1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, 49 MCInstrInfo const *MCII) : 50 MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 51 TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) { 52 53 // ToDo: AMDGPUDisassembler supports only VI ISA. 54 if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) 55 report_fatal_error("Disassembly not yet supported for subtarget"); 56 } 57 58 inline static MCDisassembler::DecodeStatus 59 addOperand(MCInst &Inst, const MCOperand& Opnd) { 60 Inst.addOperand(Opnd); 61 return Opnd.isValid() ? 62 MCDisassembler::Success : 63 MCDisassembler::Fail; 64 } 65 66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 67 uint16_t NameIdx) { 68 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 69 if (OpIdx != -1) { 70 auto I = MI.begin(); 71 std::advance(I, OpIdx); 72 MI.insert(I, Op); 73 } 74 return OpIdx; 75 } 76 77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm, 78 uint64_t Addr, 79 const MCDisassembler *Decoder) { 80 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 81 82 // Our branches take a simm16, but we need two extra bits to account for the 83 // factor of 4. 84 APInt SignedOffset(18, Imm * 4, true); 85 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 86 87 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 88 return MCDisassembler::Success; 89 return addOperand(Inst, MCOperand::createImm(Imm)); 90 } 91 92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 93 const MCDisassembler *Decoder) { 94 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 95 int64_t Offset; 96 if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 97 Offset = Imm & 0xFFFFF; 98 } else { // GFX9+ supports 21-bit signed offsets. 99 Offset = SignExtend64<21>(Imm); 100 } 101 return addOperand(Inst, MCOperand::createImm(Offset)); 102 } 103 104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 105 const MCDisassembler *Decoder) { 106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 107 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 108 } 109 110 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 111 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 112 uint64_t /*Addr*/, \ 113 const MCDisassembler *Decoder) { \ 114 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 115 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 116 } 117 118 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 119 // number of register. Used by VGPR only and AGPR only operands. 120 #define DECODE_OPERAND_REG_8(RegClass) \ 121 static DecodeStatus Decode##RegClass##RegisterClass( \ 122 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 123 const MCDisassembler *Decoder) { \ 124 assert(Imm < (1 << 8) && "8-bit encoding"); \ 125 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 126 return addOperand( \ 127 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 128 } 129 130 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 131 ImmWidth) \ 132 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 133 const MCDisassembler *Decoder) { \ 134 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 135 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 136 return addOperand(Inst, \ 137 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 138 MandatoryLiteral, ImmWidth)); \ 139 } 140 141 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 142 // get register class. Used by SGPR only operands. 143 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 144 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 145 146 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 147 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 148 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 149 // Used by AV_ register classes (AGPR or VGPR only register operands). 150 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ 151 DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ 152 Imm | AMDGPU::EncValues::IS_VGPR, false, 0) 153 154 // Decoder for Src(9-bit encoding) registers only. 155 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ 156 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) 157 158 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 159 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 160 // only. 161 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ 162 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) 163 164 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 165 // Imm{9} is acc, registers only. 166 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ 167 DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) 168 169 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 170 // register from RegClass or immediate. Registers that don't belong to RegClass 171 // will be decoded and InstPrinter will report warning. Immediate will be 172 // decoded into constant of size ImmWidth, should match width of immediate used 173 // by OperandType (important for floating point types). 174 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ 175 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ 176 false, ImmWidth) 177 178 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 179 // and decode using 'enum10' from decodeSrcOp. 180 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ 181 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ 182 Imm | 512, false, ImmWidth) 183 184 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ 185 DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ 186 OpWidth, Imm, true, ImmWidth) 187 188 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 189 // when RegisterClass is used as an operand. Most often used for destination 190 // operands. 191 192 DECODE_OPERAND_REG_8(VGPR_32) 193 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 194 DECODE_OPERAND_REG_8(VReg_64) 195 DECODE_OPERAND_REG_8(VReg_96) 196 DECODE_OPERAND_REG_8(VReg_128) 197 DECODE_OPERAND_REG_8(VReg_256) 198 DECODE_OPERAND_REG_8(VReg_288) 199 DECODE_OPERAND_REG_8(VReg_352) 200 DECODE_OPERAND_REG_8(VReg_384) 201 DECODE_OPERAND_REG_8(VReg_512) 202 DECODE_OPERAND_REG_8(VReg_1024) 203 204 DECODE_OPERAND_REG_7(SReg_32, OPW32) 205 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 206 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 207 DECODE_OPERAND_REG_7(SReg_64, OPW64) 208 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 209 DECODE_OPERAND_REG_7(SReg_128, OPW128) 210 DECODE_OPERAND_REG_7(SReg_256, OPW256) 211 DECODE_OPERAND_REG_7(SReg_512, OPW512) 212 213 DECODE_OPERAND_REG_8(AGPR_32) 214 DECODE_OPERAND_REG_8(AReg_64) 215 DECODE_OPERAND_REG_8(AReg_128) 216 DECODE_OPERAND_REG_8(AReg_256) 217 DECODE_OPERAND_REG_8(AReg_512) 218 DECODE_OPERAND_REG_8(AReg_1024) 219 220 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) 221 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) 222 223 // Decoders for register only source RegisterOperands that use use 9-bit Src 224 // encoding: 'decodeOperand_<RegClass>'. 225 226 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) 227 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) 228 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) 229 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) 230 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) 231 232 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) 233 234 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) 235 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) 236 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) 237 238 // Decoders for register or immediate RegisterOperands that use 9-bit Src 239 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'. 