xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision ded3ca224f7c2b1df769d625985ab20bb60dfba4)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)),
51       CodeObjectVersion(AMDGPU::getDefaultAMDHSACodeObjectVersion()) {
52   // ToDo: AMDGPUDisassembler supports only VI ISA.
53   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
54     report_fatal_error("Disassembly not yet supported for subtarget");
55 }
56 
57 void AMDGPUDisassembler::setABIVersion(unsigned Version) {
58   CodeObjectVersion = AMDGPU::getAMDHSACodeObjectVersion(Version);
59 }
60 
61 inline static MCDisassembler::DecodeStatus
62 addOperand(MCInst &Inst, const MCOperand& Opnd) {
63   Inst.addOperand(Opnd);
64   return Opnd.isValid() ?
65     MCDisassembler::Success :
66     MCDisassembler::Fail;
67 }
68 
69 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
70                                 uint16_t NameIdx) {
71   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
72   if (OpIdx != -1) {
73     auto I = MI.begin();
74     std::advance(I, OpIdx);
75     MI.insert(I, Op);
76   }
77   return OpIdx;
78 }
79 
80 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
81                                        uint64_t Addr,
82                                        const MCDisassembler *Decoder) {
83   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
84 
85   // Our branches take a simm16, but we need two extra bits to account for the
86   // factor of 4.
87   APInt SignedOffset(18, Imm * 4, true);
88   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
89 
90   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
91     return MCDisassembler::Success;
92   return addOperand(Inst, MCOperand::createImm(Imm));
93 }
94 
95 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
96                                      const MCDisassembler *Decoder) {
97   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
98   int64_t Offset;
99   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
100     Offset = SignExtend64<24>(Imm);
101   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
102     Offset = Imm & 0xFFFFF;
103   } else { // GFX9+ supports 21-bit signed offsets.
104     Offset = SignExtend64<21>(Imm);
105   }
106   return addOperand(Inst, MCOperand::createImm(Offset));
107 }
108 
109 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
110                                   const MCDisassembler *Decoder) {
111   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
112   return addOperand(Inst, DAsm->decodeBoolReg(Val));
113 }
114 
115 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
116                                        uint64_t Addr,
117                                        const MCDisassembler *Decoder) {
118   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
119   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
120 }
121 
122 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
123   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
124                                         uint64_t /*Addr*/,                     \
125                                         const MCDisassembler *Decoder) {       \
126     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
127     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
128   }
129 
130 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
131 // number of register. Used by VGPR only and AGPR only operands.
132 #define DECODE_OPERAND_REG_8(RegClass)                                         \
133   static DecodeStatus Decode##RegClass##RegisterClass(                         \
134       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
135       const MCDisassembler *Decoder) {                                         \
136     assert(Imm < (1 << 8) && "8-bit encoding");                                \
137     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
138     return addOperand(                                                         \
139         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
140   }
141 
142 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
143                      ImmWidth)                                                 \
144   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
145                            const MCDisassembler *Decoder) {                    \
146     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
147     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
148     return addOperand(Inst,                                                    \
149                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
150                                         MandatoryLiteral, ImmWidth));          \
151   }
152 
153 static DecodeStatus decodeSrcOp(MCInst &Inst, unsigned EncSize,
154                                 AMDGPUDisassembler::OpWidthTy OpWidth,
155                                 unsigned Imm, unsigned EncImm,
156                                 bool MandatoryLiteral, unsigned ImmWidth,
157                                 const MCDisassembler *Decoder) {
158   assert(Imm < (1U << EncSize) && "Operand doesn't fit encoding!");
159   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
160   return addOperand(
161       Inst, DAsm->decodeSrcOp(OpWidth, EncImm, MandatoryLiteral, ImmWidth));
162 }
163 
164 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
165 // get register class. Used by SGPR only operands.
166 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
167   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
168 
169 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
170 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
171 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
172 // Used by AV_ register classes (AGPR or VGPR only register operands).
173 template <AMDGPUDisassembler::OpWidthTy OpWidth>
174 static DecodeStatus decodeAV10(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
175                                const MCDisassembler *Decoder) {
176   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm | AMDGPU::EncValues::IS_VGPR,
177                      false, 0, Decoder);
178 }
179 
180 // Decoder for Src(9-bit encoding) registers only.
181 template <AMDGPUDisassembler::OpWidthTy OpWidth>
182 static DecodeStatus decodeSrcReg9(MCInst &Inst, unsigned Imm,
183                                   uint64_t /* Addr */,
184                                   const MCDisassembler *Decoder) {
185   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, 0, Decoder);
186 }
187 
188 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
189 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
190 // only.
191 template <AMDGPUDisassembler::OpWidthTy OpWidth>
192 static DecodeStatus decodeSrcA9(MCInst &Inst, unsigned Imm, uint64_t /* Addr */,
193                                 const MCDisassembler *Decoder) {
194   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, 0, Decoder);
195 }
196 
197 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
198 // Imm{9} is acc, registers only.
199 template <AMDGPUDisassembler::OpWidthTy OpWidth>
200 static DecodeStatus decodeSrcAV10(MCInst &Inst, unsigned Imm,
201                                   uint64_t /* Addr */,
202                                   const MCDisassembler *Decoder) {
203   return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm, false, 0, Decoder);
204 }
205 
206 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
207 // register from RegClass or immediate. Registers that don't belong to RegClass
208 // will be decoded and InstPrinter will report warning. Immediate will be
209 // decoded into constant of size ImmWidth, should match width of immediate used
210 // by OperandType (important for floating point types).
211 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth>
212 static DecodeStatus decodeSrcRegOrImm9(MCInst &Inst, unsigned Imm,
213                                        uint64_t /* Addr */,
214                                        const MCDisassembler *Decoder) {
215   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, ImmWidth, Decoder);
216 }
217 
218 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
219 // and decode using 'enum10' from decodeSrcOp.
220 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth>
221 static DecodeStatus decodeSrcRegOrImmA9(MCInst &Inst, unsigned Imm,
222                                         uint64_t /* Addr */,
223                                         const MCDisassembler *Decoder) {
224   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, ImmWidth,
225                      Decoder);
226 }
227 
228 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth>
229 static DecodeStatus decodeSrcRegOrImmDeferred9(MCInst &Inst, unsigned Imm,
230                                                uint64_t /* Addr */,
231                                                const MCDisassembler *Decoder) {
232   return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, true, ImmWidth, Decoder);
233 }
234 
235 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
236 // when RegisterClass is used as an operand. Most often used for destination
237 // operands.
