1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, MCInstrInfo const *MCII) 49 : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 50 MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) { 51 // ToDo: AMDGPUDisassembler supports only VI ISA. 52 if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) 53 report_fatal_error("Disassembly not yet supported for subtarget"); 54 } 55 56 inline static MCDisassembler::DecodeStatus 57 addOperand(MCInst &Inst, const MCOperand& Opnd) { 58 Inst.addOperand(Opnd); 59 return Opnd.isValid() ? 60 MCDisassembler::Success : 61 MCDisassembler::Fail; 62 } 63 64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 65 uint16_t NameIdx) { 66 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 67 if (OpIdx != -1) { 68 auto I = MI.begin(); 69 std::advance(I, OpIdx); 70 MI.insert(I, Op); 71 } 72 return OpIdx; 73 } 74 75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm, 76 uint64_t Addr, 77 const MCDisassembler *Decoder) { 78 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 79 80 // Our branches take a simm16, but we need two extra bits to account for the 81 // factor of 4. 82 APInt SignedOffset(18, Imm * 4, true); 83 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 84 85 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 86 return MCDisassembler::Success; 87 return addOperand(Inst, MCOperand::createImm(Imm)); 88 } 89 90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 91 const MCDisassembler *Decoder) { 92 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 93 int64_t Offset; 94 if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets. 95 Offset = SignExtend64<24>(Imm); 96 } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 97 Offset = Imm & 0xFFFFF; 98 } else { // GFX9+ supports 21-bit signed offsets. 99 Offset = SignExtend64<21>(Imm); 100 } 101 return addOperand(Inst, MCOperand::createImm(Offset)); 102 } 103 104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 105 const MCDisassembler *Decoder) { 106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 107 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 108 } 109 110 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val, 111 uint64_t Addr, 112 const MCDisassembler *Decoder) { 113 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 114 return addOperand(Inst, DAsm->decodeSplitBarrier(Val)); 115 } 116 117 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 118 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 119 uint64_t /*Addr*/, \ 120 const MCDisassembler *Decoder) { \ 121 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 122 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 123 } 124 125 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 126 // number of register. Used by VGPR only and AGPR only operands. 127 #define DECODE_OPERAND_REG_8(RegClass) \ 128 static DecodeStatus Decode##RegClass##RegisterClass( \ 129 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 130 const MCDisassembler *Decoder) { \ 131 assert(Imm < (1 << 8) && "8-bit encoding"); \ 132 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 133 return addOperand( \ 134 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 135 } 136 137 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 138 ImmWidth) \ 139 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 140 const MCDisassembler *Decoder) { \ 141 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 142 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 143 return addOperand(Inst, \ 144 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 145 MandatoryLiteral, ImmWidth)); \ 146 } 147 148 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 149 // get register class. Used by SGPR only operands. 150 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 151 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 152 153 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 154 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 155 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 156 // Used by AV_ register classes (AGPR or VGPR only register operands). 157 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ 158 DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ 159 Imm | AMDGPU::EncValues::IS_VGPR, false, 0) 160 161 // Decoder for Src(9-bit encoding) registers only. 162 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ 163 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) 164 165 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 166 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 167 // only. 168 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ 169 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) 170 171 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 172 // Imm{9} is acc, registers only. 173 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ 174 DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) 175 176 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 177 // register from RegClass or immediate. Registers that don't belong to RegClass 178 // will be decoded and InstPrinter will report warning. Immediate will be 179 // decoded into constant of size ImmWidth, should match width of immediate used 180 // by OperandType (important for floating point types). 181 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ 182 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ 183 false, ImmWidth) 184 185 #define DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(Name, OpWidth, ImmWidth) \ 186 DECODE_SrcOp(decodeOperand_##Name, 9, OpWidth, Imm, false, ImmWidth) 187 188 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 189 // and decode using 'enum10' from decodeSrcOp. 190 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ 191 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ 192 Imm | 512, false, ImmWidth) 193 194 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ 195 DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ 196 OpWidth, Imm, true, ImmWidth) 197 198 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 199 // when RegisterClass is used as an operand. Most often used for destination 200 // operands. 201 202 DECODE_OPERAND_REG_8(VGPR_32) 203 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 204 DECODE_OPERAND_REG_8(VReg_64) 205 DECODE_OPERAND_REG_8(VReg_96) 206 DECODE_OPERAND_REG_8(VReg_128) 207 DECODE_OPERAND_REG_8(VReg_256) 208 DECODE_OPERAND_REG_8(VReg_288) 209 DECODE_OPERAND_REG_8(VReg_352) 210 DECODE_OPERAND_REG_8(VReg_384) 211 DECODE_OPERAND_REG_8(VReg_512) 212 DECODE_OPERAND_REG_8(VReg_1024) 213 214 DECODE_OPERAND_REG_7(SReg_32, OPW32) 215 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32) 216 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 217 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 218 DECODE_OPERAND_REG_7(SReg_64, OPW64) 219 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 220 DECODE_OPERAND_REG_7(SReg_96, OPW96) 221 DECODE_OPERAND_REG_7(SReg_128, OPW128) 222 DECODE_OPERAND_REG_7(SReg_256, OPW256) 223 DECODE_OPERAND_REG_7(SReg_512, OPW512) 224 225 DECODE_OPERAND_REG_8(AGPR_32) 226 DECODE_OPERAND_REG_8(AReg_64) 227 DECODE_OPERAND_REG_8(AReg_128) 228 DECODE_OPERAND_REG_8(AReg_256) 229 DECODE_OPERAND_REG_8(AReg_512) 230 DECODE_OPERAND_REG_8(AReg_1024) 231 232 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) 233 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) 234 235 // Decoders for register only source RegisterOperands that use use 9-bit Src 236 // encoding: 'decodeOperand_<RegClass>'. 237 238 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) 239 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) 240 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) 241 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) 242 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) 243 244 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) 245 246 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) 247 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) 248 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) 249 250 // Decoders for register or immediate RegisterOperands that use 9-bit Src 251 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'. 252 253 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) 254 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) 255 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16) 256 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) 257 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) 258 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) 259 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) 260 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) 261 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32) 262 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) 263 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) 264 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) 265 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) 266 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) 267 268 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2I16, OPW32, 32) 269 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2F16, OPW32, 16) 270 271 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) 272 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) 273 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) 274 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) 275 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) 276 277 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) 278 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) 279 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) 280 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32) 281 282 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm, 283 uint64_t /*Addr*/, 284 const MCDisassembler *Decoder) { 285 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 286 assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used"); 287 288 bool IsHi = Imm & (1 << 9); 289 unsigned RegIdx = Imm & 0xff; 290 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 291 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 292 } 293 294 static DecodeStatus 295 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, 296 const MCDisassembler *Decoder) { 297 assert(isUInt<8>(Imm) && "8-bit