xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision cfddb59be2124f7ec615f48a2d0395c6fdb1bb56)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
95     Offset = SignExtend64<24>(Imm);
96   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else { // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
111                                        uint64_t Addr,
112                                        const MCDisassembler *Decoder) {
113   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
114   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
115 }
116 
117 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
118   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
119                                         uint64_t /*Addr*/,                     \
120                                         const MCDisassembler *Decoder) {       \
121     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
122     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
123   }
124 
125 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
126 // number of register. Used by VGPR only and AGPR only operands.
127 #define DECODE_OPERAND_REG_8(RegClass)                                         \
128   static DecodeStatus Decode##RegClass##RegisterClass(                         \
129       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
130       const MCDisassembler *Decoder) {                                         \
131     assert(Imm < (1 << 8) && "8-bit encoding");                                \
132     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
133     return addOperand(                                                         \
134         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
135   }
136 
137 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
138                      ImmWidth)                                                 \
139   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
140                            const MCDisassembler *Decoder) {                    \
141     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
142     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
143     return addOperand(Inst,                                                    \
144                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
145                                         MandatoryLiteral, ImmWidth));          \
146   }
147 
148 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
149 // get register class. Used by SGPR only operands.
150 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
151   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
152 
153 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
154 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
155 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
156 // Used by AV_ register classes (AGPR or VGPR only register operands).
157 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
158   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
159                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
160 
161 // Decoder for Src(9-bit encoding) registers only.
162 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
163   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
164 
165 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
166 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
167 // only.
168 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
169   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
170 
171 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
172 // Imm{9} is acc, registers only.
173 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
174   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
175 
176 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
177 // register from RegClass or immediate. Registers that don't belong to RegClass
178 // will be decoded and InstPrinter will report warning. Immediate will be
179 // decoded into constant of size ImmWidth, should match width of immediate used
180 // by OperandType (important for floating point types).
181 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
182   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
183                false, ImmWidth)
184 
185 #define DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(Name, OpWidth, ImmWidth)         \
186   DECODE_SrcOp(decodeOperand_##Name, 9, OpWidth, Imm, false, ImmWidth)
187 
188 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
189 // and decode using 'enum10' from decodeSrcOp.
190 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
191   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
192                Imm | 512, false, ImmWidth)
193 
194 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
195   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
196                OpWidth, Imm, true, ImmWidth)
197 
198 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
199 // when RegisterClass is used as an operand. Most often used for destination
200 // operands.
201 
202 DECODE_OPERAND_REG_8(VGPR_32)
203 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
204 DECODE_OPERAND_REG_8(VReg_64)
205 DECODE_OPERAND_REG_8(VReg_96)
206 DECODE_OPERAND_REG_8(VReg_128)
207 DECODE_OPERAND_REG_8(VReg_256)
208 DECODE_OPERAND_REG_8(VReg_288)
209 DECODE_OPERAND_REG_8(VReg_352)
210 DECODE_OPERAND_REG_8(VReg_384)
211 DECODE_OPERAND_REG_8(VReg_512)
212 DECODE_OPERAND_REG_8(VReg_1024)
213 
214 DECODE_OPERAND_REG_7(SReg_32, OPW32)
215 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
216 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
217 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
218 DECODE_OPERAND_REG_7(SReg_64, OPW64)
219 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
220 DECODE_OPERAND_REG_7(SReg_96, OPW96)
221 DECODE_OPERAND_REG_7(SReg_128, OPW128)
222 DECODE_OPERAND_REG_7(SReg_256, OPW256)
223 DECODE_OPERAND_REG_7(SReg_512, OPW512)
224 
225 DECODE_OPERAND_REG_8(AGPR_32)
226 DECODE_OPERAND_REG_8(AReg_64)
227 DECODE_OPERAND_REG_8(AReg_128)
228 DECODE_OPERAND_REG_8(AReg_256)
229 DECODE_OPERAND_REG_8(AReg_512)
230 DECODE_OPERAND_REG_8(AReg_1024)
231 
232 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
233 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
234 
235 // Decoders for register only source RegisterOperands that use use 9-bit Src
236 // encoding: 'decodeOperand_<RegClass>'.
237 
238 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
239 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
240 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
241 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
242 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
243 
244 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
245 
246 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
247 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
248 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
249 
250 // Decoders for register or immediate RegisterOperands that use 9-bit Src
251 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
252 
253 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
254 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
255 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
256 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
257 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
258 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
259 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
260 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
261 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
262 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
263 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
264 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
265 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
266 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
267 
268 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2I16, OPW32, 32)
269 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2F16, OPW32, 16)
270 
271 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
272 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
273 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
274 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
275 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
276 
277 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
278 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
279 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
280 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
281 
282 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
283                                                uint64_t /*Addr*/,
284                                                const MCDisassembler *Decoder) {
285   assert(isUInt<10>(Imm) && "10-bit encoding expected");
286   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
287 
288   bool IsHi = Imm & (1 << 9);
289   unsigned RegIdx = Imm & 0xff;
290   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
291   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
292 }
293 
294 static DecodeStatus
295 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
296                                  const MCDisassembler *Decoder) {
297   assert(isUInt<8>(Imm) && "8-bit encoding expected");
298 
299   bool IsHi = Imm & (1 << 7);
300   unsigned RegIdx = Imm & 0x7f;
301   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
302   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
303 }
304 
305 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
306                                                 uint64_t /*Addr*/,
307                                                 const MCDisassembler *Decoder) {
308   assert(isUInt<9>(Imm) && "9-bit encoding expected");
309 
310   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
311   bool IsVGPR = Imm & (1 << 8);
312   if (IsVGPR) {
313     bool IsHi = Imm & (1 << 7);
314     unsigned RegIdx = Imm & 0x7f;
315     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
316   }
317   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
318                                                    Imm & 0xFF, false, 16));
319 }
320 
321 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
322                                           uint64_t /*Addr*/,
323                                           const MCDisassembler *Decoder) {
324   assert(isUInt<10>(Imm) && "10-bit encoding expected");
325 
326   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
327   bool IsVGPR = Imm & (1 << 8);
328   if (IsVGPR) {
329     bool IsHi = Imm & (1 << 9);
330     unsigned RegIdx = Imm & 0xff;
331     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
332   }
333   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
334                                                    Imm & 0xFF, false, 16));
335 }
336 
337 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
338                                          uint64_t Addr,
339                                          const MCDisassembler *Decoder) {
340   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
341   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
342 }
343 
344 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
345                                           uint64_t Addr, const void *Decoder) {
346   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
347   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
348 }
349 
350 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
351                           const MCRegisterInfo *MRI) {
352   if (OpIdx < 0)
353     return false;
354 
355   const MCOperand &Op = Inst.getOperand(OpIdx);
356   if (!Op.isReg())
357     return false;
358 
359   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
360   auto Reg = Sub ? Sub : Op.getReg();
361   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
362 }
363 
364 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
365                                              AMDGPUDisassembler::OpWidthTy Opw,
366                                              const MCDisassembler *Decoder) {
367   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
368   if (!DAsm->isGFX90A()) {
369     Imm &= 511;
370   } else {
371     // If atomic has both vdata and vdst their register classes are tied.
372     // The bit is decoded along with the vdst, first operand. We need to
373     // change register class to AGPR if vdst was AGPR.
374     // If a DS instruction has both data0 and data1 their register classes
375     // are also tied.