238 
239 DECODE_OPERAND_REG_8(VGPR_32)
240 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
241 DECODE_OPERAND_REG_8(VReg_64)
242 DECODE_OPERAND_REG_8(VReg_96)
243 DECODE_OPERAND_REG_8(VReg_128)
244 DECODE_OPERAND_REG_8(VReg_256)
245 DECODE_OPERAND_REG_8(VReg_288)
246 DECODE_OPERAND_REG_8(VReg_352)
247 DECODE_OPERAND_REG_8(VReg_384)
248 DECODE_OPERAND_REG_8(VReg_512)
249 DECODE_OPERAND_REG_8(VReg_1024)
250 
251 DECODE_OPERAND_REG_7(SReg_32, OPW32)
252 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
253 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
254 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
255 DECODE_OPERAND_REG_7(SReg_64, OPW64)
256 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
257 DECODE_OPERAND_REG_7(SReg_96, OPW96)
258 DECODE_OPERAND_REG_7(SReg_128, OPW128)
259 DECODE_OPERAND_REG_7(SReg_256, OPW256)
260 DECODE_OPERAND_REG_7(SReg_512, OPW512)
261 
262 DECODE_OPERAND_REG_8(AGPR_32)
263 DECODE_OPERAND_REG_8(AReg_64)
264 DECODE_OPERAND_REG_8(AReg_128)
265 DECODE_OPERAND_REG_8(AReg_256)
266 DECODE_OPERAND_REG_8(AReg_512)
267 DECODE_OPERAND_REG_8(AReg_1024)
268 
269 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
270                                                uint64_t /*Addr*/,
271                                                const MCDisassembler *Decoder) {
272   assert(isUInt<10>(Imm) && "10-bit encoding expected");
273   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
274 
275   bool IsHi = Imm & (1 << 9);
276   unsigned RegIdx = Imm & 0xff;
277   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
278   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
279 }
280 
281 static DecodeStatus
282 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
283                                  const MCDisassembler *Decoder) {
284   assert(isUInt<8>(Imm) && "8-bit encoding expected");
285 
286   bool IsHi = Imm & (1 << 7);
287   unsigned RegIdx = Imm & 0x7f;
288   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
289   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
290 }
291 
292 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
293                                                 uint64_t /*Addr*/,
294                                                 const MCDisassembler *Decoder) {
295   assert(isUInt<9>(Imm) && "9-bit encoding expected");
296 
297   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
298   bool IsVGPR = Imm & (1 << 8);
299   if (IsVGPR) {
300     bool IsHi = Imm & (1 << 7);
301     unsigned RegIdx = Imm & 0x7f;
302     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
303   }
304   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
305                                                    Imm & 0xFF, false, 16));
306 }
307 
308 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
309                                           uint64_t /*Addr*/,
310                                           const MCDisassembler *Decoder) {
311   assert(isUInt<10>(Imm) && "10-bit encoding expected");
312 
313   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
314   bool IsVGPR = Imm & (1 << 8);
315   if (IsVGPR) {
316     bool IsHi = Imm & (1 << 9);
317     unsigned RegIdx = Imm & 0xff;
318     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
319   }
320   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
321                                                    Imm & 0xFF, false, 16));
322 }
323 
324 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
325                                          uint64_t Addr,
326                                          const MCDisassembler *Decoder) {
327   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
328   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
329 }
330 
331 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
332                                           uint64_t Addr, const void *Decoder) {
333   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
334   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
335 }
336 
337 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
338                           const MCRegisterInfo *MRI) {
339   if (OpIdx < 0)
340     return false;
341 
342   const MCOperand &Op = Inst.getOperand(OpIdx);
343   if (!Op.isReg())
344     return false;
345 
346   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
347   auto Reg = Sub ? Sub : Op.getReg();
348   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
349 }
350 
351 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
352                                  AMDGPUDisassembler::OpWidthTy Opw,
353                                  const MCDisassembler *Decoder) {
354   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
355   if (!DAsm->isGFX90A()) {
356     Imm &= 511;
357   } else {
358     // If atomic has both vdata and vdst their register classes are tied.
359     // The bit is decoded along with the vdst, first operand. We need to
360     // change register class to AGPR if vdst was AGPR.
361     // If a DS instruction has both data0 and data1 their register classes
362     // are also tied.
363     unsigned Opc = Inst.getOpcode();
364     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
365     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
366                                                         : AMDGPU::OpName::vdata;
367     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
368     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
369     if ((int)Inst.getNumOperands() == DataIdx) {
370       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
371       if (IsAGPROperand(Inst, DstIdx, MRI))
372         Imm |= 512;
373     }
374 
375     if (TSFlags & SIInstrFlags::DS) {
376       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
377       if ((int)Inst.getNumOperands() == Data2Idx &&
378           IsAGPROperand(Inst, DataIdx, MRI))
379         Imm |= 512;
380     }
381   }
382   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
383 }
384 
385 template <AMDGPUDisassembler::OpWidthTy Opw>
386 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm,
387                                  uint64_t /* Addr */,
388                                  const MCDisassembler *Decoder) {
389   return decodeAVLdSt(Inst, Imm, Opw, Decoder);
390 }
391 
392 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
393                                            uint64_t Addr,
394                                            const MCDisassembler *Decoder) {
395   assert(Imm < (1 << 9) && "9-bit encoding");
396   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
397   return addOperand(
398       Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
399 }
400 
401 #define DECODE_SDWA(DecName) \
402 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
403 
404 DECODE_SDWA(Src32)
405 DECODE_SDWA(Src16)
406 DECODE_SDWA(VopcDst)
407 
408 #include "AMDGPUGenDisassemblerTables.inc"
409 
410 //===----------------------------------------------------------------------===//
411 //
412 //===----------------------------------------------------------------------===//
413 
414 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
415   assert(Bytes.size() >= sizeof(T));
416   const auto Res =
417       support::endian::read<T, llvm::endianness::little>(Bytes.data());
418   Bytes = Bytes.slice(sizeof(T));
419   return Res;
420 }
421 
422 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
423   assert(Bytes.size() >= 12);
424   uint64_t Lo =
425       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
426   Bytes = Bytes.slice(8);
427   uint64_t Hi =
428       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
429   Bytes = Bytes.slice(4);
430   return DecoderUInt128(Lo, Hi);
431 }
432 
433 // The disassembler is greedy, so we need to check FI operand value to
434 // not parse a dpp if the correct literal is not set. For dpp16 the
435 // autogenerated decoder checks the dpp literal
436 static bool isValidDPP8(const MCInst &MI) {
437   using namespace llvm::AMDGPU::DPP;
438   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
439   assert(FiIdx != -1);
440   if ((unsigned)FiIdx >= MI.getNumOperands())
441     return false;
442   unsigned Fi = MI.getOperand(FiIdx).getImm();
443   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
444 }
445 
446 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
447                                                 ArrayRef<uint8_t> Bytes_,
448                                                 uint64_t Address,
449                                                 raw_ostream &CS) const {
450   bool IsSDWA = false;
451 
452   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
453   Bytes = Bytes_.slice(0, MaxInstBytesNum);
454 
455   DecodeStatus Res = MCDisassembler::Fail;
456   do {
457     // ToDo: better to switch encoding length using some bit predicate
458     // but it is unknown yet, so try all we can
459 
460     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
461     // encodings
462     if (isGFX11Plus() && Bytes.size() >= 12 ) {
463       DecoderUInt128 DecW = eat12Bytes(Bytes);
464       Res =
465           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
466                         MI, DecW, Address, CS);
467       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
468         break;
469       MI = MCInst(); // clear
470       Res =
471           tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696,
472                         MI, DecW, Address, CS);
473       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
474         break;
475       MI = MCInst(); // clear
476 
477       const auto convertVOPDPP = [&]() {
478         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) {
479           convertVOP3PDPPInst(MI);
480         } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) {
481           convertVOPCDPPInst(MI); // Special VOP3 case
482         } else {
483           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
484           convertVOP3DPPInst(MI); // Regular VOP3 case
485         }
486       };
487       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
488                           MI, DecW, Address, CS);
489       if (Res) {
490         convertVOPDPP();
491         break;
492       }
493       Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696,
494                           MI, DecW, Address, CS);
495       if (Res) {
496         convertVOPDPP();
497         break;
498       }
499       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
500       if (Res)
501         break;
502 
503       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
504       if (Res)
505         break;
506 
507       Res = tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS);
508       if (Res)
509         break;
510     }
511     // Reinitialize Bytes
512     Bytes = Bytes_.slice(0, MaxInstBytesNum);
513 
514     if (Bytes.size() >= 8) {
515       const uint64_t QW = eatBytes<uint64_t>(Bytes);
516 
517       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
518         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
519         if (Res) {
520           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
521               == -1)
522             break;
523           if (convertDPP8Inst(MI) == MCDisassembler::Success)
524             break;
525           MI = MCInst(); // clear
526         }
527       }
528 
529       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
530       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
531         break;
532       MI = MCInst(); // clear
533 
534       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
535                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
536       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
537         break;
538       MI = MCInst(); // clear
539 
540       Res = tryDecodeInst(DecoderTableDPP8GFX1264,
541                           DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS);
542       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
543         break;
544       MI = MCInst(); // clear
545 
546       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
547       if (Res) break;
548 
549       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
550                           MI, QW, Address, CS);
551       if (Res) {
552         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
553           convertVOPCDPPInst(MI);
554         break;
555       }
556 
557       Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664,
558                           MI, QW, Address, CS);
559       if (Res) {
560         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
561           convertVOPCDPPInst(MI);
562         break;
563       }
564 
565       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
566       if (Res) { IsSDWA = true;  break; }
567 
568       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
569       if (Res) { IsSDWA = true;  break; }
570 
571       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
572       if (Res) { IsSDWA = true;  break; }
573 
574       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
575         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
576         if (Res)
577           break;
578       }
579 
580       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
581       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
582       // table first so we print the correct name.