encoding expected"); 298 299 bool IsHi = Imm & (1 << 7); 300 unsigned RegIdx = Imm & 0x7f; 301 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 302 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 303 } 304 305 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm, 306 uint64_t /*Addr*/, 307 const MCDisassembler *Decoder) { 308 assert(isUInt<9>(Imm) && "9-bit encoding expected"); 309 310 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 311 bool IsVGPR = Imm & (1 << 8); 312 if (IsVGPR) { 313 bool IsHi = Imm & (1 << 7); 314 unsigned RegIdx = Imm & 0x7f; 315 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 316 } 317 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 318 Imm & 0xFF, false, 16)); 319 } 320 321 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm, 322 uint64_t /*Addr*/, 323 const MCDisassembler *Decoder) { 324 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 325 326 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 327 bool IsVGPR = Imm & (1 << 8); 328 if (IsVGPR) { 329 bool IsHi = Imm & (1 << 9); 330 unsigned RegIdx = Imm & 0xff; 331 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 332 } 333 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 334 Imm & 0xFF, false, 16)); 335 } 336 337 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm, 338 uint64_t Addr, 339 const MCDisassembler *Decoder) { 340 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 341 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 342 } 343 344 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 345 uint64_t Addr, const void *Decoder) { 346 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 347 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 348 } 349 350 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 351 const MCRegisterInfo *MRI) { 352 if (OpIdx < 0) 353 return false; 354 355 const MCOperand &Op = Inst.getOperand(OpIdx); 356 if (!Op.isReg()) 357 return false; 358 359 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 360 auto Reg = Sub ? Sub : Op.getReg(); 361 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 362 } 363 364 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 365 AMDGPUDisassembler::OpWidthTy Opw, 366 const MCDisassembler *Decoder) { 367 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 368 if (!DAsm->isGFX90A()) { 369 Imm &= 511; 370 } else { 371 // If atomic has both vdata and vdst their register classes are tied. 372 // The bit is decoded along with the vdst, first operand. We need to 373 // change register class to AGPR if vdst was AGPR. 374 // If a DS instruction has both data0 and data1 their register classes 375 // are also tied. 376 unsigned Opc = Inst.getOpcode(); 377 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 378 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 379 : AMDGPU::OpName::vdata; 380 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 381 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 382 if ((int)Inst.getNumOperands() == DataIdx) { 383 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 384 if (IsAGPROperand(Inst, DstIdx, MRI)) 385 Imm |= 512; 386 } 387 388 if (TSFlags & SIInstrFlags::DS) { 389 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 390 if ((int)Inst.getNumOperands() == Data2Idx && 391 IsAGPROperand(Inst, DataIdx, MRI)) 392 Imm |= 512; 393 } 394 } 395 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 396 } 397 398 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm, 399 uint64_t Addr, 400 const MCDisassembler *Decoder) { 401 assert(Imm < (1 << 9) && "9-bit encoding"); 402 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 403 return addOperand( 404 Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true)); 405 } 406 407 static DecodeStatus 408 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 409 const MCDisassembler *Decoder) { 410 return decodeOperand_AVLdSt_Any(Inst, Imm, 411 AMDGPUDisassembler::OPW32, Decoder); 412 } 413 414 static DecodeStatus 415 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 416 const MCDisassembler *Decoder) { 417 return decodeOperand_AVLdSt_Any(Inst, Imm, 418 AMDGPUDisassembler::OPW64, Decoder); 419 } 420 421 static DecodeStatus 422 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 423 const MCDisassembler *Decoder) { 424 return decodeOperand_AVLdSt_Any(Inst, Imm, 425 AMDGPUDisassembler::OPW96, Decoder); 426 } 427 428 static DecodeStatus 429 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 430 const MCDisassembler *Decoder) { 431 return decodeOperand_AVLdSt_Any(Inst, Imm, 432 AMDGPUDisassembler::OPW128, Decoder); 433 } 434 435 static DecodeStatus 436 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 437 const MCDisassembler *Decoder) { 438 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, 439 Decoder); 440 } 441 442 #define DECODE_SDWA(DecName) \ 443 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 444 445 DECODE_SDWA(Src32) 446 DECODE_SDWA(Src16) 447 DECODE_SDWA(VopcDst) 448 449 #include "AMDGPUGenDisassemblerTables.inc" 450 451 //===----------------------------------------------------------------------===// 452 // 453 //===----------------------------------------------------------------------===// 454 455 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 456 assert(Bytes.size() >= sizeof(T)); 457 const auto Res = 458 support::endian::read<T, llvm::endianness::little>(Bytes.data()); 459 Bytes = Bytes.slice(sizeof(T)); 460 return Res; 461 } 462 463 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 464 assert(Bytes.size() >= 12); 465 uint64_t Lo = 466 support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data()); 467 Bytes = Bytes.slice(8); 468 uint64_t Hi = 469 support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data()); 470 Bytes = Bytes.slice(4); 471 return DecoderUInt128(Lo, Hi); 472 } 473 474 // The disassembler is greedy, so we need to check FI operand value to 475 // not parse a dpp if the correct literal is not set. For dpp16 the 476 // autogenerated decoder checks the dpp literal 477 static bool isValidDPP8(const MCInst &MI) { 478 using namespace llvm::AMDGPU::DPP; 479 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 480 assert(FiIdx != -1); 481 if ((unsigned)FiIdx >= MI.getNumOperands()) 482 return false; 483 unsigned Fi = MI.getOperand(FiIdx).getImm(); 484 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 485 } 486 487 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 488 ArrayRef<uint8_t> Bytes_, 489 uint64_t Address, 490 raw_ostream &CS) const { 491 bool IsSDWA = false; 492 493 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 494 Bytes = Bytes_.slice(0, MaxInstBytesNum); 495 496 DecodeStatus Res = MCDisassembler::Fail; 497 do { 498 // ToDo: better to switch encoding length using some bit predicate 499 // but it is unknown yet, so try all we can 500 501 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 502 // encodings 503 if (isGFX11Plus() && Bytes.size() >= 12 ) { 504 DecoderUInt128 DecW = eat12Bytes(Bytes); 505 Res = 506 tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696, 507 MI, DecW, Address, CS); 508 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 509 break; 510 MI = MCInst(); // clear 511 Res = 512 tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696, 513 MI, DecW, Address, CS); 514 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 515 break; 516 MI = MCInst(); // clear 517 518 const auto convertVOPDPP = [&]() { 519 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) { 520 convertVOP3PDPPInst(MI); 521 } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) { 522 convertVOPCDPPInst(MI); // Special VOP3 case 523 } else { 524 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); 525 convertVOP3DPPInst(MI); // Regular VOP3 case 526 } 527 }; 528 Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696, 529 MI, DecW, Address, CS); 530 if (Res) { 531 convertVOPDPP(); 532 break; 533 } 534 Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696, 535 MI, DecW, Address, CS); 536 if (Res) { 537 convertVOPDPP(); 538 break; 539 } 540 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS); 541 if (Res) 542 break; 543 544 Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS); 545 if (Res) 546 break; 547 548 Res = tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS); 549 if (Res) 550 break; 551 } 552 // Reinitialize Bytes 553 Bytes = Bytes_.slice(0, MaxInstBytesNum); 554 555 if (Bytes.size() >= 8) { 556 const uint64_t QW = eatBytes<uint64_t>(Bytes); 557 558 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 559 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS); 560 if (Res) { 561 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 562 == -1) 563 break; 564 if (convertDPP8Inst(MI) == MCDisassembler::Success) 565 break; 566 MI = MCInst(); // clear 567 } 568 } 569 570 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS); 571 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 572 break; 573 MI = MCInst(); // clear 574 575 Res = tryDecodeInst(DecoderTableDPP8GFX1164, 576 DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS); 577 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 578 break; 579 MI = MCInst(); // clear 580 581 Res = tryDecodeInst(DecoderTableDPP8GFX1264, 582 DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS); 583 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 584 break; 585 MI = MCInst(); // clear 586 587 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS); 588 if (Res) break; 589 590 Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664, 591 MI, QW, Address, CS); 592 if (Res) { 593 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 594 convertVOPCDPPInst(MI); 595 break; 596 } 597 598 Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664, 599 MI, QW, Address, CS); 600 if (Res) { 601 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 602 convertVOPCDPPInst(MI); 603 break; 604 } 605 606 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS); 607 if (Res) { IsSDWA = true; break; } 608 609 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS); 610 if (Res) { IsSDWA = true; break; } 611 612 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS); 613 if (Res) { IsSDWA = true; break; } 614 615 if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) { 616 