xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision eaed07eb7eb3c304e5d8b0e48ef1c36df9678b88)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx,
49                                        MCInstrInfo const *MCII) :
50   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52 
53   // ToDo: AMDGPUDisassembler supports only VI ISA.
54   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55     report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57 
58 inline static MCDisassembler::DecodeStatus
59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60   Inst.addOperand(Opnd);
61   return Opnd.isValid() ?
62     MCDisassembler::Success :
63     MCDisassembler::Fail;
64 }
65 
66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67                                 uint16_t NameIdx) {
68   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69   if (OpIdx != -1) {
70     auto I = MI.begin();
71     std::advance(I, OpIdx);
72     MI.insert(I, Op);
73   }
74   return OpIdx;
75 }
76 
77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78                                        uint64_t Addr,
79                                        const MCDisassembler *Decoder) {
80   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81 
82   // Our branches take a simm16, but we need two extra bits to account for the
83   // factor of 4.
84   APInt SignedOffset(18, Imm * 4, true);
85   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86 
87   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88     return MCDisassembler::Success;
89   return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91 
92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93                                      const MCDisassembler *Decoder) {
94   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95   int64_t Offset;
96   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else {                    // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
111   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
112                                         uint64_t /*Addr*/,                     \
113                                         const MCDisassembler *Decoder) {       \
114     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
115     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
116   }
117 
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120 
121 DECODE_OPERAND_REG(VGPR_32)
122 DECODE_OPERAND_REG(VRegOrLds_32)
123 DECODE_OPERAND_REG(VS_32)
124 DECODE_OPERAND_REG(VS_64)
125 DECODE_OPERAND_REG(VS_128)
126 
127 DECODE_OPERAND_REG(VReg_64)
128 DECODE_OPERAND_REG(VReg_96)
129 DECODE_OPERAND_REG(VReg_128)
130 DECODE_OPERAND_REG(VReg_256)
131 DECODE_OPERAND_REG(VReg_512)
132 DECODE_OPERAND_REG(VReg_1024)
133 
134 DECODE_OPERAND_REG(SReg_32)
135 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
136 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
137 DECODE_OPERAND_REG(SRegOrLds_32)
138 DECODE_OPERAND_REG(SReg_64)
139 DECODE_OPERAND_REG(SReg_64_XEXEC)
140 DECODE_OPERAND_REG(SReg_128)
141 DECODE_OPERAND_REG(SReg_256)
142 DECODE_OPERAND_REG(SReg_512)
143 
144 DECODE_OPERAND_REG(AGPR_32)
145 DECODE_OPERAND_REG(AReg_64)
146 DECODE_OPERAND_REG(AReg_128)
147 DECODE_OPERAND_REG(AReg_256)
148 DECODE_OPERAND_REG(AReg_512)
149 DECODE_OPERAND_REG(AReg_1024)
150 DECODE_OPERAND_REG(AV_32)
151 DECODE_OPERAND_REG(AV_64)
152 DECODE_OPERAND_REG(AV_128)
153 DECODE_OPERAND_REG(AVDst_128)
154 DECODE_OPERAND_REG(AVDst_512)
155 
156 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
157                                          uint64_t Addr,
158                                          const MCDisassembler *Decoder) {
159   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
160   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
161 }
162 
163 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
164                                            uint64_t Addr,
165                                            const MCDisassembler *Decoder) {
166   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
167   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
168 }
169 
170 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
171                                            uint64_t Addr,
172                                            const MCDisassembler *Decoder) {
173   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
174   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
175 }
176 
177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
178                                         uint64_t Addr,
179                                         const MCDisassembler *Decoder) {
180   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
181   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
182 }
183 
184 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
185                                         uint64_t Addr,
186                                         const MCDisassembler *Decoder) {
187   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
188   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
189 }
190 
191 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
192                                           uint64_t Addr,
193                                           const MCDisassembler *Decoder) {
194   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
195   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
196 }
197 
198 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
199                                            uint64_t Addr,
200                                            const MCDisassembler *Decoder) {
201   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
202   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
203 }
204 
205 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
206                                            uint64_t Addr,
207                                            const MCDisassembler *Decoder) {
208   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
209   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
210 }
211 
212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
213                                            uint64_t Addr,
214                                            const MCDisassembler *Decoder) {
215   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
216   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
217 }
218 
219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
220                                             uint64_t Addr,
221                                             const MCDisassembler *Decoder) {
222   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
223   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
224 }
225 
226 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
227                                           uint64_t Addr,
228                                           const MCDisassembler *Decoder) {
229   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
230   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
231 }
232 
233 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
234                                            uint64_t Addr,
235                                            const MCDisassembler *Decoder) {
236   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
237   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
238 }
239 
240 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
241                                            uint64_t Addr,
242                                            const MCDisassembler *Decoder) {
243   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
244   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
245 }
246 
247 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
248                                            uint64_t Addr,
249                                            const MCDisassembler *Decoder) {
250   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
251   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
252 }
253 
254 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
255                                             uint64_t Addr,
256                                             const MCDisassembler *Decoder) {
257   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
258   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
259 }
260 
261 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
262                                           uint64_t Addr,
263                                           const MCDisassembler *Decoder) {
264   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
265   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
266 }
267 
268 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
269                                           uint64_t Addr,
270                                           const MCDisassembler *Decoder) {
271   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
272   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
273 }
274 
275 static DecodeStatus
276 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
277                              const MCDisassembler *Decoder) {
278   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
279   return addOperand(
280       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
281 }
282 
283 static DecodeStatus
284 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
285                              const MCDisassembler *Decoder) {
286   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
287   return addOperand(
288       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
289 }
290 
291 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
292                           const MCRegisterInfo *MRI) {
293   if (OpIdx < 0)
294     return false;
295 
296   const MCOperand &Op = Inst.getOperand(OpIdx);
297   if (!Op.isReg())
298     return false;
299 
300   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
301   auto Reg = Sub ? Sub : Op.getReg();
302   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
303 }
304 
305 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
306                                              AMDGPUDisassembler::OpWidthTy Opw,
307                                              const MCDisassembler *Decoder) {
308   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
309   if (!DAsm->isGFX90A()) {
310     Imm &= 511;
311   } else {
312     // If atomic has both vdata and vdst their register classes are tied.
313     // The bit is decoded along with the vdst, first operand. We need to
314     // change register class to AGPR if vdst was AGPR.
