xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision ede070a28d14167daa56cc00befd6e448d457a0e)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
119 // number of register. Used by VGPR only and AGPR only operands.
120 #define DECODE_OPERAND_REG_8(RegClass)                                         \
121   static DecodeStatus Decode##RegClass##RegisterClass(                         \
122       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
123       const MCDisassembler *Decoder) {                                         \
124     assert(Imm < (1 << 8) && "8-bit encoding");                                \
125     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
126     return addOperand(                                                         \
127         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
128   }
129 
130 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
131                      ImmWidth)                                                 \
132   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
133                            const MCDisassembler *Decoder) {                    \
134     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
135     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
136     return addOperand(Inst,                                                    \
137                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
138                                         MandatoryLiteral, ImmWidth));          \
139   }
140 
141 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
142 // get register class. Used by SGPR only operands.
143 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
144   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
145 
146 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
147 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
148 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
149 // Used by AV_ register classes (AGPR or VGPR only register operands).
150 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
151   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
152                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
153 
154 // Decoder for Src(9-bit encoding) registers only.
155 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
156   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
157 
158 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
159 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
160 // only.
161 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
162   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
163 
164 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
165 // Imm{9} is acc, registers only.
166 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
167   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
168 
169 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
170 // register from RegClass or immediate. Registers that don't belong to RegClass
171 // will be decoded and InstPrinter will report warning. Immediate will be
172 // decoded into constant of size ImmWidth, should match width of immediate used
173 // by OperandType (important for floating point types).
174 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
175   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
176                false, ImmWidth)
177 
178 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
179 // and decode using 'enum10' from decodeSrcOp.
180 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
181   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
182                Imm | 512, false, ImmWidth)
183 
184 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
185   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
186                OpWidth, Imm, true, ImmWidth)
187 
188 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
189 // when RegisterClass is used as an operand. Most often used for destination
190 // operands.
191 
192 DECODE_OPERAND_REG_8(VGPR_32)
193 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
194 DECODE_OPERAND_REG_8(VReg_64)
195 DECODE_OPERAND_REG_8(VReg_96)
196 DECODE_OPERAND_REG_8(VReg_128)
197 DECODE_OPERAND_REG_8(VReg_256)
198 DECODE_OPERAND_REG_8(VReg_288)
199 DECODE_OPERAND_REG_8(VReg_352)
200 DECODE_OPERAND_REG_8(VReg_384)
201 DECODE_OPERAND_REG_8(VReg_512)
202 DECODE_OPERAND_REG_8(VReg_1024)
203 
204 DECODE_OPERAND_REG_7(SReg_32, OPW32)
205 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
206 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
207 DECODE_OPERAND_REG_7(SReg_64, OPW64)
208 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
209 DECODE_OPERAND_REG_7(SReg_128, OPW128)
210 DECODE_OPERAND_REG_7(SReg_256, OPW256)
211 DECODE_OPERAND_REG_7(SReg_512, OPW512)
212 
213 DECODE_OPERAND_REG_8(AGPR_32)
214 DECODE_OPERAND_REG_8(AReg_64)
215 DECODE_OPERAND_REG_8(AReg_128)
216 DECODE_OPERAND_REG_8(AReg_256)
217 DECODE_OPERAND_REG_8(AReg_512)
218 DECODE_OPERAND_REG_8(AReg_1024)
219 
220 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
221 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
222 
223 // Decoders for register only source RegisterOperands that use use 9-bit Src
224 // encoding: 'decodeOperand_<RegClass>'.
225 
226 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
227 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
228 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
229 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
230 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
231 
232 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
233 
234 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
235 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
236 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
237 
238 // Decoders for register or immediate RegisterOperands that use 9-bit Src
239 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
240 
241 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
242 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
243 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
244 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
245 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
246 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
247 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
248 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
249 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
250 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
251 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
252 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
253 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
254 
255 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
256 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
257 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
258 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
259 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
260 
261 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
262 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
263 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
264 
265 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
266                                           uint64_t Addr,
267                                           const MCDisassembler *Decoder) {
268   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
269   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
270 }
271 
272 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
273                                           uint64_t Addr,
274                                           const MCDisassembler *Decoder) {
275   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
276   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
277 }
278 
279 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
280                                           uint64_t Addr, const void *Decoder) {
281   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
282   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
283 }
284 
285 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
286                           const MCRegisterInfo *MRI) {
287   if (OpIdx < 0)
288     return false;
289 
290   const MCOperand &Op = Inst.getOperand(OpIdx);
291   if (!Op.isReg())
292     return false;
293 
294   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
295   auto Reg = Sub ? Sub : Op.getReg();
296   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
297 }
298 
299 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
300                                              AMDGPUDisassembler::OpWidthTy Opw,
301                                              const MCDisassembler *Decoder) {
302   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
303   if (!DAsm->isGFX90A()) {
304     Imm &= 511;
305   } else {
306     // If atomic has both vdata and vdst their register classes are tied.
307     // The bit is decoded along with the vdst, first operand. We need to
308     // change register class to AGPR if vdst was AGPR.
309     // If a DS instruction has both data0 and data1 their register classes
310     // are also tied.
