xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision ef736a1c39f27ef4777bbe6cf3af68c1fd588c8a)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "TargetInfo/AMDGPUTargetInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm-c/DisassemblerTypes.h"
24 #include "llvm/BinaryFormat/ELF.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/MC/MCFixedLenDisassembler.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/TargetRegistry.h"
33 #include "llvm/Support/AMDHSAKernelDescriptor.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "amdgpu-disassembler"
38 
39 #define SGPR_MAX                                                               \
40   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
41                  : AMDGPU::EncValues::SGPR_MAX_SI)
42 
43 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
44 
45 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
46                                        MCContext &Ctx,
47                                        MCInstrInfo const *MCII) :
48   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
49   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
50 
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr, const void *Decoder) {
77   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
78 
79   // Our branches take a simm16, but we need two extra bits to account for the
80   // factor of 4.
81   APInt SignedOffset(18, Imm * 4, true);
82   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
83 
84   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
85     return MCDisassembler::Success;
86   return addOperand(Inst, MCOperand::createImm(Imm));
87 }
88 
89 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm,
90                                      uint64_t Addr, const void *Decoder) {
91   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
92   int64_t Offset;
93   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
94     Offset = Imm & 0xFFFFF;
95   } else {                    // GFX9+ supports 21-bit signed offsets.
96     Offset = SignExtend64<21>(Imm);
97   }
98   return addOperand(Inst, MCOperand::createImm(Offset));
99 }
100 
101 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val,
102                                   uint64_t Addr, const void *Decoder) {
103   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
104   return addOperand(Inst, DAsm->decodeBoolReg(Val));
105 }
106 
107 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \
108 static DecodeStatus StaticDecoderName(MCInst &Inst, \
109                                        unsigned Imm, \
110                                        uint64_t /*Addr*/, \
111                                        const void *Decoder) { \
112   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); \
113   return addOperand(Inst, DAsm->DecoderName(Imm)); \
114 }
115 
116 #define DECODE_OPERAND_REG(RegClass) \
117 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
118 
119 DECODE_OPERAND_REG(VGPR_32)
120 DECODE_OPERAND_REG(VRegOrLds_32)
121 DECODE_OPERAND_REG(VS_32)
122 DECODE_OPERAND_REG(VS_64)
123 DECODE_OPERAND_REG(VS_128)
124 
125 DECODE_OPERAND_REG(VReg_64)
126 DECODE_OPERAND_REG(VReg_96)
127 DECODE_OPERAND_REG(VReg_128)
128 DECODE_OPERAND_REG(VReg_256)
129 DECODE_OPERAND_REG(VReg_512)
130 DECODE_OPERAND_REG(VReg_1024)
131 
132 DECODE_OPERAND_REG(SReg_32)
133 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
134 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
135 DECODE_OPERAND_REG(SRegOrLds_32)
136 DECODE_OPERAND_REG(SReg_64)
137 DECODE_OPERAND_REG(SReg_64_XEXEC)
138 DECODE_OPERAND_REG(SReg_128)
139 DECODE_OPERAND_REG(SReg_256)
140 DECODE_OPERAND_REG(SReg_512)
141 
142 DECODE_OPERAND_REG(AGPR_32)
143 DECODE_OPERAND_REG(AReg_64)
144 DECODE_OPERAND_REG(AReg_128)
145 DECODE_OPERAND_REG(AReg_256)
146 DECODE_OPERAND_REG(AReg_512)
147 DECODE_OPERAND_REG(AReg_1024)
148 DECODE_OPERAND_REG(AV_32)
149 DECODE_OPERAND_REG(AV_64)
150 
151 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst,
152                                          unsigned Imm,
153                                          uint64_t Addr,
154                                          const void *Decoder) {
155   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
156   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
157 }
158 
159 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst,
160                                          unsigned Imm,
161                                          uint64_t Addr,
162                                          const void *Decoder) {
163   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
164   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
165 }
166 
167 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst,
168                                            unsigned Imm,
169                                            uint64_t Addr,
170                                            const void *Decoder) {
171   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
172   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
173 }
174 
175 static DecodeStatus decodeOperand_VS_16(MCInst &Inst,
176                                         unsigned Imm,
177                                         uint64_t Addr,
178                                         const void *Decoder) {
179   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
180   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
181 }
182 
183 static DecodeStatus decodeOperand_VS_32(MCInst &Inst,
184                                         unsigned Imm,
185                                         uint64_t Addr,
186                                         const void *Decoder) {
187   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
188   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
189 }
190 
191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst,
192                                           unsigned Imm,
193                                           uint64_t Addr,
194                                           const void *Decoder) {
195   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
196   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
197 }
198 
199 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst,
200                                            unsigned Imm,
201                                            uint64_t Addr,
202                                            const void *Decoder) {
203   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
204   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
205 }
206 
207 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst,
208                                            unsigned Imm,
209                                            uint64_t Addr,
210                                            const void *Decoder) {
211   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
212   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
213 }
214 
215 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst,
216                                            unsigned Imm,
217                                            uint64_t Addr,
218                                            const void *Decoder) {
219   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
220   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
221 }
222 
223 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst,
224                                             unsigned Imm,
225                                             uint64_t Addr,
226                                             const void *Decoder) {
227   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
228   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
229 }
230 
231 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst,
232                                           unsigned Imm,
233                                           uint64_t Addr,
234                                           const void *Decoder) {
235   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
236   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
237 }
238 
239 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst,
240                                            unsigned Imm,
241                                            uint64_t Addr,
242                                            const void *Decoder) {
243   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
244   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
245 }
246 
247 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst,
248                                            unsigned Imm,
249                                            uint64_t Addr,
250                                            const void *Decoder) {
251   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
252   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
253 }
254 
255 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst,
256                                            unsigned Imm,
257                                            uint64_t Addr,
258                                            const void *Decoder) {
259   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
260   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
261 }
262 
263 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst,
264                                             unsigned Imm,
265                                             uint64_t Addr,
266                                             const void *Decoder) {
267   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
268   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
269 }
270 
271 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
272                                           uint64_t Addr, const void *Decoder) {
273   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
274   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
275 }
276 
277 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
278                                           uint64_t Addr, const void *Decoder) {
279   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
280   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
281 }
282 
283 static DecodeStatus decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm,
284                                                  uint64_t Addr,
285                                                  const void *Decoder) {
286   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(
288       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
289 }
290 
291 static DecodeStatus decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm,
292                                                  uint64_t Addr,
293                                                  const void *Decoder) {
294   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
295   return addOperand(
296       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
297 }
298 
299 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
300                           const MCRegisterInfo *MRI) {
301   if (OpIdx < 0)
302     return false;
303 
304   const MCOperand &Op = Inst.getOperand(OpIdx);
305   if (!Op.isReg())
306     return false;
307 
308   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
309   auto Reg = Sub ? Sub : Op.getReg();
310   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
311 }
312 
313 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst,
314                                              unsigned Imm,
315                                              AMDGPUDisassembler::OpWidthTy Opw,
316                                              const void *Decoder) {
317   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
318   if (!DAsm->isGFX90A()) {
319     Imm &= 511;
320   } else {
321     // If atomic has both vdata and vdst their register classes are tied.