315     // If a DS instruction has both data0 and data1 their register classes
316     // are also tied.
317     unsigned Opc = Inst.getOpcode();
318     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
319     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
320                                                         : AMDGPU::OpName::vdata;
321     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
322     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
323     if ((int)Inst.getNumOperands() == DataIdx) {
324       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
325       if (IsAGPROperand(Inst, DstIdx, MRI))
326         Imm |= 512;
327     }
328 
329     if (TSFlags & SIInstrFlags::DS) {
330       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
331       if ((int)Inst.getNumOperands() == Data2Idx &&
332           IsAGPROperand(Inst, DataIdx, MRI))
333         Imm |= 512;
334     }
335   }
336   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
337 }
338 
339 static DecodeStatus
340 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
341                              const MCDisassembler *Decoder) {
342   return decodeOperand_AVLdSt_Any(Inst, Imm,
343                                   AMDGPUDisassembler::OPW32, Decoder);
344 }
345 
346 static DecodeStatus
347 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
348                              const MCDisassembler *Decoder) {
349   return decodeOperand_AVLdSt_Any(Inst, Imm,
350                                   AMDGPUDisassembler::OPW64, Decoder);
351 }
352 
353 static DecodeStatus
354 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
355                              const MCDisassembler *Decoder) {
356   return decodeOperand_AVLdSt_Any(Inst, Imm,
357                                   AMDGPUDisassembler::OPW96, Decoder);
358 }
359 
360 static DecodeStatus
361 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
362                               const MCDisassembler *Decoder) {
363   return decodeOperand_AVLdSt_Any(Inst, Imm,
364                                   AMDGPUDisassembler::OPW128, Decoder);
365 }
366 
367 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
368                                           uint64_t Addr,
369                                           const MCDisassembler *Decoder) {
370   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
371   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
372 }
373 
374 #define DECODE_SDWA(DecName) \
375 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
376 
377 DECODE_SDWA(Src32)
378 DECODE_SDWA(Src16)
379 DECODE_SDWA(VopcDst)
380 
381 #include "AMDGPUGenDisassemblerTables.inc"
382 
383 //===----------------------------------------------------------------------===//
384 //
385 //===----------------------------------------------------------------------===//
386 
387 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
388   assert(Bytes.size() >= sizeof(T));
389   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
390   Bytes = Bytes.slice(sizeof(T));
391   return Res;
392 }
393 
394 // The disassembler is greedy, so we need to check FI operand value to
395 // not parse a dpp if the correct literal is not set. For dpp16 the
396 // autogenerated decoder checks the dpp literal
397 static bool isValidDPP8(const MCInst &MI) {
398   using namespace llvm::AMDGPU::DPP;
399   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
400   assert(FiIdx != -1);
401   if ((unsigned)FiIdx >= MI.getNumOperands())
402     return false;
403   unsigned Fi = MI.getOperand(FiIdx).getImm();
404   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
405 }
406 
407 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
408                                                 ArrayRef<uint8_t> Bytes_,
409                                                 uint64_t Address,
410                                                 raw_ostream &CS) const {
411   CommentStream = &CS;
412   bool IsSDWA = false;
413 
414   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
415   Bytes = Bytes_.slice(0, MaxInstBytesNum);
416 
417   DecodeStatus Res = MCDisassembler::Fail;
418   do {
419     // ToDo: better to switch encoding length using some bit predicate
420     // but it is unknown yet, so try all we can
421 
422     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
423     // encodings
424     if (Bytes.size() >= 8) {
425       const uint64_t QW = eatBytes<uint64_t>(Bytes);
426 
427       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
428         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
429         if (Res) {
430           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
431               == -1)
432             break;
433           if (convertDPP8Inst(MI) == MCDisassembler::Success)
434             break;
435           MI = MCInst(); // clear
436         }
437       }
438 
439       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
440       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
441         break;
442 
443       MI = MCInst(); // clear
444 
445       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
446       if (Res) break;
447 
448       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
449       if (Res) { IsSDWA = true;  break; }
450 
451       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
452       if (Res) { IsSDWA = true;  break; }
453 
454       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
455       if (Res) { IsSDWA = true;  break; }
456 
457       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
458         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
459         if (Res)
460           break;
461       }
462 
463       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
464       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
465       // table first so we print the correct name.
466       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
467         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
468         if (Res)
469           break;
470       }
471     }
472 
473     // Reinitialize Bytes as DPP64 could have eaten too much
474     Bytes = Bytes_.slice(0, MaxInstBytesNum);
475 
476     // Try decode 32-bit instruction
477     if (Bytes.size() < 4) break;
478     const uint32_t DW = eatBytes<uint32_t>(Bytes);
479     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
480     if (Res) break;
481 
482     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
483     if (Res) break;
484 
485     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
486     if (Res) break;
487 
488     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
489       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
490       if (Res)
491         break;
492     }
493 
494     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
495       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
496       if (Res) break;
497     }
498 
499     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
500     if (Res) break;
501 
502     Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
503     if (Res) break;
504 
505     if (Bytes.size() < 4) break;
506     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
507 
508     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
509       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
510       if (Res)
511         break;
512     }
513 
514     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
515     if (Res) break;
516 
517     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
518     if (Res) break;
519 
520     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
521     if (Res) break;
522 
523     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
524     if (Res) break;
525 
526     Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
527   } while (false);
528 
529   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
530               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
531               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
532               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
533               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
534               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
535               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
536               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
537               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
538               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
539               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
540     // Insert dummy unused src2_modifiers.
541     insertNamedMCOperand(MI, MCOperand::createImm(0),
542                          AMDGPU::OpName::src2_modifiers);
543   }
544 
545   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
546           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
547     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
548                                              AMDGPU::OpName::cpol);
549     if (CPolPos != -1) {
550       unsigned CPol =
551           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
552               AMDGPU::CPol::GLC : 0;
553       if (MI.getNumOperands() <= (unsigned)CPolPos) {
554         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
555                              AMDGPU::OpName::cpol);
556       } else if (CPol) {
557         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
558       }
559     }
560   }
561 
562   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
563               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
564              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
565     // GFX90A lost TFE, its place is occupied by ACC.