311     unsigned Opc = Inst.getOpcode();
312     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
313     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
314                                                         : AMDGPU::OpName::vdata;
315     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
316     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
317     if ((int)Inst.getNumOperands() == DataIdx) {
318       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
319       if (IsAGPROperand(Inst, DstIdx, MRI))
320         Imm |= 512;
321     }
322 
323     if (TSFlags & SIInstrFlags::DS) {
324       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
325       if ((int)Inst.getNumOperands() == Data2Idx &&
326           IsAGPROperand(Inst, DataIdx, MRI))
327         Imm |= 512;
328     }
329   }
330   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
331 }
332 
333 static DecodeStatus
334 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
335                              const MCDisassembler *Decoder) {
336   return decodeOperand_AVLdSt_Any(Inst, Imm,
337                                   AMDGPUDisassembler::OPW32, Decoder);
338 }
339 
340 static DecodeStatus
341 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
342                              const MCDisassembler *Decoder) {
343   return decodeOperand_AVLdSt_Any(Inst, Imm,
344                                   AMDGPUDisassembler::OPW64, Decoder);
345 }
346 
347 static DecodeStatus
348 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
349                              const MCDisassembler *Decoder) {
350   return decodeOperand_AVLdSt_Any(Inst, Imm,
351                                   AMDGPUDisassembler::OPW96, Decoder);
352 }
353 
354 static DecodeStatus
355 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
356                               const MCDisassembler *Decoder) {
357   return decodeOperand_AVLdSt_Any(Inst, Imm,
358                                   AMDGPUDisassembler::OPW128, Decoder);
359 }
360 
361 static DecodeStatus
362 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
363                               const MCDisassembler *Decoder) {
364   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
365                                   Decoder);
366 }
367 
368 #define DECODE_SDWA(DecName) \
369 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
370 
371 DECODE_SDWA(Src32)
372 DECODE_SDWA(Src16)
373 DECODE_SDWA(VopcDst)
374 
375 #include "AMDGPUGenDisassemblerTables.inc"
376 
377 //===----------------------------------------------------------------------===//
378 //
379 //===----------------------------------------------------------------------===//
380 
381 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
382   assert(Bytes.size() >= sizeof(T));
383   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
384   Bytes = Bytes.slice(sizeof(T));
385   return Res;
386 }
387 
388 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
389   assert(Bytes.size() >= 12);
390   uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
391       Bytes.data());
392   Bytes = Bytes.slice(8);
393   uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
394       Bytes.data());
395   Bytes = Bytes.slice(4);
396   return DecoderUInt128(Lo, Hi);
397 }
398 
399 // The disassembler is greedy, so we need to check FI operand value to
400 // not parse a dpp if the correct literal is not set. For dpp16 the
401 // autogenerated decoder checks the dpp literal
402 static bool isValidDPP8(const MCInst &MI) {
403   using namespace llvm::AMDGPU::DPP;
404   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
405   assert(FiIdx != -1);
406   if ((unsigned)FiIdx >= MI.getNumOperands())
407     return false;
408   unsigned Fi = MI.getOperand(FiIdx).getImm();
409   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
410 }
411 
412 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
413                                                 ArrayRef<uint8_t> Bytes_,
414                                                 uint64_t Address,
415                                                 raw_ostream &CS) const {
416   bool IsSDWA = false;
417 
418   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
419   Bytes = Bytes_.slice(0, MaxInstBytesNum);
420 
421   DecodeStatus Res = MCDisassembler::Fail;
422   do {
423     // ToDo: better to switch encoding length using some bit predicate
424     // but it is unknown yet, so try all we can
425 
426     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
427     // encodings
428     if (isGFX11Plus() && Bytes.size() >= 12 ) {
429       DecoderUInt128 DecW = eat12Bytes(Bytes);
430       Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW, Address, CS);
431       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
432         break;
433       MI = MCInst(); // clear
434       Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW, Address, CS);
435       if (Res) {
436         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
437           convertVOP3PDPPInst(MI);
438         else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
439           convertVOPCDPPInst(MI); // Special VOP3 case
440         else {
441           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
442           convertVOP3DPPInst(MI); // Regular VOP3 case
443         }
444         break;
445       }
446       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
447       if (Res)
448         break;
449     }
450     // Reinitialize Bytes
451     Bytes = Bytes_.slice(0, MaxInstBytesNum);
452 
453     if (Bytes.size() >= 8) {
454       const uint64_t QW = eatBytes<uint64_t>(Bytes);
455 
456       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
457         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
458         if (Res) {
459           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
460               == -1)
461             break;
462           if (convertDPP8Inst(MI) == MCDisassembler::Success)
463             break;
464           MI = MCInst(); // clear
465         }
466       }
467 
468       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
469       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
470         break;
471       MI = MCInst(); // clear
472 
473       Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address, CS);
474       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
475         break;
476       MI = MCInst(); // clear
477 
478       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
479       if (Res) break;
480 
481       Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address, CS);
482       if (Res) {
483         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
484           convertVOPCDPPInst(MI);
485         break;
486       }
487 
488       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
489       if (Res) { IsSDWA = true;  break; }
490 
491       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
492       if (Res) { IsSDWA = true;  break; }
493 
494       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
495       if (Res) { IsSDWA = true;  break; }
496 
497       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
498         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
499         if (Res)
500           break;
501       }
502 
503       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
504       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
505       // table first so we print the correct name.
506       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
507         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
508         if (Res)
509           break;
510       }
511     }
512 
513     // Reinitialize Bytes as DPP64 could have eaten too much
514     Bytes = Bytes_.slice(0, MaxInstBytesNum);
515 
516     // Try decode 32-bit instruction
517     if (Bytes.size() < 4) break;
518     const uint32_t DW = eatBytes<uint32_t>(Bytes);
519     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
520     if (Res) break;
521 
522     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
523     if (Res) break;
524 
525     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
526     if (Res) break;
527 
528     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
529       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
530       if (Res)
531         break;
532     }
533 
534     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
535       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
536       if (Res) break;
537     }
538 
539     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
540     if (Res) break;
541 
542     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address, CS);
543     if (Res) break;
544 
545     if (Bytes.size() < 4) break;
546     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
547 
548     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
549       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
550       if (Res)
551         break;
552     }
553 
554     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
555       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
556       if (Res)
557         break;
558     }
559 
560     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
561     if (Res) break;
562 
563     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
564     if (Res) break;
565 
566     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
567     if (Res) break;
568 
569     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
570     if (Res) break;
571 
572     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address, CS);
573     if (Res)
574       break;
575 
576     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
577   } while (false);
578 
579   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
580     // Insert dummy unused src2_modifiers.
581     insertNamedMCOperand(MI, MCOperand::createImm(0),
582                          AMDGPU::OpName::src2_modifiers);
583   }
584 
585   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
586           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
587     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
588                                              AMDGPU::OpName::cpol);
589     if (CPolPos != -1) {
590       unsigned CPol =
591           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
592               AMDGPU::CPol::GLC : 0;
593       if (MI.getNumOperands() <= (unsigned)CPolPos) {
594         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
595                              AMDGPU::OpName::cpol);
596       } else if (CPol) {
597         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
598       }
599     }
600   }
601 
602   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
603               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
604              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
605     // GFX90A lost TFE, its place is occupied by ACC.