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS); 617 if (Res) 618 break; 619 } 620 621 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 622 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 623 // table first so we print the correct name. 624 if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) { 625 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS); 626 if (Res) 627 break; 628 } 629 } 630 631 // Reinitialize Bytes as DPP64 could have eaten too much 632 Bytes = Bytes_.slice(0, MaxInstBytesNum); 633 634 // Try decode 32-bit instruction 635 if (Bytes.size() < 4) break; 636 const uint32_t DW = eatBytes<uint32_t>(Bytes); 637 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS); 638 if (Res) break; 639 640 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS); 641 if (Res) break; 642 643 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS); 644 if (Res) break; 645 646 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 647 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS); 648 if (Res) 649 break; 650 } 651 652 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 653 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS); 654 if (Res) break; 655 } 656 657 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS); 658 if (Res) break; 659 660 Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW, 661 Address, CS); 662 if (Res) break; 663 664 Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW, 665 Address, CS); 666 if (Res) 667 break; 668 669 if (Bytes.size() < 4) break; 670 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 671 672 if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) { 673 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS); 674 if (Res) 675 break; 676 } 677 678 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 679 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS); 680 if (Res) 681 break; 682 } 683 684 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS); 685 if (Res) break; 686 687 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS); 688 if (Res) break; 689 690 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS); 691 if (Res) break; 692 693 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS); 694 if (Res) break; 695 696 Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW, 697 Address, CS); 698 if (Res) 699 break; 700 701 Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW, 702 Address, CS); 703 if (Res) 704 break; 705 706 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS); 707 } while (false); 708 709 if (Res && AMDGPU::isMAC(MI.getOpcode())) { 710 // Insert dummy unused src2_modifiers. 711 insertNamedMCOperand(MI, MCOperand::createImm(0), 712 AMDGPU::OpName::src2_modifiers); 713 } 714 715 if (Res && (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp || 716 MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp)) { 717 // Insert dummy unused src2_modifiers. 718 insertNamedMCOperand(MI, MCOperand::createImm(0), 719 AMDGPU::OpName::src2_modifiers); 720 } 721 722 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) && 723 !AMDGPU::hasGDS(STI)) { 724 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds); 725 } 726 727 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 728 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 729 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 730 AMDGPU::OpName::cpol); 731 if (CPolPos != -1) { 732 unsigned CPol = 733 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 734 AMDGPU::CPol::GLC : 0; 735 if (MI.getNumOperands() <= (unsigned)CPolPos) { 736 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 737 AMDGPU::OpName::cpol); 738 } else if (CPol) { 739 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 740 } 741 } 742 } 743 744 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 745 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 746 (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) { 747 // GFX90A lost TFE, its place is occupied by ACC. 748 int TFEOpIdx = 749 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 750 if (TFEOpIdx != -1) { 751 auto TFEIter = MI.begin(); 752 std::advance(TFEIter, TFEOpIdx); 753 MI.insert(TFEIter, MCOperand::createImm(0)); 754 } 755 } 756 757 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 758 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 759 int SWZOpIdx = 760 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 761 if (SWZOpIdx != -1) { 762 auto SWZIter = MI.begin(); 763 std::advance(SWZIter, SWZOpIdx); 764 MI.insert(SWZIter, MCOperand::createImm(0)); 765 } 766 } 767 768 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 769 int VAddr0Idx = 770 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 771 int RsrcIdx = 772 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 773 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 774 if (VAddr0Idx >= 0 && NSAArgs > 0) { 775 unsigned NSAWords = (NSAArgs + 3) / 4; 776 if (Bytes.size() < 4 * NSAWords) { 777 Res = MCDisassembler::Fail; 778 } else { 779 for (unsigned i = 0; i < NSAArgs; ++i) { 780 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 781 auto VAddrRCID = 782 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 783 MI.insert(MI.begin() + VAddrIdx, 784 createRegOperand(VAddrRCID, Bytes[i])); 785 } 786 Bytes = Bytes.slice(4 * NSAWords); 787 } 788 } 789 790 if (Res) 791 Res = convertMIMGInst(MI); 792 } 793 794 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 795 (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE))) 796 Res = convertMIMGInst(MI); 797 798 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 799 Res = convertEXPInst(MI); 800 801 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 802 Res = convertVINTERPInst(MI); 803 804 if (Res && IsSDWA) 805 Res = convertSDWAInst(MI); 806 807 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 808 AMDGPU::OpName::vdst_in); 809 if (VDstIn_Idx != -1) { 810 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 811 MCOI::OperandConstraint::TIED_TO); 812 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 813 !MI.getOperand(VDstIn_Idx).isReg() || 814 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 815 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 816 MI.erase(&MI.getOperand(VDstIn_Idx)); 817 insertNamedMCOperand(MI, 818 MCOperand::createReg(MI.getOperand(Tied).getReg()), 819 AMDGPU::OpName::vdst_in); 820 } 821 } 822 823 int ImmLitIdx = 824 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 825 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 826 if (Res && ImmLitIdx != -1 && !IsSOPK) 827 Res = convertFMAanyK(MI, ImmLitIdx); 828 829 // if the opcode was not recognized we'll assume a Size of 4 bytes 830 // (unless there are fewer bytes left) 831 Size = Res ? (MaxInstBytesNum - Bytes.size()) 832 : std::min((size_t)4, Bytes_.size()); 833 return Res; 834 } 835 836 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 837 if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) { 838 // The MCInst still has these fields even though they are no longer encoded 839 // in the GFX11 instruction. 840 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 841 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 842 } 843 return MCDisassembler::Success; 844 } 845 846 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 847 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 848 MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 || 849 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 850 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 || 851 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 852 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 || 853 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 || 854 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) { 855 // The MCInst has this field that is not directly encoded in the 856 // instruction. 857 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 858 } 859 return MCDisassembler::Success; 860 } 861 862 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 863 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 864 STI.hasFeature(AMDGPU::FeatureGFX10)) { 865 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 866 // VOPC - insert clamp 867 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 868 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 869 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 870 if (SDst != -1) { 871 // VOPC - insert VCC register as sdst 872 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 873 AMDGPU::OpName::sdst); 874 } else { 875 // VOP1/2 - insert omod if present in instruction 876 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 877 } 878 } 879 return MCDisassembler::Success; 880 } 881 882 struct VOPModifiers { 883 unsigned OpSel = 0; 884 unsigned OpSelHi = 0; 885 unsigned NegLo = 0; 886 unsigned NegHi = 0; 887 }; 888 889 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 890 // Note that these values do not affect disassembler output, 891 // so this is only necessary for consistency with src_modifiers. 892 static VOPModifiers collectVOPModifiers(const MCInst &MI, 893 bool IsVOP3P = false) { 894 VOPModifiers Modifiers; 895 unsigned Opc = MI.getOpcode(); 896 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 897 AMDGPU::OpName::src1_modifiers, 898 AMDGPU::OpName::src2_modifiers}; 899 for (int J = 0; J < 3; ++J) { 900 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 901 if (OpIdx == -1) 902 continue; 903 904 unsigned Val = MI.getOperand(OpIdx).getImm(); 905 906 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 907 if (IsVOP3P) { 908 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 909 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 910 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 911 } else if (J == 0) { 912 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 913 } 914 } 915 916 return Modifiers; 917 } 918 919 // MAC opcodes have special old and src2 operands. 920 // src2 is tied to dst, while old is not tied (but assumed to be). 