566     int TFEOpIdx =
567         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
568     if (TFEOpIdx != -1) {
569       auto TFEIter = MI.begin();
570       std::advance(TFEIter, TFEOpIdx);
571       MI.insert(TFEIter, MCOperand::createImm(0));
572     }
573   }
574 
575   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
576               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
577     int SWZOpIdx =
578         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
579     if (SWZOpIdx != -1) {
580       auto SWZIter = MI.begin();
581       std::advance(SWZIter, SWZOpIdx);
582       MI.insert(SWZIter, MCOperand::createImm(0));
583     }
584   }
585 
586   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
587     int VAddr0Idx =
588         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
589     int RsrcIdx =
590         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
591     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
592     if (VAddr0Idx >= 0 && NSAArgs > 0) {
593       unsigned NSAWords = (NSAArgs + 3) / 4;
594       if (Bytes.size() < 4 * NSAWords) {
595         Res = MCDisassembler::Fail;
596       } else {
597         for (unsigned i = 0; i < NSAArgs; ++i) {
598           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
599           auto VAddrRCID = MCII->get(MI.getOpcode()).OpInfo[VAddrIdx].RegClass;
600           MI.insert(MI.begin() + VAddrIdx,
601                     createRegOperand(VAddrRCID, Bytes[i]));
602         }
603         Bytes = Bytes.slice(4 * NSAWords);
604       }
605     }
606 
607     if (Res)
608       Res = convertMIMGInst(MI);
609   }
610 
611   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
612     Res = convertEXPInst(MI);
613 
614   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
615     Res = convertVINTERPInst(MI);
616 
617   if (Res && IsSDWA)
618     Res = convertSDWAInst(MI);
619 
620   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
621                                               AMDGPU::OpName::vdst_in);
622   if (VDstIn_Idx != -1) {
623     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
624                            MCOI::OperandConstraint::TIED_TO);
625     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
626          !MI.getOperand(VDstIn_Idx).isReg() ||
627          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
628       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
629         MI.erase(&MI.getOperand(VDstIn_Idx));
630       insertNamedMCOperand(MI,
631         MCOperand::createReg(MI.getOperand(Tied).getReg()),
632         AMDGPU::OpName::vdst_in);
633     }
634   }
635 
636   int ImmLitIdx =
637       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
638   if (Res && ImmLitIdx != -1)
639     Res = convertFMAanyK(MI, ImmLitIdx);
640 
641   // if the opcode was not recognized we'll assume a Size of 4 bytes
642   // (unless there are fewer bytes left)
643   Size = Res ? (MaxInstBytesNum - Bytes.size())
644              : std::min((size_t)4, Bytes_.size());
645   return Res;
646 }
647 
648 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
649   if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
650     // The MCInst still has these fields even though they are no longer encoded
651     // in the GFX11 instruction.
652     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
653     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
654   }
655   return MCDisassembler::Success;
656 }
657 
658 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
659   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
660       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
661       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
662       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
663     // The MCInst has this field that is not directly encoded in the
664     // instruction.
665     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
666   }
667   return MCDisassembler::Success;
668 }
669 
670 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
671   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
672       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
673     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
674       // VOPC - insert clamp
675       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
676   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
677     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
678     if (SDst != -1) {
679       // VOPC - insert VCC register as sdst
680       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
681                            AMDGPU::OpName::sdst);
682     } else {
683       // VOP1/2 - insert omod if present in instruction
684       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
685     }
686   }
687   return MCDisassembler::Success;
688 }
689 
690 // We must check FI == literal to reject not genuine dpp8 insts, and we must
691 // first add optional MI operands to check FI
692 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
693   unsigned Opc = MI.getOpcode();
694   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
695 
696   // Insert dummy unused src modifiers.
697   if (MI.getNumOperands() < DescNumOps &&
698       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
699     insertNamedMCOperand(MI, MCOperand::createImm(0),
700                          AMDGPU::OpName::src0_modifiers);
701 
702   if (MI.getNumOperands() < DescNumOps &&
703       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
704     insertNamedMCOperand(MI, MCOperand::createImm(0),
705                          AMDGPU::OpName::src1_modifiers);
706 
707   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
708 }
709 
710 // Note that before gfx10, the MIMG encoding provided no information about
711 // VADDR size. Consequently, decoded instructions always show address as if it
712 // has 1 dword, which could be not really so.
713 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
714 
715   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
716                                            AMDGPU::OpName::vdst);
717 
718   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
719                                             AMDGPU::OpName::vdata);
720   int VAddr0Idx =
721       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
722   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
723                                             AMDGPU::OpName::dmask);
724 
725   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
726                                             AMDGPU::OpName::tfe);
727   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
728                                             AMDGPU::OpName::d16);
729 
730   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
731   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
732       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
733 
734   assert(VDataIdx != -1);
735   if (BaseOpcode->BVH) {
736     // Add A16 operand for intersect_ray instructions
737     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
738       addOperand(MI, MCOperand::createImm(1));
739     }
740     return MCDisassembler::Success;
741   }
742 
743   bool IsAtomic = (VDstIdx != -1);
744   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
745   bool IsNSA = false;
746   unsigned AddrSize = Info->VAddrDwords;
747 
748   if (isGFX10Plus()) {
749     unsigned DimIdx =
750         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
751     int A16Idx =
752         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
753     const AMDGPU::MIMGDimInfo *Dim =
754         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
755     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
756 
757     AddrSize =
758         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
759 
760     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
761             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
762     if (!IsNSA) {
763       if (AddrSize > 8)
764         AddrSize = 16;
765     } else {
766       if (AddrSize > Info->VAddrDwords) {
767         // The NSA encoding does not contain enough operands for the combination
768         // of base opcode / dimension. Should this be an error?
769         return MCDisassembler::Success;
770       }
771     }
772   }
773 
774   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
775   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
776 
777   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
778   if (D16 && AMDGPU::hasPackedD16(STI)) {
779     DstSize = (DstSize + 1) / 2;
780   }
781 
782   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
783     DstSize += 1;
784 
785   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
786     return MCDisassembler::Success;
787 
788   int NewOpcode =
789       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
790   if (NewOpcode == -1)
791     return MCDisassembler::Success;
792 
793   // Widen the register to the correct number of enabled channels.
794   unsigned NewVdata = AMDGPU::NoRegister;
795   if (DstSize != Info->VDataDwords) {
796     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
797 
798     // Get first subregister of VData
799     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
800     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
801     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
802 
803     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
804                                        &MRI.getRegClass(DataRCID));
805     if (NewVdata == AMDGPU::NoRegister) {
806       // It's possible to encode this such that the low register + enabled
807       // components exceeds the register count.