583       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
584         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
585         if (Res)
586           break;
587       }
588     }
589 
590     // Reinitialize Bytes as DPP64 could have eaten too much
591     Bytes = Bytes_.slice(0, MaxInstBytesNum);
592 
593     // Try decode 32-bit instruction
594     if (Bytes.size() < 4) break;
595     const uint32_t DW = eatBytes<uint32_t>(Bytes);
596     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
597     if (Res) break;
598 
599     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
600     if (Res) break;
601 
602     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
603     if (Res) break;
604 
605     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
606       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
607       if (Res)
608         break;
609     }
610 
611     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
612       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
613       if (Res) break;
614     }
615 
616     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
617     if (Res) break;
618 
619     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
620                         Address, CS);
621     if (Res) break;
622 
623     Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
624                         Address, CS);
625     if (Res)
626       break;
627 
628     if (Bytes.size() < 4) break;
629     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
630 
631     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
632       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
633       if (Res)
634         break;
635     }
636 
637     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
638       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
639       if (Res)
640         break;
641     }
642 
643     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
644     if (Res) break;
645 
646     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
647     if (Res) break;
648 
649     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
650     if (Res) break;
651 
652     Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
653                         Address, CS);
654     if (Res)
655       break;
656 
657     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
658                         Address, CS);
659     if (Res)
660       break;
661 
662     Res = tryDecodeInst(DecoderTableGFX11W6464, MI, QW, Address, CS);
663     if (Res)
664       break;
665 
666     Res = tryDecodeInst(DecoderTableGFX12W6464, MI, QW, Address, CS);
667   } while (false);
668 
669   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
670     // Insert dummy unused src2_modifiers.
671     insertNamedMCOperand(MI, MCOperand::createImm(0),
672                          AMDGPU::OpName::src2_modifiers);
673   }
674 
675   if (Res && (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp ||
676               MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp)) {
677     // Insert dummy unused src2_modifiers.
678     insertNamedMCOperand(MI, MCOperand::createImm(0),
679                          AMDGPU::OpName::src2_modifiers);
680   }
681 
682   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
683       !AMDGPU::hasGDS(STI)) {
684     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
685   }
686 
687   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
688           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
689     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
690                                              AMDGPU::OpName::cpol);
691     if (CPolPos != -1) {
692       unsigned CPol =
693           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
694               AMDGPU::CPol::GLC : 0;
695       if (MI.getNumOperands() <= (unsigned)CPolPos) {
696         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
697                              AMDGPU::OpName::cpol);
698       } else if (CPol) {
699         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
700       }
701     }
702   }
703 
704   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
705               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
706              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
707     // GFX90A lost TFE, its place is occupied by ACC.
708     int TFEOpIdx =
709         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
710     if (TFEOpIdx != -1) {
711       auto TFEIter = MI.begin();
712       std::advance(TFEIter, TFEOpIdx);
713       MI.insert(TFEIter, MCOperand::createImm(0));
714     }
715   }
716 
717   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
718               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
719     int SWZOpIdx =
720         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
721     if (SWZOpIdx != -1) {
722       auto SWZIter = MI.begin();
723       std::advance(SWZIter, SWZOpIdx);
724       MI.insert(SWZIter, MCOperand::createImm(0));
725     }
726   }
727 
728   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
729     int VAddr0Idx =
730         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
731     int RsrcIdx =
732         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
733     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
734     if (VAddr0Idx >= 0 && NSAArgs > 0) {
735       unsigned NSAWords = (NSAArgs + 3) / 4;
736       if (Bytes.size() < 4 * NSAWords) {
737         Res = MCDisassembler::Fail;
738       } else {
739         for (unsigned i = 0; i < NSAArgs; ++i) {
740           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
741           auto VAddrRCID =
742               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
743           MI.insert(MI.begin() + VAddrIdx,
744                     createRegOperand(VAddrRCID, Bytes[i]));
745         }
746         Bytes = Bytes.slice(4 * NSAWords);
747       }
748     }
749 
750     if (Res)
751       Res = convertMIMGInst(MI);
752   }
753 
754   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
755               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
756     Res = convertMIMGInst(MI);
757 
758   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
759     Res = convertEXPInst(MI);
760 
761   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
762     Res = convertVINTERPInst(MI);
763 
764   if (Res && IsSDWA)
765     Res = convertSDWAInst(MI);
766 
767   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
768                                               AMDGPU::OpName::vdst_in);
769   if (VDstIn_Idx != -1) {
770     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
771                            MCOI::OperandConstraint::TIED_TO);
772     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
773          !MI.getOperand(VDstIn_Idx).isReg() ||
774          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
775       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
776         MI.erase(&MI.getOperand(VDstIn_Idx));
777       insertNamedMCOperand(MI,
778         MCOperand::createReg(MI.getOperand(Tied).getReg()),
779         AMDGPU::OpName::vdst_in);
780     }
781   }
782 
783   int ImmLitIdx =
784       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
785   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
786   if (Res && ImmLitIdx != -1 && !IsSOPK)
787     Res = convertFMAanyK(MI, ImmLitIdx);
788 
789   // if the opcode was not recognized we'll assume a Size of 4 bytes
790   // (unless there are fewer bytes left)
791   Size = Res ? (MaxInstBytesNum - Bytes.size())
792              : std::min((size_t)4, Bytes_.size());
793   return Res;
794 }
795 
796 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
797   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
798     // The MCInst still has these fields even though they are no longer encoded
799     // in the GFX11 instruction.
800     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
801     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
802   }
803   return MCDisassembler::Success;
804 }
805 
806 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
807   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
808       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
809       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
810       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
811       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
812       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
813       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
814       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
815     // The MCInst has this field that is not directly encoded in the
816     // instruction.
817     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
818   }
819   return MCDisassembler::Success;
820 }
821 
822 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
823   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
824       STI.hasFeature(AMDGPU::FeatureGFX10)) {
825     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
826       // VOPC - insert clamp
827       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
828   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
829     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
830     if (SDst != -1) {
831       // VOPC - insert VCC register as sdst
832       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
833                            AMDGPU::OpName::sdst);
834     } else {
835       // VOP1/2 - insert omod if present in instruction
836       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
837     }
838   }
839   return MCDisassembler::Success;
840 }
841 
842 struct VOPModifiers {
843   unsigned OpSel = 0;
844   unsigned OpSelHi = 0;
845   unsigned NegLo = 0;
846   unsigned NegHi = 0;
847 };
848 
849 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
850 // Note that these values do not affect disassembler output,
851 // so this is only necessary for consistency with src_modifiers.
852 static VOPModifiers collectVOPModifiers(const MCInst &MI,
853                                         bool IsVOP3P = false) {
854   VOPModifiers Modifiers;
855   unsigned Opc = MI.getOpcode();
856   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
857                         AMDGPU::OpName::src1_modifiers,
858                         AMDGPU::OpName::src2_modifiers};
859   for (int J = 0; J < 3; ++J) {
860     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
861     if (OpIdx == -1)
862       continue;
863 
864     unsigned Val = MI.getOperand(OpIdx).getImm();
865 
866     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
867     if (IsVOP3P) {
868       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
869       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
870       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
871     } else if (J == 0) {
872       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
873     }
874   }
875 
876   return Modifiers;
877 }
878 
879 // Instructions decode the op_sel/suffix bits into the src_modifier
880 // operands. Copy those bits into the src operands for true16 VGPRs.
881 void AMDGPUDisassembler::convertTrue16OpSel(MCInst &MI) const {
882   const unsigned Opc = MI.getOpcode();
883   const MCRegisterClass &ConversionRC =
884       MRI.getRegClass(AMDGPU::VGPR_16RegClassID);
885   constexpr std::array<std::tuple<int, int, unsigned>, 4> OpAndOpMods = {
886       {{AMDGPU::OpName::src0, AMDGPU::OpName::src0_modifiers,
887         SISrcMods::OP_SEL_0},
888        {AMDGPU::OpName::src1, AMDGPU::OpName::src1_modifiers,
889         SISrcMods::OP_SEL_0},
890        {AMDGPU::OpName::src2, AMDGPU::OpName::src2_modifiers,
891         SISrcMods::OP_SEL_0},
892        {AMDGPU::OpName::vdst, AMDGPU::OpName::src0_modifiers,
893         SISrcMods::DST_OP_SEL}}};
894   for (const auto &[OpName, OpModsName, OpSelMask] : OpAndOpMods) {
895     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, OpName);
896     int OpModsIdx = AMDGPU::getNamedOperandIdx(Opc, OpModsName);
897     if (OpIdx == -1 || OpModsIdx == -1)
898       continue;
899     MCOperand &Op = MI.getOperand(OpIdx);
900     if (!Op.isReg())
901       continue;
902     if (!ConversionRC.contains(Op.getReg()))
903       continue;
904     unsigned OpEnc = MRI.getEncodingValue(Op.getReg());
905     const MCOperand &OpMods = MI.getOperand(OpModsIdx);
906     unsigned ModVal = OpMods.getImm();
907     if (ModVal & OpSelMask) { // isHi
908       unsigned RegIdx = OpEnc & AMDGPU::HWEncoding::REG_IDX_MASK;
909       Op.setReg(ConversionRC.getRegister(RegIdx * 2 + 1));
910     }
911   }
912 }
913 
914 // MAC opcodes have special old and src2 operands.
