   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
279   return addOperand(
280       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
281 }
282 
283 static DecodeStatus
284 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
285                              const MCDisassembler *Decoder) {
286   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(
288       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
289 }
290 
291 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
292                           const MCRegisterInfo *MRI) {
293   if (OpIdx < 0)
294     return false;
295 
296   const MCOperand &Op = Inst.getOperand(OpIdx);
297   if (!Op.isReg())
298     return false;
299 
300   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
301   auto Reg = Sub ? Sub : Op.getReg();
302   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
303 }
304 
305 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
306                                              AMDGPUDisassembler::OpWidthTy Opw,
307                                              const MCDisassembler *Decoder) {
308   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
309   if (!DAsm->isGFX90A()) {
310     Imm &= 511;
311   } else {
312     // If atomic has both vdata and vdst their register classes are tied.
313     // The bit is decoded along with the vdst, first operand. We need to
314     // change register class to AGPR if vdst was AGPR.
315     // If a DS instruction has both data0 and data1 their register classes
316     // are also tied.
317     unsigned Opc = Inst.getOpcode();
318     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
319     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
320                                                         : AMDGPU::OpName::vdata;
321     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
322     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
323     if ((int)Inst.getNumOperands() == DataIdx) {
324       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
325       if (IsAGPROperand(Inst, DstIdx, MRI))
326         Imm |= 512;
327     }
328 
329     if (TSFlags & SIInstrFlags::DS) {
330       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
331       if ((int)Inst.getNumOperands() == Data2Idx &&
332           IsAGPROperand(Inst, DataIdx, MRI))
333         Imm |= 512;
334     }
335   }
336   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
337 }
338 
339 static DecodeStatus
340 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
341                              const MCDisassembler *Decoder) {
342   return decodeOperand_AVLdSt_Any(Inst, Imm,
343                                   AMDGPUDisassembler::OPW32, Decoder);
344 }
345 
346 static DecodeStatus
347 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
348                              const MCDisassembler *Decoder) {
349   return decodeOperand_AVLdSt_Any(Inst, Imm,
350                                   AMDGPUDisassembler::OPW64, Decoder);
351 }
352 
353 static DecodeStatus
354 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
355                              const MCDisassembler *Decoder) {
356   return decodeOperand_AVLdSt_Any(Inst, Imm,
357                                   AMDGPUDisassembler::OPW96, Decoder);
358 }
359 
360 static DecodeStatus
361 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
362                               const MCDisassembler *Decoder) {
363   return decodeOperand_AVLdSt_Any(Inst, Imm,
364                                   AMDGPUDisassembler::OPW128, Decoder);
365 }
366 
367 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
368                                           uint64_t Addr,
369                                           const MCDisassembler *Decoder) {
370   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
371   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
372 }
373 
374 #define DECODE_SDWA(DecName) \
375 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
376 
377 DECODE_SDWA(Src32)
378 DECODE_SDWA(Src16)
379 DECODE_SDWA(VopcDst)
380 
381 #include "AMDGPUGenDisassemblerTables.inc"
382 
383 //===----------------------------------------------------------------------===//
384 //
385 //===----------------------------------------------------------------------===//
386 
387 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
388   assert(Bytes.size() >= sizeof(T));
389   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
390   Bytes = Bytes.slice(sizeof(T));
391   return Res;
392 }
393 
394 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
395   assert(Bytes.size() >= 12);
396   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
397       Bytes.data());
398   Bytes = Bytes.slice(8);
399   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
400       Bytes.data());
401   Bytes = Bytes.slice(4);
402   return DecoderUInt128(Lo, Hi);
403 }
404 
405 // The disassembler is greedy, so we need to check FI operand value to
406 // not parse a dpp if the correct literal is not set. For dpp16 the
407 // autogenerated decoder checks the dpp literal
408 static bool isValidDPP8(const MCInst &MI) {
409   using namespace llvm::AMDGPU::DPP;
410   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
411   assert(FiIdx != -1);
412   if ((unsigned)FiIdx >= MI.getNumOperands())
413     return false;
414   unsigned Fi = MI.getOperand(FiIdx).getImm();
415   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
416 }
417 
418 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
419                                                 ArrayRef<uint8_t> Bytes_,
420                                                 uint64_t Address,
421                                                 raw_ostream &CS) const {
422   CommentStream = &CS;
423   bool IsSDWA = false;
424 
425   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
426   Bytes = Bytes_.slice(0, MaxInstBytesNum);
427 
428   DecodeStatus Res = MCDisassembler::Fail;
429   do {
430     // ToDo: better to switch encoding length using some bit predicate
431     // but it is unknown yet, so try all we can
432 
433     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
434     // encodings
435     if (isGFX11Plus() && Bytes.size() >= 12 ) {
436       DecoderUInt128 DecW = eat12Bytes(Bytes);
437       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
438                                           Address);
439       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
440         break;
441       MI = MCInst(); // clear
442       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
443                                           Address);
444       if (Res)
445         break;
446     }
447     // Reinitialize Bytes
448     Bytes = Bytes_.slice(0, MaxInstBytesNum);
449 
450     if (Bytes.size() >= 8) {
451       const uint64_t QW = eatBytes<uint64_t>(Bytes);
452 
453       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
454         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
455         if (Res) {
456           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
457               == -1)
458             break;
459           if (convertDPP8Inst(MI) == MCDisassembler::Success)
460             break;
461           MI = MCInst(); // clear
462         }
463       }
464 
465       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
466       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
467         break;
468 
469       MI = MCInst(); // clear
470 
471       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
472       if (Res) break;
473 
474       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
475       if (Res) { IsSDWA = true;  break; }
476 
477       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
478       if (Res) { IsSDWA = true;  break; }
479 
480       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
481       if (Res) { IsSDWA = true;  break; }
482 
483       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
484         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
485         if (Res)
486           break;
487       }
488 
489       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
490       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
491       // table first so we print the correct name.