808       return MCDisassembler::Success;
809     }
810   }
811 
812   // If not using NSA on GFX10+, widen address register to correct size.
813   unsigned NewVAddr0 = AMDGPU::NoRegister;
814   if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
815     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
816     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
817     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
818 
819     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
820     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
821                                         &MRI.getRegClass(AddrRCID));
822     if (NewVAddr0 == AMDGPU::NoRegister)
823       return MCDisassembler::Success;
824   }
825 
826   MI.setOpcode(NewOpcode);
827 
828   if (NewVdata != AMDGPU::NoRegister) {
829     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
830 
831     if (IsAtomic) {
832       // Atomic operations have an additional operand (a copy of data)
833       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
834     }
835   }
836 
837   if (NewVAddr0 != AMDGPU::NoRegister) {
838     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
839   } else if (IsNSA) {
840     assert(AddrSize <= Info->VAddrDwords);
841     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
842              MI.begin() + VAddr0Idx + Info->VAddrDwords);
843   }
844 
845   return MCDisassembler::Success;
846 }
847 
848 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
849                                                 int ImmLitIdx) const {
850   assert(HasLiteral && "Should have decoded a literal");
851   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
852   unsigned DescNumOps = Desc.getNumOperands();
853   assert(DescNumOps == MI.getNumOperands());
854   for (unsigned I = 0; I < DescNumOps; ++I) {
855     auto &Op = MI.getOperand(I);
856     auto OpType = Desc.OpInfo[I].OperandType;
857     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
858                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
859     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
860         IsDeferredOp)
861       Op.setImm(Literal);
862   }
863   return MCDisassembler::Success;
864 }
865 
866 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
867   return getContext().getRegisterInfo()->
868     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
869 }
870 
871 inline
872 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
873                                          const Twine& ErrMsg) const {
874   *CommentStream << "Error: " + ErrMsg;
875 
876   // ToDo: add support for error operands to MCInst.h
877   // return MCOperand::createError(V);
878   return MCOperand();
879 }
880 
881 inline
882 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
883   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
884 }
885 
886 inline
887 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
888                                                unsigned Val) const {
889   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
890   if (Val >= RegCl.getNumRegs())
891     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
892                            ": unknown register " + Twine(Val));
893   return createRegOperand(RegCl.getRegister(Val));
894 }
895 
896 inline
897 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
898                                                 unsigned Val) const {
899   // ToDo: SI/CI have 104 SGPRs, VI - 102
900   // Valery: here we accepting as much as we can, let assembler sort it out
901   int shift = 0;
902   switch (SRegClassID) {
903   case AMDGPU::SGPR_32RegClassID:
904   case AMDGPU::TTMP_32RegClassID:
905     break;
906   case AMDGPU::SGPR_64RegClassID:
907   case AMDGPU::TTMP_64RegClassID:
908     shift = 1;
909     break;
910   case AMDGPU::SGPR_128RegClassID:
911   case AMDGPU::TTMP_128RegClassID:
912   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
913   // this bundle?
914   case AMDGPU::SGPR_256RegClassID:
915   case AMDGPU::TTMP_256RegClassID:
916     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
917   // this bundle?
918   case AMDGPU::SGPR_512RegClassID:
919   case AMDGPU::TTMP_512RegClassID:
920     shift = 2;
921     break;
922   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
923   // this bundle?
924   default:
925     llvm_unreachable("unhandled register class");
926   }
927 
928   if (Val % (1 << shift)) {
929     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
930                    << ": scalar reg isn't aligned " << Val;
931   }
932 
933   return createRegOperand(SRegClassID, Val >> shift);
934 }
935 
936 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
937   return decodeSrcOp(OPW32, Val);
938 }
939 
940 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
941   return decodeSrcOp(OPW64, Val);
942 }
943 
944 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
945   return decodeSrcOp(OPW128, Val);
946 }
947 
948 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
949   return decodeSrcOp(OPW16, Val);
950 }
951 
952 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
953   return decodeSrcOp(OPWV216, Val);
954 }
955 
956 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
957   return decodeSrcOp(OPWV232, Val);
958 }
959 
960 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
961   // Some instructions have operand restrictions beyond what the encoding
962   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
963   // high bit.
964   Val &= 255;
965 
966   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
967 }
968 
969 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
970   return decodeSrcOp(OPW32, Val);
971 }
972 
973 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
974   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
975 }
976 
977 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
978   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
979 }
980 
981 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
982   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
983 }
984 
985 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
986   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
987 }
988 
989 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
990   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
991 }
992 
993 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
994   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
995 }
996 
997 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
998   return decodeSrcOp(OPW32, Val);
999 }
1000 
1001 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1002   return decodeSrcOp(OPW64, Val);
1003 }
1004 
1005 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1006   return decodeSrcOp(OPW128, Val);
1007 }
1008 
1009 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1010   using namespace AMDGPU::EncValues;
1011   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1012   return decodeSrcOp(OPW128, Val | IS_VGPR);
1013 }
1014 
1015 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1016   using namespace AMDGPU::EncValues;
1017   assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1018   return decodeSrcOp(OPW512, Val | IS_VGPR);
1019 }
1020 
1021 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1022   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1023 }
1024 
1025 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1026   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1027 }
1028 
1029 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1030   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1031 }
1032 
1033 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1034   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1035 }
1036 
1037 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1038   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1039 }
1040 
1041 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1042   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1043 }
1044 
1045 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1046   // table-gen generated disassembler doesn't care about operand types
1047   // leaving only registry class so SSrc_32 operand turns into SReg_32
1048   // and therefore we accept immediates and literals here as well
1049   return decodeSrcOp(OPW32, Val);
1050 }
1051 
1052 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1053   unsigned Val) const {
1054   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1055   return decodeOperand_SReg_32(Val);
1056 }
1057 
1058 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1059   unsigned Val) const {
1060   // SReg_32_XM0 is SReg_32 without EXEC_HI
1061   return decodeOperand_SReg_32(Val);
1062 }
1063 
1064 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1065   // table-gen generated disassembler doesn't care about operand types
1066   // leaving only registry class so SSrc_32 operand turns into SReg_32
1067   // and therefore we accept immediates and literals here as well
1068   return decodeSrcOp(OPW32, Val);
1069 }
1070 
1071 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1072   return decodeSrcOp(OPW64, Val);
1073 }
1074 
1075 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1076   return decodeSrcOp(OPW64, Val);
1077 }
1078 
1079 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1080   return decodeSrcOp(OPW128, Val);
1081 }
1082 
1083 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1084   return decodeDstOp(OPW256, Val);
1085 }
1086 
1087 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1088   return decodeDstOp(OPW512, Val);
1089 }
1090 
1091 // Decode Literals for insts which always have a literal in the encoding
1092 MCOperand
1093 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1094   if (HasLiteral) {
1095     if (Literal != Val)
1096       return errOperand(Val, "More than one unique literal is illegal");
1097   }
1098   HasLiteral = true;
1099   Literal = Val;
1100   return MCOperand::createImm(Literal);
1101 }
1102 
1103 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1104   // For now all literal constants are supposed to be unsigned integer
1105   // ToDo: deal with signed/unsigned 64-bit integer constants
1106   // ToDo: deal with float/double constants
1107   if (!HasLiteral) {
1108     if (Bytes.size() < 4) {
1109       return errOperand(0, "cannot read literal, inst bytes left " +
1110                         Twine(Bytes.size()));
1111     }
1112     HasLiteral = true;
1113     Literal = eatBytes<uint32_t>(Bytes);
1114   }
1115   return MCOperand::createImm(Literal);
1116 }
1117 
1118 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1119   using namespace AMDGPU::EncValues;
1120 
1121   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1122   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1123     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1124     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1125       // Cast prevents negative overflow.