322     // The bit is decoded along with the vdst, first operand. We need to
323     // change register class to AGPR if vdst was AGPR.
324     // If a DS instruction has both data0 and data1 their register classes
325     // are also tied.
326     unsigned Opc = Inst.getOpcode();
327     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
328     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
329                                                         : AMDGPU::OpName::vdata;
330     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
331     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
332     if ((int)Inst.getNumOperands() == DataIdx) {
333       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
334       if (IsAGPROperand(Inst, DstIdx, MRI))
335         Imm |= 512;
336     }
337 
338     if (TSFlags & SIInstrFlags::DS) {
339       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
340       if ((int)Inst.getNumOperands() == Data2Idx &&
341           IsAGPROperand(Inst, DataIdx, MRI))
342         Imm |= 512;
343     }
344   }
345   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
346 }
347 
348 static DecodeStatus DecodeAVLdSt_32RegisterClass(MCInst &Inst,
349                                                  unsigned Imm,
350                                                  uint64_t Addr,
351                                                  const void *Decoder) {
352   return decodeOperand_AVLdSt_Any(Inst, Imm,
353                                   AMDGPUDisassembler::OPW32, Decoder);
354 }
355 
356 static DecodeStatus DecodeAVLdSt_64RegisterClass(MCInst &Inst,
357                                                  unsigned Imm,
358                                                  uint64_t Addr,
359                                                  const void *Decoder) {
360   return decodeOperand_AVLdSt_Any(Inst, Imm,
361                                   AMDGPUDisassembler::OPW64, Decoder);
362 }
363 
364 static DecodeStatus DecodeAVLdSt_96RegisterClass(MCInst &Inst,
365                                                  unsigned Imm,
366                                                  uint64_t Addr,
367                                                  const void *Decoder) {
368   return decodeOperand_AVLdSt_Any(Inst, Imm,
369                                   AMDGPUDisassembler::OPW96, Decoder);
370 }
371 
372 static DecodeStatus DecodeAVLdSt_128RegisterClass(MCInst &Inst,
373                                                   unsigned Imm,
374                                                   uint64_t Addr,
375                                                   const void *Decoder) {
376   return decodeOperand_AVLdSt_Any(Inst, Imm,
377                                   AMDGPUDisassembler::OPW128, Decoder);
378 }
379 
380 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst,
381                                           unsigned Imm,
382                                           uint64_t Addr,
383                                           const void *Decoder) {
384   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
385   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
386 }
387 
388 static DecodeStatus decodeOperand_VGPR_32(MCInst &Inst,
389                                          unsigned Imm,
390                                          uint64_t Addr,
391                                          const void *Decoder) {
392   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
393   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW32, Imm));
394 }
395 
396 #define DECODE_SDWA(DecName) \
397 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
398 
399 DECODE_SDWA(Src32)
400 DECODE_SDWA(Src16)
401 DECODE_SDWA(VopcDst)
402 
403 #include "AMDGPUGenDisassemblerTables.inc"
404 
405 //===----------------------------------------------------------------------===//
406 //
407 //===----------------------------------------------------------------------===//
408 
409 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
410   assert(Bytes.size() >= sizeof(T));
411   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
412   Bytes = Bytes.slice(sizeof(T));
413   return Res;
414 }
415 
416 DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table,
417                                                MCInst &MI,
418                                                uint64_t Inst,
419                                                uint64_t Address) const {
420   assert(MI.getOpcode() == 0);
421   assert(MI.getNumOperands() == 0);
422   MCInst TmpInst;
423   HasLiteral = false;
424   const auto SavedBytes = Bytes;
425   if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) {
426     MI = TmpInst;
427     return MCDisassembler::Success;
428   }
429   Bytes = SavedBytes;
430   return MCDisassembler::Fail;
431 }
432 
433 // The disassembler is greedy, so we need to check FI operand value to
434 // not parse a dpp if the correct literal is not set. For dpp16 the
435 // autogenerated decoder checks the dpp literal
436 static bool isValidDPP8(const MCInst &MI) {
437   using namespace llvm::AMDGPU::DPP;
438   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
439   assert(FiIdx != -1);
440   if ((unsigned)FiIdx >= MI.getNumOperands())
441     return false;
442   unsigned Fi = MI.getOperand(FiIdx).getImm();
443   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
444 }
445 
446 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
447                                                 ArrayRef<uint8_t> Bytes_,
448                                                 uint64_t Address,
449                                                 raw_ostream &CS) const {
450   CommentStream = &CS;
451   bool IsSDWA = false;
452 
453   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
454   Bytes = Bytes_.slice(0, MaxInstBytesNum);
455 
456   DecodeStatus Res = MCDisassembler::Fail;
457   do {
458     // ToDo: better to switch encoding length using some bit predicate
459     // but it is unknown yet, so try all we can
460 
461     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
462     // encodings
463     if (Bytes.size() >= 8) {
464       const uint64_t QW = eatBytes<uint64_t>(Bytes);
465 
466       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
467         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
468         if (Res) {
469           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
470               == -1)
471             break;
472           if (convertDPP8Inst(MI) == MCDisassembler::Success)
473             break;
474           MI = MCInst(); // clear
475         }
476       }
477 
478       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
479       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
480         break;
481 
482       MI = MCInst(); // clear
483 
484       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
485       if (Res) break;
486 
487       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
488       if (Res) { IsSDWA = true;  break; }
489 
490       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
491       if (Res) { IsSDWA = true;  break; }
492 
493       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
494       if (Res) { IsSDWA = true;  break; }
495 
496       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
497         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
498         if (Res)
499           break;
500       }
501 
502       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
503       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
504       // table first so we print the correct name.