492       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
493         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
494         if (Res)
495           break;
496       }
497     }
498 
499     // Reinitialize Bytes as DPP64 could have eaten too much
500     Bytes = Bytes_.slice(0, MaxInstBytesNum);
501 
502     // Try decode 32-bit instruction
503     if (Bytes.size() < 4) break;
504     const uint32_t DW = eatBytes<uint32_t>(Bytes);
505     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
506     if (Res) break;
507 
508     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
509     if (Res) break;
510 
511     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
512     if (Res) break;
513 
514     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
515       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
516       if (Res)
517         break;
518     }
519 
520     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
521       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
522       if (Res) break;
523     }
524 
525     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
526     if (Res) break;
527 
528     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
529     if (Res) break;
530 
531     if (Bytes.size() < 4) break;
532     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
533 
534     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
535       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
536       if (Res)
537         break;
538     }
539 
540     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
541     if (Res) break;
542 
543     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
544     if (Res) break;
545 
546     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
547     if (Res) break;
548 
549     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
550     if (Res) break;
551 
552     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
553   } while (false);
554 
555   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
556               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
557               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
558               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
559               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
560               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
561               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
562               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
563               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
564               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
565               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
566     // Insert dummy unused src2_modifiers.
567     insertNamedMCOperand(MI, MCOperand::createImm(0),
568                          AMDGPU::OpName::src2_modifiers);
569   }
570 
571   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
572           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
573     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
574                                              AMDGPU::OpName::cpol);
575     if (CPolPos != -1) {
576       unsigned CPol =
577           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
578               AMDGPU::CPol::GLC : 0;
579       if (MI.getNumOperands() <= (unsigned)CPolPos) {
580         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
581                              AMDGPU::OpName::cpol);
582       } else if (CPol) {
583         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
584       }
585     }
586   }
587 
588   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
589               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
590              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
591     // GFX90A lost TFE, its place is occupied by ACC.
592     int TFEOpIdx =
593         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
594     if (TFEOpIdx != -1) {
595       auto TFEIter = MI.begin();
596       std::advance(TFEIter, TFEOpIdx);
597       MI.insert(TFEIter, MCOperand::createImm(0));
598     }
599   }
600 
601   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
602               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
603     int SWZOpIdx =
604         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
605     if (SWZOpIdx != -1) {
606       auto SWZIter = MI.begin();
607       std::advance(SWZIter, SWZOpIdx);
608       MI.insert(SWZIter, MCOperand::createImm(0));
609     }
610   }
611 
612   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
613     int VAddr0Idx =
614         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
615     int RsrcIdx =
616         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
617     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
618     if (VAddr0Idx >= 0 && NSAArgs > 0) {
619       unsigned NSAWords = (NSAArgs + 3) / 4;
620       if (Bytes.size() < 4 * NSAWords) {
621         Res = MCDisassembler::Fail;
622       } else {
623         for (unsigned i = 0; i < NSAArgs; ++i) {
624           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
625           auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
626           MI.insert(MI.begin() + VAddrIdx,
627                     createRegOperand(VAddrRCID, Bytes[i]));
628         }
629         Bytes = Bytes.slice(4 * NSAWords);
630       }
631     }
632 
633     if (Res)
634       Res = convertMIMGInst(MI);
635   }
636 
637   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
638     Res = convertEXPInst(MI);
639 
640   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
641     Res = convertVINTERPInst(MI);
642 
643   if (Res && IsSDWA)
644     Res = convertSDWAInst(MI);
645 
646   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
647                                               AMDGPU::OpName::vdst_in);
648   if (VDstIn_Idx != -1) {
649     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
650                            MCOI::OperandConstraint::TIED_TO);
651     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
652          !MI.getOperand(VDstIn_Idx).isReg() ||
653          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
654       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
655         MI.erase(&MI.getOperand(VDstIn_Idx));
656       insertNamedMCOperand(MI,
657         MCOperand::createReg(MI.getOperand(Tied).getReg()),
658         AMDGPU::OpName::vdst_in);
659     }
660   }
661 
662   int ImmLitIdx =
663       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
664   if (Res && ImmLitIdx != -1)
665     Res = convertFMAanyK(MI, ImmLitIdx);
666 
667   // if the opcode was not recognized we'll assume a Size of 4 bytes
668   // (unless there are fewer bytes left)
669   Size = Res ? (MaxInstBytesNum - Bytes.size())
670              : std::min((size_t)4, Bytes_.size());
671   return Res;
672 }
673 
674 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
675   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
676     // The MCInst still has these fields even though they are no longer encoded
677     // in the GFX11 instruction.
678     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
679     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
680   }
681   return MCDisassembler::Success;
682 }
683 
684 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
685   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
686       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
687       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
688       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
689     // The MCInst has this field that is not directly encoded in the
690     // instruction.
691     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
692   }
693   return MCDisassembler::Success;
694 }
695 
696 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
697   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
698       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
699     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
700       // VOPC - insert clamp
701       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
702   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
703     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
704     if (SDst != -1) {
705       // VOPC - insert VCC register as sdst
706       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
707                            AMDGPU::OpName::sdst);
708     } else {
709       // VOP1/2 - insert omod if present in instruction
710       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
711     }
712   }
713   return MCDisassembler::Success;
714 }
715 
716 // We must check FI == literal to reject not genuine dpp8 insts, and we must
717 // first add optional MI operands to check FI
718 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
719   unsigned Opc = MI.getOpcode();
720   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
721 
722   // Insert dummy unused src modifiers.