606     int TFEOpIdx =
607         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
608     if (TFEOpIdx != -1) {
609       auto TFEIter = MI.begin();
610       std::advance(TFEIter, TFEOpIdx);
611       MI.insert(TFEIter, MCOperand::createImm(0));
612     }
613   }
614 
615   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
616               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
617     int SWZOpIdx =
618         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
619     if (SWZOpIdx != -1) {
620       auto SWZIter = MI.begin();
621       std::advance(SWZIter, SWZOpIdx);
622       MI.insert(SWZIter, MCOperand::createImm(0));
623     }
624   }
625 
626   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
627     int VAddr0Idx =
628         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
629     int RsrcIdx =
630         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
631     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
632     if (VAddr0Idx >= 0 && NSAArgs > 0) {
633       unsigned NSAWords = (NSAArgs + 3) / 4;
634       if (Bytes.size() < 4 * NSAWords) {
635         Res = MCDisassembler::Fail;
636       } else {
637         for (unsigned i = 0; i < NSAArgs; ++i) {
638           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
639           auto VAddrRCID =
640               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
641           MI.insert(MI.begin() + VAddrIdx,
642                     createRegOperand(VAddrRCID, Bytes[i]));
643         }
644         Bytes = Bytes.slice(4 * NSAWords);
645       }
646     }
647 
648     if (Res)
649       Res = convertMIMGInst(MI);
650   }
651 
652   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
653     Res = convertEXPInst(MI);
654 
655   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
656     Res = convertVINTERPInst(MI);
657 
658   if (Res && IsSDWA)
659     Res = convertSDWAInst(MI);
660 
661   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
662                                               AMDGPU::OpName::vdst_in);
663   if (VDstIn_Idx != -1) {
664     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
665                            MCOI::OperandConstraint::TIED_TO);
666     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
667          !MI.getOperand(VDstIn_Idx).isReg() ||
668          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
669       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
670         MI.erase(&MI.getOperand(VDstIn_Idx));
671       insertNamedMCOperand(MI,
672         MCOperand::createReg(MI.getOperand(Tied).getReg()),
673         AMDGPU::OpName::vdst_in);
674     }
675   }
676 
677   int ImmLitIdx =
678       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
679   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
680   if (Res && ImmLitIdx != -1 && !IsSOPK)
681     Res = convertFMAanyK(MI, ImmLitIdx);
682 
683   // if the opcode was not recognized we'll assume a Size of 4 bytes
684   // (unless there are fewer bytes left)
685   Size = Res ? (MaxInstBytesNum - Bytes.size())
686              : std::min((size_t)4, Bytes_.size());
687   return Res;
688 }
689 
690 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
691   if (STI.hasFeature(AMDGPU::FeatureGFX11)) {
692     // The MCInst still has these fields even though they are no longer encoded
693     // in the GFX11 instruction.
694     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
695     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
696   }
697   return MCDisassembler::Success;
698 }
699 
700 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
701   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
702       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
703       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
704       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
705     // The MCInst has this field that is not directly encoded in the
706     // instruction.
707     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
708   }
709   return MCDisassembler::Success;
710 }
711 
712 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
713   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
714       STI.hasFeature(AMDGPU::FeatureGFX10)) {
715     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
716       // VOPC - insert clamp
717       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
718   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
719     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
720     if (SDst != -1) {
721       // VOPC - insert VCC register as sdst
722       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
723                            AMDGPU::OpName::sdst);
724     } else {
725       // VOP1/2 - insert omod if present in instruction
726       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
727     }
728   }
729   return MCDisassembler::Success;
730 }
731 
732 struct VOPModifiers {
733   unsigned OpSel = 0;
734   unsigned OpSelHi = 0;
735   unsigned NegLo = 0;
736   unsigned NegHi = 0;
737 };
738 
739 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
740 // Note that these values do not affect disassembler output,
741 // so this is only necessary for consistency with src_modifiers.
742 static VOPModifiers collectVOPModifiers(const MCInst &MI,
743                                         bool IsVOP3P = false) {
744   VOPModifiers Modifiers;
745   unsigned Opc = MI.getOpcode();
746   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
747                         AMDGPU::OpName::src1_modifiers,
748                         AMDGPU::OpName::src2_modifiers};
749   for (int J = 0; J < 3; ++J) {
750     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
751     if (OpIdx == -1)
752       continue;
753 
754     unsigned Val = MI.getOperand(OpIdx).getImm();
755 
756     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
757     if (IsVOP3P) {
758       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
759       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
760       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
761     } else if (J == 0) {
762       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
763     }
764   }
765 
766   return Modifiers;
767 }
768 
769 // MAC opcodes have special old and src2 operands.
770 // src2 is tied to dst, while old is not tied (but assumed to be).
771 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
772   constexpr int DST_IDX = 0;
773   auto Opcode = MI.getOpcode();
774   const auto &Desc = MCII->get(Opcode);
775   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
776 
777   if (OldIdx != -1 && Desc.getOperandConstraint(
778                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
779     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
780     assert(Desc.getOperandConstraint(
781                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
782                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
783     (void)DST_IDX;
784     return true;
785   }
786 
787   return false;
788 }
789 
790 // Create dummy old operand and insert dummy unused src2_modifiers
791 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
792   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
793   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
794   insertNamedMCOperand(MI, MCOperand::createImm(0),
795                        AMDGPU::OpName::src2_modifiers);
796 }
797 
798 // We must check FI == literal to reject not genuine dpp8 insts, and we must
799 // first add optional MI operands to check FI
800 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
801   unsigned Opc = MI.getOpcode();
802   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
803     convertVOP3PDPPInst(MI);
804   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
805              AMDGPU::isVOPC64DPP(Opc)) {
806     convertVOPCDPPInst(MI);
807   } else {
808     if (isMacDPP(MI))
809       convertMacDPPInst(MI);
810 
811     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
812     if (MI.getNumOperands() < DescNumOps &&
813         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
814       auto Mods = collectVOPModifiers(MI);
815       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
816                            AMDGPU::OpName::op_sel);
817     } else {
818       // Insert dummy unused src modifiers.
819       if (MI.getNumOperands() < DescNumOps &&
820           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
821         insertNamedMCOperand(MI, MCOperand::createImm(0),
822                              AMDGPU::OpName::src0_modifiers);
823 
824       if (MI.getNumOperands() < DescNumOps &&
825           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
826         insertNamedMCOperand(MI, MCOperand::createImm(0),
827                              AMDGPU::OpName::src1_modifiers);
828     }
829   }
830   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
831 }
832 
833 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
834   if (isMacDPP(MI))
835     convertMacDPPInst(MI);
836 
837   unsigned Opc = MI.getOpcode();
838   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
839   if (MI.getNumOperands() < DescNumOps &&
840       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
841     auto Mods = collectVOPModifiers(MI);
842     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
843                          AMDGPU::OpName::op_sel);
844   }
845   return MCDisassembler::Success;
846 }
847 
848 // Note that before gfx10, the MIMG encoding provided no information about
849 // VADDR size. Consequently, decoded instructions always show address as if it
850 // has 1 dword, which could be not really so.