921 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 922 constexpr int DST_IDX = 0; 923 auto Opcode = MI.getOpcode(); 924 const auto &Desc = MCII->get(Opcode); 925 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 926 927 if (OldIdx != -1 && Desc.getOperandConstraint( 928 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 929 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 930 assert(Desc.getOperandConstraint( 931 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 932 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 933 (void)DST_IDX; 934 return true; 935 } 936 937 return false; 938 } 939 940 // Create dummy old operand and insert dummy unused src2_modifiers 941 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 942 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 943 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 944 insertNamedMCOperand(MI, MCOperand::createImm(0), 945 AMDGPU::OpName::src2_modifiers); 946 } 947 948 // We must check FI == literal to reject not genuine dpp8 insts, and we must 949 // first add optional MI operands to check FI 950 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 951 unsigned Opc = MI.getOpcode(); 952 953 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 954 convertVOP3PDPPInst(MI); 955 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 956 AMDGPU::isVOPC64DPP(Opc)) { 957 convertVOPCDPPInst(MI); 958 } else { 959 if (isMacDPP(MI)) 960 convertMacDPPInst(MI); 961 962 int VDstInIdx = 963 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in); 964 if (VDstInIdx != -1) 965 insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in); 966 967 if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp8_gfx12 || 968 MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp8_gfx12) 969 insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2); 970 971 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 972 if (MI.getNumOperands() < DescNumOps && 973 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 974 auto Mods = collectVOPModifiers(MI); 975 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 976 AMDGPU::OpName::op_sel); 977 } else { 978 // Insert dummy unused src modifiers. 979 if (MI.getNumOperands() < DescNumOps && 980 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 981 insertNamedMCOperand(MI, MCOperand::createImm(0), 982 AMDGPU::OpName::src0_modifiers); 983 984 if (MI.getNumOperands() < DescNumOps && 985 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 986 insertNamedMCOperand(MI, MCOperand::createImm(0), 987 AMDGPU::OpName::src1_modifiers); 988 } 989 } 990 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 991 } 992 993 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 994 if (isMacDPP(MI)) 995 convertMacDPPInst(MI); 996 997 int VDstInIdx = 998 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in); 999 if (VDstInIdx != -1) 1000 insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in); 1001 1002 if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp_gfx12 || 1003 MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp_gfx12) 1004 insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2); 1005 1006 unsigned Opc = MI.getOpcode(); 1007 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1008 if (MI.getNumOperands() < DescNumOps && 1009 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 1010 auto Mods = collectVOPModifiers(MI); 1011 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1012 AMDGPU::OpName::op_sel); 1013 } 1014 return MCDisassembler::Success; 1015 } 1016 1017 // Note that before gfx10, the MIMG encoding provided no information about 1018 // VADDR size. Consequently, decoded instructions always show address as if it 1019 // has 1 dword, which could be not really so. 1020 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 1021 auto TSFlags = MCII->get(MI.getOpcode()).TSFlags; 1022 1023 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 1024 AMDGPU::OpName::vdst); 1025 1026 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 1027 AMDGPU::OpName::vdata); 1028 int VAddr0Idx = 1029 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 1030 int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc 1031 : AMDGPU::OpName::rsrc; 1032 int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName); 1033 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 1034 AMDGPU::OpName::dmask); 1035 1036 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 1037 AMDGPU::OpName::tfe); 1038 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 1039 AMDGPU::OpName::d16); 1040 1041 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 1042 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 1043 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 1044 1045 assert(VDataIdx != -1); 1046 if (BaseOpcode->BVH) { 1047 // Add A16 operand for intersect_ray instructions 1048 addOperand(MI, MCOperand::createImm(BaseOpcode->A16)); 1049 return MCDisassembler::Success; 1050 } 1051 1052 bool IsAtomic = (VDstIdx != -1); 1053 bool IsGather4 = TSFlags & SIInstrFlags::Gather4; 1054 bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE; 1055 bool IsNSA = false; 1056 bool IsPartialNSA = false; 1057 unsigned AddrSize = Info->VAddrDwords; 1058 1059 if (isGFX10Plus()) { 1060 unsigned DimIdx = 1061 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 1062 int A16Idx = 1063 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 1064 const AMDGPU::MIMGDimInfo *Dim = 1065 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 1066 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 1067 1068 AddrSize = 1069 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 1070 1071 // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms. 1072 // VIMAGE insts other than BVH never use vaddr4. 1073 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 1074 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA || 1075 Info->MIMGEncoding == AMDGPU::MIMGEncGfx12; 1076 if (!IsNSA) { 1077 if (!IsVSample && AddrSize > 12) 1078 AddrSize = 16; 1079 } else { 1080 if (AddrSize > Info->VAddrDwords) { 1081 if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) { 1082 // The NSA encoding does not contain enough operands for the 1083 // combination of base opcode / dimension. Should this be an error? 1084 return MCDisassembler::Success; 1085 } 1086 IsPartialNSA = true; 1087 } 1088 } 1089 } 1090 1091 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 1092 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 1093 1094 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 1095 if (D16 && AMDGPU::hasPackedD16(STI)) { 1096 DstSize = (DstSize + 1) / 2; 1097 } 1098 1099 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 1100 DstSize += 1; 1101 1102 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 1103 return MCDisassembler::Success; 1104 1105 int NewOpcode = 1106 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 1107 if (NewOpcode == -1) 1108 return MCDisassembler::Success; 1109 1110 // Widen the register to the correct number of enabled channels. 1111 unsigned NewVdata = AMDGPU::NoRegister; 1112 if (DstSize != Info->VDataDwords) { 1113 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 1114 1115 // Get first subregister of VData 1116 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 1117 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 1118 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 1119 1120 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 1121 &MRI.getRegClass(DataRCID)); 1122 if (NewVdata == AMDGPU::NoRegister) { 1123 // It's possible to encode this such that the low register + enabled 1124 // components exceeds the register count. 1125 return MCDisassembler::Success; 1126 } 1127 } 1128 1129 // If not using NSA on GFX10+, widen vaddr0 address register to correct size. 1130 // If using partial NSA on GFX11+ widen last address register. 1131 int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; 1132 unsigned NewVAddrSA = AMDGPU::NoRegister; 1133 if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && 1134 AddrSize != Info->VAddrDwords) { 1135 unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg(); 1136 unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0); 1137 VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; 1138 1139 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass; 1140 NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0, 1141 &MRI.getRegClass(AddrRCID)); 1142 if (!NewVAddrSA) 1143 return MCDisassembler::Success; 1144 } 1145 1146 MI.setOpcode(NewOpcode); 1147 1148 if (NewVdata != AMDGPU::NoRegister) { 1149 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 1150 1151 if (IsAtomic) { 1152 // Atomic operations have an additional operand (a copy of data) 1153 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 1154 } 1155 } 1156 1157 if (NewVAddrSA) { 1158 MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA); 1159 } else if (IsNSA) { 1160 assert(AddrSize <= Info->VAddrDwords); 1161 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 1162 MI.begin() + VAddr0Idx + Info->VAddrDwords); 1163 } 1164 1165 return MCDisassembler::Success; 1166 } 1167 1168 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 1169 // decoder only adds to src_modifiers, so manually add the bits to the other 1170 // operands. 