240 241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) 242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) 243 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) 244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) 245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) 246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) 247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) 248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32) 249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) 250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) 251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) 252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) 253 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) 254 255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) 256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) 257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) 258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) 259 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) 260 261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) 262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) 263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) 264 265 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm, 266 uint64_t Addr, 267 const MCDisassembler *Decoder) { 268 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 269 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 270 } 271 272 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm, 273 uint64_t Addr, 274 const MCDisassembler *Decoder) { 275 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 276 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 277 } 278 279 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 280 uint64_t Addr, const void *Decoder) { 281 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 282 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 283 } 284 285 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 286 const MCRegisterInfo *MRI) { 287 if (OpIdx < 0) 288 return false; 289 290 const MCOperand &Op = Inst.getOperand(OpIdx); 291 if (!Op.isReg()) 292 return false; 293 294 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 295 auto Reg = Sub ? Sub : Op.getReg(); 296 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 297 } 298 299 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 300 AMDGPUDisassembler::OpWidthTy Opw, 301 const MCDisassembler *Decoder) { 302 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 303 if (!DAsm->isGFX90A()) { 304 Imm &= 511; 305 } else { 306 // If atomic has both vdata and vdst their register classes are tied. 307 // The bit is decoded along with the vdst, first operand. We need to 308 // change register class to AGPR if vdst was AGPR. 309 // If a DS instruction has both data0 and data1 their register classes 310 // are also tied. 311 unsigned Opc = Inst.getOpcode(); 312 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 313 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 314 : AMDGPU::OpName::vdata; 315 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 316 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 317 if ((int)Inst.getNumOperands() == DataIdx) { 318 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 319 if (IsAGPROperand(Inst, DstIdx, MRI)) 320 Imm |= 512; 321 } 322 323 if (TSFlags & SIInstrFlags::DS) { 324 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 325 if ((int)Inst.getNumOperands() == Data2Idx && 326 IsAGPROperand(Inst, DataIdx, MRI)) 327 Imm |= 512; 328 } 329 } 330 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 331 } 332 333 static DecodeStatus 334 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 335 const MCDisassembler *Decoder) { 336 return decodeOperand_AVLdSt_Any(Inst, Imm, 337 AMDGPUDisassembler::OPW32, Decoder); 338 } 339 340 static DecodeStatus 341 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 342 const MCDisassembler *Decoder) { 343 return decodeOperand_AVLdSt_Any(Inst, Imm, 344 AMDGPUDisassembler::OPW64, Decoder); 345 } 346 347 static DecodeStatus 348 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 349 const MCDisassembler *Decoder) { 350 return decodeOperand_AVLdSt_Any(Inst, Imm, 351 AMDGPUDisassembler::OPW96, Decoder); 352 } 353 354 static DecodeStatus 355 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 356 const MCDisassembler *Decoder) { 357 return decodeOperand_AVLdSt_Any(Inst, Imm, 358 AMDGPUDisassembler::OPW128, Decoder); 359 } 360 361 static DecodeStatus 362 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 363 const MCDisassembler *Decoder) { 364 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, 365 Decoder); 366 } 367 368 #define DECODE_SDWA(DecName) \ 369 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 370 371 DECODE_SDWA(Src32) 372 DECODE_SDWA(Src16) 373 DECODE_SDWA(VopcDst) 374 375 #include "AMDGPUGenDisassemblerTables.inc" 376 377 //===----------------------------------------------------------------------===// 378 // 379 //===----------------------------------------------------------------------===// 380 381 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 382 assert(Bytes.size() >= sizeof(T)); 383 const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data()); 384 Bytes = Bytes.slice(sizeof(T)); 385 return Res; 386 } 387 388 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 389 assert(Bytes.size() >= 12); 390 uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>( 391 Bytes.data()); 392 Bytes = Bytes.slice(8); 393 uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>( 394 Bytes.data()); 395 Bytes = Bytes.slice(4); 396 return DecoderUInt128(Lo, Hi); 397 } 398 399 // The disassembler is greedy, so we need to check FI operand value to 400 // not parse a dpp if the correct literal is not set. For dpp16 the 401 // autogenerated decoder checks the dpp literal 402 static bool isValidDPP8(const MCInst &MI) { 403 using namespace llvm::AMDGPU::DPP; 404 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 405 assert(FiIdx != -1); 406 if ((unsigned)FiIdx >= MI.getNumOperands()) 407 return false; 408 unsigned Fi = MI.getOperand(FiIdx).getImm(); 409 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 410 } 411 412 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 413 ArrayRef<uint8_t> Bytes_, 414 uint64_t Address, 415 raw_ostream &CS) const { 416 bool IsSDWA = false; 417 418 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 419 Bytes = Bytes_.slice(0, MaxInstBytesNum); 420 421 DecodeStatus Res = MCDisassembler::Fail; 422 do { 423 // ToDo: better to switch encoding length using some bit predicate 424 // but it is unknown yet, so try all we can 425 426 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 427 // encodings 428 if (isGFX11Plus() && Bytes.size() >= 12 ) { 429 DecoderUInt128 DecW = eat12Bytes(Bytes); 430 Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW, Address, CS); 431 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 432 break; 433 MI = MCInst(); // clear 434 Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW, Address, CS); 435 if (Res) { 436 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) 437 convertVOP3PDPPInst(MI); 438 else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) 439 convertVOPCDPPInst(MI); // Special VOP3 case 440 else { 441 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); 442 convertVOP3DPPInst(MI); // Regular VOP3 case 443 } 444 break; 445 } 446 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS); 447 if (Res) 448 break; 449 } 450 // Reinitialize Bytes 451 Bytes = Bytes_.slice(0, MaxInstBytesNum); 452 453 if (Bytes.size() >= 8) { 454 const uint64_t QW = eatBytes<uint64_t>(Bytes); 455 456 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 457 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS); 458 if (Res) { 459 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 460 == -1) 461 break; 462 if (convertDPP8Inst(MI) == MCDisassembler::Success) 463 break; 464 MI = MCInst(); // clear 465 } 466 } 467 468 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS); 469 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 470 break; 471 MI = MCInst(); // clear 472 473 Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address, CS); 474 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 475 break; 476 MI = MCInst(); // clear 477 478 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS); 479 if (Res) break; 480 481 Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address, CS); 482 if (Res) { 483 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 484 convertVOPCDPPInst(MI); 485 break; 486 } 487 488 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS); 489 if (Res) { IsSDWA = true; break; } 490 491 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS); 492 if (Res) { IsSDWA = true; break; } 493 494 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS); 495 if (Res) { IsSDWA = true; break; } 496 497 if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) { 498 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS); 499 if (Res) 500 break; 501 } 502 503 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 504 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 505 // table first so we print the correct name. 506 if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) { 507 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS); 508 if (Res) 509 break; 510 } 511 } 512 513 // Reinitialize Bytes as DPP64 could have eaten too much 514 Bytes = Bytes_.slice(0, MaxInstBytesNum); 515 516 // Try decode 32-bit instruction 517 if (Bytes.size() < 4) break; 518 const uint32_t DW = eatBytes<uint32_t>(Bytes); 519 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS); 520 if (Res) break; 521 522 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS); 523 if (Res) break; 524 525 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS); 526 if (Res) break; 527 528 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 529 