723   if (MI.getNumOperands() < DescNumOps &&
724       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
725     insertNamedMCOperand(MI, MCOperand::createImm(0),
726                          AMDGPU::OpName::src0_modifiers);
727 
728   if (MI.getNumOperands() < DescNumOps &&
729       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
730     insertNamedMCOperand(MI, MCOperand::createImm(0),
731                          AMDGPU::OpName::src1_modifiers);
732 
733   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
734 }
735 
736 // Note that before gfx10, the MIMG encoding provided no information about
737 // VADDR size. Consequently, decoded instructions always show address as if it
738 // has 1 dword, which could be not really so.
739 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
740 
741   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
742                                            AMDGPU::OpName::vdst);
743 
744   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
745                                             AMDGPU::OpName::vdata);
746   int VAddr0Idx =
747       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
748   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
749                                             AMDGPU::OpName::dmask);
750 
751   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
752                                             AMDGPU::OpName::tfe);
753   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
754                                             AMDGPU::OpName::d16);
755 
756   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
757   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
758       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
759 
760   assert(VDataIdx != -1);
761   if (BaseOpcode->BVH) {
762     // Add A16 operand for intersect_ray instructions
763     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
764       addOperand(MI, MCOperand::createImm(1));
765     }
766     return MCDisassembler::Success;
767   }
768 
769   bool IsAtomic = (VDstIdx != -1);
770   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
771   bool IsNSA = false;
772   unsigned AddrSize = Info->VAddrDwords;
773 
774   if (isGFX10Plus()) {
775     unsigned DimIdx =
776         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
777     int A16Idx =
778         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
779     const AMDGPU::MIMGDimInfo *Dim =
780         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
781     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
782 
783     AddrSize =
784         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
785 
786     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
787             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
788     if (!IsNSA) {
789       if (AddrSize > 8)
790         AddrSize = 16;
791     } else {
792       if (AddrSize > Info->VAddrDwords) {
793         // The NSA encoding does not contain enough operands for the combination
794         // of base opcode / dimension. Should this be an error?
795         return MCDisassembler::Success;
796       }
797     }
798   }
799 
800   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
801   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
802 
803   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
804   if (D16 && AMDGPU::hasPackedD16(STI)) {
805     DstSize = (DstSize + 1) / 2;
806   }
807 
808   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
809     DstSize += 1;
810 
811   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
812     return MCDisassembler::Success;
813 
814   int NewOpcode =
815       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
816   if (NewOpcode == -1)
817     return MCDisassembler::Success;
818 
819   // Widen the register to the correct number of enabled channels.
820   unsigned NewVdata = AMDGPU::NoRegister;
821   if (DstSize != Info->VDataDwords) {
822     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
823 
824     // Get first subregister of VData
825     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
826     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
827     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
828 
829     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
830                                        &MRI.getRegClass(DataRCID));
831     if (NewVdata == AMDGPU::NoRegister) {
832       // It's possible to encode this such that the low register + enabled
833       // components exceeds the register count.
834       return MCDisassembler::Success;
835     }
836   }
837 
838   // If not using NSA on GFX10+, widen address register to correct size.
839   unsigned NewVAddr0 = AMDGPU::NoRegister;
840   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
841     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
842     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
843     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
844 
845     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
846     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
847                                         &MRI.getRegClass(AddrRCID));
848     if (NewVAddr0 == AMDGPU::NoRegister)
849       return MCDisassembler::Success;
850   }
851 
852   MI.setOpcode(NewOpcode);
853 
854   if (NewVdata != AMDGPU::NoRegister) {
855     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
856 
857     if (IsAtomic) {
858       // Atomic operations have an additional operand (a copy of data)
859       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
860     }
861   }
862 
863   if (NewVAddr0 != AMDGPU::NoRegister) {
864     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
865   } else if (IsNSA) {
866     assert(AddrSize <= Info->VAddrDwords);
867     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
868              MI.begin() + VAddr0Idx + Info->VAddrDwords);
869   }
870 
871   return MCDisassembler::Success;
872 }
873 
874 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
875                                                 int ImmLitIdx) const {
876   assert(HasLiteral && "Should have decoded a literal");
877   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
878   unsigned DescNumOps = Desc.getNumOperands();
879   assert(DescNumOps == MI.getNumOperands());
880   for (unsigned I = 0; I < DescNumOps; ++I) {
881     auto &Op = MI.getOperand(I);
882     auto OpType = Desc.OpInfo[I].OperandType;
883     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
884                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
885     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
886         IsDeferredOp)
887       Op.setImm(Literal);
888   }
889   return MCDisassembler::Success;
890 }
891 
892 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
893   return getContext().getRegisterInfo()->
894     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
895 }
896 
897 inline
898 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
899                                          const Twine& ErrMsg) const {
900   *CommentStream << "Error: " + ErrMsg;
901 
902   // ToDo: add support for error operands to MCInst.h
903   // return MCOperand::createError(V);
904   return MCOperand();
905 }
906 
907 inline
908 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
909   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
910 }
911 
912 inline
913 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
914                                                unsigned Val) const {
915   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
916   if (Val >= RegCl.getNumRegs())
917     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
918                            ": unknown register " + Twine(Val));
919   return createRegOperand(RegCl.getRegister(Val));
920 }
921 
922 inline
923 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
924                                                 unsigned Val) const {
925   // ToDo: SI/CI have 104 SGPRs, VI - 102
926   // Valery: here we accepting as much as we can, let assembler sort it out
927   int shift = 0;
928   switch (SRegClassID) {
929   case AMDGPU::SGPR_32RegClassID:
930   case AMDGPU::TTMP_32RegClassID:
931     break;
932   case AMDGPU::SGPR_64RegClassID:
933   case AMDGPU::TTMP_64RegClassID:
934     shift = 1;
935     break;
936   case AMDGPU::SGPR_128RegClassID:
937   case AMDGPU::TTMP_128RegClassID:
938   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
939   // this bundle?