1126 }
1127 
1128 static int64_t getInlineImmVal32(unsigned Imm) {
1129   switch (Imm) {
1130   case 240:
1131     return FloatToBits(0.5f);
1132   case 241:
1133     return FloatToBits(-0.5f);
1134   case 242:
1135     return FloatToBits(1.0f);
1136   case 243:
1137     return FloatToBits(-1.0f);
1138   case 244:
1139     return FloatToBits(2.0f);
1140   case 245:
1141     return FloatToBits(-2.0f);
1142   case 246:
1143     return FloatToBits(4.0f);
1144   case 247:
1145     return FloatToBits(-4.0f);
1146   case 248: // 1 / (2 * PI)
1147     return 0x3e22f983;
1148   default:
1149     llvm_unreachable("invalid fp inline imm");
1150   }
1151 }
1152 
1153 static int64_t getInlineImmVal64(unsigned Imm) {
1154   switch (Imm) {
1155   case 240:
1156     return DoubleToBits(0.5);
1157   case 241:
1158     return DoubleToBits(-0.5);
1159   case 242:
1160     return DoubleToBits(1.0);
1161   case 243:
1162     return DoubleToBits(-1.0);
1163   case 244:
1164     return DoubleToBits(2.0);
1165   case 245:
1166     return DoubleToBits(-2.0);
1167   case 246:
1168     return DoubleToBits(4.0);
1169   case 247:
1170     return DoubleToBits(-4.0);
1171   case 248: // 1 / (2 * PI)
1172     return 0x3fc45f306dc9c882;
1173   default:
1174     llvm_unreachable("invalid fp inline imm");
1175   }
1176 }
1177 
1178 static int64_t getInlineImmVal16(unsigned Imm) {
1179   switch (Imm) {
1180   case 240:
1181     return 0x3800;
1182   case 241:
1183     return 0xB800;
1184   case 242:
1185     return 0x3C00;
1186   case 243:
1187     return 0xBC00;
1188   case 244:
1189     return 0x4000;
1190   case 245:
1191     return 0xC000;
1192   case 246:
1193     return 0x4400;
1194   case 247:
1195     return 0xC400;
1196   case 248: // 1 / (2 * PI)
1197     return 0x3118;
1198   default:
1199     llvm_unreachable("invalid fp inline imm");
1200   }
1201 }
1202 
1203 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1204   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1205       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1206 
1207   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1208   switch (Width) {
1209   case OPW32:
1210   case OPW128: // splat constants
1211   case OPW512:
1212   case OPW1024:
1213   case OPWV232:
1214     return MCOperand::createImm(getInlineImmVal32(Imm));
1215   case OPW64:
1216   case OPW256:
1217     return MCOperand::createImm(getInlineImmVal64(Imm));
1218   case OPW16:
1219   case OPWV216:
1220     return MCOperand::createImm(getInlineImmVal16(Imm));
1221   default:
1222     llvm_unreachable("implement me");
1223   }
1224 }
1225 
1226 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1227   using namespace AMDGPU;
1228 
1229   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1230   switch (Width) {
1231   default: // fall
1232   case OPW32:
1233   case OPW16:
1234   case OPWV216:
1235     return VGPR_32RegClassID;
1236   case OPW64:
1237   case OPWV232: return VReg_64RegClassID;
1238   case OPW96: return VReg_96RegClassID;
1239   case OPW128: return VReg_128RegClassID;
1240   case OPW160: return VReg_160RegClassID;
1241   case OPW256: return VReg_256RegClassID;
1242   case OPW512: return VReg_512RegClassID;
1243   case OPW1024: return VReg_1024RegClassID;
1244   }
1245 }
1246 
1247 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1248   using namespace AMDGPU;
1249 
1250   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1251   switch (Width) {
1252   default: // fall
1253   case OPW32:
1254   case OPW16:
1255   case OPWV216:
1256     return AGPR_32RegClassID;
1257   case OPW64:
1258   case OPWV232: return AReg_64RegClassID;
1259   case OPW96: return AReg_96RegClassID;
1260   case OPW128: return AReg_128RegClassID;
1261   case OPW160: return AReg_160RegClassID;
1262   case OPW256: return AReg_256RegClassID;
1263   case OPW512: return AReg_512RegClassID;
1264   case OPW1024: return AReg_1024RegClassID;
1265   }
1266 }
1267 
1268 
1269 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1270   using namespace AMDGPU;
1271 
1272   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1273   switch (Width) {
1274   default: // fall
1275   case OPW32:
1276   case OPW16:
1277   case OPWV216:
1278     return SGPR_32RegClassID;
1279   case OPW64:
1280   case OPWV232: return SGPR_64RegClassID;
1281   case OPW96: return SGPR_96RegClassID;
1282   case OPW128: return SGPR_128RegClassID;
1283   case OPW160: return SGPR_160RegClassID;
1284   case OPW256: return SGPR_256RegClassID;
1285   case OPW512: return SGPR_512RegClassID;
1286   }
1287 }
1288 
1289 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1290   using namespace AMDGPU;
1291 
1292   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1293   switch (Width) {
1294   default: // fall
1295   case OPW32:
1296   case OPW16:
1297   case OPWV216:
1298     return TTMP_32RegClassID;
1299   case OPW64:
1300   case OPWV232: return TTMP_64RegClassID;
1301   case OPW128: return TTMP_128RegClassID;
1302   case OPW256: return TTMP_256RegClassID;
1303   case OPW512: return TTMP_512RegClassID;
1304   }
1305 }
1306 
1307 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1308   using namespace AMDGPU::EncValues;
1309 
1310   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1311   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1312 
1313   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1314 }
1315 
1316 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1317                                           bool MandatoryLiteral) const {
1318   using namespace AMDGPU::EncValues;
1319 
1320   assert(Val < 1024); // enum10
1321 
1322   bool IsAGPR = Val & 512;
1323   Val &= 511;
1324 
1325   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1326     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1327                                    : getVgprClassId(Width), Val - VGPR_MIN);
1328   }
1329   if (Val <= SGPR_MAX) {
1330     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1331     static_assert(SGPR_MIN == 0, "");
1332     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1333   }
1334 
1335   int TTmpIdx = getTTmpIdx(Val);
1336   if (TTmpIdx >= 0) {
1337     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1338   }
1339 
1340   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1341     return decodeIntImmed(Val);
1342 
1343   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1344     return decodeFPImmed(Width, Val);
1345 
1346   if (Val == LITERAL_CONST) {
1347     if (MandatoryLiteral)
1348       // Keep a sentinel value for deferred setting
1349       return MCOperand::createImm(LITERAL_CONST);
1350     else
1351       return decodeLiteralConstant();
1352   }
1353 
1354   switch (Width) {
1355   case OPW32:
1356   case OPW16:
1357   case OPWV216:
1358     return decodeSpecialReg32(Val);
1359   case OPW64:
1360   case OPWV232:
1361     return decodeSpecialReg64(Val);
1362   default:
1363     llvm_unreachable("unexpected immediate type");
1364   }
1365 }
1366 
1367 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1368   using namespace AMDGPU::EncValues;
1369 
1370   assert(Val < 128);
1371   assert(Width == OPW256 || Width == OPW512);
1372 
1373   if (Val <= SGPR_MAX) {
1374     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1375     static_assert(SGPR_MIN == 0, "");
1376     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1377   }
1378 
1379   int TTmpIdx = getTTmpIdx(Val);
1380   if (TTmpIdx >= 0) {
1381     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1382   }
1383 
1384   llvm_unreachable("unknown dst register");
1385 }
1386 
1387 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1388   using namespace AMDGPU;
1389 
1390   switch (Val) {
1391   case 102: return createRegOperand(FLAT_SCR_LO);
1392   case 103: return createRegOperand(FLAT_SCR_HI);