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS); 530 if (Res) 531 break; 532 } 533 534 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 535 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS); 536 if (Res) break; 537 } 538 539 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS); 540 if (Res) break; 541 542 Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address, CS); 543 if (Res) break; 544 545 if (Bytes.size() < 4) break; 546 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 547 548 if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) { 549 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS); 550 if (Res) 551 break; 552 } 553 554 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 555 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS); 556 if (Res) 557 break; 558 } 559 560 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS); 561 if (Res) break; 562 563 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS); 564 if (Res) break; 565 566 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS); 567 if (Res) break; 568 569 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS); 570 if (Res) break; 571 572 Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address, CS); 573 if (Res) 574 break; 575 576 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS); 577 } while (false); 578 579 if (Res && AMDGPU::isMAC(MI.getOpcode())) { 580 // Insert dummy unused src2_modifiers. 581 insertNamedMCOperand(MI, MCOperand::createImm(0), 582 AMDGPU::OpName::src2_modifiers); 583 } 584 585 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 586 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 587 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 588 AMDGPU::OpName::cpol); 589 if (CPolPos != -1) { 590 unsigned CPol = 591 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 592 AMDGPU::CPol::GLC : 0; 593 if (MI.getNumOperands() <= (unsigned)CPolPos) { 594 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 595 AMDGPU::OpName::cpol); 596 } else if (CPol) { 597 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 598 } 599 } 600 } 601 602 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 603 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 604 (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) { 605 // GFX90A lost TFE, its place is occupied by ACC. 606 int TFEOpIdx = 607 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 608 if (TFEOpIdx != -1) { 609 auto TFEIter = MI.begin(); 610 std::advance(TFEIter, TFEOpIdx); 611 MI.insert(TFEIter, MCOperand::createImm(0)); 612 } 613 } 614 615 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 616 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 617 int SWZOpIdx = 618 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 619 if (SWZOpIdx != -1) { 620 auto SWZIter = MI.begin(); 621 std::advance(SWZIter, SWZOpIdx); 622 MI.insert(SWZIter, MCOperand::createImm(0)); 623 } 624 } 625 626 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 627 int VAddr0Idx = 628 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 629 int RsrcIdx = 630 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 631 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 632 if (VAddr0Idx >= 0 && NSAArgs > 0) { 633 unsigned NSAWords = (NSAArgs + 3) / 4; 634 if (Bytes.size() < 4 * NSAWords) { 635 Res = MCDisassembler::Fail; 636 } else { 637 for (unsigned i = 0; i < NSAArgs; ++i) { 638 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 639 auto VAddrRCID = 640 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 641 MI.insert(MI.begin() + VAddrIdx, 642 createRegOperand(VAddrRCID, Bytes[i])); 643 } 644 Bytes = Bytes.slice(4 * NSAWords); 645 } 646 } 647 648 if (Res) 649 Res = convertMIMGInst(MI); 650 } 651 652 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 653 Res = convertEXPInst(MI); 654 655 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 656 Res = convertVINTERPInst(MI); 657 658 if (Res && IsSDWA) 659 Res = convertSDWAInst(MI); 660 661 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 662 AMDGPU::OpName::vdst_in); 663 if (VDstIn_Idx != -1) { 664 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 665 MCOI::OperandConstraint::TIED_TO); 666 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 667 !MI.getOperand(VDstIn_Idx).isReg() || 668 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 669 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 670 MI.erase(&MI.getOperand(VDstIn_Idx)); 671 insertNamedMCOperand(MI, 672 MCOperand::createReg(MI.getOperand(Tied).getReg()), 673 AMDGPU::OpName::vdst_in); 674 } 675 } 676 677 int ImmLitIdx = 678 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 679 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 680 if (Res && ImmLitIdx != -1 && !IsSOPK) 681 Res = convertFMAanyK(MI, ImmLitIdx); 682 683 // if the opcode was not recognized we'll assume a Size of 4 bytes 684 // (unless there are fewer bytes left) 685 Size = Res ? (MaxInstBytesNum - Bytes.size()) 686 : std::min((size_t)4, Bytes_.size()); 687 return Res; 688 } 689 690 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 691 if (STI.hasFeature(AMDGPU::FeatureGFX11)) { 692 // The MCInst still has these fields even though they are no longer encoded 693 // in the GFX11 instruction. 694 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 695 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 696 } 697 return MCDisassembler::Success; 698 } 699 700 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 701 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 702 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 703 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 704 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) { 705 // The MCInst has this field that is not directly encoded in the 706 // instruction. 707 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 708 } 709 return MCDisassembler::Success; 710 } 711 712 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 713 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 714 STI.hasFeature(AMDGPU::FeatureGFX10)) { 715 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 716 // VOPC - insert clamp 717 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 718 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 719 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 720 if (SDst != -1) { 721 // VOPC - insert VCC register as sdst 722 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 723 AMDGPU::OpName::sdst); 724 } else { 725 // VOP1/2 - insert omod if present in instruction 726 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 727 } 728 } 729 return MCDisassembler::Success; 730 } 731 732 struct VOPModifiers { 733 unsigned OpSel = 0; 734 unsigned OpSelHi = 0; 735 unsigned NegLo = 0; 736 unsigned NegHi = 0; 737 }; 738 739 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 740 // Note that these values do not affect disassembler output, 741 // so this is only necessary for consistency with src_modifiers. 742 static VOPModifiers collectVOPModifiers(const MCInst &MI, 743 bool IsVOP3P = false) { 744 VOPModifiers Modifiers; 745 unsigned Opc = MI.getOpcode(); 746 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 747 AMDGPU::OpName::src1_modifiers, 748 AMDGPU::OpName::src2_modifiers}; 749 for (int J = 0; J < 3; ++J) { 750 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 751 if (OpIdx == -1) 752 continue; 753 754 unsigned Val = MI.getOperand(OpIdx).getImm(); 755 756 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 757 if (IsVOP3P) { 758 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 759 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 760 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 761 } else if (J == 0) { 762 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 763 } 764 } 765 766 return Modifiers; 767 } 768 769 // MAC opcodes have special old and src2 operands. 770 // src2 is tied to dst, while old is not tied (but assumed to be). 