940   case AMDGPU::SGPR_256RegClassID:
941   case AMDGPU::TTMP_256RegClassID:
942     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
943   // this bundle?
944   case AMDGPU::SGPR_512RegClassID:
945   case AMDGPU::TTMP_512RegClassID:
946     shift = 2;
947     break;
948   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
949   // this bundle?
950   default:
951     llvm_unreachable("unhandled register class");
952   }
953 
954   if (Val % (1 << shift)) {
955     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
956                    << ": scalar reg isn't aligned " << Val;
957   }
958 
959   return createRegOperand(SRegClassID, Val >> shift);
960 }
961 
962 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
963   return decodeSrcOp(OPW32, Val);
964 }
965 
966 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
967   return decodeSrcOp(OPW64, Val);
968 }
969 
970 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
971   return decodeSrcOp(OPW128, Val);
972 }
973 
974 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
975   return decodeSrcOp(OPW16, Val);
976 }
977 
978 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
979   return decodeSrcOp(OPWV216, Val);
980 }
981 
982 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
983   return decodeSrcOp(OPWV232, Val);
984 }
985 
986 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
987   // Some instructions have operand restrictions beyond what the encoding
988   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
989   // high bit.
990   Val &= 255;
991 
992   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
993 }
994 
995 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
996   return decodeSrcOp(OPW32, Val);
997 }
998 
999 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1000   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1001 }
1002 
1003 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1004   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1005 }
1006 
1007 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1008   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1009 }
1010 
1011 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1012   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1013 }
1014 
1015 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1016   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1017 }
1018 
1019 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1020   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1021 }
1022 
1023 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1024   return decodeSrcOp(OPW32, Val);
1025 }
1026 
1027 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1028   return decodeSrcOp(OPW64, Val);
1029 }
1030 
1031 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1032   return decodeSrcOp(OPW128, Val);
1033 }
1034 
1035 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1036   using namespace AMDGPU::EncValues;
1037   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1038   return decodeSrcOp(OPW128, Val | IS_VGPR);
1039 }
1040 
1041 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1042   using namespace AMDGPU::EncValues;
1043   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1044   return decodeSrcOp(OPW512, Val | IS_VGPR);
1045 }
1046 
1047 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1048   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1049 }
1050 
1051 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1052   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1053 }
1054 
1055 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1056   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1057 }
1058 
1059 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1060   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1061 }
1062 
1063 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1064   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1065 }
1066 
1067 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1068   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1069 }
1070 
1071 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1072   // table-gen generated disassembler doesn't care about operand types
1073   // leaving only registry class so SSrc_32 operand turns into SReg_32
1074   // and therefore we accept immediates and literals here as well
1075   return decodeSrcOp(OPW32, Val);
1076 }
1077 
1078 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1079   unsigned Val) const {
1080   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1081   return decodeOperand_SReg_32(Val);
1082 }
1083 
1084 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1085   unsigned Val) const {
1086   // SReg_32_XM0 is SReg_32 without EXEC_HI
1087   return decodeOperand_SReg_32(Val);
1088 }
1089 
1090 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1091   // table-gen generated disassembler doesn't care about operand types
1092   // leaving only registry class so SSrc_32 operand turns into SReg_32
1093   // and therefore we accept immediates and literals here as well
1094   return decodeSrcOp(OPW32, Val);
1095 }
1096 
1097 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1098   return decodeSrcOp(OPW64, Val);
1099 }
1100 
1101 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1102   return decodeSrcOp(OPW64, Val);
1103 }
1104 
1105 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1106   return decodeSrcOp(OPW128, Val);
1107 }
1108 
1109 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1110   return decodeDstOp(OPW256, Val);
1111 }
1112 
1113 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1114   return decodeDstOp(OPW512, Val);
1115 }
1116 
1117 // Decode Literals for insts which always have a literal in the encoding
1118 MCOperand
1119 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1120   if (HasLiteral) {
1121     if (Literal != Val)
1122       return errOperand(Val, "More than one unique literal is illegal");
1123   }
1124   HasLiteral = true;
1125   Literal = Val;
1126   return MCOperand::createImm(Literal);
1127 }
1128 
1129 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1130   // For now all literal constants are supposed to be unsigned integer
1131   // ToDo: deal with signed/unsigned 64-bit integer constants
1132   // ToDo: deal with float/double constants
1133   if (!HasLiteral) {
1134     if (Bytes.size() < 4) {
1135       return errOperand(0, "cannot read literal, inst bytes left " +
1136                         Twine(Bytes.size()));
1137     }
1138     HasLiteral = true;
1139     Literal = eatBytes<uint32_t>(Bytes);
1140   }
1141   return MCOperand::createImm(Literal);
1142 }
1143 
1144 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1145   using namespace AMDGPU::EncValues;
1146 
1147   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1148   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1149     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1150     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1151       // Cast prevents negative overflow.