376     unsigned Opc = Inst.getOpcode();
377     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
378     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
379                                                         : AMDGPU::OpName::vdata;
380     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
381     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
382     if ((int)Inst.getNumOperands() == DataIdx) {
383       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
384       if (IsAGPROperand(Inst, DstIdx, MRI))
385         Imm |= 512;
386     }
387 
388     if (TSFlags & SIInstrFlags::DS) {
389       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
390       if ((int)Inst.getNumOperands() == Data2Idx &&
391           IsAGPROperand(Inst, DataIdx, MRI))
392         Imm |= 512;
393     }
394   }
395   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
396 }
397 
398 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
399                                            uint64_t Addr,
400                                            const MCDisassembler *Decoder) {
401   assert(Imm < (1 << 9) && "9-bit encoding");
402   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
403   return addOperand(
404       Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
405 }
406 
407 static DecodeStatus
408 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
409                              const MCDisassembler *Decoder) {
410   return decodeOperand_AVLdSt_Any(Inst, Imm,
411                                   AMDGPUDisassembler::OPW32, Decoder);
412 }
413 
414 static DecodeStatus
415 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
416                              const MCDisassembler *Decoder) {
417   return decodeOperand_AVLdSt_Any(Inst, Imm,
418                                   AMDGPUDisassembler::OPW64, Decoder);
419 }
420 
421 static DecodeStatus
422 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
423                              const MCDisassembler *Decoder) {
424   return decodeOperand_AVLdSt_Any(Inst, Imm,
425                                   AMDGPUDisassembler::OPW96, Decoder);
426 }
427 
428 static DecodeStatus
429 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
430                               const MCDisassembler *Decoder) {
431   return decodeOperand_AVLdSt_Any(Inst, Imm,
432                                   AMDGPUDisassembler::OPW128, Decoder);
433 }
434 
435 static DecodeStatus
436 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
437                               const MCDisassembler *Decoder) {
438   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
439                                   Decoder);
440 }
441 
442 #define DECODE_SDWA(DecName) \
443 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
444 
445 DECODE_SDWA(Src32)
446 DECODE_SDWA(Src16)
447 DECODE_SDWA(VopcDst)
448 
449 #include "AMDGPUGenDisassemblerTables.inc"
450 
451 //===----------------------------------------------------------------------===//
452 //
453 //===----------------------------------------------------------------------===//
454 
455 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
456   assert(Bytes.size() >= sizeof(T));
457   const auto Res =
458       support::endian::read<T, llvm::endianness::little>(Bytes.data());
459   Bytes = Bytes.slice(sizeof(T));
460   return Res;
461 }
462 
463 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
464   assert(Bytes.size() >= 12);
465   uint64_t Lo =
466       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
467   Bytes = Bytes.slice(8);
468   uint64_t Hi =
469       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
470   Bytes = Bytes.slice(4);
471   return DecoderUInt128(Lo, Hi);
472 }
473 
474 // The disassembler is greedy, so we need to check FI operand value to
475 // not parse a dpp if the correct literal is not set. For dpp16 the
476 // autogenerated decoder checks the dpp literal
477 static bool isValidDPP8(const MCInst &MI) {
478   using namespace llvm::AMDGPU::DPP;
479   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
480   assert(FiIdx != -1);
481   if ((unsigned)FiIdx >= MI.getNumOperands())
482     return false;
483   unsigned Fi = MI.getOperand(FiIdx).getImm();
484   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
485 }
486 
487 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
488                                                 ArrayRef<uint8_t> Bytes_,
489                                                 uint64_t Address,
490                                                 raw_ostream &CS) const {
491   bool IsSDWA = false;
492 
493   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
494   Bytes = Bytes_.slice(0, MaxInstBytesNum);
495 
496   DecodeStatus Res = MCDisassembler::Fail;
497   do {
498     // ToDo: better to switch encoding length using some bit predicate
499     // but it is unknown yet, so try all we can
500 
501     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
502     // encodings
503     if (isGFX11Plus() && Bytes.size() >= 12 ) {
504       DecoderUInt128 DecW = eat12Bytes(Bytes);
505       Res =
506           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
507                         MI, DecW, Address, CS);
508       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
509         break;
510       MI = MCInst(); // clear
511       Res =
512           tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696,
513                         MI, DecW, Address, CS);
514       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
515         break;
516       MI = MCInst(); // clear
517 
518       const auto convertVOPDPP = [&]() {
519         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) {
520           convertVOP3PDPPInst(MI);
521         } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) {
522           convertVOPCDPPInst(MI); // Special VOP3 case
523         } else {
524           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
525           convertVOP3DPPInst(MI); // Regular VOP3 case
526         }
527       };
528       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
529                           MI, DecW, Address, CS);
530       if (Res) {
531         convertVOPDPP();
532         break;
533       }
534       Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696,
535                           MI, DecW, Address, CS);
536       if (Res) {
537         convertVOPDPP();
538         break;
539       }
540       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
541       if (Res)
542         break;
543 
544       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
545       if (Res)
546         break;
547 
548       Res = tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS);
549       if (Res)
550         break;
551     }
552     // Reinitialize Bytes
553     Bytes = Bytes_.slice(0, MaxInstBytesNum);
554 
555     if (Bytes.size() >= 8) {
556       const uint64_t QW = eatBytes<uint64_t>(Bytes);
557 
558       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
559         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
560         if (Res) {
561           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
562               == -1)
563             break;
564           if (convertDPP8Inst(MI) == MCDisassembler::Success)
565             break;
566           MI = MCInst(); // clear
567         }
568       }
569 
570       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
571       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
572         break;
573       MI = MCInst(); // clear
574 
575       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
576                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
577       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
578         break;
579       MI = MCInst(); // clear
580 
581       Res = tryDecodeInst(DecoderTableDPP8GFX1264,
582                           DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS);
583       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
584         break;
585       MI = MCInst(); // clear
586 
587       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
588       if (Res) break;
589 
590       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
591                           MI, QW, Address, CS);
592       if (Res) {
593         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
594           convertVOPCDPPInst(MI);
595         break;
596       }
597 
598       Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664,
599                           MI, QW, Address, CS);
600       if (Res) {
601         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
602           convertVOPCDPPInst(MI);
603         break;
604       }
605 
606       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
607       if (Res) { IsSDWA = true;  break; }
608 
609       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
610       if (Res) { IsSDWA = true;  break; }
611 
612       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
613       if (Res) { IsSDWA = true;  break; }
614 
615       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
616         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
617         if (Res)
618           break;
619       }
620 
621       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
622       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
623       // table first so we print the correct name.
624       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
625         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
626         if (Res)
627           break;
628       }
629     }
630 
631     // Reinitialize Bytes as DPP64 could have eaten too much
632     Bytes = Bytes_.slice(0, MaxInstBytesNum);
633 
634     // Try decode 32-bit instruction
635     if (Bytes.size() < 4) break;
636     const uint32_t DW = eatBytes<uint32_t>(Bytes);
637     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
638     if (Res) break;
639 
640     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
641     if (Res) break;
642 
643     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
644     if (Res) break;
645 
646     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
647       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
648       if (Res)
649         break;
650     }
651 
652     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
653       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
654       if (Res) break;
655     }
656 
657     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
658     if (Res) break;
659 
660     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
661                         Address, CS);
662     if (Res) break;
663 
664     Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
665                         Address, CS);
666     if (Res)
667       break;
668 
669     if (Bytes.size() < 4) break;
670     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
671 
672     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
673       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
674       if (Res)
675         break;
676     }
677 
678     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
679       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
680       if (Res)
681         break;
682     }
683 
684     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
685     if (Res) break;
686 
687     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
688     if (Res) break;
689 
690     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
691     if (Res) break;
692 
693     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
694     if (Res) break;
695 
696     Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
697                         Address, CS);
698     if (Res)
699       break;
700 
701     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
702                         Address, CS);
703     if (Res)
704       break;
705 
706     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
707   } while (false);
708 
709   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
710     // Insert dummy unused src2_modifiers.
711     insertNamedMCOperand(MI, MCOperand::createImm(0),
712                          AMDGPU::OpName::src2_modifiers);
713   }
714 
715   if (Res && (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp ||
716               MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp)) {
717     // Insert dummy unused src2_modifiers.