915 // src2 is tied to dst, while old is not tied (but assumed to be).
916 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
917   constexpr int DST_IDX = 0;
918   auto Opcode = MI.getOpcode();
919   const auto &Desc = MCII->get(Opcode);
920   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
921 
922   if (OldIdx != -1 && Desc.getOperandConstraint(
923                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
924     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
925     assert(Desc.getOperandConstraint(
926                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
927                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
928     (void)DST_IDX;
929     return true;
930   }
931 
932   return false;
933 }
934 
935 // Create dummy old operand and insert dummy unused src2_modifiers
936 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
937   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
938   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
939   insertNamedMCOperand(MI, MCOperand::createImm(0),
940                        AMDGPU::OpName::src2_modifiers);
941 }
942 
943 // We must check FI == literal to reject not genuine dpp8 insts, and we must
944 // first add optional MI operands to check FI
945 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
946   unsigned Opc = MI.getOpcode();
947 
948   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
949     convertVOP3PDPPInst(MI);
950   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
951              AMDGPU::isVOPC64DPP(Opc)) {
952     convertVOPCDPPInst(MI);
953   } else {
954     if (isMacDPP(MI))
955       convertMacDPPInst(MI);
956 
957     int VDstInIdx =
958         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
959     if (VDstInIdx != -1)
960       insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
961 
962     if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp8_gfx12 ||
963         MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp8_gfx12)
964       insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
965 
966     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
967     if (MI.getNumOperands() < DescNumOps &&
968         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
969       convertTrue16OpSel(MI);
970       auto Mods = collectVOPModifiers(MI);
971       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
972                            AMDGPU::OpName::op_sel);
973     } else {
974       // Insert dummy unused src modifiers.
975       if (MI.getNumOperands() < DescNumOps &&
976           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
977         insertNamedMCOperand(MI, MCOperand::createImm(0),
978                              AMDGPU::OpName::src0_modifiers);
979 
980       if (MI.getNumOperands() < DescNumOps &&
981           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
982         insertNamedMCOperand(MI, MCOperand::createImm(0),
983                              AMDGPU::OpName::src1_modifiers);
984     }
985   }
986   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
987 }
988 
989 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
990   if (isMacDPP(MI))
991     convertMacDPPInst(MI);
992 
993   convertTrue16OpSel(MI);
994 
995   int VDstInIdx =
996       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
997   if (VDstInIdx != -1)
998     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
999 
1000   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp_gfx12 ||
1001       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp_gfx12)
1002     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
1003 
1004   unsigned Opc = MI.getOpcode();
1005   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1006   if (MI.getNumOperands() < DescNumOps &&
1007       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
1008     auto Mods = collectVOPModifiers(MI);
1009     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1010                          AMDGPU::OpName::op_sel);
1011   }
1012   return MCDisassembler::Success;
1013 }
1014 
1015 // Note that before gfx10, the MIMG encoding provided no information about
1016 // VADDR size. Consequently, decoded instructions always show address as if it
1017 // has 1 dword, which could be not really so.
1018 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
1019   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
1020 
1021   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1022                                            AMDGPU::OpName::vdst);
1023 
1024   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1025                                             AMDGPU::OpName::vdata);
1026   int VAddr0Idx =
1027       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
1028   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
1029                                                 : AMDGPU::OpName::rsrc;
1030   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
1031   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1032                                             AMDGPU::OpName::dmask);
1033 
1034   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1035                                             AMDGPU::OpName::tfe);
1036   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1037                                             AMDGPU::OpName::d16);
1038 
1039   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
1040   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1041       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
1042 
1043   assert(VDataIdx != -1);
1044   if (BaseOpcode->BVH) {
1045     // Add A16 operand for intersect_ray instructions
1046     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
1047     return MCDisassembler::Success;
1048   }
1049 
1050   bool IsAtomic = (VDstIdx != -1);
1051   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
1052   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
1053   bool IsNSA = false;
1054   bool IsPartialNSA = false;
1055   unsigned AddrSize = Info->VAddrDwords;
1056 
1057   if (isGFX10Plus()) {
1058     unsigned DimIdx =
1059         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
1060     int A16Idx =
1061         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
1062     const AMDGPU::MIMGDimInfo *Dim =
1063         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
1064     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
1065 
1066     AddrSize =
1067         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
1068 
1069     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
1070     // VIMAGE insts other than BVH never use vaddr4.
1071     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
1072             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
1073             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
1074     if (!IsNSA) {
1075       if (!IsVSample && AddrSize > 12)
1076         AddrSize = 16;
1077     } else {
1078       if (AddrSize > Info->VAddrDwords) {
1079         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1080           // The NSA encoding does not contain enough operands for the
1081           // combination of base opcode / dimension. Should this be an error?
1082           return MCDisassembler::Success;
1083         }
1084         IsPartialNSA = true;
1085       }
1086     }
1087   }
1088 
1089   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1090   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1091 
1092   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1093   if (D16 && AMDGPU::hasPackedD16(STI)) {
1094     DstSize = (DstSize + 1) / 2;
1095   }
1096 
1097   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1098     DstSize += 1;
1099 
1100   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1101     return MCDisassembler::Success;
1102 
1103   int NewOpcode =
1104       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1105   if (NewOpcode == -1)
1106     return MCDisassembler::Success;
1107 
1108   // Widen the register to the correct number of enabled channels.
1109   unsigned NewVdata = AMDGPU::NoRegister;
1110   if (DstSize != Info->VDataDwords) {
1111     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1112 
1113     // Get first subregister of VData
1114     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1115     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1116     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1117 
1118     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1119                                        &MRI.getRegClass(DataRCID));
1120     if (NewVdata == AMDGPU::NoRegister) {
1121       // It's possible to encode this such that the low register + enabled
1122       // components exceeds the register count.
1123       return MCDisassembler::Success;
1124     }
1125   }
1126 
1127   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1128   // If using partial NSA on GFX11+ widen last address register.
1129   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1130   unsigned NewVAddrSA = AMDGPU::NoRegister;
1131   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1132       AddrSize != Info->VAddrDwords) {
1133     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1134     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1135     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1136 
1137     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1138     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1139                                         &MRI.getRegClass(AddrRCID));
1140     if (!NewVAddrSA)
1141       return MCDisassembler::Success;
1142   }
1143 
1144   MI.setOpcode(NewOpcode);
1145 
1146   if (NewVdata != AMDGPU::NoRegister) {
1147     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1148 
1149     if (IsAtomic) {
1150       // Atomic operations have an additional operand (a copy of data)
1151       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1152     }
1153   }
1154 
1155   if (NewVAddrSA) {
1156     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1157   } else if (IsNSA) {
1158     assert(AddrSize <= Info->VAddrDwords);
1159     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1160              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1161   }
1162 
1163   return MCDisassembler::Success;
1164 }
1165 
1166 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1167 // decoder only adds to src_modifiers, so manually add the bits to the other
1168 // operands.