1152 }
1153 
1154 static int64_t getInlineImmVal32(unsigned Imm) {
1155   switch (Imm) {
1156   case 240:
1157     return FloatToBits(0.5f);
1158   case 241:
1159     return FloatToBits(-0.5f);
1160   case 242:
1161     return FloatToBits(1.0f);
1162   case 243:
1163     return FloatToBits(-1.0f);
1164   case 244:
1165     return FloatToBits(2.0f);
1166   case 245:
1167     return FloatToBits(-2.0f);
1168   case 246:
1169     return FloatToBits(4.0f);
1170   case 247:
1171     return FloatToBits(-4.0f);
1172   case 248: // 1 / (2 * PI)
1173     return 0x3e22f983;
1174   default:
1175     llvm_unreachable("invalid fp inline imm");
1176   }
1177 }
1178 
1179 static int64_t getInlineImmVal64(unsigned Imm) {
1180   switch (Imm) {
1181   case 240:
1182     return DoubleToBits(0.5);
1183   case 241:
1184     return DoubleToBits(-0.5);
1185   case 242:
1186     return DoubleToBits(1.0);
1187   case 243:
1188     return DoubleToBits(-1.0);
1189   case 244:
1190     return DoubleToBits(2.0);
1191   case 245:
1192     return DoubleToBits(-2.0);
1193   case 246:
1194     return DoubleToBits(4.0);
1195   case 247:
1196     return DoubleToBits(-4.0);
1197   case 248: // 1 / (2 * PI)
1198     return 0x3fc45f306dc9c882;
1199   default:
1200     llvm_unreachable("invalid fp inline imm");
1201   }
1202 }
1203 
1204 static int64_t getInlineImmVal16(unsigned Imm) {
1205   switch (Imm) {
1206   case 240:
1207     return 0x3800;
1208   case 241:
1209     return 0xB800;
1210   case 242:
1211     return 0x3C00;
1212   case 243:
1213     return 0xBC00;
1214   case 244:
1215     return 0x4000;
1216   case 245:
1217     return 0xC000;
1218   case 246:
1219     return 0x4400;
1220   case 247:
1221     return 0xC400;
1222   case 248: // 1 / (2 * PI)
1223     return 0x3118;
1224   default:
1225     llvm_unreachable("invalid fp inline imm");
1226   }
1227 }
1228 
1229 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1230   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1231       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1232 
1233   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1234   switch (Width) {
1235   case OPW32:
1236   case OPW128: // splat constants
1237   case OPW512:
1238   case OPW1024:
1239   case OPWV232:
1240     return MCOperand::createImm(getInlineImmVal32(Imm));
1241   case OPW64:
1242   case OPW256:
1243     return MCOperand::createImm(getInlineImmVal64(Imm));
1244   case OPW16:
1245   case OPWV216:
1246     return MCOperand::createImm(getInlineImmVal16(Imm));
1247   default:
1248     llvm_unreachable("implement me");
1249   }
1250 }
1251 
1252 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1253   using namespace AMDGPU;
1254 
1255   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1256   switch (Width) {
1257   default: // fall
1258   case OPW32:
1259   case OPW16:
1260   case OPWV216:
1261     return VGPR_32RegClassID;
1262   case OPW64:
1263   case OPWV232: return VReg_64RegClassID;
1264   case OPW96: return VReg_96RegClassID;
1265   case OPW128: return VReg_128RegClassID;
1266   case OPW160: return VReg_160RegClassID;
1267   case OPW256: return VReg_256RegClassID;
1268   case OPW512: return VReg_512RegClassID;
1269   case OPW1024: return VReg_1024RegClassID;
1270   }
1271 }
1272 
1273 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1274   using namespace AMDGPU;
1275 
1276   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1277   switch (Width) {
1278   default: // fall
1279   case OPW32:
1280   case OPW16:
1281   case OPWV216:
1282     return AGPR_32RegClassID;
1283   case OPW64:
1284   case OPWV232: return AReg_64RegClassID;
1285   case OPW96: return AReg_96RegClassID;
1286   case OPW128: return AReg_128RegClassID;
1287   case OPW160: return AReg_160RegClassID;
1288   case OPW256: return AReg_256RegClassID;
1289   case OPW512: return AReg_512RegClassID;
1290   case OPW1024: return AReg_1024RegClassID;
1291   }
1292 }
1293 
1294 
1295 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1296   using namespace AMDGPU;
1297 
1298   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1299   switch (Width) {
1300   default: // fall
1301   case OPW32:
1302   case OPW16:
1303   case OPWV216:
1304     return SGPR_32RegClassID;
1305   case OPW64:
1306   case OPWV232: return SGPR_64RegClassID;
1307   case OPW96: return SGPR_96RegClassID;
1308   case OPW128: return SGPR_128RegClassID;
1309   case OPW160: return SGPR_160RegClassID;
1310   case OPW256: return SGPR_256RegClassID;
1311   case OPW512: return SGPR_512RegClassID;
1312   }
1313 }
1314 
1315 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1316   using namespace AMDGPU;
1317 
1318   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1319   switch (Width) {
1320   default: // fall
1321   case OPW32:
1322   case OPW16:
1323   case OPWV216:
1324     return TTMP_32RegClassID;
1325   case OPW64:
1326   case OPWV232: return TTMP_64RegClassID;
1327   case OPW128: return TTMP_128RegClassID;
1328   case OPW256: return TTMP_256RegClassID;
1329   case OPW512: return TTMP_512RegClassID;
1330   }
1331 }
1332 
1333 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1334   using namespace AMDGPU::EncValues;
1335 
1336   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1337   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1338 
1339   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1340 }
1341 
1342 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1343                                           bool MandatoryLiteral) const {
1344   using namespace AMDGPU::EncValues;
1345 
1346   assert(Val < 1024); // enum10
1347 
1348   bool IsAGPR = Val & 512;
1349   Val &= 511;
1350 
1351   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1352     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1353                                    : getVgprClassId(Width), Val - VGPR_MIN);
1354   }
1355   if (Val <= SGPR_MAX) {
1356     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1357     static_assert(SGPR_MIN == 0, "");
1358     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1359   }
1360 
1361   int TTmpIdx = getTTmpIdx(Val);
1362   if (TTmpIdx >= 0) {
1363     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1364   }
1365 
1366   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1367     return decodeIntImmed(Val);
1368 
1369   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1370     return decodeFPImmed(Width, Val);
1371 
1372   if (Val == LITERAL_CONST) {
1373     if (MandatoryLiteral)
1374       // Keep a sentinel value for deferred setting
1375       return MCOperand::createImm(LITERAL_CONST);
1376     else
1377       return decodeLiteralConstant();
1378   }
1379 
1380   switch (Width) {
1381   case OPW32:
1382   case OPW16:
1383   case OPWV216:
1384     return decodeSpecialReg32(Val);
1385   case OPW64:
1386   case OPWV232:
1387     return decodeSpecialReg64(Val);
1388   default:
1389     llvm_unreachable("unexpected immediate type");
1390   }
1391 }
1392 
1393 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1394   using namespace AMDGPU::EncValues;
1395 
1396   assert(Val < 128);
1397   assert(Width == OPW256 || Width == OPW512);
1398 
1399   if (Val <= SGPR_MAX) {
1400     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1401     static_assert(SGPR_MIN == 0, "");
1402     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1403   }
1404 
1405   int TTmpIdx = getTTmpIdx(Val);
1406   if (TTmpIdx >= 0) {
1407     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1408   }
1409 
1410   llvm_unreachable("unknown dst register");
1411 }
1412 
1413 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1414   using namespace AMDGPU;
1415 
1416   switch (Val) {
1417   case 102: return createRegOperand(FLAT_SCR_LO);