505       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
506         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
507         if (Res)
508           break;
509       }
510     }
511 
512     // Reinitialize Bytes as DPP64 could have eaten too much
513     Bytes = Bytes_.slice(0, MaxInstBytesNum);
514 
515     // Try decode 32-bit instruction
516     if (Bytes.size() < 4) break;
517     const uint32_t DW = eatBytes<uint32_t>(Bytes);
518     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
519     if (Res) break;
520 
521     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
522     if (Res) break;
523 
524     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
525     if (Res) break;
526 
527     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
528       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
529       if (Res)
530         break;
531     }
532 
533     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
534       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
535       if (Res) break;
536     }
537 
538     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
539     if (Res) break;
540 
541     if (Bytes.size() < 4) break;
542     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
543 
544     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
545       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
546       if (Res)
547         break;
548     }
549 
550     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
551     if (Res) break;
552 
553     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
554     if (Res) break;
555 
556     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
557     if (Res) break;
558 
559     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
560   } while (false);
561 
562   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
563               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
564               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
565               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
566               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
567               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
568               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
569               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
570               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
571               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
572               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
573     // Insert dummy unused src2_modifiers.
574     insertNamedMCOperand(MI, MCOperand::createImm(0),
575                          AMDGPU::OpName::src2_modifiers);
576   }
577 
578   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
579           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
580     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
581                                              AMDGPU::OpName::cpol);
582     if (CPolPos != -1) {
583       unsigned CPol =
584           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
585               AMDGPU::CPol::GLC : 0;
586       if (MI.getNumOperands() <= (unsigned)CPolPos) {
587         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
588                              AMDGPU::OpName::cpol);
589       } else if (CPol) {
590         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
591       }
592     }
593   }
594 
595   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
596               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
597              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
598     // GFX90A lost TFE, its place is occupied by ACC.
599     int TFEOpIdx =
600         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
601     if (TFEOpIdx != -1) {
602       auto TFEIter = MI.begin();
603       std::advance(TFEIter, TFEOpIdx);
604       MI.insert(TFEIter, MCOperand::createImm(0));
605     }
606   }
607 
608   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
609               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
610     int SWZOpIdx =
611         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
612     if (SWZOpIdx != -1) {
613       auto SWZIter = MI.begin();
614       std::advance(SWZIter, SWZOpIdx);
615       MI.insert(SWZIter, MCOperand::createImm(0));
616     }
617   }
618 
619   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
620     int VAddr0Idx =
621         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
622     int RsrcIdx =
623         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
624     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
625     if (VAddr0Idx >= 0 && NSAArgs > 0) {
626       unsigned NSAWords = (NSAArgs + 3) / 4;
627       if (Bytes.size() < 4 * NSAWords) {
628         Res = MCDisassembler::Fail;
629       } else {
630         for (unsigned i = 0; i < NSAArgs; ++i) {
631           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
632                     decodeOperand_VGPR_32(Bytes[i]));
633         }
634         Bytes = Bytes.slice(4 * NSAWords);
635       }
636     }
637 
638     if (Res)
639       Res = convertMIMGInst(MI);
640   }
641 
642   if (Res && IsSDWA)
643     Res = convertSDWAInst(MI);
644 
645   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
646                                               AMDGPU::OpName::vdst_in);
647   if (VDstIn_Idx != -1) {
648     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
649                            MCOI::OperandConstraint::TIED_TO);
650     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
651          !MI.getOperand(VDstIn_Idx).isReg() ||
652          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
653       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
654         MI.erase(&MI.getOperand(VDstIn_Idx));
655       insertNamedMCOperand(MI,
656         MCOperand::createReg(MI.getOperand(Tied).getReg()),
657         AMDGPU::OpName::vdst_in);
658     }
659   }
660 
661   int ImmLitIdx =
662       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
663   if (Res && ImmLitIdx != -1)
664     Res = convertFMAanyK(MI, ImmLitIdx);
665 
666   // if the opcode was not recognized we'll assume a Size of 4 bytes
667   // (unless there are fewer bytes left)
668   Size = Res ? (MaxInstBytesNum - Bytes.size())
669              : std::min((size_t)4, Bytes_.size());
670   return Res;
671 }
672 
673 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
674   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
675       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
676     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
677       // VOPC - insert clamp
678       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
679   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
680     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
681     if (SDst != -1) {
682       // VOPC - insert VCC register as sdst
683       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
684                            AMDGPU::OpName::sdst);
685     } else {
686       // VOP1/2 - insert omod if present in instruction
687       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
688     }
689   }
690   return MCDisassembler::Success;
691 }
692 
693 // We must check FI == literal to reject not genuine dpp8 insts, and we must
694 // first add optional MI operands to check FI
695 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
696   unsigned Opc = MI.getOpcode();
697   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
698 
699   // Insert dummy unused src modifiers.
700   if (MI.getNumOperands() < DescNumOps &&
701       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
702     insertNamedMCOperand(MI, MCOperand::createImm(0),
703                          AMDGPU::OpName::src0_modifiers);
704 
705   if (MI.getNumOperands() < DescNumOps &&
706       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
707     insertNamedMCOperand(MI, MCOperand::createImm(0),
708                          AMDGPU::OpName::src1_modifiers);
709 
710   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
711 }
712 
713 // Note that before gfx10, the MIMG encoding provided no information about
714 // VADDR size. Consequently, decoded instructions always show address as if it
715 // has 1 dword, which could be not really so.
716 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
717 
718   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
719                                            AMDGPU::OpName::vdst);
720 
721   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
722                                             AMDGPU::OpName::vdata);
723   int VAddr0Idx =
724       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
725   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
726                                             AMDGPU::OpName::dmask);
727 
728   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
729                                             AMDGPU::OpName::tfe);
730   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
731                                             AMDGPU::OpName::d16);
732 
733   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
734   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
735       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
736 
737   assert(VDataIdx != -1);
738   if (BaseOpcode->BVH) {
739     // Add A16 operand for intersect_ray instructions
740     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
741       addOperand(MI, MCOperand::createImm(1));
742     }
743     return MCDisassembler::Success;
744   }
745 
746   bool IsAtomic = (VDstIdx != -1);
747   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
748   bool IsNSA = false;
749   unsigned AddrSize = Info->VAddrDwords;
750 
751   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
752     unsigned DimIdx =
753         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
754     int A16Idx =
755         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
756     const AMDGPU::MIMGDimInfo *Dim =
757         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
758     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
759 
760     AddrSize =
761         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
762 
763     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
764     if (!IsNSA) {
765       if (AddrSize > 8)
766         AddrSize = 16;
767     } else {
768       if (AddrSize > Info->VAddrDwords) {
769         // The NSA encoding does not contain enough operands for the combination
770         // of base opcode / dimension. Should this be an error?