718     insertNamedMCOperand(MI, MCOperand::createImm(0),
719                          AMDGPU::OpName::src2_modifiers);
720   }
721 
722   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
723       !AMDGPU::hasGDS(STI)) {
724     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
725   }
726 
727   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
728           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
729     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
730                                              AMDGPU::OpName::cpol);
731     if (CPolPos != -1) {
732       unsigned CPol =
733           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
734               AMDGPU::CPol::GLC : 0;
735       if (MI.getNumOperands() <= (unsigned)CPolPos) {
736         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
737                              AMDGPU::OpName::cpol);
738       } else if (CPol) {
739         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
740       }
741     }
742   }
743 
744   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
745               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
746              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
747     // GFX90A lost TFE, its place is occupied by ACC.
748     int TFEOpIdx =
749         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
750     if (TFEOpIdx != -1) {
751       auto TFEIter = MI.begin();
752       std::advance(TFEIter, TFEOpIdx);
753       MI.insert(TFEIter, MCOperand::createImm(0));
754     }
755   }
756 
757   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
758               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
759     int SWZOpIdx =
760         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
761     if (SWZOpIdx != -1) {
762       auto SWZIter = MI.begin();
763       std::advance(SWZIter, SWZOpIdx);
764       MI.insert(SWZIter, MCOperand::createImm(0));
765     }
766   }
767 
768   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
769     int VAddr0Idx =
770         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
771     int RsrcIdx =
772         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
773     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
774     if (VAddr0Idx >= 0 && NSAArgs > 0) {
775       unsigned NSAWords = (NSAArgs + 3) / 4;
776       if (Bytes.size() < 4 * NSAWords) {
777         Res = MCDisassembler::Fail;
778       } else {
779         for (unsigned i = 0; i < NSAArgs; ++i) {
780           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
781           auto VAddrRCID =
782               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
783           MI.insert(MI.begin() + VAddrIdx,
784                     createRegOperand(VAddrRCID, Bytes[i]));
785         }
786         Bytes = Bytes.slice(4 * NSAWords);
787       }
788     }
789 
790     if (Res)
791       Res = convertMIMGInst(MI);
792   }
793 
794   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
795               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
796     Res = convertMIMGInst(MI);
797 
798   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
799     Res = convertEXPInst(MI);
800 
801   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
802     Res = convertVINTERPInst(MI);
803 
804   if (Res && IsSDWA)
805     Res = convertSDWAInst(MI);
806 
807   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
808                                               AMDGPU::OpName::vdst_in);
809   if (VDstIn_Idx != -1) {
810     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
811                            MCOI::OperandConstraint::TIED_TO);
812     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
813          !MI.getOperand(VDstIn_Idx).isReg() ||
814          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
815       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
816         MI.erase(&MI.getOperand(VDstIn_Idx));
817       insertNamedMCOperand(MI,
818         MCOperand::createReg(MI.getOperand(Tied).getReg()),
819         AMDGPU::OpName::vdst_in);
820     }
821   }
822 
823   int ImmLitIdx =
824       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
825   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
826   if (Res && ImmLitIdx != -1 && !IsSOPK)
827     Res = convertFMAanyK(MI, ImmLitIdx);
828 
829   // if the opcode was not recognized we'll assume a Size of 4 bytes
830   // (unless there are fewer bytes left)
831   Size = Res ? (MaxInstBytesNum - Bytes.size())
832              : std::min((size_t)4, Bytes_.size());
833   return Res;
834 }
835 
836 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
837   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
838     // The MCInst still has these fields even though they are no longer encoded
839     // in the GFX11 instruction.
840     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
841     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
842   }
843   return MCDisassembler::Success;
844 }
845 
846 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
847   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
848       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
849       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
850       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
851       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
852       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
853       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
854       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
855     // The MCInst has this field that is not directly encoded in the
856     // instruction.
857     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
858   }
859   return MCDisassembler::Success;
860 }
861 
862 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
863   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
864       STI.hasFeature(AMDGPU::FeatureGFX10)) {
865     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
866       // VOPC - insert clamp
867       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
868   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
869     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
870     if (SDst != -1) {
871       // VOPC - insert VCC register as sdst
872       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
873                            AMDGPU::OpName::sdst);
874     } else {
875       // VOP1/2 - insert omod if present in instruction
876       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
877     }
878   }
879   return MCDisassembler::Success;
880 }
881 
882 struct VOPModifiers {
883   unsigned OpSel = 0;
884   unsigned OpSelHi = 0;
885   unsigned NegLo = 0;
886   unsigned NegHi = 0;
887 };
888 
889 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
890 // Note that these values do not affect disassembler output,
891 // so this is only necessary for consistency with src_modifiers.
892 static VOPModifiers collectVOPModifiers(const MCInst &MI,
893                                         bool IsVOP3P = false) {
894   VOPModifiers Modifiers;
895   unsigned Opc = MI.getOpcode();
896   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
897                         AMDGPU::OpName::src1_modifiers,
898                         AMDGPU::OpName::src2_modifiers};
899   for (int J = 0; J < 3; ++J) {
900     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
901     if (OpIdx == -1)
902       continue;
903 
904     unsigned Val = MI.getOperand(OpIdx).getImm();
905 
906     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
907     if (IsVOP3P) {
908       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
909       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
910       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
911     } else if (J == 0) {
912       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
913     }
914   }
915 
916   return Modifiers;
917 }
918 
919 // MAC opcodes have special old and src2 operands.
920 // src2 is tied to dst, while old is not tied (but assumed to be).
921 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
922   constexpr int DST_IDX = 0;
923   auto Opcode = MI.getOpcode();
924   const auto &Desc = MCII->get(Opcode);
925   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
926 
927   if (OldIdx != -1 && Desc.getOperandConstraint(
928                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
929     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
930     assert(Desc.getOperandConstraint(
931                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
932                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
933     (void)DST_IDX;
934     return true;
935   }
936 
937   return false;
938 }
939 
940 // Create dummy old operand and insert dummy unused src2_modifiers
941 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
942   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
943   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
944   insertNamedMCOperand(MI, MCOperand::createImm(0),
945                        AMDGPU::OpName::src2_modifiers);
946 }
947 
948 // We must check FI == literal to reject not genuine dpp8 insts, and we must
949 // first add optional MI operands to check FI
950 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
951   unsigned Opc = MI.getOpcode();
952 
953   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
954     convertVOP3PDPPInst(MI);
955   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
956              AMDGPU::isVOPC64DPP(Opc)) {
957     convertVOPCDPPInst(MI);
958   } else {
959     if (isMacDPP(MI))
960       convertMacDPPInst(MI);
961 
962     int VDstInIdx =
963         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
964     if (VDstInIdx != -1)
965       insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
966 
967     if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp8_gfx12 ||
968         MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp8_gfx12)
969       insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
970 
971     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
972     if (MI.getNumOperands() < DescNumOps &&
973         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
974       auto Mods = collectVOPModifiers(MI);
975       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
976                            AMDGPU::OpName::op_sel);
977     } else {
978       // Insert dummy unused src modifiers.
979       if (MI.getNumOperands() < DescNumOps &&
980           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
981         insertNamedMCOperand(MI, MCOperand::createImm(0),
982                              AMDGPU::OpName::src0_modifiers);
983 
984       if (MI.getNumOperands() < DescNumOps &&
985           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
986         insertNamedMCOperand(MI, MCOperand::createImm(0),
987                              AMDGPU::OpName::src1_modifiers);
988     }
989   }
990   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
991 }
992 
993 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
994   if (isMacDPP(MI))
995     convertMacDPPInst(MI);
996 
997   int VDstInIdx =
998       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
999   if (VDstInIdx != -1)
1000     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
1001 
1002   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp_gfx12 ||
1003       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp_gfx12)
1004     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
1005 
1006   unsigned Opc = MI.getOpcode();
1007   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1008   if (MI.getNumOperands() < DescNumOps &&
1009       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
1010     auto Mods = collectVOPModifiers(MI);
1011     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1012                          AMDGPU::OpName::op_sel);
1013   }
1014   return MCDisassembler::Success;
1015 }
1016 
1017 // Note that before gfx10, the MIMG encoding provided no information about
1018 // VADDR size. Consequently, decoded instructions always show address as if it
1019 // has 1 dword, which could be not really so.