1171 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 1172 unsigned Opc = MI.getOpcode(); 1173 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1174 auto Mods = collectVOPModifiers(MI, true); 1175 1176 if (MI.getNumOperands() < DescNumOps && 1177 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 1178 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 1179 1180 if (MI.getNumOperands() < DescNumOps && 1181 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 1182 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1183 AMDGPU::OpName::op_sel); 1184 if (MI.getNumOperands() < DescNumOps && 1185 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1186 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1187 AMDGPU::OpName::op_sel_hi); 1188 if (MI.getNumOperands() < DescNumOps && 1189 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1190 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1191 AMDGPU::OpName::neg_lo); 1192 if (MI.getNumOperands() < DescNumOps && 1193 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1194 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1195 AMDGPU::OpName::neg_hi); 1196 1197 return MCDisassembler::Success; 1198 } 1199 1200 // Create dummy old operand and insert optional operands 1201 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1202 unsigned Opc = MI.getOpcode(); 1203 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1204 1205 if (MI.getNumOperands() < DescNumOps && 1206 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1207 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1208 1209 if (MI.getNumOperands() < DescNumOps && 1210 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1211 insertNamedMCOperand(MI, MCOperand::createImm(0), 1212 AMDGPU::OpName::src0_modifiers); 1213 1214 if (MI.getNumOperands() < DescNumOps && 1215 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1216 insertNamedMCOperand(MI, MCOperand::createImm(0), 1217 AMDGPU::OpName::src1_modifiers); 1218 return MCDisassembler::Success; 1219 } 1220 1221 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 1222 int ImmLitIdx) const { 1223 assert(HasLiteral && "Should have decoded a literal"); 1224 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1225 unsigned DescNumOps = Desc.getNumOperands(); 1226 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1227 AMDGPU::OpName::immDeferred); 1228 assert(DescNumOps == MI.getNumOperands()); 1229 for (unsigned I = 0; I < DescNumOps; ++I) { 1230 auto &Op = MI.getOperand(I); 1231 auto OpType = Desc.operands()[I].OperandType; 1232 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1233 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1234 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1235 IsDeferredOp) 1236 Op.setImm(Literal); 1237 } 1238 return MCDisassembler::Success; 1239 } 1240 1241 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1242 return getContext().getRegisterInfo()-> 1243 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1244 } 1245 1246 inline 1247 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1248 const Twine& ErrMsg) const { 1249 *CommentStream << "Error: " + ErrMsg; 1250 1251 // ToDo: add support for error operands to MCInst.h 1252 // return MCOperand::createError(V); 1253 return MCOperand(); 1254 } 1255 1256 inline 1257 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1258 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1259 } 1260 1261 inline 1262 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1263 unsigned Val) const { 1264 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1265 if (Val >= RegCl.getNumRegs()) 1266 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1267 ": unknown register " + Twine(Val)); 1268 return createRegOperand(RegCl.getRegister(Val)); 1269 } 1270 1271 inline 1272 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1273 unsigned Val) const { 1274 // ToDo: SI/CI have 104 SGPRs, VI - 102 1275 // Valery: here we accepting as much as we can, let assembler sort it out 1276 int shift = 0; 1277 switch (SRegClassID) { 1278 case AMDGPU::SGPR_32RegClassID: 1279 case AMDGPU::TTMP_32RegClassID: 1280 break; 1281 case AMDGPU::SGPR_64RegClassID: 1282 case AMDGPU::TTMP_64RegClassID: 1283 shift = 1; 1284 break; 1285 case AMDGPU::SGPR_96RegClassID: 1286 case AMDGPU::TTMP_96RegClassID: 1287 case AMDGPU::SGPR_128RegClassID: 1288 case AMDGPU::TTMP_128RegClassID: 1289 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1290 // this bundle? 1291 case AMDGPU::SGPR_256RegClassID: 1292 case AMDGPU::TTMP_256RegClassID: 1293 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1294 // this bundle? 1295 case AMDGPU::SGPR_288RegClassID: 1296 case AMDGPU::TTMP_288RegClassID: 1297 case AMDGPU::SGPR_320RegClassID: 1298 case AMDGPU::TTMP_320RegClassID: 1299 case AMDGPU::SGPR_352RegClassID: 1300 case AMDGPU::TTMP_352RegClassID: 1301 case AMDGPU::SGPR_384RegClassID: 1302 case AMDGPU::TTMP_384RegClassID: 1303 case AMDGPU::SGPR_512RegClassID: 1304 case AMDGPU::TTMP_512RegClassID: 1305 shift = 2; 1306 break; 1307 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1308 // this bundle? 1309 default: 1310 llvm_unreachable("unhandled register class"); 1311 } 1312 1313 if (Val % (1 << shift)) { 1314 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1315 << ": scalar reg isn't aligned " << Val; 1316 } 1317 1318 return createRegOperand(SRegClassID, Val >> shift); 1319 } 1320 1321 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx, 1322 bool IsHi) const { 1323 unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0); 1324 return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16); 1325 } 1326 1327 // Decode Literals for insts which always have a literal in the encoding 1328 MCOperand 1329 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1330 if (HasLiteral) { 1331 assert( 1332 AMDGPU::hasVOPD(STI) && 1333 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1334 if (Literal != Val) 1335 return errOperand(Val, "More than one unique literal is illegal"); 1336 } 1337 HasLiteral = true; 1338 Literal = Val; 1339 return MCOperand::createImm(Literal); 1340 } 1341 1342 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const { 1343 // For now all literal constants are supposed to be unsigned integer 1344 // ToDo: deal with signed/unsigned 64-bit integer constants 1345 // ToDo: deal with float/double constants 1346 if (!HasLiteral) { 1347 if (Bytes.size() < 4) { 1348 return errOperand(0, "cannot read literal, inst bytes left " + 1349 Twine(Bytes.size())); 1350 } 1351 HasLiteral = true; 1352 Literal = Literal64 = eatBytes<uint32_t>(Bytes); 1353 if (ExtendFP64) 1354 Literal64 <<= 32; 1355 } 1356 return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal); 1357 } 1358 1359 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1360 using namespace AMDGPU::EncValues; 1361 1362 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1363 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1364 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1365 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1366 // Cast prevents negative overflow. 1367 } 1368 1369 static int64_t getInlineImmVal32(unsigned Imm) { 1370 switch (Imm) { 1371 case 240: 1372 return llvm::bit_cast<uint32_t>(0.5f); 1373 case 241: 1374 return llvm::bit_cast<uint32_t>(-0.5f); 1375 case 242: 1376 return llvm::bit_cast<uint32_t>(1.0f); 1377 case 243: 1378 return llvm::bit_cast<uint32_t>(-1.0f); 1379 case 244: 1380 return llvm::bit_cast<uint32_t>(2.0f); 1381 case 245: 1382 return llvm::bit_cast<uint32_t>(-2.0f); 1383 case 246: 1384 return llvm::bit_cast<uint32_t>(4.0f); 1385 case 247: 1386 return llvm::bit_cast<uint32_t>(-4.0f); 1387 case 248: // 1 / (2 * PI) 1388 return 0x3e22f983; 1389 default: 1390 llvm_unreachable("invalid fp inline imm"); 1391 } 1392 } 1393 1394 static int64_t getInlineImmVal64(unsigned Imm) { 1395 switch (Imm) { 1396 case 240: 1397 return llvm::bit_cast<uint64_t>(0.5); 1398 case 241: 1399 return llvm::bit_cast<uint64_t>(-0.5); 1400 case 242: 1401 return llvm::bit_cast<uint64_t>(1.0); 1402 case 243: 1403 return llvm::bit_cast<uint64_t>(-1.0); 1404 case 244: 1405 return llvm::bit_cast<uint64_t>(2.0); 1406 case 245: 1407 return llvm::bit_cast<uint64_t>(-2.0); 1408 case 246: 1409 return llvm::bit_cast<uint64_t>(4.0); 1410 case 247: 1411 return llvm::bit_cast<uint64_t>(-4.0); 1412 case 248: // 1 / (2 * PI) 1413 return 0x3fc45f306dc9c882; 1414 default: 1415 llvm_unreachable("invalid fp inline imm"); 1416 } 1417 } 1418 1419 static int64_t getInlineImmVal16(unsigned Imm) { 1420 switch (Imm) { 1421 case 240: 1422 return 0x3800; 1423 case 241: 1424 return 0xB800; 1425 case 242: 1426 return 0x3C00; 1427 case 243: 1428 return 0xBC00; 1429 case 244: 1430 return 0x4000; 1431 case 245: 1432 return 0xC000; 1433 case 246: 1434 return 0x4400; 1435 case 247: 1436 return 0xC400; 1437 case 248: // 1 / (2 * PI) 1438 return 0x3118; 1439 default: 1440 llvm_unreachable("invalid fp inline imm"); 1441 } 1442 } 1443 1444 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { 1445 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1446 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1447 1448 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1449 // ImmWidth 0 is a default case where operand should not allow immediates. 1450 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1451 // use it to print verbose error message. 1452 switch (ImmWidth) { 1453 case 0: 1454 case 32: 1455 return MCOperand::createImm(getInlineImmVal32(Imm)); 1456 case 64: 1457 return MCOperand::createImm(getInlineImmVal64(Imm)); 1458 case 16: 1459 return MCOperand::createImm(getInlineImmVal16(Imm)); 1460 default: 1461 llvm_unreachable("implement me"); 1462 } 1463 } 1464 1465 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1466 using namespace AMDGPU; 1467 1468 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1469 switch (Width) { 1470 default: // fall 1471 case OPW32: 1472 case OPW16: 1473 case OPWV216: 1474 return VGPR_32RegClassID; 1475 case OPW64: 1476 case OPWV232: return VReg_64RegClassID; 1477 case OPW96: return VReg_96RegClassID; 1478 case OPW128: return VReg_128RegClassID; 1479 case OPW160: return VReg_160RegClassID; 1480 case OPW256: return VReg_256RegClassID; 1481 case OPW288: return VReg_288RegClassID; 1482 case OPW320: return VReg_320RegClassID; 1483 case OPW352: return VReg_352RegClassID; 1484 case OPW384: return VReg_384RegClassID; 1485 case OPW512: return VReg_512RegClassID; 1486 case OPW1024: return VReg_1024RegClassID; 1487 } 1488 } 1489 1490 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1491 using namespace AMDGPU; 1492 1493 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1494 switch (Width) { 1495 default: // fall 1496 case OPW32: 1497 case OPW16: 1498 case OPWV216: 1499 return AGPR_32RegClassID; 1500 case OPW64: 1501 case OPWV232: return AReg_64RegClassID; 1502 case OPW96: return AReg_96RegClassID; 1503 case OPW128: return AReg_128RegClassID; 1504 case OPW160: return AReg_160RegClassID; 1505 case OPW256: return AReg_256RegClassID; 1506 case OPW288: return AReg_288RegClassID; 1507 case OPW320: return AReg_320RegClassID; 1508 case OPW352: return AReg_352RegClassID; 1509 case OPW384: return AReg_384RegClassID; 1510 case OPW512: return AReg_512RegClassID; 1511 case OPW1024: return AReg_1024RegClassID; 1512 } 1513 } 1514 1515 1516 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1517 using namespace AMDGPU; 1518 1519 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1520 switch (Width) { 1521 default: // fall 1522 case OPW32: 1523 case OPW16: 1524 case OPWV216: 1525 return SGPR_32RegClassID; 1526 case OPW64: 1527 case OPWV232: return SGPR_64RegClassID; 1528 case OPW96: return SGPR_96RegClassID; 1529 case OPW128: return SGPR_128RegClassID; 1530 case OPW160: return SGPR_160RegClassID; 1531 case OPW256: return SGPR_256RegClassID; 1532 case OPW288: return SGPR_288RegClassID; 1533 case OPW320: return SGPR_320RegClassID; 1534 case OPW352: return SGPR_352RegClassID; 1535 case OPW384: return SGPR_384RegClassID; 1536 case OPW512: return SGPR_512RegClassID; 1537 } 1538 } 1539 1540 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1541 using namespace AMDGPU; 1542 1543 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1544 switch (Width) { 1545 default: // fall 1546 case OPW32: 1547 case OPW16: 1548 case OPWV216: 1549 return TTMP_32RegClassID; 1550 case OPW64: 1551 case OPWV232: return TTMP_64RegClassID; 1552 case OPW128: return TTMP_128RegClassID; 1553 case OPW256: return TTMP_256RegClassID; 1554 case OPW288: return TTMP_288RegClassID; 1555 case OPW320: return TTMP_320RegClassID; 1556 case OPW352: return TTMP_352RegClassID; 1557 case OPW384: return TTMP_384RegClassID; 1558 case OPW512: return TTMP_512RegClassID; 1559 } 1560 } 1561 1562 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1563 using namespace AMDGPU::EncValues; 1564 1565 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1566 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1567 1568 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1569 } 1570 1571 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1572 bool MandatoryLiteral, 1573 unsigned ImmWidth, bool IsFP) const { 1574 using namespace AMDGPU::EncValues; 1575 1576 assert(Val < 1024); // enum10 1577 1578 bool IsAGPR = Val & 512; 1579 Val &= 511; 1580 1581 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1582 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1583 : getVgprClassId(Width), Val - VGPR_MIN); 1584 } 1585 return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth, 1586 IsFP); 1587 } 1588 1589 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, 1590 unsigned Val, 1591 bool MandatoryLiteral, 1592 unsigned ImmWidth, 1593 bool IsFP) const { 1594 // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been 1595 // decoded earlier. 1596 assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0"); 1597 using namespace AMDGPU::EncValues; 1598 1599 if (Val <= SGPR_MAX) { 1600 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1601 static_assert(SGPR_MIN == 0); 1602 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1603 } 1604 1605 int TTmpIdx = getTTmpIdx(Val); 1606 if (TTmpIdx >= 0) { 1607 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1608 } 1609 1610 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1611 return decodeIntImmed(Val); 1612 1613 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1614 return decodeFPImmed(ImmWidth, Val); 1615 1616 if (Val == LITERAL_CONST) { 1617 if (MandatoryLiteral) 1618 // Keep a sentinel value for deferred setting 1619 return MCOperand::createImm(LITERAL_CONST); 1620 else 1621 return decodeLiteralConstant(IsFP && ImmWidth == 64); 1622 } 1623 1624 switch (Width) { 1625 case OPW32: 1626 case OPW16: 1627 case OPWV216: 1628 return decodeSpecialReg32(Val); 1629 case OPW64: 1630 case OPWV232: 1631 return decodeSpecialReg64(Val); 1632 default: 1633 llvm_unreachable("unexpected immediate type"); 1634 } 1635 } 1636 1637 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1638 // opposite of bit 0 of DstX. 1639 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1640 unsigned Val) const { 1641 int VDstXInd = 1642 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1643 assert(VDstXInd != -1); 1644 assert(Inst.getOperand(VDstXInd).isReg()); 1645 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1646 Val |= ~XDstReg & 1; 1647 auto Width = llvm::AMDGPUDisassembler::OPW32; 1648 return createRegOperand(getVgprClassId(Width), Val); 1649 } 1650 1651 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1652 using namespace AMDGPU; 1653 1654 switch (Val) { 1655 // clang-format off 1656 case 102: return createRegOperand(FLAT_SCR_LO); 1657 case 103: return createRegOperand(FLAT_SCR_HI); 1658 case 104: return createRegOperand(XNACK_MASK_LO); 1659 case 105: return createRegOperand(XNACK_MASK_HI); 1660 case 106: return createRegOperand(VCC_LO); 1661 case 107: return createRegOperand(VCC_HI); 1662 case 108: return createRegOperand(TBA_LO); 1663 case 109: return createRegOperand(TBA_HI); 1664 case 110: return createRegOperand(TMA_LO); 1665 case 111: return createRegOperand(TMA_HI); 1666 case 124: 1667 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1668 case 125: 1669 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1670 case 126: return createRegOperand(EXEC_LO); 1671 case 127: return createRegOperand(EXEC_HI); 1672 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1673 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1674 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1675 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1676 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1677 case 251: return createRegOperand(SRC_VCCZ); 1678 case 252: return createRegOperand(SRC_EXECZ); 1679 case 253: return createRegOperand(SRC_SCC); 1680 case 254: return createRegOperand(LDS_DIRECT); 1681 default: break; 1682 // clang-format on 1683 } 1684 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1685 } 1686 1687 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1688 using namespace AMDGPU; 1689 1690 switch (Val) { 1691 case 102: return createRegOperand(FLAT_SCR); 1692 case 104: return createRegOperand(XNACK_MASK); 1693 case 106: return createRegOperand(VCC); 1694 case 108: return createRegOperand(TBA); 1695 case 110: return createRegOperand(TMA); 1696 case 124: 1697 if (isGFX11Plus()) 1698 return createRegOperand(SGPR_NULL); 1699 break; 1700 case 125: 1701 if (!isGFX11Plus()) 1702 return createRegOperand(SGPR_NULL); 1703 break; 1704 case 126: return createRegOperand(EXEC); 1705 case 235: return createRegOperand(SRC_SHARED_BASE); 1706 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1707 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1708 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1709 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1710 case 251: return createRegOperand(SRC_VCCZ); 1711 case 252: return createRegOperand(SRC_EXECZ); 1712 case 253: return createRegOperand(SRC_SCC); 1713 default: break; 1714 } 1715 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1716 } 1717 1718 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1719 const unsigned Val, 1720 unsigned ImmWidth) const { 1721 using namespace AMDGPU::SDWA; 1722 using namespace AMDGPU::EncValues; 1723 1724 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 1725 STI.hasFeature(AMDGPU::FeatureGFX10)) { 1726 // XXX: cast to int is needed to avoid stupid warning: 1727 // compare with unsigned is always true 1728 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1729 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1730 return createRegOperand(getVgprClassId(Width), 1731 Val - SDWA9EncValues::SRC_VGPR_MIN); 1732 } 1733 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1734 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1735 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1736 return createSRegOperand(getSgprClassId(Width), 1737 Val - SDWA9EncValues::SRC_SGPR_MIN); 1738 } 1739 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1740 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1741 return createSRegOperand(getTtmpClassId(Width), 1742 Val - SDWA9EncValues::SRC_TTMP_MIN); 1743 } 1744 1745 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1746 1747 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1748 return decodeIntImmed(SVal); 1749 1750 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1751 return decodeFPImmed(ImmWidth, SVal); 1752 1753 return decodeSpecialReg32(SVal); 1754 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 1755 return createRegOperand(getVgprClassId(Width), Val); 1756 } 1757 llvm_unreachable("unsupported target"); 1758 } 1759 1760 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1761 return decodeSDWASrc(OPW16, Val, 16); 1762 } 1763 1764 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1765 return decodeSDWASrc(OPW32, Val, 32); 1766 } 1767 1768 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1769 using namespace AMDGPU::SDWA; 1770 1771 assert((STI.hasFeature(AMDGPU::FeatureGFX9) || 1772 STI.hasFeature(AMDGPU::FeatureGFX10)) && 1773 "SDWAVopcDst should be present only on GFX9+"); 1774 1775 bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64); 1776 1777 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1778 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1779 1780 int TTmpIdx = getTTmpIdx(Val); 1781 if (TTmpIdx >= 0) { 1782 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1783 return createSRegOperand(TTmpClsId, TTmpIdx); 1784 } else if (Val > SGPR_MAX) { 1785 return IsWave64 ? decodeSpecialReg64(Val) 1786 : decodeSpecialReg32(Val); 1787 } else { 1788 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1789 } 1790 } else { 1791 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1792 } 1793 } 1794 1795 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1796 return STI.hasFeature(AMDGPU::FeatureWavefrontSize64) 1797 ? decodeSrcOp(OPW64, Val) 1798 : decodeSrcOp(OPW32, Val); 1799 } 1800 1801 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const { 1802 return decodeSrcOp(OPW32, Val); 1803 } 1804 1805 bool AMDGPUDisassembler::isVI() const { 1806 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands); 1807 } 1808 1809 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1810 1811 bool AMDGPUDisassembler::isGFX90A() const { 1812 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts); 1813 } 1814 1815 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1816 1817 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1818 1819 bool AMDGPUDisassembler::isGFX10Plus() const { 1820 return AMDGPU::isGFX10Plus(STI); 1821 } 1822 1823 bool AMDGPUDisassembler::isGFX11() const { 1824 return STI.hasFeature(AMDGPU::FeatureGFX11); 1825 } 1826 1827 bool AMDGPUDisassembler::isGFX11Plus() const { 1828 return AMDGPU::isGFX11Plus(STI); 1829 } 1830 1831 bool AMDGPUDisassembler::isGFX12Plus() const { 1832 return