771         return MCDisassembler::Success;
772       }
773     }
774   }
775 
776   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
777   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
778 
779   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
780   if (D16 && AMDGPU::hasPackedD16(STI)) {
781     DstSize = (DstSize + 1) / 2;
782   }
783 
784   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
785     DstSize += 1;
786 
787   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
788     return MCDisassembler::Success;
789 
790   int NewOpcode =
791       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
792   if (NewOpcode == -1)
793     return MCDisassembler::Success;
794 
795   // Widen the register to the correct number of enabled channels.
796   unsigned NewVdata = AMDGPU::NoRegister;
797   if (DstSize != Info->VDataDwords) {
798     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
799 
800     // Get first subregister of VData
801     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
802     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
803     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
804 
805     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
806                                        &MRI.getRegClass(DataRCID));
807     if (NewVdata == AMDGPU::NoRegister) {
808       // It's possible to encode this such that the low register + enabled
809       // components exceeds the register count.
810       return MCDisassembler::Success;
811     }
812   }
813 
814   unsigned NewVAddr0 = AMDGPU::NoRegister;
815   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
816       AddrSize != Info->VAddrDwords) {
817     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
818     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
819     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
820 
821     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
822     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
823                                         &MRI.getRegClass(AddrRCID));
824     if (NewVAddr0 == AMDGPU::NoRegister)
825       return MCDisassembler::Success;
826   }
827 
828   MI.setOpcode(NewOpcode);
829 
830   if (NewVdata != AMDGPU::NoRegister) {
831     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
832 
833     if (IsAtomic) {
834       // Atomic operations have an additional operand (a copy of data)
835       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
836     }
837   }
838 
839   if (NewVAddr0 != AMDGPU::NoRegister) {
840     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
841   } else if (IsNSA) {
842     assert(AddrSize <= Info->VAddrDwords);
843     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
844              MI.begin() + VAddr0Idx + Info->VAddrDwords);
845   }
846 
847   return MCDisassembler::Success;
848 }
849 
850 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
851                                                 int ImmLitIdx) const {
852   assert(HasLiteral && "Should have decoded a literal");
853   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
854   unsigned DescNumOps = Desc.getNumOperands();
855   assert(DescNumOps == MI.getNumOperands());
856   for (unsigned I = 0; I < DescNumOps; ++I) {
857     auto &Op = MI.getOperand(I);
858     auto OpType = Desc.OpInfo[I].OperandType;
859     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
860                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
861     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
862         IsDeferredOp)
863       Op.setImm(Literal);
864   }
865   return MCDisassembler::Success;
866 }
867 
868 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
869   return getContext().getRegisterInfo()->
870     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
871 }
872 
873 inline
874 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
875                                          const Twine& ErrMsg) const {
876   *CommentStream << "Error: " + ErrMsg;
877 
878   // ToDo: add support for error operands to MCInst.h
879   // return MCOperand::createError(V);
880   return MCOperand();
881 }
882 
883 inline
884 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
885   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
886 }
887 
888 inline
889 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
890                                                unsigned Val) const {
891   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
892   if (Val >= RegCl.getNumRegs())
893     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
894                            ": unknown register " + Twine(Val));
895   return createRegOperand(RegCl.getRegister(Val));
896 }
897 
898 inline
899 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
900                                                 unsigned Val) const {
901   // ToDo: SI/CI have 104 SGPRs, VI - 102
902   // Valery: here we accepting as much as we can, let assembler sort it out
903   int shift = 0;
904   switch (SRegClassID) {
905   case AMDGPU::SGPR_32RegClassID:
906   case AMDGPU::TTMP_32RegClassID:
907     break;
908   case AMDGPU::SGPR_64RegClassID:
909   case AMDGPU::TTMP_64RegClassID:
910     shift = 1;
911     break;
912   case AMDGPU::SGPR_128RegClassID:
913   case AMDGPU::TTMP_128RegClassID:
914   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
915   // this bundle?
916   case AMDGPU::SGPR_256RegClassID:
917   case AMDGPU::TTMP_256RegClassID:
918     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
919   // this bundle?
920   case AMDGPU::SGPR_512RegClassID:
921   case AMDGPU::TTMP_512RegClassID:
922     shift = 2;
923     break;
924   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
925   // this bundle?
926   default:
927     llvm_unreachable("unhandled register class");
928   }
929 
930   if (Val % (1 << shift)) {
931     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
932                    << ": scalar reg isn't aligned " << Val;
933   }
934 
935   return createRegOperand(SRegClassID, Val >> shift);
936 }
937 
938 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
939   return decodeSrcOp(OPW32, Val);
940 }
941 
942 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
943   return decodeSrcOp(OPW64, Val);
944 }
945 
946 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
947   return decodeSrcOp(OPW128, Val);
948 }
949 
950 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
951   return decodeSrcOp(OPW16, Val);
952 }
953 
954 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
955   return decodeSrcOp(OPWV216, Val);
956 }
957 
958 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
959   return decodeSrcOp(OPWV232, Val);
960 }
961 
962 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
963   // Some instructions have operand restrictions beyond what the encoding
964   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
965   // high bit.