1418   case 103: return createRegOperand(FLAT_SCR_HI);
1419   case 104: return createRegOperand(XNACK_MASK_LO);
1420   case 105: return createRegOperand(XNACK_MASK_HI);
1421   case 106: return createRegOperand(VCC_LO);
1422   case 107: return createRegOperand(VCC_HI);
1423   case 108: return createRegOperand(TBA_LO);
1424   case 109: return createRegOperand(TBA_HI);
1425   case 110: return createRegOperand(TMA_LO);
1426   case 111: return createRegOperand(TMA_HI);
1427   case 124:
1428     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1429   case 125:
1430     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1431   case 126: return createRegOperand(EXEC_LO);
1432   case 127: return createRegOperand(EXEC_HI);
1433   case 235: return createRegOperand(SRC_SHARED_BASE);
1434   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1435   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1436   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1437   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1438   case 251: return createRegOperand(SRC_VCCZ);
1439   case 252: return createRegOperand(SRC_EXECZ);
1440   case 253: return createRegOperand(SRC_SCC);
1441   case 254: return createRegOperand(LDS_DIRECT);
1442   default: break;
1443   }
1444   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1445 }
1446 
1447 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1448   using namespace AMDGPU;
1449 
1450   switch (Val) {
1451   case 102: return createRegOperand(FLAT_SCR);
1452   case 104: return createRegOperand(XNACK_MASK);
1453   case 106: return createRegOperand(VCC);
1454   case 108: return createRegOperand(TBA);
1455   case 110: return createRegOperand(TMA);
1456   case 124:
1457     if (isGFX11Plus())
1458       return createRegOperand(SGPR_NULL);
1459     break;
1460   case 125:
1461     if (!isGFX11Plus())
1462       return createRegOperand(SGPR_NULL);
1463     break;
1464   case 126: return createRegOperand(EXEC);
1465   case 235: return createRegOperand(SRC_SHARED_BASE);
1466   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1467   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1468   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1469   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1470   case 251: return createRegOperand(SRC_VCCZ);
1471   case 252: return createRegOperand(SRC_EXECZ);
1472   case 253: return createRegOperand(SRC_SCC);
1473   default: break;
1474   }
1475   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1476 }
1477 
1478 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1479                                             const unsigned Val) const {
1480   using namespace AMDGPU::SDWA;
1481   using namespace AMDGPU::EncValues;
1482 
1483   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1484       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1485     // XXX: cast to int is needed to avoid stupid warning:
1486     // compare with unsigned is always true
1487     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1488         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1489       return createRegOperand(getVgprClassId(Width),
1490                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1491     }
1492     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1493         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1494                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1495       return createSRegOperand(getSgprClassId(Width),
1496                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1497     }
1498     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1499         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1500       return createSRegOperand(getTtmpClassId(Width),
1501                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1502     }
1503 
1504     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1505 
1506     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1507       return decodeIntImmed(SVal);
1508 
1509     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1510       return decodeFPImmed(Width, SVal);
1511 
1512     return decodeSpecialReg32(SVal);
1513   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1514     return createRegOperand(getVgprClassId(Width), Val);
1515   }
1516   llvm_unreachable("unsupported target");
1517 }
1518 
1519 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1520   return decodeSDWASrc(OPW16, Val);
1521 }
1522 
1523 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1524   return decodeSDWASrc(OPW32, Val);
1525 }
1526 
1527 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1528   using namespace AMDGPU::SDWA;
1529 
1530   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1531           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1532          "SDWAVopcDst should be present only on GFX9+");
1533 
1534   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1535 
1536   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1537     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1538 
1539     int TTmpIdx = getTTmpIdx(Val);
1540     if (TTmpIdx >= 0) {
1541       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1542       return createSRegOperand(TTmpClsId, TTmpIdx);
1543     } else if (Val > SGPR_MAX) {
1544       return IsWave64 ? decodeSpecialReg64(Val)
1545                       : decodeSpecialReg32(Val);
1546     } else {
1547       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1548     }
1549   } else {
1550     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1551   }
1552 }
1553 
1554 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1555   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1556     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1557 }
1558 
1559 bool AMDGPUDisassembler::isVI() const {
1560   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1561 }
1562 
1563 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1564 
1565 bool AMDGPUDisassembler::isGFX90A() const {
1566   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1567 }
1568 
1569 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1570 
1571 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1572 
1573 bool AMDGPUDisassembler::isGFX10Plus() const {
1574   return AMDGPU::isGFX10Plus(STI);
1575 }
1576 
1577 bool AMDGPUDisassembler::isGFX11() const {
1578   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1579 }
1580 
1581 bool AMDGPUDisassembler::isGFX11Plus() const {
1582   return AMDGPU::isGFX11Plus(STI);
1583 }
1584 
1585 
1586 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1587   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1588 }
1589 
1590 //===----------------------------------------------------------------------===//
1591 // AMDGPU specific symbol handling
1592 //===----------------------------------------------------------------------===//
1593 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1594   do {                                                                         \
1595     KdStream << Indent << DIRECTIVE " "                                        \
1596              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1597   } while (0)
1598 
1599 // NOLINTNEXTLINE(readability-identifier-naming)
1600 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1601     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1602   using namespace amdhsa;
1603   StringRef Indent = "\t";
1604 
1605   // We cannot accurately backward compute #VGPRs used from
1606   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1607   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1608   // simply calculate the inverse of what the assembler does.