1020 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
1021   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
1022 
1023   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1024                                            AMDGPU::OpName::vdst);
1025 
1026   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1027                                             AMDGPU::OpName::vdata);
1028   int VAddr0Idx =
1029       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
1030   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
1031                                                 : AMDGPU::OpName::rsrc;
1032   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
1033   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1034                                             AMDGPU::OpName::dmask);
1035 
1036   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1037                                             AMDGPU::OpName::tfe);
1038   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1039                                             AMDGPU::OpName::d16);
1040 
1041   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
1042   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1043       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
1044 
1045   assert(VDataIdx != -1);
1046   if (BaseOpcode->BVH) {
1047     // Add A16 operand for intersect_ray instructions
1048     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
1049     return MCDisassembler::Success;
1050   }
1051 
1052   bool IsAtomic = (VDstIdx != -1);
1053   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
1054   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
1055   bool IsNSA = false;
1056   bool IsPartialNSA = false;
1057   unsigned AddrSize = Info->VAddrDwords;
1058 
1059   if (isGFX10Plus()) {
1060     unsigned DimIdx =
1061         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
1062     int A16Idx =
1063         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
1064     const AMDGPU::MIMGDimInfo *Dim =
1065         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
1066     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
1067 
1068     AddrSize =
1069         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
1070 
1071     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
1072     // VIMAGE insts other than BVH never use vaddr4.
1073     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
1074             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
1075             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
1076     if (!IsNSA) {
1077       if (!IsVSample && AddrSize > 12)
1078         AddrSize = 16;
1079     } else {
1080       if (AddrSize > Info->VAddrDwords) {
1081         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1082           // The NSA encoding does not contain enough operands for the
1083           // combination of base opcode / dimension. Should this be an error?
1084           return MCDisassembler::Success;
1085         }
1086         IsPartialNSA = true;
1087       }
1088     }
1089   }
1090 
1091   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1092   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1093 
1094   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1095   if (D16 && AMDGPU::hasPackedD16(STI)) {
1096     DstSize = (DstSize + 1) / 2;
1097   }
1098 
1099   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1100     DstSize += 1;
1101 
1102   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1103     return MCDisassembler::Success;
1104 
1105   int NewOpcode =
1106       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1107   if (NewOpcode == -1)
1108     return MCDisassembler::Success;
1109 
1110   // Widen the register to the correct number of enabled channels.
1111   unsigned NewVdata = AMDGPU::NoRegister;
1112   if (DstSize != Info->VDataDwords) {
1113     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1114 
1115     // Get first subregister of VData
1116     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1117     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1118     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1119 
1120     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1121                                        &MRI.getRegClass(DataRCID));
1122     if (NewVdata == AMDGPU::NoRegister) {
1123       // It's possible to encode this such that the low register + enabled
1124       // components exceeds the register count.
1125       return MCDisassembler::Success;
1126     }
1127   }
1128 
1129   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1130   // If using partial NSA on GFX11+ widen last address register.
1131   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1132   unsigned NewVAddrSA = AMDGPU::NoRegister;
1133   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1134       AddrSize != Info->VAddrDwords) {
1135     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1136     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1137     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1138 
1139     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1140     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1141                                         &MRI.getRegClass(AddrRCID));
1142     if (!NewVAddrSA)
1143       return MCDisassembler::Success;
1144   }
1145 
1146   MI.setOpcode(NewOpcode);
1147 
1148   if (NewVdata != AMDGPU::NoRegister) {
1149     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1150 
1151     if (IsAtomic) {
1152       // Atomic operations have an additional operand (a copy of data)
1153       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1154     }
1155   }
1156 
1157   if (NewVAddrSA) {
1158     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1159   } else if (IsNSA) {
1160     assert(AddrSize <= Info->VAddrDwords);
1161     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1162              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1163   }
1164 
1165   return MCDisassembler::Success;
1166 }
1167 
1168 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1169 // decoder only adds to src_modifiers, so manually add the bits to the other
1170 // operands.
1171 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1172   unsigned Opc = MI.getOpcode();
1173   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1174   auto Mods = collectVOPModifiers(MI, true);
1175 
1176   if (MI.getNumOperands() < DescNumOps &&
1177       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1178     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1179 
1180   if (MI.getNumOperands() < DescNumOps &&
1181       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1182     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1183                          AMDGPU::OpName::op_sel);
1184   if (MI.getNumOperands() < DescNumOps &&
1185       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1186     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1187                          AMDGPU::OpName::op_sel_hi);
1188   if (MI.getNumOperands() < DescNumOps &&
1189       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1190     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1191                          AMDGPU::OpName::neg_lo);
1192   if (MI.getNumOperands() < DescNumOps &&
1193       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1194     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1195                          AMDGPU::OpName::neg_hi);
1196 
1197   return MCDisassembler::Success;
1198 }
1199 
1200 // Create dummy old operand and insert optional operands
1201 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1202   unsigned Opc = MI.getOpcode();
1203   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1204 
1205   if (MI.getNumOperands() < DescNumOps &&
1206       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1207     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1208 
1209   if (MI.getNumOperands() < DescNumOps &&
1210       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1211     insertNamedMCOperand(MI, MCOperand::createImm(0),
1212                          AMDGPU::OpName::src0_modifiers);
1213 
1214   if (MI.getNumOperands() < DescNumOps &&
1215       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1216     insertNamedMCOperand(MI, MCOperand::createImm(0),
1217                          AMDGPU::OpName::src1_modifiers);
1218   return MCDisassembler::Success;
1219 }
1220 
1221 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1222                                                 int ImmLitIdx) const {
1223   assert(HasLiteral && "Should have decoded a literal");
1224   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1225   unsigned DescNumOps = Desc.getNumOperands();
1226   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1227                        AMDGPU::OpName::immDeferred);
1228   assert(DescNumOps == MI.getNumOperands());
1229   for (unsigned I = 0; I < DescNumOps; ++I) {
1230     auto &Op = MI.getOperand(I);
1231     auto OpType = Desc.operands()[I].OperandType;
1232     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1233                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1234     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1235         IsDeferredOp)
1236       Op.setImm(Literal);
1237   }
1238   return MCDisassembler::Success;
1239 }
1240 
1241 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1242   return getContext().getRegisterInfo()->
1243     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1244 }
1245 
1246 inline
1247 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1248                                          const Twine& ErrMsg) const {
1249   *CommentStream << "Error: " + ErrMsg;
1250 
1251   // ToDo: add support for error operands to MCInst.h
1252   // return MCOperand::createError(V);
1253   return MCOperand();
1254 }
1255 
1256 inline
1257 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1258   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1259 }
1260 
1261 inline
1262 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1263                                                unsigned Val) const {
1264   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1265   if (Val >= RegCl.getNumRegs())
1266     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1267                            ": unknown register " + Twine(Val));
1268   return createRegOperand(RegCl.getRegister(Val));
1269 }
1270 
1271 inline
1272 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1273                                                 unsigned Val) const {
1274   // ToDo: SI/CI have 104 SGPRs, VI - 102
1275   // Valery: here we accepting as much as we can, let assembler sort it out
1276   int shift = 0;
1277   switch (SRegClassID) {
1278   case AMDGPU::SGPR_32RegClassID:
1279   case AMDGPU::TTMP_32RegClassID:
1280     break;
1281   case AMDGPU::SGPR_64RegClassID:
1282   case AMDGPU::TTMP_64RegClassID:
1283     shift = 1;
1284     break;
1285   case AMDGPU::SGPR_96RegClassID:
1286   case AMDGPU::TTMP_96RegClassID:
1287   case AMDGPU::SGPR_128RegClassID:
1288   case AMDGPU::TTMP_128RegClassID:
1289   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1290   // this bundle?