851 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
852 
853   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
854                                            AMDGPU::OpName::vdst);
855 
856   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
857                                             AMDGPU::OpName::vdata);
858   int VAddr0Idx =
859       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
860   int RsrcIdx =
861       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
862   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
863                                             AMDGPU::OpName::dmask);
864 
865   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
866                                             AMDGPU::OpName::tfe);
867   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
868                                             AMDGPU::OpName::d16);
869 
870   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
871   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
872       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
873 
874   assert(VDataIdx != -1);
875   if (BaseOpcode->BVH) {
876     // Add A16 operand for intersect_ray instructions
877     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16))
878       addOperand(MI, MCOperand::createImm(1));
879     return MCDisassembler::Success;
880   }
881 
882   bool IsAtomic = (VDstIdx != -1);
883   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
884   bool IsNSA = false;
885   bool IsPartialNSA = false;
886   unsigned AddrSize = Info->VAddrDwords;
887 
888   if (isGFX10Plus()) {
889     unsigned DimIdx =
890         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
891     int A16Idx =
892         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
893     const AMDGPU::MIMGDimInfo *Dim =
894         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
895     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
896 
897     AddrSize =
898         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
899 
900     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
901             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
902     if (!IsNSA) {
903       if (AddrSize > 12)
904         AddrSize = 16;
905     } else {
906       if (AddrSize > Info->VAddrDwords) {
907         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
908           // The NSA encoding does not contain enough operands for the
909           // combination of base opcode / dimension. Should this be an error?
910           return MCDisassembler::Success;
911         }
912         IsPartialNSA = true;
913       }
914     }
915   }
916 
917   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
918   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
919 
920   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
921   if (D16 && AMDGPU::hasPackedD16(STI)) {
922     DstSize = (DstSize + 1) / 2;
923   }
924 
925   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
926     DstSize += 1;
927 
928   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
929     return MCDisassembler::Success;
930 
931   int NewOpcode =
932       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
933   if (NewOpcode == -1)
934     return MCDisassembler::Success;
935 
936   // Widen the register to the correct number of enabled channels.
937   unsigned NewVdata = AMDGPU::NoRegister;
938   if (DstSize != Info->VDataDwords) {
939     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
940 
941     // Get first subregister of VData
942     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
943     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
944     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
945 
946     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
947                                        &MRI.getRegClass(DataRCID));
948     if (NewVdata == AMDGPU::NoRegister) {
949       // It's possible to encode this such that the low register + enabled
950       // components exceeds the register count.
951       return MCDisassembler::Success;
952     }
953   }
954 
955   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
956   // If using partial NSA on GFX11+ widen last address register.
957   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
958   unsigned NewVAddrSA = AMDGPU::NoRegister;
959   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
960       AddrSize != Info->VAddrDwords) {
961     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
962     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
963     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
964 
965     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
966     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
967                                         &MRI.getRegClass(AddrRCID));
968     if (!NewVAddrSA)
969       return MCDisassembler::Success;
970   }
971 
972   MI.setOpcode(NewOpcode);
973 
974   if (NewVdata != AMDGPU::NoRegister) {
975     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
976 
977     if (IsAtomic) {
978       // Atomic operations have an additional operand (a copy of data)
979       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
980     }
981   }
982 
983   if (NewVAddrSA) {
984     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
985   } else if (IsNSA) {
986     assert(AddrSize <= Info->VAddrDwords);
987     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
988              MI.begin() + VAddr0Idx + Info->VAddrDwords);
989   }
990 
991   return MCDisassembler::Success;
992 }
993 
994 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
995 // decoder only adds to src_modifiers, so manually add the bits to the other
996 // operands.
997 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
998   unsigned Opc = MI.getOpcode();
999   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1000   auto Mods = collectVOPModifiers(MI, true);
1001 
1002   if (MI.getNumOperands() < DescNumOps &&
1003       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1004     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1005 
1006   if (MI.getNumOperands() < DescNumOps &&
1007       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1008     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1009                          AMDGPU::OpName::op_sel);
1010   if (MI.getNumOperands() < DescNumOps &&
1011       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1012     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1013                          AMDGPU::OpName::op_sel_hi);
1014   if (MI.getNumOperands() < DescNumOps &&
1015       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1016     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1017                          AMDGPU::OpName::neg_lo);
1018   if (MI.getNumOperands() < DescNumOps &&
1019       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1020     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1021                          AMDGPU::OpName::neg_hi);
1022 
1023   return MCDisassembler::Success;
1024 }
1025 
1026 // Create dummy old operand and insert optional operands
1027 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1028   unsigned Opc = MI.getOpcode();
1029   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1030 
1031   if (MI.getNumOperands() < DescNumOps &&
1032       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1033     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1034 
1035   if (MI.getNumOperands() < DescNumOps &&
1036       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1037     insertNamedMCOperand(MI, MCOperand::createImm(0),
1038                          AMDGPU::OpName::src0_modifiers);
1039 
1040   if (MI.getNumOperands() < DescNumOps &&
1041       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1042     insertNamedMCOperand(MI, MCOperand::createImm(0),
1043                          AMDGPU::OpName::src1_modifiers);
1044   return MCDisassembler::Success;
1045 }
1046 
1047 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1048                                                 int ImmLitIdx) const {
1049   assert(HasLiteral && "Should have decoded a literal");
1050   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1051   unsigned DescNumOps = Desc.getNumOperands();
1052   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1053                        AMDGPU::OpName::immDeferred);
1054   assert(DescNumOps == MI.getNumOperands());
1055   for (unsigned I = 0; I < DescNumOps; ++I) {
1056     auto &Op = MI.getOperand(I);
1057     auto OpType = Desc.operands()[I].OperandType;
1058     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1059                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1060     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1061         IsDeferredOp)
1062       Op.setImm(Literal);
1063   }
1064   return MCDisassembler::Success;
1065 }
1066 
1067 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1068   return getContext().getRegisterInfo()->
1069     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1070 }
1071 
1072 inline
1073 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1074                                          const Twine& ErrMsg) const {
1075   *CommentStream << "Error: " + ErrMsg;
1076 
1077   // ToDo: add support for error operands to MCInst.h
1078   // return MCOperand::createError(V);
1079   return MCOperand();
1080 }
1081 
1082 inline
1083 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1084   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1085 }
1086 
1087 inline
1088 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1089                                                unsigned Val) const {
1090   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1091   if (Val >= RegCl.getNumRegs())
1092     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1093                            ": unknown register " + Twine(Val));
1094   return createRegOperand(RegCl.getRegister(Val));
1095 }
1096 
1097 inline
1098 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1099                                                 unsigned Val) const {
1100   // ToDo: SI/CI have 104 SGPRs, VI - 102
1101   // Valery: here we accepting as much as we can, let assembler sort it out
1102   int shift = 0;
1103   switch (SRegClassID) {
1104   case AMDGPU::SGPR_32RegClassID:
1105   case AMDGPU::TTMP_32RegClassID:
1106     break;
1107   case AMDGPU::SGPR_64RegClassID:
1108   case AMDGPU::TTMP_64RegClassID:
1109     shift = 1;
1110     break;
1111   case AMDGPU::SGPR_128RegClassID:
1112   case AMDGPU::TTMP_128RegClassID:
1113   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1114   // this bundle?
1115   case AMDGPU::SGPR_256RegClassID:
1116   case AMDGPU::TTMP_256RegClassID:
1117     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1118   // this bundle?