1609 
1610   uint32_t GranulatedWorkitemVGPRCount =
1611       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1612       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1613 
1614   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1615                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1616 
1617   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1618 
1619   // We cannot backward compute values used to calculate
1620   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1621   // directives can't be computed:
1622   // .amdhsa_reserve_vcc
1623   // .amdhsa_reserve_flat_scratch
1624   // .amdhsa_reserve_xnack_mask
1625   // They take their respective default values if not specified in the assembly.
1626   //
1627   // GRANULATED_WAVEFRONT_SGPR_COUNT
1628   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1629   //
1630   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1631   // are set to 0. So while disassembling we consider that:
1632   //
1633   // GRANULATED_WAVEFRONT_SGPR_COUNT
1634   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1635   //
1636   // The disassembler cannot recover the original values of those 3 directives.
1637 
1638   uint32_t GranulatedWavefrontSGPRCount =
1639       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1640       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1641 
1642   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1643     return MCDisassembler::Fail;
1644 
1645   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1646                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1647 
1648   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1649   if (!hasArchitectedFlatScratch())
1650     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1651   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1652   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1653 
1654   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1655     return MCDisassembler::Fail;
1656 
1657   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1658                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1659   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1660                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1661   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1662                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1663   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1664                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1665 
1666   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1667     return MCDisassembler::Fail;
1668 
1669   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1670 
1671   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1672     return MCDisassembler::Fail;
1673 
1674   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1675 
1676   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1677     return MCDisassembler::Fail;
1678 
1679   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1680     return MCDisassembler::Fail;
1681 
1682   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1683 
1684   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1685     return MCDisassembler::Fail;
1686 
1687   if (isGFX10Plus()) {
1688     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1689                     COMPUTE_PGM_RSRC1_WGP_MODE);
1690     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1691     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1692   }
1693   return MCDisassembler::Success;
1694 }
1695 
1696 // NOLINTNEXTLINE(readability-identifier-naming)
1697 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1698     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1699   using namespace amdhsa;
1700   StringRef Indent = "\t";
1701   if (hasArchitectedFlatScratch())
1702     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1703                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1704   else
1705     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1706                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1707   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1708                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1709   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1710                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1711   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1712                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1713   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1714                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1715   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1716                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1717 
1718   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1719     return MCDisassembler::Fail;
1720 
1721   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1722     return MCDisassembler::Fail;
1723 
1724   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1725     return MCDisassembler::Fail;
1726 
1727   PRINT_DIRECTIVE(
1728       ".amdhsa_exception_fp_ieee_invalid_op",
1729       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1730   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1731                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1732   PRINT_DIRECTIVE(
1733       ".amdhsa_exception_fp_ieee_div_zero",
1734       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1735   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1736                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1737   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1738                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1739   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1740                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1741   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1742                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1743 
1744   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1745     return MCDisassembler::Fail;
1746 
1747   return MCDisassembler::Success;
1748 }
1749 
1750 #undef PRINT_DIRECTIVE
1751 
1752 MCDisassembler::DecodeStatus
1753 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1754     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1755     raw_string_ostream &KdStream) const {
1756 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1757   do {                                                                         \
1758     KdStream << Indent << DIRECTIVE " "                                        \
1759              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1760   } while (0)
1761 
1762   uint16_t TwoByteBuffer = 0;
1763   uint32_t FourByteBuffer = 0;
1764 
1765   StringRef ReservedBytes;
1766   StringRef Indent = "\t";
1767 
1768   assert(Bytes.size() == 64);
1769   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1770 
1771   switch (Cursor.tell()) {
1772   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1773     FourByteBuffer = DE.getU32(Cursor);
1774     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1775              << '\n';
1776     return MCDisassembler::Success;
1777 
1778   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1779     FourByteBuffer = DE.getU32(Cursor);
1780     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1781              << FourByteBuffer << '\n';
1782     return MCDisassembler::Success;
1783 
1784   case amdhsa::KERNARG_SIZE_OFFSET:
1785     FourByteBuffer = DE.getU32(Cursor);
1786     KdStream << Indent << ".amdhsa_kernarg_size "
1787              << FourByteBuffer << '\n';
1788     return MCDisassembler::Success;
1789 
1790   case amdhsa::RESERVED0_OFFSET:
1791     // 4 reserved bytes, must be 0.
1792     ReservedBytes = DE.getBytes(Cursor, 4);
1793     for (int I = 0; I < 4; ++I) {
1794       if (ReservedBytes[I] != 0) {
1795         return MCDisassembler::Fail;
1796       }
1797     }
1798     return MCDisassembler::Success;
1799 
1800   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1801     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1802     // So far no directive controls this for Code Object V3, so simply skip for
1803     // disassembly.
1804     DE.skip(Cursor, 8);
1805     return MCDisassembler::Success;
1806 
1807   case amdhsa::RESERVED1_OFFSET:
1808     // 20 reserved bytes, must be 0.