771 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 772 constexpr int DST_IDX = 0; 773 auto Opcode = MI.getOpcode(); 774 const auto &Desc = MCII->get(Opcode); 775 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 776 777 if (OldIdx != -1 && Desc.getOperandConstraint( 778 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 779 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 780 assert(Desc.getOperandConstraint( 781 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 782 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 783 (void)DST_IDX; 784 return true; 785 } 786 787 return false; 788 } 789 790 // Create dummy old operand and insert dummy unused src2_modifiers 791 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 792 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 793 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 794 insertNamedMCOperand(MI, MCOperand::createImm(0), 795 AMDGPU::OpName::src2_modifiers); 796 } 797 798 // We must check FI == literal to reject not genuine dpp8 insts, and we must 799 // first add optional MI operands to check FI 800 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 801 unsigned Opc = MI.getOpcode(); 802 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 803 convertVOP3PDPPInst(MI); 804 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 805 AMDGPU::isVOPC64DPP(Opc)) { 806 convertVOPCDPPInst(MI); 807 } else { 808 if (isMacDPP(MI)) 809 convertMacDPPInst(MI); 810 811 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 812 if (MI.getNumOperands() < DescNumOps && 813 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 814 auto Mods = collectVOPModifiers(MI); 815 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 816 AMDGPU::OpName::op_sel); 817 } else { 818 // Insert dummy unused src modifiers. 819 if (MI.getNumOperands() < DescNumOps && 820 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 821 insertNamedMCOperand(MI, MCOperand::createImm(0), 822 AMDGPU::OpName::src0_modifiers); 823 824 if (MI.getNumOperands() < DescNumOps && 825 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 826 insertNamedMCOperand(MI, MCOperand::createImm(0), 827 AMDGPU::OpName::src1_modifiers); 828 } 829 } 830 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 831 } 832 833 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 834 if (isMacDPP(MI)) 835 convertMacDPPInst(MI); 836 837 unsigned Opc = MI.getOpcode(); 838 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 839 if (MI.getNumOperands() < DescNumOps && 840 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 841 auto Mods = collectVOPModifiers(MI); 842 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 843 AMDGPU::OpName::op_sel); 844 } 845 return MCDisassembler::Success; 846 } 847 848 // Note that before gfx10, the MIMG encoding provided no information about 849 // VADDR size. Consequently, decoded instructions always show address as if it 850 // has 1 dword, which could be not really so. 851 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 852 853 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 854 AMDGPU::OpName::vdst); 855 856 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 857 AMDGPU::OpName::vdata); 858 int VAddr0Idx = 859 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 860 int RsrcIdx = 861 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 862 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 863 AMDGPU::OpName::dmask); 864 865 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 866 AMDGPU::OpName::tfe); 867 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 868 AMDGPU::OpName::d16); 869 870 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 871 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 872 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 873 874 assert(VDataIdx != -1); 875 if (BaseOpcode->BVH) { 876 // Add A16 operand for intersect_ray instructions 877 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16)) 878 addOperand(MI, MCOperand::createImm(1)); 879 return MCDisassembler::Success; 880 } 881 882 bool IsAtomic = (VDstIdx != -1); 883 bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4; 884 bool IsNSA = false; 885 bool IsPartialNSA = false; 886 unsigned AddrSize = Info->VAddrDwords; 887 888 if (isGFX10Plus()) { 889 unsigned DimIdx = 890 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 891 int A16Idx = 892 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 893 const AMDGPU::MIMGDimInfo *Dim = 894 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 895 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 896 897 AddrSize = 898 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 899 900 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 901 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA; 902 if (!IsNSA) { 903 if (AddrSize > 12) 904 AddrSize = 16; 905 } else { 906 if (AddrSize > Info->VAddrDwords) { 907 if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) { 908 // The NSA encoding does not contain enough operands for the 909 // combination of base opcode / dimension. Should this be an error? 910 return MCDisassembler::Success; 911 } 912 IsPartialNSA = true; 913 } 914 } 915 } 916 917 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 918 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 919 920 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 921 if (D16 && AMDGPU::hasPackedD16(STI)) { 922 DstSize = (DstSize + 1) / 2; 923 } 924 925 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 926 DstSize += 1; 927 928 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 929 return MCDisassembler::Success; 930 931 int NewOpcode = 932 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 933 if (NewOpcode == -1) 934 return MCDisassembler::Success; 935 936 // Widen the register to the correct number of enabled channels. 937 unsigned NewVdata = AMDGPU::NoRegister; 938 if (DstSize != Info->VDataDwords) { 939 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 940 941 // Get first subregister of VData 942 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 943 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 944 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 945 946 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 947 &MRI.getRegClass(DataRCID)); 948 if (NewVdata == AMDGPU::NoRegister) { 949 // It's possible to encode this such that the low register + enabled 950 // components exceeds the register count. 951 return MCDisassembler::Success; 952 } 953 } 954 955 // If not using NSA on GFX10+, widen vaddr0 address register to correct size. 956 // If using partial NSA on GFX11+ widen last address register. 957 int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; 958 unsigned NewVAddrSA = AMDGPU::NoRegister; 959 if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && 960 AddrSize != Info->VAddrDwords) { 961 unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg(); 962 unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0); 963 VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; 964 965 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass; 966 NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0, 967 &MRI.getRegClass(AddrRCID)); 968 if (!NewVAddrSA) 969 return MCDisassembler::Success; 970 } 971 972 MI.setOpcode(NewOpcode); 973 974 if (NewVdata != AMDGPU::NoRegister) { 975 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 976 977 if (IsAtomic) { 978 // Atomic operations have an additional operand (a copy of data) 979 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 980 } 981 } 982 983 if (NewVAddrSA) { 984 MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA); 985 } else if (IsNSA) { 986 assert(AddrSize <= Info->VAddrDwords); 987 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 988 MI.begin() + VAddr0Idx + Info->VAddrDwords); 989 } 990 991 return MCDisassembler::Success; 992 } 993 994 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 995 // decoder only adds to src_modifiers, so manually add the bits to the other 996 // operands. 997 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 998 unsigned Opc = MI.getOpcode(); 999 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1000 auto Mods = collectVOPModifiers(MI, true); 1001 1002 if (MI.getNumOperands() < DescNumOps && 1003 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 1004 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 1005 1006 if (MI.getNumOperands() < DescNumOps && 1007 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 1008 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1009 AMDGPU::OpName::op_sel); 1010 if (MI.getNumOperands() < DescNumOps && 1011 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1012 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1013 AMDGPU::OpName::op_sel_hi); 1014 if (MI.getNumOperands() < DescNumOps && 1015 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1016 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1017 AMDGPU::OpName::neg_lo); 1018 if (MI.getNumOperands() < DescNumOps && 1019 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1020 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1021 AMDGPU::OpName::neg_hi); 1022 1023 return MCDisassembler::Success; 1024 } 1025 1026 // Create dummy old operand and insert optional operands 1027 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1028 unsigned Opc = MI.getOpcode(); 1029 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1030 1031 if (MI.getNumOperands() < DescNumOps && 1032 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1033 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1034 1035 if (MI.getNumOperands() < DescNumOps && 