1119   case AMDGPU::SGPR_288RegClassID:
1120   case AMDGPU::TTMP_288RegClassID:
1121   case AMDGPU::SGPR_320RegClassID:
1122   case AMDGPU::TTMP_320RegClassID:
1123   case AMDGPU::SGPR_352RegClassID:
1124   case AMDGPU::TTMP_352RegClassID:
1125   case AMDGPU::SGPR_384RegClassID:
1126   case AMDGPU::TTMP_384RegClassID:
1127   case AMDGPU::SGPR_512RegClassID:
1128   case AMDGPU::TTMP_512RegClassID:
1129     shift = 2;
1130     break;
1131   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1132   // this bundle?
1133   default:
1134     llvm_unreachable("unhandled register class");
1135   }
1136 
1137   if (Val % (1 << shift)) {
1138     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1139                    << ": scalar reg isn't aligned " << Val;
1140   }
1141 
1142   return createRegOperand(SRegClassID, Val >> shift);
1143 }
1144 
1145 // Decode Literals for insts which always have a literal in the encoding
1146 MCOperand
1147 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1148   if (HasLiteral) {
1149     assert(
1150         AMDGPU::hasVOPD(STI) &&
1151         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1152     if (Literal != Val)
1153       return errOperand(Val, "More than one unique literal is illegal");
1154   }
1155   HasLiteral = true;
1156   Literal = Val;
1157   return MCOperand::createImm(Literal);
1158 }
1159 
1160 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1161   // For now all literal constants are supposed to be unsigned integer
1162   // ToDo: deal with signed/unsigned 64-bit integer constants
1163   // ToDo: deal with float/double constants
1164   if (!HasLiteral) {
1165     if (Bytes.size() < 4) {
1166       return errOperand(0, "cannot read literal, inst bytes left " +
1167                         Twine(Bytes.size()));
1168     }
1169     HasLiteral = true;
1170     Literal = eatBytes<uint32_t>(Bytes);
1171   }
1172   return MCOperand::createImm(Literal);
1173 }
1174 
1175 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1176   using namespace AMDGPU::EncValues;
1177 
1178   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1179   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1180     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1181     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1182       // Cast prevents negative overflow.
1183 }
1184 
1185 static int64_t getInlineImmVal32(unsigned Imm) {
1186   switch (Imm) {
1187   case 240:
1188     return llvm::bit_cast<uint32_t>(0.5f);
1189   case 241:
1190     return llvm::bit_cast<uint32_t>(-0.5f);
1191   case 242:
1192     return llvm::bit_cast<uint32_t>(1.0f);
1193   case 243:
1194     return llvm::bit_cast<uint32_t>(-1.0f);
1195   case 244:
1196     return llvm::bit_cast<uint32_t>(2.0f);
1197   case 245:
1198     return llvm::bit_cast<uint32_t>(-2.0f);
1199   case 246:
1200     return llvm::bit_cast<uint32_t>(4.0f);
1201   case 247:
1202     return llvm::bit_cast<uint32_t>(-4.0f);
1203   case 248: // 1 / (2 * PI)
1204     return 0x3e22f983;
1205   default:
1206     llvm_unreachable("invalid fp inline imm");
1207   }
1208 }
1209 
1210 static int64_t getInlineImmVal64(unsigned Imm) {
1211   switch (Imm) {
1212   case 240:
1213     return llvm::bit_cast<uint64_t>(0.5);
1214   case 241:
1215     return llvm::bit_cast<uint64_t>(-0.5);
1216   case 242:
1217     return llvm::bit_cast<uint64_t>(1.0);
1218   case 243:
1219     return llvm::bit_cast<uint64_t>(-1.0);
1220   case 244:
1221     return llvm::bit_cast<uint64_t>(2.0);
1222   case 245:
1223     return llvm::bit_cast<uint64_t>(-2.0);
1224   case 246:
1225     return llvm::bit_cast<uint64_t>(4.0);
1226   case 247:
1227     return llvm::bit_cast<uint64_t>(-4.0);
1228   case 248: // 1 / (2 * PI)
1229     return 0x3fc45f306dc9c882;
1230   default:
1231     llvm_unreachable("invalid fp inline imm");
1232   }
1233 }
1234 
1235 static int64_t getInlineImmVal16(unsigned Imm) {
1236   switch (Imm) {
1237   case 240:
1238     return 0x3800;
1239   case 241:
1240     return 0xB800;
1241   case 242:
1242     return 0x3C00;
1243   case 243:
1244     return 0xBC00;
1245   case 244:
1246     return 0x4000;
1247   case 245:
1248     return 0xC000;
1249   case 246:
1250     return 0x4400;
1251   case 247:
1252     return 0xC400;
1253   case 248: // 1 / (2 * PI)
1254     return 0x3118;
1255   default:
1256     llvm_unreachable("invalid fp inline imm");
1257   }
1258 }
1259 
1260 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1261   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1262       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1263 
1264   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1265   // ImmWidth 0 is a default case where operand should not allow immediates.
1266   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1267   // use it to print verbose error message.