1393   case 104: return createRegOperand(XNACK_MASK_LO);
1394   case 105: return createRegOperand(XNACK_MASK_HI);
1395   case 106: return createRegOperand(VCC_LO);
1396   case 107: return createRegOperand(VCC_HI);
1397   case 108: return createRegOperand(TBA_LO);
1398   case 109: return createRegOperand(TBA_HI);
1399   case 110: return createRegOperand(TMA_LO);
1400   case 111: return createRegOperand(TMA_HI);
1401   case 124:
1402     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1403   case 125:
1404     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1405   case 126: return createRegOperand(EXEC_LO);
1406   case 127: return createRegOperand(EXEC_HI);
1407   case 235: return createRegOperand(SRC_SHARED_BASE);
1408   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1409   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1410   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1411   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1412   case 251: return createRegOperand(SRC_VCCZ);
1413   case 252: return createRegOperand(SRC_EXECZ);
1414   case 253: return createRegOperand(SRC_SCC);
1415   case 254: return createRegOperand(LDS_DIRECT);
1416   default: break;
1417   }
1418   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1419 }
1420 
1421 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1422   using namespace AMDGPU;
1423 
1424   switch (Val) {
1425   case 102: return createRegOperand(FLAT_SCR);
1426   case 104: return createRegOperand(XNACK_MASK);
1427   case 106: return createRegOperand(VCC);
1428   case 108: return createRegOperand(TBA);
1429   case 110: return createRegOperand(TMA);
1430   case 124:
1431     if (isGFX11Plus())
1432       return createRegOperand(SGPR_NULL);
1433     break;
1434   case 125:
1435     if (!isGFX11Plus())
1436       return createRegOperand(SGPR_NULL);
1437     break;
1438   case 126: return createRegOperand(EXEC);
1439   case 235: return createRegOperand(SRC_SHARED_BASE);
1440   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1441   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1442   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1443   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1444   case 251: return createRegOperand(SRC_VCCZ);
1445   case 252: return createRegOperand(SRC_EXECZ);
1446   case 253: return createRegOperand(SRC_SCC);
1447   default: break;
1448   }
1449   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1450 }
1451 
1452 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1453                                             const unsigned Val) const {
1454   using namespace AMDGPU::SDWA;
1455   using namespace AMDGPU::EncValues;
1456 
1457   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1458       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1459     // XXX: cast to int is needed to avoid stupid warning:
1460     // compare with unsigned is always true
1461     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1462         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1463       return createRegOperand(getVgprClassId(Width),
1464                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1465     }
1466     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1467         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1468                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1469       return createSRegOperand(getSgprClassId(Width),
1470                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1471     }
1472     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1473         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1474       return createSRegOperand(getTtmpClassId(Width),
1475                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1476     }
1477 
1478     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1479 
1480     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1481       return decodeIntImmed(SVal);
1482 
1483     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1484       return decodeFPImmed(Width, SVal);
1485 
1486     return decodeSpecialReg32(SVal);
1487   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1488     return createRegOperand(getVgprClassId(Width), Val);
1489   }
1490   llvm_unreachable("unsupported target");
1491 }
1492 
1493 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1494   return decodeSDWASrc(OPW16, Val);
1495 }
1496 
1497 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1498   return decodeSDWASrc(OPW32, Val);
1499 }
1500 
1501 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1502   using namespace AMDGPU::SDWA;
1503 
1504   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1505           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1506          "SDWAVopcDst should be present only on GFX9+");
1507 
1508   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1509 
1510   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1511     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1512 
1513     int TTmpIdx = getTTmpIdx(Val);
1514     if (TTmpIdx >= 0) {
1515       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1516       return createSRegOperand(TTmpClsId, TTmpIdx);
1517     } else if (Val > SGPR_MAX) {
1518       return IsWave64 ? decodeSpecialReg64(Val)
1519                       : decodeSpecialReg32(Val);
1520     } else {
1521       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1522     }
1523   } else {
1524     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1525   }
1526 }
1527 
1528 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1529   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1530     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1531 }
1532 
1533 bool AMDGPUDisassembler::isVI() const {
1534   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1535 }
1536 
1537 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1538 
1539 bool AMDGPUDisassembler::isGFX90A() const {
1540   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1541 }
1542 
1543 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1544 
1545 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1546 
1547 bool AMDGPUDisassembler::isGFX10Plus() const {
1548   return AMDGPU::isGFX10Plus(STI);
1549 }
1550 
1551 bool AMDGPUDisassembler::isGFX11() const {
1552   return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1553 }
1554 
1555 bool AMDGPUDisassembler::isGFX11Plus() const {
1556   return AMDGPU::isGFX11Plus(STI);
1557 }
1558 
1559 
1560 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1561   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1562 }
1563 
1564 //===----------------------------------------------------------------------===//
1565 // AMDGPU specific symbol handling
1566 //===----------------------------------------------------------------------===//
1567 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1568   do {                                                                         \
1569     KdStream << Indent << DIRECTIVE " "                                        \
1570              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1571   } while (0)
1572 
1573 // NOLINTNEXTLINE(readability-identifier-naming)
1574 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1575     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1576   using namespace amdhsa;
1577   StringRef Indent = "\t";
1578 
1579   // We cannot accurately backward compute #VGPRs used from
1580   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1581   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1582   // simply calculate the inverse of what the assembler does.
1583 
1584   uint32_t GranulatedWorkitemVGPRCount =