1291   case AMDGPU::SGPR_256RegClassID:
1292   case AMDGPU::TTMP_256RegClassID:
1293     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1294   // this bundle?
1295   case AMDGPU::SGPR_288RegClassID:
1296   case AMDGPU::TTMP_288RegClassID:
1297   case AMDGPU::SGPR_320RegClassID:
1298   case AMDGPU::TTMP_320RegClassID:
1299   case AMDGPU::SGPR_352RegClassID:
1300   case AMDGPU::TTMP_352RegClassID:
1301   case AMDGPU::SGPR_384RegClassID:
1302   case AMDGPU::TTMP_384RegClassID:
1303   case AMDGPU::SGPR_512RegClassID:
1304   case AMDGPU::TTMP_512RegClassID:
1305     shift = 2;
1306     break;
1307   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1308   // this bundle?
1309   default:
1310     llvm_unreachable("unhandled register class");
1311   }
1312 
1313   if (Val % (1 << shift)) {
1314     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1315                    << ": scalar reg isn't aligned " << Val;
1316   }
1317 
1318   return createRegOperand(SRegClassID, Val >> shift);
1319 }
1320 
1321 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1322                                                   bool IsHi) const {
1323   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1324   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1325 }
1326 
1327 // Decode Literals for insts which always have a literal in the encoding
1328 MCOperand
1329 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1330   if (HasLiteral) {
1331     assert(
1332         AMDGPU::hasVOPD(STI) &&
1333         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1334     if (Literal != Val)
1335       return errOperand(Val, "More than one unique literal is illegal");
1336   }
1337   HasLiteral = true;
1338   Literal = Val;
1339   return MCOperand::createImm(Literal);
1340 }
1341 
1342 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1343   // For now all literal constants are supposed to be unsigned integer
1344   // ToDo: deal with signed/unsigned 64-bit integer constants
1345   // ToDo: deal with float/double constants
1346   if (!HasLiteral) {
1347     if (Bytes.size() < 4) {
1348       return errOperand(0, "cannot read literal, inst bytes left " +
1349                         Twine(Bytes.size()));
1350     }
1351     HasLiteral = true;
1352     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1353     if (ExtendFP64)
1354       Literal64 <<= 32;
1355   }
1356   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1357 }
1358 
1359 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1360   using namespace AMDGPU::EncValues;
1361 
1362   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1363   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1364     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1365     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1366       // Cast prevents negative overflow.
1367 }
1368 
1369 static int64_t getInlineImmVal32(unsigned Imm) {
1370   switch (Imm) {
1371   case 240:
1372     return llvm::bit_cast<uint32_t>(0.5f);
1373   case 241:
1374     return llvm::bit_cast<uint32_t>(-0.5f);
1375   case 242:
1376     return llvm::bit_cast<uint32_t>(1.0f);
1377   case 243:
1378     return llvm::bit_cast<uint32_t>(-1.0f);
1379   case 244:
1380     return llvm::bit_cast<uint32_t>(2.0f);
1381   case 245:
1382     return llvm::bit_cast<uint32_t>(-2.0f);
1383   case 246:
1384     return llvm::bit_cast<uint32_t>(4.0f);
1385   case 247:
1386     return llvm::bit_cast<uint32_t>(-4.0f);
1387   case 248: // 1 / (2 * PI)
1388     return 0x3e22f983;
1389   default:
1390     llvm_unreachable("invalid fp inline imm");
1391   }
1392 }
1393 
1394 static int64_t getInlineImmVal64(unsigned Imm) {
1395   switch (Imm) {
1396   case 240:
1397     return llvm::bit_cast<uint64_t>(0.5);
1398   case 241:
1399     return llvm::bit_cast<uint64_t>(-0.5);
1400   case 242:
1401     return llvm::bit_cast<uint64_t>(1.0);
1402   case 243:
1403     return llvm::bit_cast<uint64_t>(-1.0);
1404   case 244:
1405     return llvm::bit_cast<uint64_t>(2.0);
1406   case 245:
1407     return llvm::bit_cast<uint64_t>(-2.0);
1408   case 246:
1409     return llvm::bit_cast<uint64_t>(4.0);
1410   case 247:
1411     return llvm::bit_cast<uint64_t>(-4.0);
1412   case 248: // 1 / (2 * PI)
1413     return 0x3fc45f306dc9c882;
1414   default:
1415     llvm_unreachable("invalid fp inline imm");
1416   }
1417 }
1418 
1419 static int64_t getInlineImmVal16(unsigned Imm) {
1420   switch (Imm) {
1421   case 240:
1422     return 0x3800;
1423   case 241:
1424     return 0xB800;
1425   case 242:
1426     return 0x3C00;
1427   case 243:
1428     return 0xBC00;
1429   case 244:
1430     return 0x4000;
1431   case 245:
1432     return 0xC000;
1433   case 246:
1434     return 0x4400;
1435   case 247:
1436     return 0xC400;
1437   case 248: // 1 / (2 * PI)
1438     return 0x3118;
1439   default:
1440     llvm_unreachable("invalid fp inline imm");
1441   }
1442 }
1443 
1444 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1445   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1446       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1447 
1448   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1449   // ImmWidth 0 is a default case where operand should not allow immediates.
1450   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1451   // use it to print verbose error message.
1452   switch (ImmWidth) {
1453   case 0:
1454   case 32:
1455     return MCOperand::createImm(getInlineImmVal32(Imm));
1456   case 64:
1457     return MCOperand::createImm(getInlineImmVal64(Imm));
1458   case 16:
1459     return MCOperand::createImm(getInlineImmVal16(Imm));
1460   default:
1461     llvm_unreachable("implement me");
1462   }
1463 }
1464 
1465 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1466   using namespace AMDGPU;
1467 
1468   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1469   switch (Width) {
1470   default: // fall
1471   case OPW32:
1472   case OPW16:
1473   case OPWV216:
1474     return VGPR_32RegClassID;
1475   case OPW64:
1476   case OPWV232: return VReg_64RegClassID;
1477   case OPW96: return VReg_96RegClassID;
1478   case OPW128: return VReg_128RegClassID;
1479   case OPW160: return VReg_160RegClassID;
1480   case OPW256: return VReg_256RegClassID;
1481   case OPW288: return VReg_288RegClassID;
1482   case OPW320: return VReg_320RegClassID;
1483   case OPW352: return VReg_352RegClassID;
1484   case OPW384: return VReg_384RegClassID;
1485   case OPW512: return VReg_512RegClassID;
1486   case OPW1024: return VReg_1024RegClassID;
1487   }
1488 }
1489 
1490 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1491   using namespace AMDGPU;
1492 
1493   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1494   switch (Width) {
1495   default: // fall
1496   case OPW32:
1497   case OPW16:
1498   case OPWV216:
1499     return AGPR_32RegClassID;
1500   case OPW64:
1501   case OPWV232: return AReg_64RegClassID;
1502   case OPW96: return AReg_96RegClassID;
1503   case OPW128: return AReg_128RegClassID;
1504   case OPW160: return AReg_160RegClassID;
1505   case OPW256: return AReg_256RegClassID;
1506   case OPW288: return AReg_288RegClassID;
1507   case OPW320: return AReg_320RegClassID;
1508   case OPW352: return AReg_352RegClassID;
1509   case OPW384: return AReg_384RegClassID;
1510   case OPW512: return AReg_512RegClassID;
1511   case OPW1024: return AReg_1024RegClassID;
1512   }
1513 }
1514 
1515 
1516 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1517   using namespace AMDGPU;
1518 
1519   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1520   switch (Width) {
1521   default: // fall
1522   case OPW32:
1523   case OPW16:
1524   case OPWV216:
1525     return SGPR_32RegClassID;
1526   case OPW64:
1527   case OPWV232: return SGPR_64RegClassID;
1528   case OPW96: return SGPR_96RegClassID;
1529   case OPW128: return SGPR_128RegClassID;
1530   case OPW160: return SGPR_160RegClassID;
1531   case OPW256: return SGPR_256RegClassID;
1532   case OPW288: return SGPR_288RegClassID;
1533   case OPW320: return SGPR_320RegClassID;
1534   case OPW352: return SGPR_352RegClassID;
1535   case OPW384: return SGPR_384RegClassID;
1536   case OPW512: return SGPR_512RegClassID;
1537   }
1538 }
1539 
1540 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1541   using namespace AMDGPU;
1542 
1543   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1544   switch (Width) {
1545   default: // fall
1546   case OPW32:
1547   case OPW16:
1548   case OPWV216:
1549     return TTMP_32RegClassID;
1550   case OPW64:
1551   case OPWV232: return TTMP_64RegClassID;
1552   case OPW128: return TTMP_128RegClassID;
1553   case OPW256: return TTMP_256RegClassID;
1554   case OPW288: return TTMP_288RegClassID;
1555   case OPW320: return TTMP_320RegClassID;
1556   case OPW352: return TTMP_352RegClassID;
1557   case OPW384: return TTMP_384RegClassID;
1558   case OPW512: return TTMP_512RegClassID;
1559   }
1560 }
1561 
1562 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1563   using namespace AMDGPU::EncValues;
1564 
1565   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1566   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1567 
1568   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1569 }
1570 
1571 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1572                                           bool MandatoryLiteral,
1573                                           unsigned ImmWidth, bool IsFP) const {
1574   using namespace AMDGPU::EncValues;
1575 
1576   assert(Val < 1024); // enum10
1577 
1578   bool IsAGPR = Val & 512;
1579   Val &= 511;
1580 
1581   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1582     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1583                                    : getVgprClassId(Width), Val - VGPR_MIN);
1584   }
1585   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1586                             IsFP);
1587 }
1588 
1589 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1590                                                  unsigned Val,
1591                                                  bool MandatoryLiteral,
1592                                                  unsigned ImmWidth,
1593                                                  bool IsFP) const {
1594   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1595   // decoded earlier.