1268   switch (ImmWidth) {
1269   case 0:
1270   case 32:
1271     return MCOperand::createImm(getInlineImmVal32(Imm));
1272   case 64:
1273     return MCOperand::createImm(getInlineImmVal64(Imm));
1274   case 16:
1275     return MCOperand::createImm(getInlineImmVal16(Imm));
1276   default:
1277     llvm_unreachable("implement me");
1278   }
1279 }
1280 
1281 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1282   using namespace AMDGPU;
1283 
1284   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1285   switch (Width) {
1286   default: // fall
1287   case OPW32:
1288   case OPW16:
1289   case OPWV216:
1290     return VGPR_32RegClassID;
1291   case OPW64:
1292   case OPWV232: return VReg_64RegClassID;
1293   case OPW96: return VReg_96RegClassID;
1294   case OPW128: return VReg_128RegClassID;
1295   case OPW160: return VReg_160RegClassID;
1296   case OPW256: return VReg_256RegClassID;
1297   case OPW288: return VReg_288RegClassID;
1298   case OPW320: return VReg_320RegClassID;
1299   case OPW352: return VReg_352RegClassID;
1300   case OPW384: return VReg_384RegClassID;
1301   case OPW512: return VReg_512RegClassID;
1302   case OPW1024: return VReg_1024RegClassID;
1303   }
1304 }
1305 
1306 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1307   using namespace AMDGPU;
1308 
1309   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1310   switch (Width) {
1311   default: // fall
1312   case OPW32:
1313   case OPW16:
1314   case OPWV216:
1315     return AGPR_32RegClassID;
1316   case OPW64:
1317   case OPWV232: return AReg_64RegClassID;
1318   case OPW96: return AReg_96RegClassID;
1319   case OPW128: return AReg_128RegClassID;
1320   case OPW160: return AReg_160RegClassID;
1321   case OPW256: return AReg_256RegClassID;
1322   case OPW288: return AReg_288RegClassID;
1323   case OPW320: return AReg_320RegClassID;
1324   case OPW352: return AReg_352RegClassID;
1325   case OPW384: return AReg_384RegClassID;
1326   case OPW512: return AReg_512RegClassID;
1327   case OPW1024: return AReg_1024RegClassID;
1328   }
1329 }
1330 
1331 
1332 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1333   using namespace AMDGPU;
1334 
1335   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1336   switch (Width) {
1337   default: // fall
1338   case OPW32:
1339   case OPW16:
1340   case OPWV216:
1341     return SGPR_32RegClassID;
1342   case OPW64:
1343   case OPWV232: return SGPR_64RegClassID;
1344   case OPW96: return SGPR_96RegClassID;
1345   case OPW128: return SGPR_128RegClassID;
1346   case OPW160: return SGPR_160RegClassID;
1347   case OPW256: return SGPR_256RegClassID;
1348   case OPW288: return SGPR_288RegClassID;
1349   case OPW320: return SGPR_320RegClassID;
1350   case OPW352: return SGPR_352RegClassID;
1351   case OPW384: return SGPR_384RegClassID;
1352   case OPW512: return SGPR_512RegClassID;
1353   }
1354 }
1355 
1356 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1357   using namespace AMDGPU;
1358 
1359   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1360   switch (Width) {
1361   default: // fall
1362   case OPW32:
1363   case OPW16:
1364   case OPWV216:
1365     return TTMP_32RegClassID;
1366   case OPW64:
1367   case OPWV232: return TTMP_64RegClassID;
1368   case OPW128: return TTMP_128RegClassID;
1369   case OPW256: return TTMP_256RegClassID;
1370   case OPW288: return TTMP_288RegClassID;
1371   case OPW320: return TTMP_320RegClassID;
1372   case OPW352: return TTMP_352RegClassID;
1373   case OPW384: return TTMP_384RegClassID;
1374   case OPW512: return TTMP_512RegClassID;
1375   }
1376 }
1377 
1378 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1379   using namespace AMDGPU::EncValues;
1380 
1381   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1382   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1383 
1384   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1385 }
1386 
1387 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1388                                           bool MandatoryLiteral,
1389                                           unsigned ImmWidth) const {
1390   using namespace AMDGPU::EncValues;
1391 
1392   assert(Val < 1024); // enum10
1393 
1394   bool IsAGPR = Val & 512;
1395   Val &= 511;
1396 
1397   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1398     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1399                                    : getVgprClassId(Width), Val - VGPR_MIN);
1400   }
1401   if (Val <= SGPR_MAX) {
1402     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1403     static_assert(SGPR_MIN == 0);
1404     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1405   }
1406 
1407   int TTmpIdx = getTTmpIdx(Val);
1408   if (TTmpIdx >= 0) {
1409     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1410   }
1411 
1412   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1413     return decodeIntImmed(Val);
1414 
1415   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1416     return decodeFPImmed(ImmWidth, Val);
1417 
1418   if (Val == LITERAL_CONST) {
1419     if (MandatoryLiteral)
1420       // Keep a sentinel value for deferred setting
1421       return MCOperand::createImm(LITERAL_CONST);
1422     else
1423       return decodeLiteralConstant();
1424   }
1425 
1426   switch (Width) {
1427   case OPW32:
1428   case OPW16:
1429   case OPWV216:
1430     return decodeSpecialReg32(Val);
1431   case OPW64:
1432   case OPWV232:
1433     return decodeSpecialReg64(Val);
1434   default:
1435     llvm_unreachable("unexpected immediate type");
1436   }
1437 }
1438 
1439 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1440 // opposite of bit 0 of DstX.
1441 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1442                                                unsigned Val) const {
1443   int VDstXInd =
1444       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1445   assert(VDstXInd != -1);
1446   assert(Inst.getOperand(VDstXInd).isReg());
1447   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1448   Val |= ~XDstReg & 1;
1449   auto Width = llvm::AMDGPUDisassembler::OPW32;
1450   return createRegOperand(getVgprClassId(Width), Val);
1451 }
1452 
1453 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1454   using namespace AMDGPU;
1455 
1456   switch (Val) {
1457   // clang-format off
1458   case 102: return createRegOperand(FLAT_SCR_LO);
1459   case 103: return createRegOperand(FLAT_SCR_HI);
1460   case 104: return createRegOperand(XNACK_MASK_LO);
1461   case 105: return createRegOperand(XNACK_MASK_HI);
1462   case 106: return createRegOperand(VCC_LO);
1463   case 107: return createRegOperand(VCC_HI);
1464   case 108: return createRegOperand(TBA_LO);
1465   case 109: return createRegOperand(TBA_HI);
1466   case 110: return createRegOperand(TMA_LO);
1467   case 111: return createRegOperand(TMA_HI);
1468   case 124:
1469     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1470   case 125:
1471     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1472   case 126: return createRegOperand(EXEC_LO);
1473   case 127: return createRegOperand(EXEC_HI);
1474   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1475   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1476   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1477   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1478   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1479   case 251: return createRegOperand(SRC_VCCZ);
1480   case 252: return createRegOperand(SRC_EXECZ);
1481   case 253: return createRegOperand(SRC_SCC);
1482   case 254: return createRegOperand(LDS_DIRECT);
1483   default: break;
1484     // clang-format on
1485   }
1486   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1487 }
1488 
1489 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1490   using namespace AMDGPU;
1491 
1492   switch (Val) {
1493   case 102: return createRegOperand(FLAT_SCR);
1494   case 104: return createRegOperand(XNACK_MASK);
1495   case 106: return createRegOperand(VCC);
1496   case 108: return createRegOperand(TBA);
1497   case 110: return createRegOperand(TMA);
1498   case 124:
1499     if (isGFX11Plus())
1500       return createRegOperand(SGPR_NULL);
1501     break;
1502   case 125:
1503     if (!isGFX11Plus())
1504       return createRegOperand(SGPR_NULL);
1505     break;
1506   case 126: return createRegOperand(EXEC);
1507   case 235: return createRegOperand(SRC_SHARED_BASE);
1508   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1509   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1510   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1511   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1512   case 251: return createRegOperand(SRC_VCCZ);
1513   case 252: return createRegOperand(SRC_EXECZ);
1514   case 253: return createRegOperand(SRC_SCC);
1515   default: break;
1516   }
1517   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1518 }
1519 
1520 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1521                                             const unsigned Val,
1522                                             unsigned ImmWidth) const {
1523   using namespace AMDGPU::SDWA;
1524   using namespace AMDGPU::EncValues;
1525 
1526   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1527       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1528     // XXX: cast to int is needed to avoid stupid warning:
1529     // compare with unsigned is always true
1530     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1531         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1532       return createRegOperand(getVgprClassId(Width),
1533                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1534     }
1535     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1536         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1537                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1538       return createSRegOperand(getSgprClassId(Width),
1539                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1540     }
1541     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1542         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1543       return createSRegOperand(getTtmpClassId(Width),
1544                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1545     }
1546 
1547     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1548 
1549     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1550       return decodeIntImmed(SVal);
1551 
1552     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1553       return decodeFPImmed(ImmWidth, SVal);
1554 
1555     return decodeSpecialReg32(SVal);
1556   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1557     return createRegOperand(getVgprClassId(Width), Val);
1558   }
1559   llvm_unreachable("unsupported target");
1560 }
1561 
1562 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1563   return decodeSDWASrc(OPW16, Val, 16);
1564 }
1565 
1566 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1567   return decodeSDWASrc(OPW32, Val, 32);
1568 }
1569 
1570 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1571   using namespace AMDGPU::SDWA;