1169 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1170   unsigned Opc = MI.getOpcode();
1171   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1172   auto Mods = collectVOPModifiers(MI, true);
1173 
1174   if (MI.getNumOperands() < DescNumOps &&
1175       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1176     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1177 
1178   if (MI.getNumOperands() < DescNumOps &&
1179       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1180     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1181                          AMDGPU::OpName::op_sel);
1182   if (MI.getNumOperands() < DescNumOps &&
1183       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1184     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1185                          AMDGPU::OpName::op_sel_hi);
1186   if (MI.getNumOperands() < DescNumOps &&
1187       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1188     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1189                          AMDGPU::OpName::neg_lo);
1190   if (MI.getNumOperands() < DescNumOps &&
1191       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1192     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1193                          AMDGPU::OpName::neg_hi);
1194 
1195   return MCDisassembler::Success;
1196 }
1197 
1198 // Create dummy old operand and insert optional operands
1199 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1200   unsigned Opc = MI.getOpcode();
1201   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1202 
1203   if (MI.getNumOperands() < DescNumOps &&
1204       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1205     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1206 
1207   if (MI.getNumOperands() < DescNumOps &&
1208       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1209     insertNamedMCOperand(MI, MCOperand::createImm(0),
1210                          AMDGPU::OpName::src0_modifiers);
1211 
1212   if (MI.getNumOperands() < DescNumOps &&
1213       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1214     insertNamedMCOperand(MI, MCOperand::createImm(0),
1215                          AMDGPU::OpName::src1_modifiers);
1216   return MCDisassembler::Success;
1217 }
1218 
1219 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1220                                                 int ImmLitIdx) const {
1221   assert(HasLiteral && "Should have decoded a literal");
1222   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1223   unsigned DescNumOps = Desc.getNumOperands();
1224   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1225                        AMDGPU::OpName::immDeferred);
1226   assert(DescNumOps == MI.getNumOperands());
1227   for (unsigned I = 0; I < DescNumOps; ++I) {
1228     auto &Op = MI.getOperand(I);
1229     auto OpType = Desc.operands()[I].OperandType;
1230     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1231                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1232     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1233         IsDeferredOp)
1234       Op.setImm(Literal);
1235   }
1236   return MCDisassembler::Success;
1237 }
1238 
1239 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1240   return getContext().getRegisterInfo()->
1241     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1242 }
1243 
1244 inline
1245 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1246                                          const Twine& ErrMsg) const {
1247   *CommentStream << "Error: " + ErrMsg;
1248 
1249   // ToDo: add support for error operands to MCInst.h
1250   // return MCOperand::createError(V);
1251   return MCOperand();
1252 }
1253 
1254 inline
1255 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1256   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1257 }
1258 
1259 inline
1260 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1261                                                unsigned Val) const {
1262   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1263   if (Val >= RegCl.getNumRegs())
1264     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1265                            ": unknown register " + Twine(Val));
1266   return createRegOperand(RegCl.getRegister(Val));
1267 }
1268 
1269 inline
1270 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1271                                                 unsigned Val) const {
1272   // ToDo: SI/CI have 104 SGPRs, VI - 102
1273   // Valery: here we accepting as much as we can, let assembler sort it out
1274   int shift = 0;
1275   switch (SRegClassID) {
1276   case AMDGPU::SGPR_32RegClassID:
1277   case AMDGPU::TTMP_32RegClassID:
1278     break;
1279   case AMDGPU::SGPR_64RegClassID:
1280   case AMDGPU::TTMP_64RegClassID:
1281     shift = 1;
1282     break;
1283   case AMDGPU::SGPR_96RegClassID:
1284   case AMDGPU::TTMP_96RegClassID:
1285   case AMDGPU::SGPR_128RegClassID:
1286   case AMDGPU::TTMP_128RegClassID:
1287   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1288   // this bundle?
1289   case AMDGPU::SGPR_256RegClassID:
1290   case AMDGPU::TTMP_256RegClassID:
1291     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1292   // this bundle?
1293   case AMDGPU::SGPR_288RegClassID:
1294   case AMDGPU::TTMP_288RegClassID:
1295   case AMDGPU::SGPR_320RegClassID:
1296   case AMDGPU::TTMP_320RegClassID:
1297   case AMDGPU::SGPR_352RegClassID:
1298   case AMDGPU::TTMP_352RegClassID:
1299   case AMDGPU::SGPR_384RegClassID:
1300   case AMDGPU::TTMP_384RegClassID:
1301   case AMDGPU::SGPR_512RegClassID:
1302   case AMDGPU::TTMP_512RegClassID:
1303     shift = 2;
1304     break;
1305   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1306   // this bundle?
1307   default:
1308     llvm_unreachable("unhandled register class");
1309   }
1310 
1311   if (Val % (1 << shift)) {
1312     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1313                    << ": scalar reg isn't aligned " << Val;
1314   }
1315 
1316   return createRegOperand(SRegClassID, Val >> shift);
1317 }
1318 
1319 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1320                                                   bool IsHi) const {
1321   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1322   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1323 }
1324 
1325 // Decode Literals for insts which always have a literal in the encoding
1326 MCOperand
1327 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1328   if (HasLiteral) {
1329     assert(
1330         AMDGPU::hasVOPD(STI) &&
1331         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1332     if (Literal != Val)
1333       return errOperand(Val, "More than one unique literal is illegal");
1334   }
1335   HasLiteral = true;
1336   Literal = Val;
1337   return MCOperand::createImm(Literal);
1338 }
1339 
1340 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1341   // For now all literal constants are supposed to be unsigned integer
1342   // ToDo: deal with signed/unsigned 64-bit integer constants
1343   // ToDo: deal with float/double constants
1344   if (!HasLiteral) {
1345     if (Bytes.size() < 4) {
1346       return errOperand(0, "cannot read literal, inst bytes left " +
1347                         Twine(Bytes.size()));
1348     }
1349     HasLiteral = true;
1350     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1351     if (ExtendFP64)
1352       Literal64 <<= 32;
1353   }
1354   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1355 }
1356 
1357 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1358   using namespace AMDGPU::EncValues;
1359 
1360   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1361   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1362     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1363     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1364       // Cast prevents negative overflow.
1365 }
1366 
1367 static int64_t getInlineImmVal32(unsigned Imm) {
1368   switch (Imm) {
1369   case 240:
1370     return llvm::bit_cast<uint32_t>(0.5f);
1371   case 241:
1372     return llvm::bit_cast<uint32_t>(-0.5f);
1373   case 242:
1374     return llvm::bit_cast<uint32_t>(1.0f);
1375   case 243:
1376     return llvm::bit_cast<uint32_t>(-1.0f);
1377   case 244:
1378     return llvm::bit_cast<uint32_t>(2.0f);
1379   case 245:
1380     return llvm::bit_cast<uint32_t>(-2.0f);
1381   case 246:
1382     return llvm::bit_cast<uint32_t>(4.0f);
1383   case 247:
1384     return llvm::bit_cast<uint32_t>(-4.0f);
1385   case 248: // 1 / (2 * PI)
1386     return 0x3e22f983;
1387   default:
1388     llvm_unreachable("invalid fp inline imm");
1389   }
1390 }
1391 
1392 static int64_t getInlineImmVal64(unsigned Imm) {
1393   switch (Imm) {
1394   case 240:
1395     return llvm::bit_cast<uint64_t>(0.5);
1396   case 241:
1397     return llvm::bit_cast<uint64_t>(-0.5);
1398   case 242:
1399     return llvm::bit_cast<uint64_t>(1.0);
1400   case 243:
1401     return llvm::bit_cast<uint64_t>(-1.0);
1402   case 244:
1403     return llvm::bit_cast<uint64_t>(2.0);
1404   case 245:
1405     return llvm::bit_cast<uint64_t>(-2.0);
1406   case 246:
1407     return llvm::bit_cast<uint64_t>(4.0);
1408   case 247:
1409     return llvm::bit_cast<uint64_t>(-4.0);
1410   case 248: // 1 / (2 * PI)
1411     return 0x3fc45f306dc9c882;
1412   default:
1413     llvm_unreachable("invalid fp inline imm");
1414   }
1415 }
1416 
1417 static int64_t getInlineImmVal16(unsigned Imm) {
1418   switch (Imm) {
1419   case 240:
1420     return 0x3800;
1421   case 241:
1422     return 0xB800;
1423   case 242:
1424     return 0x3C00;
1425   case 243:
1426     return 0xBC00;
1427   case 244:
1428     return 0x4000;
1429   case 245:
1430     return 0xC000;
1431   case 246:
1432     return 0x4400;
1433   case 247:
1434     return 0xC400;
1435   case 248: // 1 / (2 * PI)
1436     return 0x3118;
1437   default:
1438     llvm_unreachable("invalid fp inline imm");
1439   }
1440 }
1441 
1442 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1443   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1444       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1445 
1446   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1447   // ImmWidth 0 is a default case where operand should not allow immediates.
1448   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1449   // use it to print verbose error message.