1596   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1597   using namespace AMDGPU::EncValues;
1598 
1599   if (Val <= SGPR_MAX) {
1600     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1601     static_assert(SGPR_MIN == 0);
1602     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1603   }
1604 
1605   int TTmpIdx = getTTmpIdx(Val);
1606   if (TTmpIdx >= 0) {
1607     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1608   }
1609 
1610   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1611     return decodeIntImmed(Val);
1612 
1613   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1614     return decodeFPImmed(ImmWidth, Val);
1615 
1616   if (Val == LITERAL_CONST) {
1617     if (MandatoryLiteral)
1618       // Keep a sentinel value for deferred setting
1619       return MCOperand::createImm(LITERAL_CONST);
1620     else
1621       return decodeLiteralConstant(IsFP && ImmWidth == 64);
1622   }
1623 
1624   switch (Width) {
1625   case OPW32:
1626   case OPW16:
1627   case OPWV216:
1628     return decodeSpecialReg32(Val);
1629   case OPW64:
1630   case OPWV232:
1631     return decodeSpecialReg64(Val);
1632   default:
1633     llvm_unreachable("unexpected immediate type");
1634   }
1635 }
1636 
1637 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1638 // opposite of bit 0 of DstX.
1639 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1640                                                unsigned Val) const {
1641   int VDstXInd =
1642       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1643   assert(VDstXInd != -1);
1644   assert(Inst.getOperand(VDstXInd).isReg());
1645   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1646   Val |= ~XDstReg & 1;
1647   auto Width = llvm::AMDGPUDisassembler::OPW32;
1648   return createRegOperand(getVgprClassId(Width), Val);
1649 }
1650 
1651 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1652   using namespace AMDGPU;
1653 
1654   switch (Val) {
1655   // clang-format off
1656   case 102: return createRegOperand(FLAT_SCR_LO);
1657   case 103: return createRegOperand(FLAT_SCR_HI);
1658   case 104: return createRegOperand(XNACK_MASK_LO);
1659   case 105: return createRegOperand(XNACK_MASK_HI);
1660   case 106: return createRegOperand(VCC_LO);
1661   case 107: return createRegOperand(VCC_HI);
1662   case 108: return createRegOperand(TBA_LO);
1663   case 109: return createRegOperand(TBA_HI);
1664   case 110: return createRegOperand(TMA_LO);
1665   case 111: return createRegOperand(TMA_HI);
1666   case 124:
1667     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1668   case 125:
1669     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1670   case 126: return createRegOperand(EXEC_LO);
1671   case 127: return createRegOperand(EXEC_HI);
1672   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1673   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1674   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1675   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1676   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1677   case 251: return createRegOperand(SRC_VCCZ);
1678   case 252: return createRegOperand(SRC_EXECZ);
1679   case 253: return createRegOperand(SRC_SCC);
1680   case 254: return createRegOperand(LDS_DIRECT);
1681   default: break;
1682     // clang-format on
1683   }
1684   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1685 }
1686 
1687 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1688   using namespace AMDGPU;
1689 
1690   switch (Val) {
1691   case 102: return createRegOperand(FLAT_SCR);
1692   case 104: return createRegOperand(XNACK_MASK);
1693   case 106: return createRegOperand(VCC);
1694   case 108: return createRegOperand(TBA);
1695   case 110: return createRegOperand(TMA);
1696   case 124:
1697     if (isGFX11Plus())
1698       return createRegOperand(SGPR_NULL);
1699     break;
1700   case 125:
1701     if (!isGFX11Plus())
1702       return createRegOperand(SGPR_NULL);
1703     break;
1704   case 126: return createRegOperand(EXEC);
1705   case 235: return createRegOperand(SRC_SHARED_BASE);
1706   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1707   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1708   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1709   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1710   case 251: return createRegOperand(SRC_VCCZ);
1711   case 252: return createRegOperand(SRC_EXECZ);
1712   case 253: return createRegOperand(SRC_SCC);
1713   default: break;
1714   }
1715   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1716 }
1717 
1718 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1719                                             const unsigned Val,
1720                                             unsigned ImmWidth) const {
1721   using namespace AMDGPU::SDWA;
1722   using namespace AMDGPU::EncValues;
1723 
1724   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1725       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1726     // XXX: cast to int is needed to avoid stupid warning:
1727     // compare with unsigned is always true
1728     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1729         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1730       return createRegOperand(getVgprClassId(Width),
1731                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1732     }
1733     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1734         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1735                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1736       return createSRegOperand(getSgprClassId(Width),
1737                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1738     }
1739     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1740         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1741       return createSRegOperand(getTtmpClassId(Width),
1742                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1743     }
1744 
1745     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1746 
1747     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1748       return decodeIntImmed(SVal);
1749 
1750     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1751       return decodeFPImmed(ImmWidth, SVal);
1752 
1753     return decodeSpecialReg32(SVal);
1754   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1755     return createRegOperand(getVgprClassId(Width), Val);
1756   }
1757   llvm_unreachable("unsupported target");
1758 }
1759 
1760 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1761   return decodeSDWASrc(OPW16, Val, 16);
1762 }
1763 
1764 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1765   return decodeSDWASrc(OPW32, Val, 32);
1766 }
1767 
1768 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1769   using namespace AMDGPU::SDWA;
1770 
1771   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1772           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1773          "SDWAVopcDst should be present only on GFX9+");
1774 
1775   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1776 
1777   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1778     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1779 
1780     int TTmpIdx = getTTmpIdx(Val);
1781     if (TTmpIdx >= 0) {
1782       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1783       return createSRegOperand(TTmpClsId, TTmpIdx);
1784     } else if (Val > SGPR_MAX) {
1785       return IsWave64 ? decodeSpecialReg64(Val)
1786                       : decodeSpecialReg32(Val);
1787     } else {
1788       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1789     }
1790   } else {
1791     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1792   }
1793 }
1794 
1795 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1796   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1797              ? decodeSrcOp(OPW64, Val)
1798              : decodeSrcOp(OPW32, Val);
1799 }
1800 
1801 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1802   return decodeSrcOp(OPW32, Val);
1803 }
1804 
1805 bool AMDGPUDisassembler::isVI() const {
1806   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1807 }
1808 
1809 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1810 
1811 bool AMDGPUDisassembler::isGFX90A() const {
1812   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1813 }
1814 
1815 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1816 
1817 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1818 
1819 bool AMDGPUDisassembler::isGFX10Plus() const {
1820   return AMDGPU::isGFX10Plus(STI);
1821 }
1822 
1823 bool AMDGPUDisassembler::isGFX11() const {
1824   return STI.hasFeature(AMDGPU::FeatureGFX11);
1825 }
1826 
1827 bool AMDGPUDisassembler::isGFX11Plus() const {
1828   return AMDGPU::isGFX11Plus(STI);
1829 }
1830 
1831 bool AMDGPUDisassembler::isGFX12Plus() const {
1832   return AMDGPU::isGFX12Plus(STI);
1833 }
1834 
1835 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1836   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1837 }
1838 
1839 bool AMDGPUDisassembler::hasKernargPreload() const {
1840   return AMDGPU::hasKernargPreload(STI);
1841 }
1842 
1843 //===----------------------------------------------------------------------===//
1844 // AMDGPU specific symbol handling
1845 //===----------------------------------------------------------------------===//
1846 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1847 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1848   do {                                                                         \
1849     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1850   } while (0)
1851 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1852   do {                                                                         \
1853     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1854              << GET_FIELD(MASK) << '\n';                                       \
1855   } while (0)
1856 
1857 // NOLINTNEXTLINE(readability-identifier-naming)
1858 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1859     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1860   using namespace amdhsa;
1861   StringRef Indent = "\t";
1862 
1863   // We cannot accurately backward compute #VGPRs used from
1864   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1865   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1866   // simply calculate the inverse of what the assembler does.