1036 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1037 insertNamedMCOperand(MI, MCOperand::createImm(0), 1038 AMDGPU::OpName::src0_modifiers); 1039 1040 if (MI.getNumOperands() < DescNumOps && 1041 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1042 insertNamedMCOperand(MI, MCOperand::createImm(0), 1043 AMDGPU::OpName::src1_modifiers); 1044 return MCDisassembler::Success; 1045 } 1046 1047 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 1048 int ImmLitIdx) const { 1049 assert(HasLiteral && "Should have decoded a literal"); 1050 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1051 unsigned DescNumOps = Desc.getNumOperands(); 1052 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1053 AMDGPU::OpName::immDeferred); 1054 assert(DescNumOps == MI.getNumOperands()); 1055 for (unsigned I = 0; I < DescNumOps; ++I) { 1056 auto &Op = MI.getOperand(I); 1057 auto OpType = Desc.operands()[I].OperandType; 1058 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1059 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1060 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1061 IsDeferredOp) 1062 Op.setImm(Literal); 1063 } 1064 return MCDisassembler::Success; 1065 } 1066 1067 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1068 return getContext().getRegisterInfo()-> 1069 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1070 } 1071 1072 inline 1073 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1074 const Twine& ErrMsg) const { 1075 *CommentStream << "Error: " + ErrMsg; 1076 1077 // ToDo: add support for error operands to MCInst.h 1078 // return MCOperand::createError(V); 1079 return MCOperand(); 1080 } 1081 1082 inline 1083 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1084 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1085 } 1086 1087 inline 1088 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1089 unsigned Val) const { 1090 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1091 if (Val >= RegCl.getNumRegs()) 1092 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1093 ": unknown register " + Twine(Val)); 1094 return createRegOperand(RegCl.getRegister(Val)); 1095 } 1096 1097 inline 1098 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1099 unsigned Val) const { 1100 // ToDo: SI/CI have 104 SGPRs, VI - 102 1101 // Valery: here we accepting as much as we can, let assembler sort it out 1102 int shift = 0; 1103 switch (SRegClassID) { 1104 case AMDGPU::SGPR_32RegClassID: 1105 case AMDGPU::TTMP_32RegClassID: 1106 break; 1107 case AMDGPU::SGPR_64RegClassID: 1108 case AMDGPU::TTMP_64RegClassID: 1109 shift = 1; 1110 break; 1111 case AMDGPU::SGPR_128RegClassID: 1112 case AMDGPU::TTMP_128RegClassID: 1113 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1114 // this bundle? 1115 case AMDGPU::SGPR_256RegClassID: 1116 case AMDGPU::TTMP_256RegClassID: 1117 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1118 // this bundle? 1119 case AMDGPU::SGPR_288RegClassID: 1120 case AMDGPU::TTMP_288RegClassID: 1121 case AMDGPU::SGPR_320RegClassID: 1122 case AMDGPU::TTMP_320RegClassID: 1123 case AMDGPU::SGPR_352RegClassID: 1124 case AMDGPU::TTMP_352RegClassID: 1125 case AMDGPU::SGPR_384RegClassID: 1126 case AMDGPU::TTMP_384RegClassID: 1127 case AMDGPU::SGPR_512RegClassID: 1128 case AMDGPU::TTMP_512RegClassID: 1129 shift = 2; 1130 break; 1131 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1132 // this bundle? 1133 default: 1134 llvm_unreachable("unhandled register class"); 1135 } 1136 1137 if (Val % (1 << shift)) { 1138 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1139 << ": scalar reg isn't aligned " << Val; 1140 } 1141 1142 return createRegOperand(SRegClassID, Val >> shift); 1143 } 1144 1145 // Decode Literals for insts which always have a literal in the encoding 1146 MCOperand 1147 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1148 if (HasLiteral) { 1149 assert( 1150 AMDGPU::hasVOPD(STI) && 1151 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1152 if (Literal != Val) 1153 return errOperand(Val, "More than one unique literal is illegal"); 1154 } 1155 HasLiteral = true; 1156 Literal = Val; 1157 return MCOperand::createImm(Literal); 1158 } 1159 1160 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const { 1161 // For now all literal constants are supposed to be unsigned integer 1162 // ToDo: deal with signed/unsigned 64-bit integer constants 1163 // ToDo: deal with float/double constants 1164 if (!HasLiteral) { 1165 if (Bytes.size() < 4) { 1166 return errOperand(0, "cannot read literal, inst bytes left " + 1167 Twine(Bytes.size())); 1168 } 1169 HasLiteral = true; 1170 Literal = eatBytes<uint32_t>(Bytes); 1171 } 1172 return MCOperand::createImm(Literal); 1173 } 1174 1175 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1176 using namespace AMDGPU::EncValues; 1177 1178 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1179 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1180 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1181 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1182 // Cast prevents negative overflow. 1183 } 1184 1185 static int64_t getInlineImmVal32(unsigned Imm) { 1186 switch (Imm) { 1187 case 240: 1188 return llvm::bit_cast<uint32_t>(0.5f); 1189 case 241: 1190 return llvm::bit_cast<uint32_t>(-0.5f); 1191 case 242: 1192 return llvm::bit_cast<uint32_t>(1.0f); 1193 case 243: 1194 return llvm::bit_cast<uint32_t>(-1.0f); 1195 case 244: 1196 return llvm::bit_cast<uint32_t>(2.0f); 1197 case 245: 1198 return llvm::bit_cast<uint32_t>(-2.0f); 1199 case 246: 1200 return llvm::bit_cast<uint32_t>(4.0f); 1201 case 247: 1202 return llvm::bit_cast<uint32_t>(-4.0f); 1203 case 248: // 1 / (2 * PI) 1204 return 0x3e22f983; 1205 default: 1206 llvm_unreachable("invalid fp inline imm"); 1207 } 1208 } 1209 1210 static int64_t getInlineImmVal64(unsigned Imm) { 1211 switch (Imm) { 1212 case 240: 1213 return llvm::bit_cast<uint64_t>(0.5); 1214 case 241: 1215 return llvm::bit_cast<uint64_t>(-0.5); 1216 case 242: 1217 return llvm::bit_cast<uint64_t>(1.0); 1218 case 243: 1219 return llvm::bit_cast<uint64_t>(-1.0); 1220 case 244: 1221 return llvm::bit_cast<uint64_t>(2.0); 1222 case 245: 1223 return llvm::bit_cast<uint64_t>(-2.0); 1224 case 246: 1225 return llvm::bit_cast<uint64_t>(4.0); 1226 case 247: 1227 return llvm::bit_cast<uint64_t>(-4.0); 1228 case 248: // 1 / (2 * PI) 1229 return 0x3fc45f306dc9c882; 1230 default: 1231 llvm_unreachable("invalid fp inline imm"); 1232 } 1233 } 1234 1235 static int64_t getInlineImmVal16(unsigned Imm) { 1236 switch (Imm) { 1237 case 240: 1238 return 0x3800; 1239 case 241: 1240 return 0xB800; 1241 case 242: 1242 return 0x3C00; 1243 case 243: 1244 return 0xBC00; 1245 case 244: 1246 return 0x4000; 1247 case 245: 1248 return 0xC000; 1249 case 246: 1250 return 0x4400; 1251 case 247: 1252 return 0xC400; 1253 case 248: // 1 / (2 * PI) 1254 return 0x3118; 1255 default: 1256 llvm_unreachable("invalid fp inline imm"); 1257 } 1258 } 1259 1260 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { 1261 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1262 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1263 1264 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1265 // ImmWidth 0 is a default case where operand should not allow immediates. 1266 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1267 // use it to print verbose error message. 1268 switch (ImmWidth) { 1269 case 0: 1270 case 32: 1271 return MCOperand::createImm(getInlineImmVal32(Imm)); 1272 case 64: 1273 return MCOperand::createImm(getInlineImmVal64(Imm)); 1274 case 16: 1275 return MCOperand::createImm(getInlineImmVal16(Imm)); 1276 default: 1277 llvm_unreachable("implement me"); 1278 } 1279 } 1280 1281 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1282 using namespace AMDGPU; 1283 1284 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1285 switch (Width) { 1286 default: // fall 1287 case OPW32: 1288 case OPW16: 1289 case OPWV216: 1290 return VGPR_32RegClassID; 1291 case OPW64: 1292 case OPWV232: return VReg_64RegClassID; 1293 case OPW96: return VReg_96RegClassID; 1294 case OPW128: return VReg_128RegClassID; 1295 case OPW160: return VReg_160RegClassID; 1296 case OPW256: return VReg_256RegClassID; 1297 case OPW288: return VReg_288RegClassID; 1298 case OPW320: return VReg_320RegClassID; 1299 case OPW352: return VReg_352RegClassID; 1300 case OPW384: return VReg_384RegClassID; 1301 case OPW512: return VReg_512RegClassID; 1302 case OPW1024: return VReg_1024RegClassID; 1303 } 1304 } 1305 1306 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1307 using namespace AMDGPU; 1308 1309 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1310 switch (Width) { 1311 default: // fall 1312 case OPW32: 1313 case OPW16: 1314 case OPWV216: 1315 return AGPR_32RegClassID; 1316 case OPW64: 