1450   switch (ImmWidth) {
1451   case 0:
1452   case 32:
1453     return MCOperand::createImm(getInlineImmVal32(Imm));
1454   case 64:
1455     return MCOperand::createImm(getInlineImmVal64(Imm));
1456   case 16:
1457     return MCOperand::createImm(getInlineImmVal16(Imm));
1458   default:
1459     llvm_unreachable("implement me");
1460   }
1461 }
1462 
1463 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1464   using namespace AMDGPU;
1465 
1466   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1467   switch (Width) {
1468   default: // fall
1469   case OPW32:
1470   case OPW16:
1471   case OPWV216:
1472     return VGPR_32RegClassID;
1473   case OPW64:
1474   case OPWV232: return VReg_64RegClassID;
1475   case OPW96: return VReg_96RegClassID;
1476   case OPW128: return VReg_128RegClassID;
1477   case OPW160: return VReg_160RegClassID;
1478   case OPW256: return VReg_256RegClassID;
1479   case OPW288: return VReg_288RegClassID;
1480   case OPW320: return VReg_320RegClassID;
1481   case OPW352: return VReg_352RegClassID;
1482   case OPW384: return VReg_384RegClassID;
1483   case OPW512: return VReg_512RegClassID;
1484   case OPW1024: return VReg_1024RegClassID;
1485   }
1486 }
1487 
1488 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1489   using namespace AMDGPU;
1490 
1491   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1492   switch (Width) {
1493   default: // fall
1494   case OPW32:
1495   case OPW16:
1496   case OPWV216:
1497     return AGPR_32RegClassID;
1498   case OPW64:
1499   case OPWV232: return AReg_64RegClassID;
1500   case OPW96: return AReg_96RegClassID;
1501   case OPW128: return AReg_128RegClassID;
1502   case OPW160: return AReg_160RegClassID;
1503   case OPW256: return AReg_256RegClassID;
1504   case OPW288: return AReg_288RegClassID;
1505   case OPW320: return AReg_320RegClassID;
1506   case OPW352: return AReg_352RegClassID;
1507   case OPW384: return AReg_384RegClassID;
1508   case OPW512: return AReg_512RegClassID;
1509   case OPW1024: return AReg_1024RegClassID;
1510   }
1511 }
1512 
1513 
1514 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1515   using namespace AMDGPU;
1516 
1517   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1518   switch (Width) {
1519   default: // fall
1520   case OPW32:
1521   case OPW16:
1522   case OPWV216:
1523     return SGPR_32RegClassID;
1524   case OPW64:
1525   case OPWV232: return SGPR_64RegClassID;
1526   case OPW96: return SGPR_96RegClassID;
1527   case OPW128: return SGPR_128RegClassID;
1528   case OPW160: return SGPR_160RegClassID;
1529   case OPW256: return SGPR_256RegClassID;
1530   case OPW288: return SGPR_288RegClassID;
1531   case OPW320: return SGPR_320RegClassID;
1532   case OPW352: return SGPR_352RegClassID;
1533   case OPW384: return SGPR_384RegClassID;
1534   case OPW512: return SGPR_512RegClassID;
1535   }
1536 }
1537 
1538 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1539   using namespace AMDGPU;
1540 
1541   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1542   switch (Width) {
1543   default: // fall
1544   case OPW32:
1545   case OPW16:
1546   case OPWV216:
1547     return TTMP_32RegClassID;
1548   case OPW64:
1549   case OPWV232: return TTMP_64RegClassID;
1550   case OPW128: return TTMP_128RegClassID;
1551   case OPW256: return TTMP_256RegClassID;
1552   case OPW288: return TTMP_288RegClassID;
1553   case OPW320: return TTMP_320RegClassID;
1554   case OPW352: return TTMP_352RegClassID;
1555   case OPW384: return TTMP_384RegClassID;
1556   case OPW512: return TTMP_512RegClassID;
1557   }
1558 }
1559 
1560 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1561   using namespace AMDGPU::EncValues;
1562 
1563   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1564   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1565 
1566   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1567 }
1568 
1569 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1570                                           bool MandatoryLiteral,
1571                                           unsigned ImmWidth, bool IsFP) const {
1572   using namespace AMDGPU::EncValues;
1573 
1574   assert(Val < 1024); // enum10
1575 
1576   bool IsAGPR = Val & 512;
1577   Val &= 511;
1578 
1579   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1580     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1581                                    : getVgprClassId(Width), Val - VGPR_MIN);
1582   }
1583   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1584                             IsFP);
1585 }
1586 
1587 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1588                                                  unsigned Val,
1589                                                  bool MandatoryLiteral,
1590                                                  unsigned ImmWidth,
1591                                                  bool IsFP) const {
1592   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1593   // decoded earlier.
1594   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1595   using namespace AMDGPU::EncValues;
1596 
1597   if (Val <= SGPR_MAX) {
1598     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1599     static_assert(SGPR_MIN == 0);
1600     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1601   }
1602 
1603   int TTmpIdx = getTTmpIdx(Val);
1604   if (TTmpIdx >= 0) {
1605     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1606   }
1607 
1608   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1609     return decodeIntImmed(Val);
1610 
1611   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1612     return decodeFPImmed(ImmWidth, Val);
1613 
1614   if (Val == LITERAL_CONST) {
1615     if (MandatoryLiteral)
1616       // Keep a sentinel value for deferred setting
1617       return MCOperand::createImm(LITERAL_CONST);
1618     else
1619       return decodeLiteralConstant(IsFP && ImmWidth == 64);
1620   }
1621 
1622   switch (Width) {
1623   case OPW32:
1624   case OPW16:
1625   case OPWV216:
1626     return decodeSpecialReg32(Val);
1627   case OPW64:
1628   case OPWV232:
1629     return decodeSpecialReg64(Val);
1630   default:
1631     llvm_unreachable("unexpected immediate type");
1632   }
1633 }
1634 
1635 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1636 // opposite of bit 0 of DstX.
1637 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1638                                                unsigned Val) const {
1639   int VDstXInd =
1640       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1641   assert(VDstXInd != -1);
1642   assert(Inst.getOperand(VDstXInd).isReg());
1643   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1644   Val |= ~XDstReg & 1;
1645   auto Width = llvm::AMDGPUDisassembler::OPW32;
1646   return createRegOperand(getVgprClassId(Width), Val);
1647 }
1648 
1649 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1650   using namespace AMDGPU;
1651 
1652   switch (Val) {
1653   // clang-format off
1654   case 102: return createRegOperand(FLAT_SCR_LO);
1655   case 103: return createRegOperand(FLAT_SCR_HI);
1656   case 104: return createRegOperand(XNACK_MASK_LO);
1657   case 105: return createRegOperand(XNACK_MASK_HI);
1658   case 106: return createRegOperand(VCC_LO);
1659   case 107: return createRegOperand(VCC_HI);
1660   case 108: return createRegOperand(TBA_LO);
1661   case 109: return createRegOperand(TBA_HI);
1662   case 110: return createRegOperand(TMA_LO);
1663   case 111: return createRegOperand(TMA_HI);
1664   case 124:
1665     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1666   case 125:
1667     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1668   case 126: return createRegOperand(EXEC_LO);
1669   case 127: return createRegOperand(EXEC_HI);
1670   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1671   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1672   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1673   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1674   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1675   case 251: return createRegOperand(SRC_VCCZ);
1676   case 252: return createRegOperand(SRC_EXECZ);
1677   case 253: return createRegOperand(SRC_SCC);
1678   case 254: return createRegOperand(LDS_DIRECT);
1679   default: break;
1680     // clang-format on
1681   }
1682   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1683 }
1684 
1685 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1686   using namespace AMDGPU;
1687 
1688   switch (Val) {
1689   case 102: return createRegOperand(FLAT_SCR);
1690   case 104: return createRegOperand(XNACK_MASK);
1691   case 106: return createRegOperand(VCC);
1692   case 108: return createRegOperand(TBA);
1693   case 110: return createRegOperand(TMA);
1694   case 124:
1695     if (isGFX11Plus())
1696       return createRegOperand(SGPR_NULL);
1697     break;
1698   case 125:
1699     if (!isGFX11Plus())
1700       return createRegOperand(SGPR_NULL);
1701     break;
1702   case 126: return createRegOperand(EXEC);
1703   case 235: return createRegOperand(SRC_SHARED_BASE);
1704   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1705   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1706   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1707   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1708   case 251: return createRegOperand(SRC_VCCZ);
1709   case 252: return createRegOperand(SRC_EXECZ);
1710   case 253: return createRegOperand(SRC_SCC);
1711   default: break;
1712   }
1713   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1714 }
1715 
1716 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1717                                             const unsigned Val,
1718                                             unsigned ImmWidth) const {
1719   using namespace AMDGPU::SDWA;
1720   using namespace AMDGPU::EncValues;
1721 
1722   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1723       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1724     // XXX: cast to int is needed to avoid stupid warning:
1725     // compare with unsigned is always true
1726     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1727         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1728       return createRegOperand(getVgprClassId(Width),
1729                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1730     }
1731     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1732         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1733                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1734       return createSRegOperand(getSgprClassId(Width),
1735                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1736     }
1737     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1738         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1739       return createSRegOperand(getTtmpClassId(Width),
1740                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1741     }
1742 
1743     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1744 
1745     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1746       return decodeIntImmed(SVal);
1747 
1748     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1749       return decodeFPImmed(ImmWidth, SVal);
1750 
1751     return decodeSpecialReg32(SVal);
1752   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1753     return createRegOperand(getVgprClassId(Width), Val);
1754   }
1755   llvm_unreachable("unsupported target");
1756 }
1757 
1758 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1759   return decodeSDWASrc(OPW16, Val, 16);
1760 }
1761 
1762 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1763   return decodeSDWASrc(OPW32, Val, 32);
1764 }
1765 
1766 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1767   using namespace AMDGPU::SDWA;
1768 
1769   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1770           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1771          "SDWAVopcDst should be present only on GFX9+");
1772 
1773   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1774 
1775   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1776     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1777 
1778     int TTmpIdx = getTTmpIdx(Val);
1779     if (TTmpIdx >= 0) {
1780       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1781       return createSRegOperand(TTmpClsId, TTmpIdx);