966   Val &= 255;
967 
968   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
969 }
970 
971 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
972   return decodeSrcOp(OPW32, Val);
973 }
974 
975 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
976   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
977 }
978 
979 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
980   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
981 }
982 
983 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
984   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
985 }
986 
987 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
988   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
989 }
990 
991 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
992   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
993 }
994 
995 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
996   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
997 }
998 
999 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1000   return decodeSrcOp(OPW32, Val);
1001 }
1002 
1003 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1004   return decodeSrcOp(OPW64, Val);
1005 }
1006 
1007 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1008   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1009 }
1010 
1011 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1012   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1013 }
1014 
1015 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1016   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1017 }
1018 
1019 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1020   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1021 }
1022 
1023 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1024   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1025 }
1026 
1027 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1028   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1029 }
1030 
1031 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1032   // table-gen generated disassembler doesn't care about operand types
1033   // leaving only registry class so SSrc_32 operand turns into SReg_32
1034   // and therefore we accept immediates and literals here as well
1035   return decodeSrcOp(OPW32, Val);
1036 }
1037 
1038 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1039   unsigned Val) const {
1040   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1041   return decodeOperand_SReg_32(Val);
1042 }
1043 
1044 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1045   unsigned Val) const {
1046   // SReg_32_XM0 is SReg_32 without EXEC_HI
1047   return decodeOperand_SReg_32(Val);
1048 }
1049 
1050 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1051   // table-gen generated disassembler doesn't care about operand types
1052   // leaving only registry class so SSrc_32 operand turns into SReg_32
1053   // and therefore we accept immediates and literals here as well
1054   return decodeSrcOp(OPW32, Val);
1055 }
1056 
1057 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1058   return decodeSrcOp(OPW64, Val);
1059 }
1060 
1061 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1062   return decodeSrcOp(OPW64, Val);
1063 }
1064 
1065 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1066   return decodeSrcOp(OPW128, Val);
1067 }
1068 
1069 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1070   return decodeDstOp(OPW256, Val);
1071 }
1072 
1073 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1074   return decodeDstOp(OPW512, Val);
1075 }
1076 
1077 // Decode Literals for insts which always have a literal in the encoding
1078 MCOperand
1079 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1080   if (HasLiteral) {
1081     if (Literal != Val)
1082       return errOperand(Val, "More than one unique literal is illegal");
1083   }
1084   HasLiteral = true;
1085   Literal = Val;
1086   return MCOperand::createImm(Literal);
1087 }
1088 
1089 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1090   // For now all literal constants are supposed to be unsigned integer
1091   // ToDo: deal with signed/unsigned 64-bit integer constants
1092   // ToDo: deal with float/double constants
1093   if (!HasLiteral) {
1094     if (Bytes.size() < 4) {
1095       return errOperand(0, "cannot read literal, inst bytes left " +
1096                         Twine(Bytes.size()));
1097     }
1098     HasLiteral = true;
1099     Literal = eatBytes<uint32_t>(Bytes);
1100   }
1101   return MCOperand::createImm(Literal);
1102 }
1103 
1104 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1105   using namespace AMDGPU::EncValues;
1106 
1107   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1108   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1109     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1110     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1111       // Cast prevents negative overflow.
1112 }
1113 
1114 static int64_t getInlineImmVal32(unsigned Imm) {
1115   switch (Imm) {
1116   case 240:
1117     return FloatToBits(0.5f);
1118   case 241:
1119     return FloatToBits(-0.5f);
1120   case 242:
1121     return FloatToBits(1.0f);
1122   case 243:
1123     return FloatToBits(-1.0f);
1124   case 244:
1125     return FloatToBits(2.0f);
1126   case 245:
1127     return FloatToBits(-2.0f);
1128   case 246:
1129     return FloatToBits(4.0f);
1130   case 247:
1131     return FloatToBits(-4.0f);
1132   case 248: // 1 / (2 * PI)
1133     return 0x3e22f983;
1134   default:
1135     llvm_unreachable("invalid fp inline imm");
1136   }
1137 }
1138 
1139 static int64_t getInlineImmVal64(unsigned Imm) {
1140   switch (Imm) {
1141   case 240:
1142     return DoubleToBits(0.5);
1143   case 241:
1144     return DoubleToBits(-0.5);
1145   case 242:
1146     return DoubleToBits(1.0);
1147   case 243:
1148     return DoubleToBits(-1.0);
1149   case 244:
1150     return DoubleToBits(2.0);
1151   case 245:
1152     return DoubleToBits(-2.0);
1153   case 246:
1154     return DoubleToBits(4.0);
1155   case 247:
1156     return DoubleToBits(-4.0);
1157   case 248: // 1 / (2 * PI)
1158     return 0x3fc45f306dc9c882;
1159   default:
1160     llvm_unreachable("invalid fp inline imm");
1161   }
1162 }
1163 
1164 static int64_t getInlineImmVal16(unsigned Imm) {
1165   switch (Imm) {
1166   case 240:
1167     return 0x3800;
1168   case 241:
1169     return 0xB800;
1170   case 242:
1171     return 0x3C00;
1172   case 243:
1173     return 0xBC00;
1174   case 244:
1175     return 0x4000;
1176   case 245:
1177     return 0xC000;
1178   case 246:
1179     return 0x4400;
1180   case 247:
1181     return 0xC400;
1182   case 248: // 1 / (2 * PI)
1183     return 0x3118;
1184   default:
1185     llvm_unreachable("invalid fp inline imm");
1186   }
1187 }
1188 
1189 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1190   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1191       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1192 
1193   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1194   switch (Width) {
1195   case OPW32:
1196   case OPW128: // splat constants
1197   case OPW512:
1198   case OPW1024:
1199   case OPWV232:
1200     return MCOperand::createImm(getInlineImmVal32(Imm));
1201   case OPW64:
1202   case OPW256:
1203     return MCOperand::createImm(getInlineImmVal64(Imm));
1204   case OPW16:
1205   case OPWV216:
1206     return MCOperand::createImm(getInlineImmVal16(Imm));
1207   default:
1208     llvm_unreachable("implement me");
1209   }
1210 }
1211 
1212 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1213   using namespace AMDGPU;
1214 
1215   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1216   switch (Width) {
1217   default: // fall
1218   case OPW32:
1219   case OPW16:
1220   case OPWV216:
1221     return VGPR_32RegClassID;
1222   case OPW64:
1223   case OPWV232: return VReg_64RegClassID;
1224   case OPW96: return VReg_96RegClassID;
1225   case OPW128: return VReg_128RegClassID;
1226   case OPW160: return VReg_160RegClassID;
1227   case OPW256: return VReg_256RegClassID;
1228   case OPW512: return VReg_512RegClassID;
1229   case OPW1024: return VReg_1024RegClassID;
1230   }
1231 }
1232 
1233 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1234   using namespace AMDGPU;
1235 
1236   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1237   switch (Width) {
1238   default: // fall
1239   case OPW32:
1240   case OPW16:
1241   case OPWV216:
1242     return AGPR_32RegClassID;
1243   case OPW64:
1244   case OPWV232: return AReg_64RegClassID;
1245   case OPW96: return AReg_96RegClassID;
1246   case OPW128: return AReg_128RegClassID;
1247   case OPW160: return AReg_160RegClassID;
1248   case OPW256: return AReg_256RegClassID;
1249   case OPW512: return AReg_512RegClassID;
1250   case OPW1024: return AReg_1024RegClassID;
1251   }
1252 }
1253 
1254 
1255 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1256   using namespace AMDGPU;
1257 
1258   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1259   switch (Width) {
1260   default: // fall
1261   case OPW32:
1262   case OPW16:
1263   case OPWV216:
1264     return SGPR_32RegClassID;
1265   case OPW64:
1266   case OPWV232: return SGPR_64RegClassID;
1267   case OPW96: return SGPR_96RegClassID;