AMDGPU::isGFX12Plus(STI); 1833 } 1834 1835 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1836 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch); 1837 } 1838 1839 bool AMDGPUDisassembler::hasKernargPreload() const { 1840 return AMDGPU::hasKernargPreload(STI); 1841 } 1842 1843 //===----------------------------------------------------------------------===// 1844 // AMDGPU specific symbol handling 1845 //===----------------------------------------------------------------------===// 1846 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) 1847 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1848 do { \ 1849 KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ 1850 } while (0) 1851 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK) \ 1852 do { \ 1853 KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \ 1854 << GET_FIELD(MASK) << '\n'; \ 1855 } while (0) 1856 1857 // NOLINTNEXTLINE(readability-identifier-naming) 1858 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1859 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1860 using namespace amdhsa; 1861 StringRef Indent = "\t"; 1862 1863 // We cannot accurately backward compute #VGPRs used from 1864 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1865 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1866 // simply calculate the inverse of what the assembler does. 1867 1868 uint32_t GranulatedWorkitemVGPRCount = 1869 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); 1870 1871 uint32_t NextFreeVGPR = 1872 (GranulatedWorkitemVGPRCount + 1) * 1873 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32); 1874 1875 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1876 1877 // We cannot backward compute values used to calculate 1878 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1879 // directives can't be computed: 1880 // .amdhsa_reserve_vcc 1881 // .amdhsa_reserve_flat_scratch 1882 // .amdhsa_reserve_xnack_mask 1883 // They take their respective default values if not specified in the assembly. 1884 // 1885 // GRANULATED_WAVEFRONT_SGPR_COUNT 1886 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1887 // 1888 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1889 // are set to 0. So while disassembling we consider that: 1890 // 1891 // GRANULATED_WAVEFRONT_SGPR_COUNT 1892 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1893 // 1894 // The disassembler cannot recover the original values of those 3 directives. 1895 1896 uint32_t GranulatedWavefrontSGPRCount = 1897 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); 1898 1899 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1900 return MCDisassembler::Fail; 1901 1902 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1903 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1904 1905 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1906 if (!hasArchitectedFlatScratch()) 1907 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1908 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1909 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1910 1911 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1912 return MCDisassembler::Fail; 1913 1914 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1915 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1916 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1917 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1918 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1919 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1920 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1921 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1922 1923 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1924 return MCDisassembler::Fail; 1925 1926 if (!isGFX12Plus()) 1927 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", 1928 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP); 1929 1930 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1931 return MCDisassembler::Fail; 1932 1933 if (!isGFX12Plus()) 1934 PRINT_DIRECTIVE(".amdhsa_ieee_mode", 1935 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE); 1936 1937 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1938 return MCDisassembler::Fail; 1939 1940 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1941 return MCDisassembler::Fail; 1942 1943 if (isGFX9Plus()) 1944 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL); 1945 1946 if (!isGFX9Plus()) 1947 if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0) 1948 return MCDisassembler::Fail; 1949 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1) 1950 return MCDisassembler::Fail; 1951 if (!isGFX10Plus()) 1952 if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2) 1953 return MCDisassembler::Fail; 1954 1955 if (isGFX10Plus()) { 1956 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1957 COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE); 1958 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED); 1959 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS); 1960 } 1961 1962 if (isGFX12Plus()) 1963 PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling", 1964 COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN); 1965 1966 return MCDisassembler::Success; 1967 } 1968 1969 // NOLINTNEXTLINE(readability-identifier-naming) 1970 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1971 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1972 using namespace amdhsa; 1973 StringRef Indent = "\t"; 1974 if (hasArchitectedFlatScratch()) 1975 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1976 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1977 else 1978 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1979 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1980 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1981 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1982 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1983 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1984 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1985 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1986 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1987 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1988 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1989 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1990 1991 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1992 return MCDisassembler::Fail; 1993 1994 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1995 return MCDisassembler::Fail; 1996 1997 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1998 return MCDisassembler::Fail; 1999 2000 PRINT_DIRECTIVE( 2001 ".amdhsa_exception_fp_ieee_invalid_op", 2002 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 2003 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 2004 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 2005 PRINT_DIRECTIVE( 2006 ".amdhsa_exception_fp_ieee_div_zero", 2007 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 2008 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 2009 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 2010 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 2011 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 2012 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 2013 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 2014 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 2015 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 2016 2017 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 2018 return MCDisassembler::Fail; 2019 2020 return MCDisassembler::Success; 2021 } 2022 2023 // NOLINTNEXTLINE(readability-identifier-naming) 2024 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( 2025 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 2026 using namespace amdhsa; 2027 StringRef Indent = "\t"; 2028 if (isGFX90A()) { 2029 KdStream << Indent << ".amdhsa_accum_offset " 2030 << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4 2031 << '\n'; 2032 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0) 2033 return MCDisassembler::Fail; 2034 PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT); 2035 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1) 2036 return MCDisassembler::Fail; 2037 } else if (isGFX10Plus()) { 2038 // Bits [0-3]. 2039 if (!isGFX12Plus()) { 2040 if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) { 2041 PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count", 2042 COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); 2043 } else { 2044 PRINT_PSEUDO_DIRECTIVE_COMMENT( 2045 "SHARED_VGPR_COUNT", 2046 COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); 2047 } 2048 } else { 2049 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0) 2050 return MCDisassembler::Fail; 2051 } 2052 2053 // Bits [4-11]. 2054 if (isGFX11()) { 2055 PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE", 2056 COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE); 2057 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START", 2058 COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START); 2059 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END", 2060 COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END); 2061 } else if (isGFX12Plus()) { 2062 PRINT_PSEUDO_DIRECTIVE_COMMENT( 2063 "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE); 2064 } else { 2065 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1) 2066 return MCDisassembler::Fail; 2067 } 2068 2069 // Bits [12]. 2070 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2) 2071 return MCDisassembler::Fail; 2072 2073 // Bits [13]. 2074 if (isGFX12Plus()) { 2075 PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN", 2076 COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN); 2077 } else { 2078 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3) 2079 return MCDisassembler::Fail; 2080 } 2081 2082 // Bits [14-30]. 2083 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4) 2084 return MCDisassembler::Fail; 2085 2086 // Bits [31]. 