1867 
1868   uint32_t GranulatedWorkitemVGPRCount =
1869       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1870 
1871   uint32_t NextFreeVGPR =
1872       (GranulatedWorkitemVGPRCount + 1) *
1873       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1874 
1875   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1876 
1877   // We cannot backward compute values used to calculate
1878   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1879   // directives can't be computed:
1880   // .amdhsa_reserve_vcc
1881   // .amdhsa_reserve_flat_scratch
1882   // .amdhsa_reserve_xnack_mask
1883   // They take their respective default values if not specified in the assembly.
1884   //
1885   // GRANULATED_WAVEFRONT_SGPR_COUNT
1886   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1887   //
1888   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1889   // are set to 0. So while disassembling we consider that:
1890   //
1891   // GRANULATED_WAVEFRONT_SGPR_COUNT
1892   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1893   //
1894   // The disassembler cannot recover the original values of those 3 directives.
1895 
1896   uint32_t GranulatedWavefrontSGPRCount =
1897       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1898 
1899   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1900     return MCDisassembler::Fail;
1901 
1902   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1903                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1904 
1905   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1906   if (!hasArchitectedFlatScratch())
1907     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1908   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1909   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1910 
1911   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1912     return MCDisassembler::Fail;
1913 
1914   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1915                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1916   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1917                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1918   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1919                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1920   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1921                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1922 
1923   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1924     return MCDisassembler::Fail;
1925 
1926   if (!isGFX12Plus())
1927     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1928                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1929 
1930   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1931     return MCDisassembler::Fail;
1932 
1933   if (!isGFX12Plus())
1934     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1935                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1936 
1937   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1938     return MCDisassembler::Fail;
1939 
1940   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1941     return MCDisassembler::Fail;
1942 
1943   if (isGFX9Plus())
1944     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1945 
1946   if (!isGFX9Plus())
1947     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1948       return MCDisassembler::Fail;
1949   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1950     return MCDisassembler::Fail;
1951   if (!isGFX10Plus())
1952     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1953       return MCDisassembler::Fail;
1954 
1955   if (isGFX10Plus()) {
1956     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1957                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1958     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1959     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1960   }
1961 
1962   if (isGFX12Plus())
1963     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1964                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1965 
1966   return MCDisassembler::Success;
1967 }
1968 
1969 // NOLINTNEXTLINE(readability-identifier-naming)
1970 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1971     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1972   using namespace amdhsa;
1973   StringRef Indent = "\t";
1974   if (hasArchitectedFlatScratch())
1975     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1976                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1977   else
1978     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1979                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1980   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1981                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1982   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1983                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1984   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1985                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1986   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1987                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1988   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1989                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1990 
1991   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1992     return MCDisassembler::Fail;
1993 
1994   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1995     return MCDisassembler::Fail;
1996 
1997   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1998     return MCDisassembler::Fail;
1999 
2000   PRINT_DIRECTIVE(
2001       ".amdhsa_exception_fp_ieee_invalid_op",
2002       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
2003   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
2004                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
2005   PRINT_DIRECTIVE(
2006       ".amdhsa_exception_fp_ieee_div_zero",
2007       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
2008   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
2009                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
2010   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
2011                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
2012   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
2013                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
2014   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
2015                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
2016 
2017   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
2018     return MCDisassembler::Fail;
2019 
2020   return MCDisassembler::Success;
2021 }
2022 
2023 // NOLINTNEXTLINE(readability-identifier-naming)
2024 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
2025     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
2026   using namespace amdhsa;
2027   StringRef Indent = "\t";
2028   if (isGFX90A()) {
2029     KdStream << Indent << ".amdhsa_accum_offset "
2030              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
2031              << '\n';
2032     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
2033       return MCDisassembler::Fail;
2034     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
2035     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
2036       return MCDisassembler::Fail;
2037   } else if (isGFX10Plus()) {
2038     // Bits [0-3].
2039     if (!isGFX12Plus()) {
2040       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
2041         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
2042                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2043       } else {
2044         PRINT_PSEUDO_DIRECTIVE_COMMENT(
2045             "SHARED_VGPR_COUNT",
2046             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2047       }
2048     } else {
2049       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0)
2050         return MCDisassembler::Fail;
2051     }
2052 
2053     // Bits [4-11].
2054     if (isGFX11()) {
2055       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
2056                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
2057       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
2058                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
2059       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
2060                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
2061     } else if (isGFX12Plus()) {
2062       PRINT_PSEUDO_DIRECTIVE_COMMENT(
2063           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
2064     } else {
2065       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1)
2066         return MCDisassembler::Fail;
2067     }
2068 
2069     // Bits [12].
2070     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2)
2071       return MCDisassembler::Fail;
2072 
2073     // Bits [13].
2074     if (isGFX12Plus()) {
2075       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
2076                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
2077     } else {
2078       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3)
2079         return MCDisassembler::Fail;
2080     }
2081 
2082     // Bits [14-30].
2083     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4)
2084       return MCDisassembler::Fail;
2085 
2086     // Bits [31].