1585       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1586       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1587 
1588   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1589                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1590 
1591   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1592 
1593   // We cannot backward compute values used to calculate
1594   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1595   // directives can't be computed:
1596   // .amdhsa_reserve_vcc
1597   // .amdhsa_reserve_flat_scratch
1598   // .amdhsa_reserve_xnack_mask
1599   // They take their respective default values if not specified in the assembly.
1600   //
1601   // GRANULATED_WAVEFRONT_SGPR_COUNT
1602   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1603   //
1604   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1605   // are set to 0. So while disassembling we consider that:
1606   //
1607   // GRANULATED_WAVEFRONT_SGPR_COUNT
1608   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1609   //
1610   // The disassembler cannot recover the original values of those 3 directives.
1611 
1612   uint32_t GranulatedWavefrontSGPRCount =
1613       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1614       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1615 
1616   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1617     return MCDisassembler::Fail;
1618 
1619   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1620                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1621 
1622   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1623   if (!hasArchitectedFlatScratch())
1624     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1625   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1626   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1627 
1628   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1629     return MCDisassembler::Fail;
1630 
1631   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1632                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1633   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1634                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1635   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1636                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1637   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1638                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1639 
1640   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1641     return MCDisassembler::Fail;
1642 
1643   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1644 
1645   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1646     return MCDisassembler::Fail;
1647 
1648   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1649 
1650   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1651     return MCDisassembler::Fail;
1652 
1653   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1654     return MCDisassembler::Fail;
1655 
1656   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1657 
1658   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1659     return MCDisassembler::Fail;
1660 
1661   if (isGFX10Plus()) {
1662     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1663                     COMPUTE_PGM_RSRC1_WGP_MODE);
1664     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1665     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1666   }
1667   return MCDisassembler::Success;
1668 }
1669 
1670 // NOLINTNEXTLINE(readability-identifier-naming)
1671 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1672     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1673   using namespace amdhsa;
1674   StringRef Indent = "\t";
1675   if (hasArchitectedFlatScratch())
1676     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1677                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1678   else
1679     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1680                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1681   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1682                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1683   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1684                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1685   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1686                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1687   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1688                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1689   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1690                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1691 
1692   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1693     return MCDisassembler::Fail;
1694 
1695   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1696     return MCDisassembler::Fail;
1697 
1698   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1699     return MCDisassembler::Fail;
1700 
1701   PRINT_DIRECTIVE(
1702       ".amdhsa_exception_fp_ieee_invalid_op",
1703       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1704   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1705                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1706   PRINT_DIRECTIVE(
1707       ".amdhsa_exception_fp_ieee_div_zero",
1708       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1709   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1710                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1711   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1712                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1713   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1714                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1715   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1716                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1717 
1718   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1719     return MCDisassembler::Fail;
1720 
1721   return MCDisassembler::Success;
1722 }
1723 
1724 #undef PRINT_DIRECTIVE
1725 
1726 MCDisassembler::DecodeStatus
1727 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1728     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1729     raw_string_ostream &KdStream) const {
1730 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1731   do {                                                                         \
1732     KdStream << Indent << DIRECTIVE " "                                        \
1733              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1734   } while (0)
1735 
1736   uint16_t TwoByteBuffer = 0;
1737   uint32_t FourByteBuffer = 0;
1738 
1739   StringRef ReservedBytes;
1740   StringRef Indent = "\t";
1741 
1742   assert(Bytes.size() == 64);
1743   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1744 
1745   switch (Cursor.tell()) {
1746   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1747     FourByteBuffer = DE.getU32(Cursor);
1748     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1749              << '\n';
1750     return MCDisassembler::Success;
1751 
1752   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1753     FourByteBuffer = DE.getU32(Cursor);
1754     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1755              << FourByteBuffer << '\n';
1756     return MCDisassembler::Success;
1757 
1758   case amdhsa::KERNARG_SIZE_OFFSET:
1759     FourByteBuffer = DE.getU32(Cursor);
1760     KdStream << Indent << ".amdhsa_kernarg_size "
1761              << FourByteBuffer << '\n';
1762     return MCDisassembler::Success;
1763 
1764   case amdhsa::RESERVED0_OFFSET:
1765     // 4 reserved bytes, must be 0.