2087 if (isGFX11Plus()) { 2088 PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP", 2089 COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP); 2090 } else { 2091 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5) 2092 return MCDisassembler::Fail; 2093 } 2094 } else if (FourByteBuffer) { 2095 return MCDisassembler::Fail; 2096 } 2097 return MCDisassembler::Success; 2098 } 2099 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT 2100 #undef PRINT_DIRECTIVE 2101 #undef GET_FIELD 2102 2103 MCDisassembler::DecodeStatus 2104 AMDGPUDisassembler::decodeKernelDescriptorDirective( 2105 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 2106 raw_string_ostream &KdStream) const { 2107 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 2108 do { \ 2109 KdStream << Indent << DIRECTIVE " " \ 2110 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 2111 } while (0) 2112 2113 uint16_t TwoByteBuffer = 0; 2114 uint32_t FourByteBuffer = 0; 2115 2116 StringRef ReservedBytes; 2117 StringRef Indent = "\t"; 2118 2119 assert(Bytes.size() == 64); 2120 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 2121 2122 switch (Cursor.tell()) { 2123 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 2124 FourByteBuffer = DE.getU32(Cursor); 2125 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 2126 << '\n'; 2127 return MCDisassembler::Success; 2128 2129 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 2130 FourByteBuffer = DE.getU32(Cursor); 2131 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 2132 << FourByteBuffer << '\n'; 2133 return MCDisassembler::Success; 2134 2135 case amdhsa::KERNARG_SIZE_OFFSET: 2136 FourByteBuffer = DE.getU32(Cursor); 2137 KdStream << Indent << ".amdhsa_kernarg_size " 2138 << FourByteBuffer << '\n'; 2139 return MCDisassembler::Success; 2140 2141 case amdhsa::RESERVED0_OFFSET: 2142 // 4 reserved bytes, must be 0. 2143 ReservedBytes = DE.getBytes(Cursor, 4); 2144 for (int I = 0; I < 4; ++I) { 2145 if (ReservedBytes[I] != 0) { 2146 return MCDisassembler::Fail; 2147 } 2148 } 2149 return MCDisassembler::Success; 2150 2151 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 2152 // KERNEL_CODE_ENTRY_BYTE_OFFSET 2153 // So far no directive controls this for Code Object V3, so simply skip for 2154 // disassembly. 2155 DE.skip(Cursor, 8); 2156 return MCDisassembler::Success; 2157 2158 case amdhsa::RESERVED1_OFFSET: 2159 // 20 reserved bytes, must be 0. 2160 ReservedBytes = DE.getBytes(Cursor, 20); 2161 for (int I = 0; I < 20; ++I) { 2162 if (ReservedBytes[I] != 0) { 2163 return MCDisassembler::Fail; 2164 } 2165 } 2166 return MCDisassembler::Success; 2167 2168 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 2169 FourByteBuffer = DE.getU32(Cursor); 2170 return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); 2171 2172 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 2173 FourByteBuffer = DE.getU32(Cursor); 2174 return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); 2175 2176 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 2177 FourByteBuffer = DE.getU32(Cursor); 2178 return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); 2179 2180 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 2181 using namespace amdhsa; 2182 TwoByteBuffer = DE.getU16(Cursor); 2183 2184 if (!hasArchitectedFlatScratch()) 2185 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 2186 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 2187 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 2188 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 2189 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 2190 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 2191 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 2192 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 2193 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 2194 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 2195 if (!hasArchitectedFlatScratch()) 2196 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 2197 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 2198 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 2199 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 2200 2201 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 2202 return MCDisassembler::Fail; 2203 2204 // Reserved for GFX9 2205 if (isGFX9() && 2206 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 2207 return MCDisassembler::Fail; 2208 } else if (isGFX10Plus()) { 2209 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 2210 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2211 } 2212 2213 // FIXME: We should be looking at the ELF header ABI version for this. 2214 if (AMDGPU::getDefaultAMDHSACodeObjectVersion() >= AMDGPU::AMDHSA_COV5) 2215 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 2216 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 2217 2218 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 2219 return MCDisassembler::Fail; 2220 2221 return MCDisassembler::Success; 2222 2223 case amdhsa::KERNARG_PRELOAD_OFFSET: 2224 using namespace amdhsa; 2225 TwoByteBuffer = DE.getU16(Cursor); 2226 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) { 2227 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length", 2228 KERNARG_PRELOAD_SPEC_LENGTH); 2229 } 2230 2231 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) { 2232 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset", 2233 KERNARG_PRELOAD_SPEC_OFFSET); 2234 } 2235 return MCDisassembler::Success; 2236 2237 case amdhsa::RESERVED3_OFFSET: 2238 // 4 bytes from here are reserved, must be 0. 2239 ReservedBytes = DE.getBytes(Cursor, 4); 2240 for (int I = 0; I < 4; ++I) { 2241 if (ReservedBytes[I] != 0) 2242 return MCDisassembler::Fail; 2243 } 2244 return MCDisassembler::Success; 2245 2246 default: 2247 llvm_unreachable("Unhandled index. Case statements cover everything."); 2248 return MCDisassembler::Fail; 2249 } 2250 #undef PRINT_DIRECTIVE 2251 } 2252 2253 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 2254 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 2255 // CP microcode requires the kernel descriptor to be 64 aligned. 2256 if (Bytes.size() != 64 || KdAddress % 64 != 0) 2257 return MCDisassembler::Fail; 2258 2259 // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10 2260 // requires us to know the setting of .amdhsa_wavefront_size32 in order to 2261 // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong 2262 // order. Workaround this by first looking up .amdhsa_wavefront_size32 here 2263 // when required. 2264 if (isGFX10Plus()) { 2265 uint16_t KernelCodeProperties = 2266 support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET], 2267 llvm::endianness::little); 2268 EnableWavefrontSize32 = 2269 AMDHSA_BITS_GET(KernelCodeProperties, 2270 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2271 } 2272 2273 std::string Kd; 2274 raw_string_ostream KdStream(Kd); 2275 KdStream << ".amdhsa_kernel " << KdName << '\n'; 2276 2277 DataExtractor::Cursor C(0); 2278 while (C && C.tell() < Bytes.size()) { 2279 MCDisassembler::DecodeStatus Status = 2280 decodeKernelDescriptorDirective(C, Bytes, KdStream); 2281 2282 cantFail(C.takeError()); 2283 2284 if (Status == MCDisassembler::Fail) 2285 return MCDisassembler::Fail; 2286 } 2287 KdStream << ".end_amdhsa_kernel\n"; 2288 outs() << KdStream.str(); 2289 return MCDisassembler::Success; 2290 } 2291 2292 std::optional<MCDisassembler::DecodeStatus> 2293 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 2294 ArrayRef<uint8_t> Bytes, uint64_t Address, 2295 raw_ostream &CStream) const { 2296 // Right now only kernel descriptor needs to be handled. 2297 // We ignore all other symbols for target specific handling. 2298 // TODO: 2299 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 2300 // Object V2 and V3 when symbols are marked protected. 2301 2302 // amd_kernel_code_t for Code Object V2. 2303 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2304 Size = 256; 2305 return MCDisassembler::Fail; 2306 } 2307 2308 // Code Object V3 kernel descriptors. 2309 StringRef Name = Symbol.Name; 2310 if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) { 2311 Size = 64; // Size = 64 regardless of success or failure. 2312 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2313 } 2314 return std::nullopt; 2315 } 2316 2317 //===----------------------------------------------------------------------===// 2318 // AMDGPUSymbolizer 2319 //===----------------------------------------------------------------------===// 2320 2321 // Try to find symbol name for specified label 2322 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2323 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2324 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2325 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2326 2327 if (!IsBranch) { 2328 return false; 2329 } 2330 2331 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2332 if (!Symbols) 2333 return false; 2334 2335 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2336 return Val.Addr == static_cast<uint64_t>(Value) && 2337 Val.Type == ELF::STT_NOTYPE; 2338 }); 2339 if (Result != Symbols->end()) { 2340 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2341 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2342 Inst.addOperand(MCOperand::createExpr(Add)); 2343 return true; 2344 } 2345 // Add to list of referenced addresses, so caller can synthesize a label. 2346 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2347 return false; 2348 } 2349 2350 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2351 int64_t Value, 2352 uint64_t Address) { 2353 llvm_unreachable("unimplemented"); 2354 } 2355 2356 //===----------------------------------------------------------------------===// 2357 // Initialization 2358 //===----------------------------------------------------------------------===// 2359 2360 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2361 LLVMOpInfoCallback /*GetOpInfo*/, 2362 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2363 void *DisInfo, 2364 MCContext *Ctx, 2365 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2366 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2367 } 2368 2369 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2370 const MCSubtargetInfo &STI, 2371 MCContext &Ctx) { 2372 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2373 } 2374 2375 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2376 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2377 createAMDGPUDisassembler); 2378 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2379 createAMDGPUSymbolizer); 2380 } 2381