2087     if (isGFX11Plus()) {
2088       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2089                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2090     } else {
2091       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5)
2092         return MCDisassembler::Fail;
2093     }
2094   } else if (FourByteBuffer) {
2095     return MCDisassembler::Fail;
2096   }
2097   return MCDisassembler::Success;
2098 }
2099 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2100 #undef PRINT_DIRECTIVE
2101 #undef GET_FIELD
2102 
2103 MCDisassembler::DecodeStatus
2104 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2105     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2106     raw_string_ostream &KdStream) const {
2107 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2108   do {                                                                         \
2109     KdStream << Indent << DIRECTIVE " "                                        \
2110              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2111   } while (0)
2112 
2113   uint16_t TwoByteBuffer = 0;
2114   uint32_t FourByteBuffer = 0;
2115 
2116   StringRef ReservedBytes;
2117   StringRef Indent = "\t";
2118 
2119   assert(Bytes.size() == 64);
2120   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2121 
2122   switch (Cursor.tell()) {
2123   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2124     FourByteBuffer = DE.getU32(Cursor);
2125     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2126              << '\n';
2127     return MCDisassembler::Success;
2128 
2129   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2130     FourByteBuffer = DE.getU32(Cursor);
2131     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2132              << FourByteBuffer << '\n';
2133     return MCDisassembler::Success;
2134 
2135   case amdhsa::KERNARG_SIZE_OFFSET:
2136     FourByteBuffer = DE.getU32(Cursor);
2137     KdStream << Indent << ".amdhsa_kernarg_size "
2138              << FourByteBuffer << '\n';
2139     return MCDisassembler::Success;
2140 
2141   case amdhsa::RESERVED0_OFFSET:
2142     // 4 reserved bytes, must be 0.
2143     ReservedBytes = DE.getBytes(Cursor, 4);
2144     for (int I = 0; I < 4; ++I) {
2145       if (ReservedBytes[I] != 0) {
2146         return MCDisassembler::Fail;
2147       }
2148     }
2149     return MCDisassembler::Success;
2150 
2151   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2152     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2153     // So far no directive controls this for Code Object V3, so simply skip for
2154     // disassembly.
2155     DE.skip(Cursor, 8);
2156     return MCDisassembler::Success;
2157 
2158   case amdhsa::RESERVED1_OFFSET:
2159     // 20 reserved bytes, must be 0.
2160     ReservedBytes = DE.getBytes(Cursor, 20);
2161     for (int I = 0; I < 20; ++I) {
2162       if (ReservedBytes[I] != 0) {
2163         return MCDisassembler::Fail;
2164       }
2165     }
2166     return MCDisassembler::Success;
2167 
2168   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2169     FourByteBuffer = DE.getU32(Cursor);
2170     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2171 
2172   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2173     FourByteBuffer = DE.getU32(Cursor);
2174     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2175 
2176   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2177     FourByteBuffer = DE.getU32(Cursor);
2178     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2179 
2180   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2181     using namespace amdhsa;
2182     TwoByteBuffer = DE.getU16(Cursor);
2183 
2184     if (!hasArchitectedFlatScratch())
2185       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2186                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2187     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2188                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2189     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2190                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2191     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2192                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2193     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2194                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2195     if (!hasArchitectedFlatScratch())
2196       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2197                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2198     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2199                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2200 
2201     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2202       return MCDisassembler::Fail;
2203 
2204     // Reserved for GFX9
2205     if (isGFX9() &&
2206         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2207       return MCDisassembler::Fail;
2208     } else if (isGFX10Plus()) {
2209       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2210                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2211     }
2212 
2213     // FIXME: We should be looking at the ELF header ABI version for this.
2214     if (AMDGPU::getDefaultAMDHSACodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
2215       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2216                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2217 
2218     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2219       return MCDisassembler::Fail;
2220 
2221     return MCDisassembler::Success;
2222 
2223   case amdhsa::KERNARG_PRELOAD_OFFSET:
2224     using namespace amdhsa;
2225     TwoByteBuffer = DE.getU16(Cursor);
2226     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2227       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2228                       KERNARG_PRELOAD_SPEC_LENGTH);
2229     }
2230 
2231     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2232       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2233                       KERNARG_PRELOAD_SPEC_OFFSET);
2234     }
2235     return MCDisassembler::Success;
2236 
2237   case amdhsa::RESERVED3_OFFSET:
2238     // 4 bytes from here are reserved, must be 0.
2239     ReservedBytes = DE.getBytes(Cursor, 4);
2240     for (int I = 0; I < 4; ++I) {
2241       if (ReservedBytes[I] != 0)
2242         return MCDisassembler::Fail;
2243     }
2244     return MCDisassembler::Success;
2245 
2246   default:
2247     llvm_unreachable("Unhandled index. Case statements cover everything.");
2248     return MCDisassembler::Fail;
2249   }
2250 #undef PRINT_DIRECTIVE
2251 }
2252 
2253 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2254     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2255   // CP microcode requires the kernel descriptor to be 64 aligned.
2256   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2257     return MCDisassembler::Fail;
2258 
2259   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2260   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2261   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2262   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2263   // when required.
2264   if (isGFX10Plus()) {
2265     uint16_t KernelCodeProperties =
2266         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2267                                 llvm::endianness::little);
2268     EnableWavefrontSize32 =
2269         AMDHSA_BITS_GET(KernelCodeProperties,
2270                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2271   }
2272 
2273   std::string Kd;
2274   raw_string_ostream KdStream(Kd);
2275   KdStream << ".amdhsa_kernel " << KdName << '\n';
2276 
2277   DataExtractor::Cursor C(0);
2278   while (C && C.tell() < Bytes.size()) {
2279     MCDisassembler::DecodeStatus Status =
2280         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2281 
2282     cantFail(C.takeError());
2283 
2284     if (Status == MCDisassembler::Fail)
2285       return MCDisassembler::Fail;
2286   }
2287   KdStream << ".end_amdhsa_kernel\n";
2288   outs() << KdStream.str();
2289   return MCDisassembler::Success;
2290 }
2291 
2292 std::optional<MCDisassembler::DecodeStatus>
2293 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2294                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2295                                   raw_ostream &CStream) const {
2296   // Right now only kernel descriptor needs to be handled.
2297   // We ignore all other symbols for target specific handling.
2298   // TODO:
2299   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2300   // Object V2 and V3 when symbols are marked protected.
2301 
2302   // amd_kernel_code_t for Code Object V2.
2303   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2304     Size = 256;
2305     return MCDisassembler::Fail;
2306   }
2307 
2308   // Code Object V3 kernel descriptors.
2309   StringRef Name = Symbol.Name;
2310   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2311     Size = 64; // Size = 64 regardless of success or failure.
2312     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2313   }
2314   return std::nullopt;
2315 }
2316 
2317 //===----------------------------------------------------------------------===//
2318 // AMDGPUSymbolizer
2319 //===----------------------------------------------------------------------===//
2320 
2321 // Try to find symbol name for specified label
2322 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2323     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2324     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2325     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2326 
2327   if (!IsBranch) {
2328     return false;
2329   }
2330 
2331   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2332   if (!Symbols)
2333     return false;
2334 
2335   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2336     return Val.Addr == static_cast<uint64_t>(Value) &&
2337            Val.Type == ELF::STT_NOTYPE;
2338   });
2339   if (Result != Symbols->end()) {
2340     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2341     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2342     Inst.addOperand(MCOperand::createExpr(Add));
2343     return true;
2344   }
2345   // Add to list of referenced addresses, so caller can synthesize a label.
2346   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2347   return false;
2348 }
2349 
2350 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2351                                                        int64_t Value,
2352                                                        uint64_t Address) {
2353   llvm_unreachable("unimplemented");
2354 }
2355 
2356 //===----------------------------------------------------------------------===//
2357 // Initialization
2358 //===----------------------------------------------------------------------===//
2359 
2360 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2361                               LLVMOpInfoCallback /*GetOpInfo*/,
2362                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2363                               void *DisInfo,
2364                               MCContext *Ctx,
2365                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2366   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2367 }
2368 
2369 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2370                                                 const MCSubtargetInfo &STI,
2371                                                 MCContext &Ctx) {
2372   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2373 }
2374 
2375 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2376   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2377                                          createAMDGPUDisassembler);
2378   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2379                                        createAMDGPUSymbolizer);
2380 }
2381