1317 case OPWV232: return AReg_64RegClassID; 1318 case OPW96: return AReg_96RegClassID; 1319 case OPW128: return AReg_128RegClassID; 1320 case OPW160: return AReg_160RegClassID; 1321 case OPW256: return AReg_256RegClassID; 1322 case OPW288: return AReg_288RegClassID; 1323 case OPW320: return AReg_320RegClassID; 1324 case OPW352: return AReg_352RegClassID; 1325 case OPW384: return AReg_384RegClassID; 1326 case OPW512: return AReg_512RegClassID; 1327 case OPW1024: return AReg_1024RegClassID; 1328 } 1329 } 1330 1331 1332 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1333 using namespace AMDGPU; 1334 1335 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1336 switch (Width) { 1337 default: // fall 1338 case OPW32: 1339 case OPW16: 1340 case OPWV216: 1341 return SGPR_32RegClassID; 1342 case OPW64: 1343 case OPWV232: return SGPR_64RegClassID; 1344 case OPW96: return SGPR_96RegClassID; 1345 case OPW128: return SGPR_128RegClassID; 1346 case OPW160: return SGPR_160RegClassID; 1347 case OPW256: return SGPR_256RegClassID; 1348 case OPW288: return SGPR_288RegClassID; 1349 case OPW320: return SGPR_320RegClassID; 1350 case OPW352: return SGPR_352RegClassID; 1351 case OPW384: return SGPR_384RegClassID; 1352 case OPW512: return SGPR_512RegClassID; 1353 } 1354 } 1355 1356 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1357 using namespace AMDGPU; 1358 1359 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1360 switch (Width) { 1361 default: // fall 1362 case OPW32: 1363 case OPW16: 1364 case OPWV216: 1365 return TTMP_32RegClassID; 1366 case OPW64: 1367 case OPWV232: return TTMP_64RegClassID; 1368 case OPW128: return TTMP_128RegClassID; 1369 case OPW256: return TTMP_256RegClassID; 1370 case OPW288: return TTMP_288RegClassID; 1371 case OPW320: return TTMP_320RegClassID; 1372 case OPW352: return TTMP_352RegClassID; 1373 case OPW384: return TTMP_384RegClassID; 1374 case OPW512: return TTMP_512RegClassID; 1375 } 1376 } 1377 1378 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1379 using namespace AMDGPU::EncValues; 1380 1381 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1382 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1383 1384 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1385 } 1386 1387 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1388 bool MandatoryLiteral, 1389 unsigned ImmWidth) const { 1390 using namespace AMDGPU::EncValues; 1391 1392 assert(Val < 1024); // enum10 1393 1394 bool IsAGPR = Val & 512; 1395 Val &= 511; 1396 1397 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1398 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1399 : getVgprClassId(Width), Val - VGPR_MIN); 1400 } 1401 if (Val <= SGPR_MAX) { 1402 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1403 static_assert(SGPR_MIN == 0); 1404 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1405 } 1406 1407 int TTmpIdx = getTTmpIdx(Val); 1408 if (TTmpIdx >= 0) { 1409 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1410 } 1411 1412 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1413 return decodeIntImmed(Val); 1414 1415 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1416 return decodeFPImmed(ImmWidth, Val); 1417 1418 if (Val == LITERAL_CONST) { 1419 if (MandatoryLiteral) 1420 // Keep a sentinel value for deferred setting 1421 return MCOperand::createImm(LITERAL_CONST); 1422 else 1423 return decodeLiteralConstant(); 1424 } 1425 1426 switch (Width) { 1427 case OPW32: 1428 case OPW16: 1429 case OPWV216: 1430 return decodeSpecialReg32(Val); 1431 case OPW64: 1432 case OPWV232: 1433 return decodeSpecialReg64(Val); 1434 default: 1435 llvm_unreachable("unexpected immediate type"); 1436 } 1437 } 1438 1439 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1440 // opposite of bit 0 of DstX. 1441 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1442 unsigned Val) const { 1443 int VDstXInd = 1444 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1445 assert(VDstXInd != -1); 1446 assert(Inst.getOperand(VDstXInd).isReg()); 1447 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1448 Val |= ~XDstReg & 1; 1449 auto Width = llvm::AMDGPUDisassembler::OPW32; 1450 return createRegOperand(getVgprClassId(Width), Val); 1451 } 1452 1453 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1454 using namespace AMDGPU; 1455 1456 switch (Val) { 1457 // clang-format off 1458 case 102: return createRegOperand(FLAT_SCR_LO); 1459 case 103: return createRegOperand(FLAT_SCR_HI); 1460 case 104: return createRegOperand(XNACK_MASK_LO); 1461 case 105: return createRegOperand(XNACK_MASK_HI); 1462 case 106: return createRegOperand(VCC_LO); 1463 case 107: return createRegOperand(VCC_HI); 1464 case 108: return createRegOperand(TBA_LO); 1465 case 109: return createRegOperand(TBA_HI); 1466 case 110: return createRegOperand(TMA_LO); 1467 case 111: return createRegOperand(TMA_HI); 1468 case 124: 1469 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1470 case 125: 1471 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1472 case 126: return createRegOperand(EXEC_LO); 1473 case 127: return createRegOperand(EXEC_HI); 1474 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1475 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1476 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1477 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1478 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1479 case 251: return createRegOperand(SRC_VCCZ); 1480 case 252: return createRegOperand(SRC_EXECZ); 1481 case 253: return createRegOperand(SRC_SCC); 1482 case 254: return createRegOperand(LDS_DIRECT); 1483 default: break; 1484 // clang-format on 1485 } 1486 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1487 } 1488 1489 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1490 using namespace AMDGPU; 1491 1492 switch (Val) { 1493 case 102: return createRegOperand(FLAT_SCR); 1494 case 104: return createRegOperand(XNACK_MASK); 1495 case 106: return createRegOperand(VCC); 1496 case 108: return createRegOperand(TBA); 1497 case 110: return createRegOperand(TMA); 1498 case 124: 1499 if (isGFX11Plus()) 1500 return createRegOperand(SGPR_NULL); 1501 break; 1502 case 125: 1503 if (!isGFX11Plus()) 1504 return createRegOperand(SGPR_NULL); 1505 break; 1506 case 126: return createRegOperand(EXEC); 1507 case 235: return createRegOperand(SRC_SHARED_BASE); 1508 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1509 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1510 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1511 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1512 case 251: return createRegOperand(SRC_VCCZ); 1513 case 252: return createRegOperand(SRC_EXECZ); 1514 case 253: return createRegOperand(SRC_SCC); 1515 default: break; 1516 } 1517 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1518 } 1519 1520 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1521 const unsigned Val, 1522 unsigned ImmWidth) const { 1523 using namespace AMDGPU::SDWA; 1524 using namespace AMDGPU::EncValues; 1525 1526 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 1527 STI.hasFeature(AMDGPU::FeatureGFX10)) { 1528 // XXX: cast to int is needed to avoid stupid warning: 1529 // compare with unsigned is always true 1530 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1531 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1532 return createRegOperand(getVgprClassId(Width), 1533 Val - SDWA9EncValues::SRC_VGPR_MIN); 1534 } 1535 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1536 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1537 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1538 return createSRegOperand(getSgprClassId(Width), 1539 Val - SDWA9EncValues::SRC_SGPR_MIN); 1540 } 1541 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1542 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1543 return createSRegOperand(getTtmpClassId(Width), 1544 Val - SDWA9EncValues::SRC_TTMP_MIN); 1545 } 1546 1547 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1548 1549 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1550 return decodeIntImmed(SVal); 1551 1552 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1553 return decodeFPImmed(ImmWidth, SVal); 1554 1555 return decodeSpecialReg32(SVal); 1556 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 1557 return createRegOperand(getVgprClassId(Width), Val); 1558 } 1559 llvm_unreachable("unsupported target"); 1560 } 1561 1562 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1563 return decodeSDWASrc(OPW16, Val, 16); 1564 } 1565 1566 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1567 return decodeSDWASrc(OPW32, Val, 32); 1568 } 1569 1570 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1571 using namespace AMDGPU::SDWA; 1572 1573 assert((STI.hasFeature(AMDGPU::FeatureGFX9) || 1574 