1268   case OPW128: return SGPR_128RegClassID;
1269   case OPW160: return SGPR_160RegClassID;
1270   case OPW256: return SGPR_256RegClassID;
1271   case OPW512: return SGPR_512RegClassID;
1272   }
1273 }
1274 
1275 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1276   using namespace AMDGPU;
1277 
1278   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1279   switch (Width) {
1280   default: // fall
1281   case OPW32:
1282   case OPW16:
1283   case OPWV216:
1284     return TTMP_32RegClassID;
1285   case OPW64:
1286   case OPWV232: return TTMP_64RegClassID;
1287   case OPW128: return TTMP_128RegClassID;
1288   case OPW256: return TTMP_256RegClassID;
1289   case OPW512: return TTMP_512RegClassID;
1290   }
1291 }
1292 
1293 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1294   using namespace AMDGPU::EncValues;
1295 
1296   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1297   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1298 
1299   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1300 }
1301 
1302 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1303                                           bool MandatoryLiteral) const {
1304   using namespace AMDGPU::EncValues;
1305 
1306   assert(Val < 1024); // enum10
1307 
1308   bool IsAGPR = Val & 512;
1309   Val &= 511;
1310 
1311   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1312     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1313                                    : getVgprClassId(Width), Val - VGPR_MIN);
1314   }
1315   if (Val <= SGPR_MAX) {
1316     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1317     static_assert(SGPR_MIN == 0, "");
1318     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1319   }
1320 
1321   int TTmpIdx = getTTmpIdx(Val);
1322   if (TTmpIdx >= 0) {
1323     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1324   }
1325 
1326   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1327     return decodeIntImmed(Val);
1328 
1329   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1330     return decodeFPImmed(Width, Val);
1331 
1332   if (Val == LITERAL_CONST) {
1333     if (MandatoryLiteral)
1334       // Keep a sentinel value for deferred setting
1335       return MCOperand::createImm(LITERAL_CONST);
1336     else
1337       return decodeLiteralConstant();
1338   }
1339 
1340   switch (Width) {
1341   case OPW32:
1342   case OPW16:
1343   case OPWV216:
1344     return decodeSpecialReg32(Val);
1345   case OPW64:
1346   case OPWV232:
1347     return decodeSpecialReg64(Val);
1348   default:
1349     llvm_unreachable("unexpected immediate type");
1350   }
1351 }
1352 
1353 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1354   using namespace AMDGPU::EncValues;
1355 
1356   assert(Val < 128);
1357   assert(Width == OPW256 || Width == OPW512);
1358 
1359   if (Val <= SGPR_MAX) {
1360     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1361     static_assert(SGPR_MIN == 0, "");
1362     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1363   }
1364 
1365   int TTmpIdx = getTTmpIdx(Val);
1366   if (TTmpIdx >= 0) {
1367     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1368   }
1369 
1370   llvm_unreachable("unknown dst register");
1371 }
1372 
1373 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1374   using namespace AMDGPU;
1375 
1376   switch (Val) {
1377   case 102: return createRegOperand(FLAT_SCR_LO);
1378   case 103: return createRegOperand(FLAT_SCR_HI);
1379   case 104: return createRegOperand(XNACK_MASK_LO);
1380   case 105: return createRegOperand(XNACK_MASK_HI);
1381   case 106: return createRegOperand(VCC_LO);
1382   case 107: return createRegOperand(VCC_HI);
1383   case 108: return createRegOperand(TBA_LO);
1384   case 109: return createRegOperand(TBA_HI);
1385   case 110: return createRegOperand(TMA_LO);
1386   case 111: return createRegOperand(TMA_HI);
1387   case 124: return createRegOperand(M0);
1388   case 125: return createRegOperand(SGPR_NULL);
1389   case 126: return createRegOperand(EXEC_LO);
1390   case 127: return createRegOperand(EXEC_HI);
1391   case 235: return createRegOperand(SRC_SHARED_BASE);
1392   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1393   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1394   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1395   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1396   case 251: return createRegOperand(SRC_VCCZ);
1397   case 252: return createRegOperand(SRC_EXECZ);
1398   case 253: return createRegOperand(SRC_SCC);
1399   case 254: return createRegOperand(LDS_DIRECT);
1400   default: break;
1401   }
1402   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1403 }
1404 
1405 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1406   using namespace AMDGPU;
1407 
1408   switch (Val) {
1409   case 102: return createRegOperand(FLAT_SCR);
1410   case 104: return createRegOperand(XNACK_MASK);
1411   case 106: return createRegOperand(VCC);
1412   case 108: return createRegOperand(TBA);
1413   case 110: return createRegOperand(TMA);
1414   case 125: return createRegOperand(SGPR_NULL);
1415   case 126: return createRegOperand(EXEC);
1416   case 235: return createRegOperand(SRC_SHARED_BASE);
1417   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1418   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1419   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1420   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1421   case 251: return createRegOperand(SRC_VCCZ);
1422   case 252: return createRegOperand(SRC_EXECZ);
1423   case 253: return createRegOperand(SRC_SCC);
1424   default: break;
1425   }
1426   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1427 }
1428 
1429 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1430                                             const unsigned Val) const {
1431   using namespace AMDGPU::SDWA;
1432   using namespace AMDGPU::EncValues;
1433 
1434   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1435       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1436     // XXX: cast to int is needed to avoid stupid warning:
1437     // compare with unsigned is always true
1438     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1439         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1440       return createRegOperand(getVgprClassId(Width),
1441                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1442     }
1443     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1444         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1445                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1446       return createSRegOperand(getSgprClassId(Width),
1447                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1448     }
1449     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1450         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1451       return createSRegOperand(getTtmpClassId(Width),
1452                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1453     }
1454 
1455     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1456 
1457     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1458       return decodeIntImmed(SVal);
1459 
1460     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1461       return decodeFPImmed(Width, SVal);
1462 
1463     return decodeSpecialReg32(SVal);
1464   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1465     return createRegOperand(getVgprClassId(Width), Val);
1466   }
1467   llvm_unreachable("unsupported target");
1468 }
1469 
1470 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1471   return decodeSDWASrc(OPW16, Val);
1472 }
1473 
1474 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1475   return decodeSDWASrc(OPW32, Val);
1476 }
1477 
1478 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1479   using namespace AMDGPU::SDWA;
1480 
1481   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1482           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1483          "SDWAVopcDst should be present only on GFX9+");
1484 
1485   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1486 
1487   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1488     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1489 
1490     int TTmpIdx = getTTmpIdx(Val);
1491     if (TTmpIdx >= 0) {
1492       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1493       return createSRegOperand(TTmpClsId, TTmpIdx);
1494     } else if (Val > SGPR_MAX) {
1495       return IsWave64 ? decodeSpecialReg64(Val)
1496                       : decodeSpecialReg32(Val);
1497     } else {
1498       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1499     }
1500   } else {
1501     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1502   }
1503 }
1504 
1505 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1506   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1507     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1508 }
1509 
1510 bool AMDGPUDisassembler::isVI() const {
1511   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1512 }
1513 
1514 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1515 
1516 bool AMDGPUDisassembler::isGFX90A() const {
1517   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1518 }