1572 
1573   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1574           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1575          "SDWAVopcDst should be present only on GFX9+");
1576 
1577   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1578 
1579   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1580     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1581 
1582     int TTmpIdx = getTTmpIdx(Val);
1583     if (TTmpIdx >= 0) {
1584       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1585       return createSRegOperand(TTmpClsId, TTmpIdx);
1586     } else if (Val > SGPR_MAX) {
1587       return IsWave64 ? decodeSpecialReg64(Val)
1588                       : decodeSpecialReg32(Val);
1589     } else {
1590       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1591     }
1592   } else {
1593     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1594   }
1595 }
1596 
1597 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1598   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1599              ? decodeSrcOp(OPW64, Val)
1600              : decodeSrcOp(OPW32, Val);
1601 }
1602 
1603 bool AMDGPUDisassembler::isVI() const {
1604   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1605 }
1606 
1607 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1608 
1609 bool AMDGPUDisassembler::isGFX90A() const {
1610   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1611 }
1612 
1613 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1614 
1615 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1616 
1617 bool AMDGPUDisassembler::isGFX10Plus() const {
1618   return AMDGPU::isGFX10Plus(STI);
1619 }
1620 
1621 bool AMDGPUDisassembler::isGFX11() const {
1622   return STI.hasFeature(AMDGPU::FeatureGFX11);
1623 }
1624 
1625 bool AMDGPUDisassembler::isGFX11Plus() const {
1626   return AMDGPU::isGFX11Plus(STI);
1627 }
1628 
1629 
1630 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1631   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1632 }
1633 
1634 //===----------------------------------------------------------------------===//
1635 // AMDGPU specific symbol handling
1636 //===----------------------------------------------------------------------===//
1637 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1638 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1639   do {                                                                         \
1640     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1641   } while (0)
1642 
1643 // NOLINTNEXTLINE(readability-identifier-naming)
1644 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1645     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1646   using namespace amdhsa;
1647   StringRef Indent = "\t";
1648 
1649   // We cannot accurately backward compute #VGPRs used from
1650   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1651   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1652   // simply calculate the inverse of what the assembler does.
1653 
1654   uint32_t GranulatedWorkitemVGPRCount =
1655       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1656 
1657   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1658                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1659 
1660   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1661 
1662   // We cannot backward compute values used to calculate
1663   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1664   // directives can't be computed:
1665   // .amdhsa_reserve_vcc
1666   // .amdhsa_reserve_flat_scratch
1667   // .amdhsa_reserve_xnack_mask
1668   // They take their respective default values if not specified in the assembly.
1669   //
1670   // GRANULATED_WAVEFRONT_SGPR_COUNT
1671   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1672   //
1673   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1674   // are set to 0. So while disassembling we consider that:
1675   //
1676   // GRANULATED_WAVEFRONT_SGPR_COUNT
1677   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1678   //
1679   // The disassembler cannot recover the original values of those 3 directives.
1680 
1681   uint32_t GranulatedWavefrontSGPRCount =
1682       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1683 
1684   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1685     return MCDisassembler::Fail;
1686 
1687   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1688                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1689 
1690   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1691   if (!hasArchitectedFlatScratch())
1692     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1693   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1694   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1695 
1696   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1697     return MCDisassembler::Fail;
1698 
1699   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1700                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1701   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1702                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1703   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1704                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1705   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1706                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1707 
1708   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1709     return MCDisassembler::Fail;
1710 
1711   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1712 
1713   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1714     return MCDisassembler::Fail;
1715 
1716   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1717 
1718   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1719     return MCDisassembler::Fail;
1720 
1721   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1722     return MCDisassembler::Fail;
1723 
1724   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1725 
1726   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1727     return MCDisassembler::Fail;
1728 
1729   if (isGFX10Plus()) {
1730     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1731                     COMPUTE_PGM_RSRC1_WGP_MODE);
1732     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1733     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1734   }
1735   return MCDisassembler::Success;
1736 }
1737 
1738 // NOLINTNEXTLINE(readability-identifier-naming)
1739 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1740     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1741   using namespace amdhsa;
1742   StringRef Indent = "\t";
1743   if (hasArchitectedFlatScratch())
1744     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1745                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1746   else
1747     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1748                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1749   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1750                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1751   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1752                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1753   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1754                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1755   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1756                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1757   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1758                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1759 
1760   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1761     return MCDisassembler::Fail;
1762 
1763   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1764     return MCDisassembler::Fail;
1765 
1766   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1767     return MCDisassembler::Fail;
1768 
1769   PRINT_DIRECTIVE(
1770       ".amdhsa_exception_fp_ieee_invalid_op",
1771       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1772   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1773                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1774   PRINT_DIRECTIVE(
1775       ".amdhsa_exception_fp_ieee_div_zero",
1776       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1777   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1778                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1779   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1780                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1781   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1782                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1783   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1784                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1785 
1786   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1787     return MCDisassembler::Fail;
1788 
1789   return MCDisassembler::Success;
1790 }
1791 
1792 // NOLINTNEXTLINE(readability-identifier-naming)
1793 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
1794     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1795   using namespace amdhsa;
1796   if (!isGFX10Plus() && FourByteBuffer) {
1797     return MCDisassembler::Fail;
1798   }
1799   return MCDisassembler::Success;
1800 }
1801 #undef PRINT_DIRECTIVE
1802 #undef GET_FIELD
1803 
1804 MCDisassembler::DecodeStatus
1805 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1806     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1807     raw_string_ostream &KdStream) const {
1808 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1809   do {                                                                         \
1810     KdStream << Indent << DIRECTIVE " "                                        \
1811              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1812   } while (0)
1813 
1814   uint16_t TwoByteBuffer = 0;
1815   uint32_t FourByteBuffer = 0;
1816 
1817   StringRef ReservedBytes;
1818   StringRef Indent = "\t";
1819 
1820   assert(Bytes.size() == 64);
1821   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1822 
1823   switch (Cursor.tell()) {
1824   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1825     FourByteBuffer = DE.getU32(Cursor);
1826     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1827              << '\n';
1828     return MCDisassembler::Success;
1829 
1830   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1831     FourByteBuffer = DE.getU32(Cursor);
1832     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1833              << FourByteBuffer << '\n';
1834     return MCDisassembler::Success;
1835 
1836   case amdhsa::KERNARG_SIZE_OFFSET:
1837     FourByteBuffer = DE.getU32(Cursor);
1838     KdStream << Indent << ".amdhsa_kernarg_size "
1839              << FourByteBuffer << '\n';
1840     return MCDisassembler::Success;
1841 
1842   case amdhsa::RESERVED0_OFFSET:
1843     // 4 reserved bytes, must be 0.