STI.hasFeature(AMDGPU::FeatureGFX10)) && 1575 "SDWAVopcDst should be present only on GFX9+"); 1576 1577 bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64); 1578 1579 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1580 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1581 1582 int TTmpIdx = getTTmpIdx(Val); 1583 if (TTmpIdx >= 0) { 1584 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1585 return createSRegOperand(TTmpClsId, TTmpIdx); 1586 } else if (Val > SGPR_MAX) { 1587 return IsWave64 ? decodeSpecialReg64(Val) 1588 : decodeSpecialReg32(Val); 1589 } else { 1590 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1591 } 1592 } else { 1593 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1594 } 1595 } 1596 1597 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1598 return STI.hasFeature(AMDGPU::FeatureWavefrontSize64) 1599 ? decodeSrcOp(OPW64, Val) 1600 : decodeSrcOp(OPW32, Val); 1601 } 1602 1603 bool AMDGPUDisassembler::isVI() const { 1604 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands); 1605 } 1606 1607 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1608 1609 bool AMDGPUDisassembler::isGFX90A() const { 1610 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts); 1611 } 1612 1613 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1614 1615 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1616 1617 bool AMDGPUDisassembler::isGFX10Plus() const { 1618 return AMDGPU::isGFX10Plus(STI); 1619 } 1620 1621 bool AMDGPUDisassembler::isGFX11() const { 1622 return STI.hasFeature(AMDGPU::FeatureGFX11); 1623 } 1624 1625 bool AMDGPUDisassembler::isGFX11Plus() const { 1626 return AMDGPU::isGFX11Plus(STI); 1627 } 1628 1629 1630 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1631 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch); 1632 } 1633 1634 //===----------------------------------------------------------------------===// 1635 // AMDGPU specific symbol handling 1636 //===----------------------------------------------------------------------===// 1637 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) 1638 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1639 do { \ 1640 KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ 1641 } while (0) 1642 1643 // NOLINTNEXTLINE(readability-identifier-naming) 1644 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1645 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1646 using namespace amdhsa; 1647 StringRef Indent = "\t"; 1648 1649 // We cannot accurately backward compute #VGPRs used from 1650 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1651 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1652 // simply calculate the inverse of what the assembler does. 1653 1654 uint32_t GranulatedWorkitemVGPRCount = 1655 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); 1656 1657 uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) * 1658 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI); 1659 1660 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1661 1662 // We cannot backward compute values used to calculate 1663 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1664 // directives can't be computed: 1665 // .amdhsa_reserve_vcc 1666 // .amdhsa_reserve_flat_scratch 1667 // .amdhsa_reserve_xnack_mask 1668 // They take their respective default values if not specified in the assembly. 1669 // 1670 // GRANULATED_WAVEFRONT_SGPR_COUNT 1671 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1672 // 1673 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1674 // are set to 0. So while disassembling we consider that: 1675 // 1676 // GRANULATED_WAVEFRONT_SGPR_COUNT 1677 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1678 // 1679 // The disassembler cannot recover the original values of those 3 directives. 1680 1681 uint32_t GranulatedWavefrontSGPRCount = 1682 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); 1683 1684 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1685 return MCDisassembler::Fail; 1686 1687 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1688 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1689 1690 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1691 if (!hasArchitectedFlatScratch()) 1692 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1693 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1694 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1695 1696 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1697 return MCDisassembler::Fail; 1698 1699 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1700 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1701 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1702 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1703 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1704 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1705 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1706 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1707 1708 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1709 return MCDisassembler::Fail; 1710 1711 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP); 1712 1713 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1714 return MCDisassembler::Fail; 1715 1716 PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE); 1717 1718 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1719 return MCDisassembler::Fail; 1720 1721 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1722 return MCDisassembler::Fail; 1723 1724 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL); 1725 1726 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0) 1727 return MCDisassembler::Fail; 1728 1729 if (isGFX10Plus()) { 1730 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1731 COMPUTE_PGM_RSRC1_WGP_MODE); 1732 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED); 1733 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS); 1734 } 1735 return MCDisassembler::Success; 1736 } 1737 1738 // NOLINTNEXTLINE(readability-identifier-naming) 1739 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1740 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1741 using namespace amdhsa; 1742 StringRef Indent = "\t"; 1743 if (hasArchitectedFlatScratch()) 1744 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1745 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1746 else 1747 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1748 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1749 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1750 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1751 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1752 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1753 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1754 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1755 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1756 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1757 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1758 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1759 1760 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1761 return MCDisassembler::Fail; 1762 1763 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1764 return MCDisassembler::Fail; 1765 1766 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1767 return MCDisassembler::Fail; 1768 1769 PRINT_DIRECTIVE( 1770 ".amdhsa_exception_fp_ieee_invalid_op", 1771 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1772 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1773 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1774 PRINT_DIRECTIVE( 1775 ".amdhsa_exception_fp_ieee_div_zero", 1776 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1777 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1778 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1779 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1780 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1781 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1782 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1783 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1784 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1785 1786 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1787 return MCDisassembler::Fail; 1788 1789 return MCDisassembler::Success; 1790 } 1791 1792 // NOLINTNEXTLINE(readability-identifier-naming) 1793 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( 1794 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1795 using namespace amdhsa; 1796 if (!isGFX10Plus() && FourByteBuffer) { 1797 return MCDisassembler::Fail; 1798 } 1799 return MCDisassembler::Success; 1800 } 1801 #undef PRINT_DIRECTIVE 1802 #undef GET_FIELD 1803 1804 MCDisassembler::DecodeStatus 1805 AMDGPUDisassembler::decodeKernelDescriptorDirective( 1806 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 1807 raw_string_ostream &KdStream) const { 1808 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1809 do { \ 1810 KdStream << Indent << DIRECTIVE " " \ 1811 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 1812 } while (0) 1813 1814 uint16_t TwoByteBuffer = 0; 1815 uint32_t FourByteBuffer = 0; 1816 1817 StringRef ReservedBytes; 1818 StringRef Indent = "\t"; 1819 1820 assert(Bytes.size() == 64); 1821 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 1822 1823 switch (Cursor.tell()) { 1824 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 1825 FourByteBuffer = DE.getU32(Cursor); 1826 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 1827 << '\n'; 1828 return MCDisassembler::Success; 1829 1830 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 1831 FourByteBuffer = DE.getU32(Cursor); 1832 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 1833 << FourByteBuffer << '\n'; 1834 return MCDisassembler::Success; 1835 1836 case amdhsa::KERNARG_SIZE_OFFSET: 1837 FourByteBuffer = DE.getU32(Cursor); 1838 KdStream << Indent << ".amdhsa_kernarg_size " 1839 << FourByteBuffer << '\n'; 1840 return MCDisassembler::Success; 1841 1842 case amdhsa::RESERVED0_OFFSET: 1843 // 4 reserved bytes, must be 0. 