1809     ReservedBytes = DE.getBytes(Cursor, 20);
1810     for (int I = 0; I < 20; ++I) {
1811       if (ReservedBytes[I] != 0) {
1812         return MCDisassembler::Fail;
1813       }
1814     }
1815     return MCDisassembler::Success;
1816 
1817   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1818     // COMPUTE_PGM_RSRC3
1819     //  - Only set for GFX10, GFX6-9 have this to be 0.
1820     //  - Currently no directives directly control this.
1821     FourByteBuffer = DE.getU32(Cursor);
1822     if (!isGFX10Plus() && FourByteBuffer) {
1823       return MCDisassembler::Fail;
1824     }
1825     return MCDisassembler::Success;
1826 
1827   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1828     FourByteBuffer = DE.getU32(Cursor);
1829     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1830         MCDisassembler::Fail) {
1831       return MCDisassembler::Fail;
1832     }
1833     return MCDisassembler::Success;
1834 
1835   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1836     FourByteBuffer = DE.getU32(Cursor);
1837     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1838         MCDisassembler::Fail) {
1839       return MCDisassembler::Fail;
1840     }
1841     return MCDisassembler::Success;
1842 
1843   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1844     using namespace amdhsa;
1845     TwoByteBuffer = DE.getU16(Cursor);
1846 
1847     if (!hasArchitectedFlatScratch())
1848       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1849                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1850     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1851                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1852     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1853                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1854     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1855                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1856     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1857                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1858     if (!hasArchitectedFlatScratch())
1859       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1860                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1861     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1862                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1863 
1864     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1865       return MCDisassembler::Fail;
1866 
1867     // Reserved for GFX9
1868     if (isGFX9() &&
1869         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1870       return MCDisassembler::Fail;
1871     } else if (isGFX10Plus()) {
1872       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1873                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1874     }
1875 
1876     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1877       return MCDisassembler::Fail;
1878 
1879     return MCDisassembler::Success;
1880 
1881   case amdhsa::RESERVED2_OFFSET:
1882     // 6 bytes from here are reserved, must be 0.
1883     ReservedBytes = DE.getBytes(Cursor, 6);
1884     for (int I = 0; I < 6; ++I) {
1885       if (ReservedBytes[I] != 0)
1886         return MCDisassembler::Fail;
1887     }
1888     return MCDisassembler::Success;
1889 
1890   default:
1891     llvm_unreachable("Unhandled index. Case statements cover everything.");
1892     return MCDisassembler::Fail;
1893   }
1894 #undef PRINT_DIRECTIVE
1895 }
1896 
1897 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1898     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1899   // CP microcode requires the kernel descriptor to be 64 aligned.
1900   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1901     return MCDisassembler::Fail;
1902 
1903   std::string Kd;
1904   raw_string_ostream KdStream(Kd);
1905   KdStream << ".amdhsa_kernel " << KdName << '\n';
1906 
1907   DataExtractor::Cursor C(0);
1908   while (C && C.tell() < Bytes.size()) {
1909     MCDisassembler::DecodeStatus Status =
1910         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1911 
1912     cantFail(C.takeError());
1913 
1914     if (Status == MCDisassembler::Fail)
1915       return MCDisassembler::Fail;
1916   }
1917   KdStream << ".end_amdhsa_kernel\n";
1918   outs() << KdStream.str();
1919   return MCDisassembler::Success;
1920 }
1921 
1922 Optional<MCDisassembler::DecodeStatus>
1923 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1924                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1925                                   raw_ostream &CStream) const {
1926   // Right now only kernel descriptor needs to be handled.
1927   // We ignore all other symbols for target specific handling.
1928   // TODO:
1929   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1930   // Object V2 and V3 when symbols are marked protected.
1931 
1932   // amd_kernel_code_t for Code Object V2.
1933   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1934     Size = 256;
1935     return MCDisassembler::Fail;
1936   }
1937 
1938   // Code Object V3 kernel descriptors.
1939   StringRef Name = Symbol.Name;
1940   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1941     Size = 64; // Size = 64 regardless of success or failure.
1942     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1943   }
1944   return None;
1945 }
1946 
1947 //===----------------------------------------------------------------------===//
1948 // AMDGPUSymbolizer
1949 //===----------------------------------------------------------------------===//
1950 
1951 // Try to find symbol name for specified label
1952 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
1953     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
1954     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
1955     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
1956 
1957   if (!IsBranch) {
1958     return false;
1959   }
1960 
1961   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1962   if (!Symbols)
1963     return false;
1964 
1965   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1966     return Val.Addr == static_cast<uint64_t>(Value) &&
1967            Val.Type == ELF::STT_NOTYPE;
1968   });
1969   if (Result != Symbols->end()) {
1970     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1971     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1972     Inst.addOperand(MCOperand::createExpr(Add));
1973     return true;
1974   }
1975   // Add to list of referenced addresses, so caller can synthesize a label.
1976   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1977   return false;
1978 }
1979 
1980 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1981                                                        int64_t Value,
1982                                                        uint64_t Address) {
1983   llvm_unreachable("unimplemented");
1984 }
1985 
1986 //===----------------------------------------------------------------------===//
1987 // Initialization
1988 //===----------------------------------------------------------------------===//
1989 
1990 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1991                               LLVMOpInfoCallback /*GetOpInfo*/,
1992                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1993                               void *DisInfo,
1994                               MCContext *Ctx,
1995                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1996   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1997 }
1998 
1999 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2000                                                 const MCSubtargetInfo &STI,
2001                                                 MCContext &Ctx) {
2002   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2003 }
2004 
2005 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2006   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2007                                          createAMDGPUDisassembler);
2008   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2009                                        createAMDGPUSymbolizer);
2010 }
2011