1782     } else if (Val > SGPR_MAX) {
1783       return IsWave64 ? decodeSpecialReg64(Val)
1784                       : decodeSpecialReg32(Val);
1785     } else {
1786       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1787     }
1788   } else {
1789     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1790   }
1791 }
1792 
1793 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1794   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1795              ? decodeSrcOp(OPW64, Val)
1796              : decodeSrcOp(OPW32, Val);
1797 }
1798 
1799 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1800   return decodeSrcOp(OPW32, Val);
1801 }
1802 
1803 bool AMDGPUDisassembler::isVI() const {
1804   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1805 }
1806 
1807 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1808 
1809 bool AMDGPUDisassembler::isGFX90A() const {
1810   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1811 }
1812 
1813 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1814 
1815 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1816 
1817 bool AMDGPUDisassembler::isGFX10Plus() const {
1818   return AMDGPU::isGFX10Plus(STI);
1819 }
1820 
1821 bool AMDGPUDisassembler::isGFX11() const {
1822   return STI.hasFeature(AMDGPU::FeatureGFX11);
1823 }
1824 
1825 bool AMDGPUDisassembler::isGFX11Plus() const {
1826   return AMDGPU::isGFX11Plus(STI);
1827 }
1828 
1829 bool AMDGPUDisassembler::isGFX12Plus() const {
1830   return AMDGPU::isGFX12Plus(STI);
1831 }
1832 
1833 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1834   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1835 }
1836 
1837 bool AMDGPUDisassembler::hasKernargPreload() const {
1838   return AMDGPU::hasKernargPreload(STI);
1839 }
1840 
1841 //===----------------------------------------------------------------------===//
1842 // AMDGPU specific symbol handling
1843 //===----------------------------------------------------------------------===//
1844 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1845 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1846   do {                                                                         \
1847     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1848   } while (0)
1849 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1850   do {                                                                         \
1851     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1852              << GET_FIELD(MASK) << '\n';                                       \
1853   } while (0)
1854 
1855 // NOLINTNEXTLINE(readability-identifier-naming)
1856 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1857     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1858   using namespace amdhsa;
1859   StringRef Indent = "\t";
1860 
1861   // We cannot accurately backward compute #VGPRs used from
1862   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1863   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1864   // simply calculate the inverse of what the assembler does.
1865 
1866   uint32_t GranulatedWorkitemVGPRCount =
1867       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1868 
1869   uint32_t NextFreeVGPR =
1870       (GranulatedWorkitemVGPRCount + 1) *
1871       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1872 
1873   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1874 
1875   // We cannot backward compute values used to calculate
1876   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1877   // directives can't be computed:
1878   // .amdhsa_reserve_vcc
1879   // .amdhsa_reserve_flat_scratch
1880   // .amdhsa_reserve_xnack_mask
1881   // They take their respective default values if not specified in the assembly.
1882   //
1883   // GRANULATED_WAVEFRONT_SGPR_COUNT
1884   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1885   //
1886   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1887   // are set to 0. So while disassembling we consider that:
1888   //
1889   // GRANULATED_WAVEFRONT_SGPR_COUNT
1890   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1891   //
1892   // The disassembler cannot recover the original values of those 3 directives.
1893 
1894   uint32_t GranulatedWavefrontSGPRCount =
1895       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1896 
1897   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1898     return MCDisassembler::Fail;
1899 
1900   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1901                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1902 
1903   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1904   if (!hasArchitectedFlatScratch())
1905     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1906   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1907   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1908 
1909   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1910     return MCDisassembler::Fail;
1911 
1912   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1913                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1914   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1915                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1916   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1917                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1918   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1919                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1920 
1921   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1922     return MCDisassembler::Fail;
1923 
1924   if (!isGFX12Plus())
1925     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1926                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1927 
1928   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1929     return MCDisassembler::Fail;
1930 
1931   if (!isGFX12Plus())
1932     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1933                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1934 
1935   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1936     return MCDisassembler::Fail;
1937 
1938   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1939     return MCDisassembler::Fail;
1940 
1941   if (isGFX9Plus())
1942     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1943 
1944   if (!isGFX9Plus())
1945     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1946       return MCDisassembler::Fail;
1947   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1948     return MCDisassembler::Fail;
1949   if (!isGFX10Plus())
1950     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1951       return MCDisassembler::Fail;
1952 
1953   if (isGFX10Plus()) {
1954     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1955                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1956     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1957     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1958   }
1959 
1960   if (isGFX12Plus())
1961     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1962                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1963 
1964   return MCDisassembler::Success;
1965 }
1966 
1967 // NOLINTNEXTLINE(readability-identifier-naming)
1968 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1969     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1970   using namespace amdhsa;
1971   StringRef Indent = "\t";
1972   if (hasArchitectedFlatScratch())
1973     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1974                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1975   else
1976     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1977                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1978   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1979                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1980   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1981                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1982   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1983                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1984   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1985                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1986   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1987                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1988 
1989   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1990     return MCDisassembler::Fail;
1991 
1992   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1993     return MCDisassembler::Fail;
1994 
1995   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1996     return MCDisassembler::Fail;
1997 
1998   PRINT_DIRECTIVE(
1999       ".amdhsa_exception_fp_ieee_invalid_op",
2000       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
2001   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
2002                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
2003   PRINT_DIRECTIVE(
2004       ".amdhsa_exception_fp_ieee_div_zero",
2005       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
2006   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
2007                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
2008   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
2009                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
2010   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
2011                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
2012   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
2013                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
2014 
2015   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
2016     return MCDisassembler::Fail;
2017 
2018   return MCDisassembler::Success;
2019 }
2020 
2021 // NOLINTNEXTLINE(readability-identifier-naming)
2022 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
2023     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
2024   using namespace amdhsa;
2025   StringRef Indent = "\t";
2026   if (isGFX90A()) {
2027     KdStream << Indent << ".amdhsa_accum_offset "
2028              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
2029              << '\n';
2030     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
2031       return MCDisassembler::Fail;
2032     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
2033     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
2034       return MCDisassembler::Fail;
2035   } else if (isGFX10Plus()) {
2036     // Bits [0-3].
2037     if (!isGFX12Plus()) {
2038       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
2039         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
2040                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2041       } else {
2042         PRINT_PSEUDO_DIRECTIVE_COMMENT(
2043             "SHARED_VGPR_COUNT",
2044             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2045       }
2046     } else {
2047       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0)
2048         return MCDisassembler::Fail;
2049     }
2050 
2051     // Bits [4-11].
2052     if (isGFX11()) {
2053       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
2054                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
2055       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
2056                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
2057       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
2058                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
2059     } else if (isGFX12Plus()) {
2060       PRINT_PSEUDO_DIRECTIVE_COMMENT(
2061           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
2062     } else {
2063       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1)
2064         return MCDisassembler::Fail;
2065     }
2066 
2067     // Bits [12].
2068     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2)
2069       return MCDisassembler::Fail;
2070 
2071     // Bits [13].
2072     if (isGFX12Plus()) {
2073       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
2074                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
2075     } else {
2076       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3)
2077         return MCDisassembler::Fail;
2078     }
2079 
2080     // Bits [14-30].