1519 
1520 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1521 
1522 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1523 
1524 bool AMDGPUDisassembler::isGFX10Plus() const {
1525   return AMDGPU::isGFX10Plus(STI);
1526 }
1527 
1528 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1529   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1530 }
1531 
1532 //===----------------------------------------------------------------------===//
1533 // AMDGPU specific symbol handling
1534 //===----------------------------------------------------------------------===//
1535 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1536   do {                                                                         \
1537     KdStream << Indent << DIRECTIVE " "                                        \
1538              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1539   } while (0)
1540 
1541 // NOLINTNEXTLINE(readability-identifier-naming)
1542 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1543     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1544   using namespace amdhsa;
1545   StringRef Indent = "\t";
1546 
1547   // We cannot accurately backward compute #VGPRs used from
1548   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1549   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1550   // simply calculate the inverse of what the assembler does.
1551 
1552   uint32_t GranulatedWorkitemVGPRCount =
1553       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1554       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1555 
1556   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1557                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1558 
1559   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1560 
1561   // We cannot backward compute values used to calculate
1562   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1563   // directives can't be computed:
1564   // .amdhsa_reserve_vcc
1565   // .amdhsa_reserve_flat_scratch
1566   // .amdhsa_reserve_xnack_mask
1567   // They take their respective default values if not specified in the assembly.
1568   //
1569   // GRANULATED_WAVEFRONT_SGPR_COUNT
1570   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1571   //
1572   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1573   // are set to 0. So while disassembling we consider that:
1574   //
1575   // GRANULATED_WAVEFRONT_SGPR_COUNT
1576   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1577   //
1578   // The disassembler cannot recover the original values of those 3 directives.
1579 
1580   uint32_t GranulatedWavefrontSGPRCount =
1581       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1582       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1583 
1584   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1585     return MCDisassembler::Fail;
1586 
1587   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1588                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1589 
1590   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1591   if (!hasArchitectedFlatScratch())
1592     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1593   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1594   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1595 
1596   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1597     return MCDisassembler::Fail;
1598 
1599   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1600                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1601   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1602                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1603   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1604                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1605   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1606                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1607 
1608   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1609     return MCDisassembler::Fail;
1610 
1611   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1612 
1613   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1614     return MCDisassembler::Fail;
1615 
1616   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1617 
1618   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1619     return MCDisassembler::Fail;
1620 
1621   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1622     return MCDisassembler::Fail;
1623 
1624   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1625 
1626   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1627     return MCDisassembler::Fail;
1628 
1629   if (isGFX10Plus()) {
1630     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1631                     COMPUTE_PGM_RSRC1_WGP_MODE);
1632     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1633     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1634   }
1635   return MCDisassembler::Success;
1636 }
1637 
1638 // NOLINTNEXTLINE(readability-identifier-naming)
1639 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1640     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1641   using namespace amdhsa;
1642   StringRef Indent = "\t";
1643   if (hasArchitectedFlatScratch())
1644     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1645                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1646   else
1647     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1648                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1649   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1650                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1651   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1652                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1653   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1654                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1655   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1656                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1657   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1658                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1659 
1660   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1661     return MCDisassembler::Fail;
1662 
1663   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1664     return MCDisassembler::Fail;
1665 
1666   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1667     return MCDisassembler::Fail;
1668 
1669   PRINT_DIRECTIVE(
1670       ".amdhsa_exception_fp_ieee_invalid_op",
1671       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1672   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1673                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1674   PRINT_DIRECTIVE(
1675       ".amdhsa_exception_fp_ieee_div_zero",
1676       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1677   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1678                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1679   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1680                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1681   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1682                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1683   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1684                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1685 
1686   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1687     return MCDisassembler::Fail;
1688 
1689   return MCDisassembler::Success;
1690 }
1691 
1692 #undef PRINT_DIRECTIVE
1693 
1694 MCDisassembler::DecodeStatus
1695 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1696     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1697     raw_string_ostream &KdStream) const {
1698 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1699   do {                                                                         \
1700     KdStream << Indent << DIRECTIVE " "                                        \
1701              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1702   } while (0)
1703 
1704   uint16_t TwoByteBuffer = 0;
1705   uint32_t FourByteBuffer = 0;
1706 
1707   StringRef ReservedBytes;
1708   StringRef Indent = "\t";
1709 
1710   assert(Bytes.size() == 64);
1711   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1712 
1713   switch (Cursor.tell()) {
1714   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1715     FourByteBuffer = DE.getU32(Cursor);
1716     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1717              << '\n';
1718     return MCDisassembler::Success;
1719 
1720   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1721     FourByteBuffer = DE.getU32(Cursor);
1722     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1723              << FourByteBuffer << '\n';
1724     return MCDisassembler::Success;
1725 
1726   case amdhsa::KERNARG_SIZE_OFFSET:
1727     FourByteBuffer = DE.getU32(Cursor);
1728     KdStream << Indent << ".amdhsa_kernarg_size "
1729              << FourByteBuffer << '\n';
1730     return MCDisassembler::Success;
1731 
1732   case amdhsa::RESERVED0_OFFSET:
1733     // 4 reserved bytes, must be 0.