1844     ReservedBytes = DE.getBytes(Cursor, 4);
1845     for (int I = 0; I < 4; ++I) {
1846       if (ReservedBytes[I] != 0) {
1847         return MCDisassembler::Fail;
1848       }
1849     }
1850     return MCDisassembler::Success;
1851 
1852   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1853     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1854     // So far no directive controls this for Code Object V3, so simply skip for
1855     // disassembly.
1856     DE.skip(Cursor, 8);
1857     return MCDisassembler::Success;
1858 
1859   case amdhsa::RESERVED1_OFFSET:
1860     // 20 reserved bytes, must be 0.
1861     ReservedBytes = DE.getBytes(Cursor, 20);
1862     for (int I = 0; I < 20; ++I) {
1863       if (ReservedBytes[I] != 0) {
1864         return MCDisassembler::Fail;
1865       }
1866     }
1867     return MCDisassembler::Success;
1868 
1869   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1870     FourByteBuffer = DE.getU32(Cursor);
1871     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
1872 
1873   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1874     FourByteBuffer = DE.getU32(Cursor);
1875     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
1876 
1877   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1878     FourByteBuffer = DE.getU32(Cursor);
1879     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
1880 
1881   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1882     using namespace amdhsa;
1883     TwoByteBuffer = DE.getU16(Cursor);
1884 
1885     if (!hasArchitectedFlatScratch())
1886       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1887                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1888     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1889                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1890     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1891                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1892     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1893                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1894     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1895                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1896     if (!hasArchitectedFlatScratch())
1897       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1898                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1899     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1900                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1901 
1902     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1903       return MCDisassembler::Fail;
1904 
1905     // Reserved for GFX9
1906     if (isGFX9() &&
1907         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1908       return MCDisassembler::Fail;
1909     } else if (isGFX10Plus()) {
1910       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1911                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1912     }
1913 
1914     if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
1915       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
1916                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
1917 
1918     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1919       return MCDisassembler::Fail;
1920 
1921     return MCDisassembler::Success;
1922 
1923   case amdhsa::RESERVED2_OFFSET:
1924     // 6 bytes from here are reserved, must be 0.
1925     ReservedBytes = DE.getBytes(Cursor, 6);
1926     for (int I = 0; I < 6; ++I) {
1927       if (ReservedBytes[I] != 0)
1928         return MCDisassembler::Fail;
1929     }
1930     return MCDisassembler::Success;
1931 
1932   default:
1933     llvm_unreachable("Unhandled index. Case statements cover everything.");
1934     return MCDisassembler::Fail;
1935   }
1936 #undef PRINT_DIRECTIVE
1937 }
1938 
1939 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1940     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1941   // CP microcode requires the kernel descriptor to be 64 aligned.
1942   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1943     return MCDisassembler::Fail;
1944 
1945   std::string Kd;
1946   raw_string_ostream KdStream(Kd);
1947   KdStream << ".amdhsa_kernel " << KdName << '\n';
1948 
1949   DataExtractor::Cursor C(0);
1950   while (C && C.tell() < Bytes.size()) {
1951     MCDisassembler::DecodeStatus Status =
1952         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1953 
1954     cantFail(C.takeError());
1955 
1956     if (Status == MCDisassembler::Fail)
1957       return MCDisassembler::Fail;
1958   }
1959   KdStream << ".end_amdhsa_kernel\n";
1960   outs() << KdStream.str();
1961   return MCDisassembler::Success;
1962 }
1963 
1964 std::optional<MCDisassembler::DecodeStatus>
1965 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1966                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1967                                   raw_ostream &CStream) const {
1968   // Right now only kernel descriptor needs to be handled.
1969   // We ignore all other symbols for target specific handling.
1970   // TODO:
1971   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1972   // Object V2 and V3 when symbols are marked protected.
1973 
1974   // amd_kernel_code_t for Code Object V2.
1975   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1976     Size = 256;
1977     return MCDisassembler::Fail;
1978   }
1979 
1980   // Code Object V3 kernel descriptors.
1981   StringRef Name = Symbol.Name;
1982   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1983     Size = 64; // Size = 64 regardless of success or failure.
1984     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1985   }
1986   return std::nullopt;
1987 }
1988 
1989 //===----------------------------------------------------------------------===//
1990 // AMDGPUSymbolizer
1991 //===----------------------------------------------------------------------===//
1992 
1993 // Try to find symbol name for specified label
1994 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
1995     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
1996     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
1997     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
1998 
1999   if (!IsBranch) {
2000     return false;
2001   }
2002 
2003   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2004   if (!Symbols)
2005     return false;
2006 
2007   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2008     return Val.Addr == static_cast<uint64_t>(Value) &&
2009            Val.Type == ELF::STT_NOTYPE;
2010   });
2011   if (Result != Symbols->end()) {
2012     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2013     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2014     Inst.addOperand(MCOperand::createExpr(Add));
2015     return true;
2016   }
2017   // Add to list of referenced addresses, so caller can synthesize a label.
2018   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2019   return false;
2020 }
2021 
2022 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2023                                                        int64_t Value,
2024                                                        uint64_t Address) {
2025   llvm_unreachable("unimplemented");
2026 }
2027 
2028 //===----------------------------------------------------------------------===//
2029 // Initialization
2030 //===----------------------------------------------------------------------===//
2031 
2032 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2033                               LLVMOpInfoCallback /*GetOpInfo*/,
2034                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2035                               void *DisInfo,
2036                               MCContext *Ctx,
2037                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2038   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2039 }
2040 
2041 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2042                                                 const MCSubtargetInfo &STI,
2043                                                 MCContext &Ctx) {
2044   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2045 }
2046 
2047 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2048   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2049                                          createAMDGPUDisassembler);
2050   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2051                                        createAMDGPUSymbolizer);
2052 }
2053