2081     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4)
2082       return MCDisassembler::Fail;
2083 
2084     // Bits [31].
2085     if (isGFX11Plus()) {
2086       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2087                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2088     } else {
2089       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5)
2090         return MCDisassembler::Fail;
2091     }
2092   } else if (FourByteBuffer) {
2093     return MCDisassembler::Fail;
2094   }
2095   return MCDisassembler::Success;
2096 }
2097 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2098 #undef PRINT_DIRECTIVE
2099 #undef GET_FIELD
2100 
2101 MCDisassembler::DecodeStatus
2102 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2103     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2104     raw_string_ostream &KdStream) const {
2105 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2106   do {                                                                         \
2107     KdStream << Indent << DIRECTIVE " "                                        \
2108              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2109   } while (0)
2110 
2111   uint16_t TwoByteBuffer = 0;
2112   uint32_t FourByteBuffer = 0;
2113 
2114   StringRef ReservedBytes;
2115   StringRef Indent = "\t";
2116 
2117   assert(Bytes.size() == 64);
2118   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2119 
2120   switch (Cursor.tell()) {
2121   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2122     FourByteBuffer = DE.getU32(Cursor);
2123     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2124              << '\n';
2125     return MCDisassembler::Success;
2126 
2127   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2128     FourByteBuffer = DE.getU32(Cursor);
2129     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2130              << FourByteBuffer << '\n';
2131     return MCDisassembler::Success;
2132 
2133   case amdhsa::KERNARG_SIZE_OFFSET:
2134     FourByteBuffer = DE.getU32(Cursor);
2135     KdStream << Indent << ".amdhsa_kernarg_size "
2136              << FourByteBuffer << '\n';
2137     return MCDisassembler::Success;
2138 
2139   case amdhsa::RESERVED0_OFFSET:
2140     // 4 reserved bytes, must be 0.
2141     ReservedBytes = DE.getBytes(Cursor, 4);
2142     for (int I = 0; I < 4; ++I) {
2143       if (ReservedBytes[I] != 0) {
2144         return MCDisassembler::Fail;
2145       }
2146     }
2147     return MCDisassembler::Success;
2148 
2149   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2150     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2151     // So far no directive controls this for Code Object V3, so simply skip for
2152     // disassembly.
2153     DE.skip(Cursor, 8);
2154     return MCDisassembler::Success;
2155 
2156   case amdhsa::RESERVED1_OFFSET:
2157     // 20 reserved bytes, must be 0.
2158     ReservedBytes = DE.getBytes(Cursor, 20);
2159     for (int I = 0; I < 20; ++I) {
2160       if (ReservedBytes[I] != 0) {
2161         return MCDisassembler::Fail;
2162       }
2163     }
2164     return MCDisassembler::Success;
2165 
2166   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2167     FourByteBuffer = DE.getU32(Cursor);
2168     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2169 
2170   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2171     FourByteBuffer = DE.getU32(Cursor);
2172     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2173 
2174   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2175     FourByteBuffer = DE.getU32(Cursor);
2176     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2177 
2178   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2179     using namespace amdhsa;
2180     TwoByteBuffer = DE.getU16(Cursor);
2181 
2182     if (!hasArchitectedFlatScratch())
2183       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2184                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2185     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2186                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2187     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2188                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2189     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2190                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2191     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2192                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2193     if (!hasArchitectedFlatScratch())
2194       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2195                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2196     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2197                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2198 
2199     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2200       return MCDisassembler::Fail;
2201 
2202     // Reserved for GFX9
2203     if (isGFX9() &&
2204         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2205       return MCDisassembler::Fail;
2206     } else if (isGFX10Plus()) {
2207       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2208                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2209     }
2210 
2211     if (CodeObjectVersion >= AMDGPU::AMDHSA_COV5)
2212       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2213                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2214 
2215     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2216       return MCDisassembler::Fail;
2217 
2218     return MCDisassembler::Success;
2219 
2220   case amdhsa::KERNARG_PRELOAD_OFFSET:
2221     using namespace amdhsa;
2222     TwoByteBuffer = DE.getU16(Cursor);
2223     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2224       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2225                       KERNARG_PRELOAD_SPEC_LENGTH);
2226     }
2227 
2228     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2229       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2230                       KERNARG_PRELOAD_SPEC_OFFSET);
2231     }
2232     return MCDisassembler::Success;
2233 
2234   case amdhsa::RESERVED3_OFFSET:
2235     // 4 bytes from here are reserved, must be 0.
2236     ReservedBytes = DE.getBytes(Cursor, 4);
2237     for (int I = 0; I < 4; ++I) {
2238       if (ReservedBytes[I] != 0)
2239         return MCDisassembler::Fail;
2240     }
2241     return MCDisassembler::Success;
2242 
2243   default:
2244     llvm_unreachable("Unhandled index. Case statements cover everything.");
2245     return MCDisassembler::Fail;
2246   }
2247 #undef PRINT_DIRECTIVE
2248 }
2249 
2250 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2251     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2252   // CP microcode requires the kernel descriptor to be 64 aligned.
2253   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2254     return MCDisassembler::Fail;
2255 
2256   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2257   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2258   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2259   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2260   // when required.
2261   if (isGFX10Plus()) {
2262     uint16_t KernelCodeProperties =
2263         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2264                                 llvm::endianness::little);
2265     EnableWavefrontSize32 =
2266         AMDHSA_BITS_GET(KernelCodeProperties,
2267                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2268   }
2269 
2270   std::string Kd;
2271   raw_string_ostream KdStream(Kd);
2272   KdStream << ".amdhsa_kernel " << KdName << '\n';
2273 
2274   DataExtractor::Cursor C(0);
2275   while (C && C.tell() < Bytes.size()) {
2276     MCDisassembler::DecodeStatus Status =
2277         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2278 
2279     cantFail(C.takeError());
2280 
2281     if (Status == MCDisassembler::Fail)
2282       return MCDisassembler::Fail;
2283   }
2284   KdStream << ".end_amdhsa_kernel\n";
2285   outs() << KdStream.str();
2286   return MCDisassembler::Success;
2287 }
2288 
2289 std::optional<MCDisassembler::DecodeStatus>
2290 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2291                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2292                                   raw_ostream &CStream) const {
2293   // Right now only kernel descriptor needs to be handled.
2294   // We ignore all other symbols for target specific handling.
2295   // TODO:
2296   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2297   // Object V2 and V3 when symbols are marked protected.
2298 
2299   // amd_kernel_code_t for Code Object V2.
2300   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2301     Size = 256;
2302     return MCDisassembler::Fail;
2303   }
2304 
2305   // Code Object V3 kernel descriptors.
2306   StringRef Name = Symbol.Name;
2307   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2308     Size = 64; // Size = 64 regardless of success or failure.
2309     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2310   }
2311   return std::nullopt;
2312 }
2313 
2314 //===----------------------------------------------------------------------===//
2315 // AMDGPUSymbolizer
2316 //===----------------------------------------------------------------------===//
2317 
2318 // Try to find symbol name for specified label
2319 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2320     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2321     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2322     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2323 
2324   if (!IsBranch) {
2325     return false;
2326   }
2327 
2328   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2329   if (!Symbols)
2330     return false;
2331 
2332   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2333     return Val.Addr == static_cast<uint64_t>(Value) &&
2334            Val.Type == ELF::STT_NOTYPE;
2335   });
2336   if (Result != Symbols->end()) {
2337     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2338     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2339     Inst.addOperand(MCOperand::createExpr(Add));
2340     return true;
2341   }
2342   // Add to list of referenced addresses, so caller can synthesize a label.
2343   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2344   return false;
2345 }
2346 
2347 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2348                                                        int64_t Value,
2349                                                        uint64_t Address) {
2350   llvm_unreachable("unimplemented");
2351 }
2352 
2353 //===----------------------------------------------------------------------===//
2354 // Initialization
2355 //===----------------------------------------------------------------------===//
2356 
2357 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2358                               LLVMOpInfoCallback /*GetOpInfo*/,
2359                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2360                               void *DisInfo,
2361                               MCContext *Ctx,
2362                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2363   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2364 }
2365 
2366 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2367                                                 const MCSubtargetInfo &STI,
2368                                                 MCContext &Ctx) {
2369   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2370 }
2371 
2372 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2373   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2374                                          createAMDGPUDisassembler);
2375   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2376                                        createAMDGPUSymbolizer);
2377 }
2378