1734     ReservedBytes = DE.getBytes(Cursor, 4);
1735     for (int I = 0; I < 4; ++I) {
1736       if (ReservedBytes[I] != 0) {
1737         return MCDisassembler::Fail;
1738       }
1739     }
1740     return MCDisassembler::Success;
1741 
1742   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1743     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1744     // So far no directive controls this for Code Object V3, so simply skip for
1745     // disassembly.
1746     DE.skip(Cursor, 8);
1747     return MCDisassembler::Success;
1748 
1749   case amdhsa::RESERVED1_OFFSET:
1750     // 20 reserved bytes, must be 0.
1751     ReservedBytes = DE.getBytes(Cursor, 20);
1752     for (int I = 0; I < 20; ++I) {
1753       if (ReservedBytes[I] != 0) {
1754         return MCDisassembler::Fail;
1755       }
1756     }
1757     return MCDisassembler::Success;
1758 
1759   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1760     // COMPUTE_PGM_RSRC3
1761     //  - Only set for GFX10, GFX6-9 have this to be 0.
1762     //  - Currently no directives directly control this.
1763     FourByteBuffer = DE.getU32(Cursor);
1764     if (!isGFX10Plus() && FourByteBuffer) {
1765       return MCDisassembler::Fail;
1766     }
1767     return MCDisassembler::Success;
1768 
1769   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1770     FourByteBuffer = DE.getU32(Cursor);
1771     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1772         MCDisassembler::Fail) {
1773       return MCDisassembler::Fail;
1774     }
1775     return MCDisassembler::Success;
1776 
1777   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1778     FourByteBuffer = DE.getU32(Cursor);
1779     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1780         MCDisassembler::Fail) {
1781       return MCDisassembler::Fail;
1782     }
1783     return MCDisassembler::Success;
1784 
1785   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1786     using namespace amdhsa;
1787     TwoByteBuffer = DE.getU16(Cursor);
1788 
1789     if (!hasArchitectedFlatScratch())
1790       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1791                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1792     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1793                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1794     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1795                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1796     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1797                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1798     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1799                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1800     if (!hasArchitectedFlatScratch())
1801       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1802                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1803     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1804                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1805 
1806     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1807       return MCDisassembler::Fail;
1808 
1809     // Reserved for GFX9
1810     if (isGFX9() &&
1811         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1812       return MCDisassembler::Fail;
1813     } else if (isGFX10Plus()) {
1814       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1815                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1816     }
1817 
1818     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1819       return MCDisassembler::Fail;
1820 
1821     return MCDisassembler::Success;
1822 
1823   case amdhsa::RESERVED2_OFFSET:
1824     // 6 bytes from here are reserved, must be 0.
1825     ReservedBytes = DE.getBytes(Cursor, 6);
1826     for (int I = 0; I < 6; ++I) {
1827       if (ReservedBytes[I] != 0)
1828         return MCDisassembler::Fail;
1829     }
1830     return MCDisassembler::Success;
1831 
1832   default:
1833     llvm_unreachable("Unhandled index. Case statements cover everything.");
1834     return MCDisassembler::Fail;
1835   }
1836 #undef PRINT_DIRECTIVE
1837 }
1838 
1839 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1840     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1841   // CP microcode requires the kernel descriptor to be 64 aligned.
1842   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1843     return MCDisassembler::Fail;
1844 
1845   std::string Kd;
1846   raw_string_ostream KdStream(Kd);
1847   KdStream << ".amdhsa_kernel " << KdName << '\n';
1848 
1849   DataExtractor::Cursor C(0);
1850   while (C && C.tell() < Bytes.size()) {
1851     MCDisassembler::DecodeStatus Status =
1852         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1853 
1854     cantFail(C.takeError());
1855 
1856     if (Status == MCDisassembler::Fail)
1857       return MCDisassembler::Fail;
1858   }
1859   KdStream << ".end_amdhsa_kernel\n";
1860   outs() << KdStream.str();
1861   return MCDisassembler::Success;
1862 }
1863 
1864 Optional<MCDisassembler::DecodeStatus>
1865 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1866                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1867                                   raw_ostream &CStream) const {
1868   // Right now only kernel descriptor needs to be handled.
1869   // We ignore all other symbols for target specific handling.
1870   // TODO:
1871   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1872   // Object V2 and V3 when symbols are marked protected.
1873 
1874   // amd_kernel_code_t for Code Object V2.
1875   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1876     Size = 256;
1877     return MCDisassembler::Fail;
1878   }
1879 
1880   // Code Object V3 kernel descriptors.
1881   StringRef Name = Symbol.Name;
1882   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1883     Size = 64; // Size = 64 regardless of success or failure.
1884     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1885   }
1886   return None;
1887 }
1888 
1889 //===----------------------------------------------------------------------===//
1890 // AMDGPUSymbolizer
1891 //===----------------------------------------------------------------------===//
1892 
1893 // Try to find symbol name for specified label
1894 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
1895                                 raw_ostream &/*cStream*/, int64_t Value,
1896                                 uint64_t /*Address*/, bool IsBranch,
1897                                 uint64_t /*Offset*/, uint64_t /*InstSize*/) {
1898 
1899   if (!IsBranch) {
1900     return false;
1901   }
1902 
1903   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1904   if (!Symbols)
1905     return false;
1906 
1907   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1908     return Val.Addr == static_cast<uint64_t>(Value) &&
1909            Val.Type == ELF::STT_NOTYPE;
1910   });
1911   if (Result != Symbols->end()) {
1912     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1913     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1914     Inst.addOperand(MCOperand::createExpr(Add));
1915     return true;
1916   }
1917   // Add to list of referenced addresses, so caller can synthesize a label.
1918   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1919   return false;
1920 }
1921 
1922 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1923                                                        int64_t Value,
1924                                                        uint64_t Address) {
1925   llvm_unreachable("unimplemented");
1926 }
1927 
1928 //===----------------------------------------------------------------------===//
1929 // Initialization
1930 //===----------------------------------------------------------------------===//
1931 
1932 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1933                               LLVMOpInfoCallback /*GetOpInfo*/,
1934                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1935                               void *DisInfo,
1936                               MCContext *Ctx,
1937                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1938   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1939 }
1940 
1941 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1942                                                 const MCSubtargetInfo &STI,
1943                                                 MCContext &Ctx) {
1944   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1945 }
1946 
1947 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1948   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1949                                          createAMDGPUDisassembler);
1950   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1951                                        createAMDGPUSymbolizer);
1952 }
1953