1766     ReservedBytes = DE.getBytes(Cursor, 4);
1767     for (int I = 0; I < 4; ++I) {
1768       if (ReservedBytes[I] != 0) {
1769         return MCDisassembler::Fail;
1770       }
1771     }
1772     return MCDisassembler::Success;
1773 
1774   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1775     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1776     // So far no directive controls this for Code Object V3, so simply skip for
1777     // disassembly.
1778     DE.skip(Cursor, 8);
1779     return MCDisassembler::Success;
1780 
1781   case amdhsa::RESERVED1_OFFSET:
1782     // 20 reserved bytes, must be 0.
1783     ReservedBytes = DE.getBytes(Cursor, 20);
1784     for (int I = 0; I < 20; ++I) {
1785       if (ReservedBytes[I] != 0) {
1786         return MCDisassembler::Fail;
1787       }
1788     }
1789     return MCDisassembler::Success;
1790 
1791   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1792     // COMPUTE_PGM_RSRC3
1793     //  - Only set for GFX10, GFX6-9 have this to be 0.
1794     //  - Currently no directives directly control this.
1795     FourByteBuffer = DE.getU32(Cursor);
1796     if (!isGFX10Plus() && FourByteBuffer) {
1797       return MCDisassembler::Fail;
1798     }
1799     return MCDisassembler::Success;
1800 
1801   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1802     FourByteBuffer = DE.getU32(Cursor);
1803     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1804         MCDisassembler::Fail) {
1805       return MCDisassembler::Fail;
1806     }
1807     return MCDisassembler::Success;
1808 
1809   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1810     FourByteBuffer = DE.getU32(Cursor);
1811     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1812         MCDisassembler::Fail) {
1813       return MCDisassembler::Fail;
1814     }
1815     return MCDisassembler::Success;
1816 
1817   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1818     using namespace amdhsa;
1819     TwoByteBuffer = DE.getU16(Cursor);
1820 
1821     if (!hasArchitectedFlatScratch())
1822       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1823                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1824     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1825                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1826     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1827                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1828     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1829                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1830     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1831                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1832     if (!hasArchitectedFlatScratch())
1833       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1834                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1835     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1836                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1837 
1838     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1839       return MCDisassembler::Fail;
1840 
1841     // Reserved for GFX9
1842     if (isGFX9() &&
1843         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1844       return MCDisassembler::Fail;
1845     } else if (isGFX10Plus()) {
1846       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1847                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1848     }
1849 
1850     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1851       return MCDisassembler::Fail;
1852 
1853     return MCDisassembler::Success;
1854 
1855   case amdhsa::RESERVED2_OFFSET:
1856     // 6 bytes from here are reserved, must be 0.
1857     ReservedBytes = DE.getBytes(Cursor, 6);
1858     for (int I = 0; I < 6; ++I) {
1859       if (ReservedBytes[I] != 0)
1860         return MCDisassembler::Fail;
1861     }
1862     return MCDisassembler::Success;
1863 
1864   default:
1865     llvm_unreachable("Unhandled index. Case statements cover everything.");
1866     return MCDisassembler::Fail;
1867   }
1868 #undef PRINT_DIRECTIVE
1869 }
1870 
1871 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1872     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1873   // CP microcode requires the kernel descriptor to be 64 aligned.
1874   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1875     return MCDisassembler::Fail;
1876 
1877   std::string Kd;
1878   raw_string_ostream KdStream(Kd);
1879   KdStream << ".amdhsa_kernel " << KdName << '\n';
1880 
1881   DataExtractor::Cursor C(0);
1882   while (C && C.tell() < Bytes.size()) {
1883     MCDisassembler::DecodeStatus Status =
1884         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1885 
1886     cantFail(C.takeError());
1887 
1888     if (Status == MCDisassembler::Fail)
1889       return MCDisassembler::Fail;
1890   }
1891   KdStream << ".end_amdhsa_kernel\n";
1892   outs() << KdStream.str();
1893   return MCDisassembler::Success;
1894 }
1895 
1896 Optional<MCDisassembler::DecodeStatus>
1897 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1898                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1899                                   raw_ostream &CStream) const {
1900   // Right now only kernel descriptor needs to be handled.
1901   // We ignore all other symbols for target specific handling.
1902   // TODO:
1903   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1904   // Object V2 and V3 when symbols are marked protected.
1905 
1906   // amd_kernel_code_t for Code Object V2.
1907   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1908     Size = 256;
1909     return MCDisassembler::Fail;
1910   }
1911 
1912   // Code Object V3 kernel descriptors.
1913   StringRef Name = Symbol.Name;
1914   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1915     Size = 64; // Size = 64 regardless of success or failure.
1916     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1917   }
1918   return None;
1919 }
1920 
1921 //===----------------------------------------------------------------------===//
1922 // AMDGPUSymbolizer
1923 //===----------------------------------------------------------------------===//
1924 
1925 // Try to find symbol name for specified label
1926 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
1927     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
1928     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
1929     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
1930 
1931   if (!IsBranch) {
1932     return false;
1933   }
1934 
1935   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1936   if (!Symbols)
1937     return false;
1938 
1939   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1940     return Val.Addr == static_cast<uint64_t>(Value) &&
1941            Val.Type == ELF::STT_NOTYPE;
1942   });
1943   if (Result != Symbols->end()) {
1944     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1945     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1946     Inst.addOperand(MCOperand::createExpr(Add));
1947     return true;
1948   }
1949   // Add to list of referenced addresses, so caller can synthesize a label.
1950   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1951   return false;
1952 }
1953 
1954 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1955                                                        int64_t Value,
1956                                                        uint64_t Address) {
1957   llvm_unreachable("unimplemented");
1958 }
1959 
1960 //===----------------------------------------------------------------------===//
1961 // Initialization
1962 //===----------------------------------------------------------------------===//
1963 
1964 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1965                               LLVMOpInfoCallback /*GetOpInfo*/,
1966                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1967                               void *DisInfo,
1968                               MCContext *Ctx,
1969                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1970   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1971 }
1972 
1973 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1974                                                 const MCSubtargetInfo &STI,
1975                                                 MCContext &Ctx) {
1976   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1977 }
1978 
1979 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1980   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1981                                          createAMDGPUDisassembler);
1982   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1983                                        createAMDGPUSymbolizer);
1984 }
1985