1844 ReservedBytes = DE.getBytes(Cursor, 4); 1845 for (int I = 0; I < 4; ++I) { 1846 if (ReservedBytes[I] != 0) { 1847 return MCDisassembler::Fail; 1848 } 1849 } 1850 return MCDisassembler::Success; 1851 1852 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 1853 // KERNEL_CODE_ENTRY_BYTE_OFFSET 1854 // So far no directive controls this for Code Object V3, so simply skip for 1855 // disassembly. 1856 DE.skip(Cursor, 8); 1857 return MCDisassembler::Success; 1858 1859 case amdhsa::RESERVED1_OFFSET: 1860 // 20 reserved bytes, must be 0. 1861 ReservedBytes = DE.getBytes(Cursor, 20); 1862 for (int I = 0; I < 20; ++I) { 1863 if (ReservedBytes[I] != 0) { 1864 return MCDisassembler::Fail; 1865 } 1866 } 1867 return MCDisassembler::Success; 1868 1869 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 1870 FourByteBuffer = DE.getU32(Cursor); 1871 return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); 1872 1873 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 1874 FourByteBuffer = DE.getU32(Cursor); 1875 return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); 1876 1877 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 1878 FourByteBuffer = DE.getU32(Cursor); 1879 return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); 1880 1881 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 1882 using namespace amdhsa; 1883 TwoByteBuffer = DE.getU16(Cursor); 1884 1885 if (!hasArchitectedFlatScratch()) 1886 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 1887 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 1888 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 1889 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 1890 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 1891 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 1892 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 1893 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 1894 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 1895 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 1896 if (!hasArchitectedFlatScratch()) 1897 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 1898 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 1899 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 1900 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 1901 1902 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 1903 return MCDisassembler::Fail; 1904 1905 // Reserved for GFX9 1906 if (isGFX9() && 1907 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 1908 return MCDisassembler::Fail; 1909 } else if (isGFX10Plus()) { 1910 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 1911 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 1912 } 1913 1914 if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5) 1915 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 1916 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 1917 1918 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 1919 return MCDisassembler::Fail; 1920 1921 return MCDisassembler::Success; 1922 1923 case amdhsa::RESERVED2_OFFSET: 1924 // 6 bytes from here are reserved, must be 0. 1925 ReservedBytes = DE.getBytes(Cursor, 6); 1926 for (int I = 0; I < 6; ++I) { 1927 if (ReservedBytes[I] != 0) 1928 return MCDisassembler::Fail; 1929 } 1930 return MCDisassembler::Success; 1931 1932 default: 1933 llvm_unreachable("Unhandled index. Case statements cover everything."); 1934 return MCDisassembler::Fail; 1935 } 1936 #undef PRINT_DIRECTIVE 1937 } 1938 1939 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 1940 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 1941 // CP microcode requires the kernel descriptor to be 64 aligned. 1942 if (Bytes.size() != 64 || KdAddress % 64 != 0) 1943 return MCDisassembler::Fail; 1944 1945 std::string Kd; 1946 raw_string_ostream KdStream(Kd); 1947 KdStream << ".amdhsa_kernel " << KdName << '\n'; 1948 1949 DataExtractor::Cursor C(0); 1950 while (C && C.tell() < Bytes.size()) { 1951 MCDisassembler::DecodeStatus Status = 1952 decodeKernelDescriptorDirective(C, Bytes, KdStream); 1953 1954 cantFail(C.takeError()); 1955 1956 if (Status == MCDisassembler::Fail) 1957 return MCDisassembler::Fail; 1958 } 1959 KdStream << ".end_amdhsa_kernel\n"; 1960 outs() << KdStream.str(); 1961 return MCDisassembler::Success; 1962 } 1963 1964 std::optional<MCDisassembler::DecodeStatus> 1965 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 1966 ArrayRef<uint8_t> Bytes, uint64_t Address, 1967 raw_ostream &CStream) const { 1968 // Right now only kernel descriptor needs to be handled. 1969 // We ignore all other symbols for target specific handling. 1970 // TODO: 1971 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 1972 // Object V2 and V3 when symbols are marked protected. 1973 1974 // amd_kernel_code_t for Code Object V2. 1975 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 1976 Size = 256; 1977 return MCDisassembler::Fail; 1978 } 1979 1980 // Code Object V3 kernel descriptors. 1981 StringRef Name = Symbol.Name; 1982 if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) { 1983 Size = 64; // Size = 64 regardless of success or failure. 1984 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 1985 } 1986 return std::nullopt; 1987 } 1988 1989 //===----------------------------------------------------------------------===// 1990 // AMDGPUSymbolizer 1991 //===----------------------------------------------------------------------===// 1992 1993 // Try to find symbol name for specified label 1994 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 1995 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 1996 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 1997 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 1998 1999 if (!IsBranch) { 2000 return false; 2001 } 2002 2003 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2004 if (!Symbols) 2005 return false; 2006 2007 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2008 return Val.Addr == static_cast<uint64_t>(Value) && 2009 Val.Type == ELF::STT_NOTYPE; 2010 }); 2011 if (Result != Symbols->end()) { 2012 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2013 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2014 Inst.addOperand(MCOperand::createExpr(Add)); 2015 return true; 2016 } 2017 // Add to list of referenced addresses, so caller can synthesize a label. 2018 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2019 return false; 2020 } 2021 2022 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2023 int64_t Value, 2024 uint64_t Address) { 2025 llvm_unreachable("unimplemented"); 2026 } 2027 2028 //===----------------------------------------------------------------------===// 2029 // Initialization 2030 //===----------------------------------------------------------------------===// 2031 2032 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2033 LLVMOpInfoCallback /*GetOpInfo*/, 2034 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2035 void *DisInfo, 2036 MCContext *Ctx, 2037 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2038 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2039 } 2040 2041 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2042 const MCSubtargetInfo &STI, 2043 MCContext &Ctx) { 2044 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2045 } 2046 2047 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2048 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2049 createAMDGPUDisassembler); 2050 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2051 createAMDGPUSymbolizer); 2052 } 2053