xref: /llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision cacfb02d28a3cabd4e45d2535cb0686cef48a2c9)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "AMDGPU.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "SIDefines.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/Disassembler.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/BinaryFormat/ELF.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCContext.h"
32 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
33 #include "llvm/MC/MCExpr.h"
34 #include "llvm/MC/MCFixedLenDisassembler.h"
35 #include "llvm/MC/MCInst.h"
36 #include "llvm/MC/MCSubtargetInfo.h"
37 #include "llvm/Support/AMDHSAKernelDescriptor.h"
38 #include "llvm/Support/Endian.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/TargetRegistry.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <iterator>
48 #include <tuple>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "amdgpu-disassembler"
54 
55 #define SGPR_MAX (isGFX10() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \
56                             : AMDGPU::EncValues::SGPR_MAX_SI)
57 
58 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
59 
60 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
61                                        MCContext &Ctx,
62                                        MCInstrInfo const *MCII) :
63   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
64   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
65 
66   // ToDo: AMDGPUDisassembler supports only VI ISA.
67   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10())
68     report_fatal_error("Disassembly not yet supported for subtarget");
69 }
70 
71 inline static MCDisassembler::DecodeStatus
72 addOperand(MCInst &Inst, const MCOperand& Opnd) {
73   Inst.addOperand(Opnd);
74   return Opnd.isValid() ?
75     MCDisassembler::Success :
76     MCDisassembler::Fail;
77 }
78 
79 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
80                                 uint16_t NameIdx) {
81   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
82   if (OpIdx != -1) {
83     auto I = MI.begin();
84     std::advance(I, OpIdx);
85     MI.insert(I, Op);
86   }
87   return OpIdx;
88 }
89 
90 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
91                                        uint64_t Addr, const void *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93 
94   // Our branches take a simm16, but we need two extra bits to account for the
95   // factor of 4.
96   APInt SignedOffset(18, Imm * 4, true);
97   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
98 
99   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
100     return MCDisassembler::Success;
101   return addOperand(Inst, MCOperand::createImm(Imm));
102 }
103 
104 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm,
105                                      uint64_t Addr, const void *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   int64_t Offset;
108   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
109     Offset = Imm & 0xFFFFF;
110   } else {                    // GFX9+ supports 21-bit signed offsets.
111     Offset = SignExtend64<21>(Imm);
112   }
113   return addOperand(Inst, MCOperand::createImm(Offset));
114 }
115 
116 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val,
117                                   uint64_t Addr, const void *Decoder) {
118   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
119   return addOperand(Inst, DAsm->decodeBoolReg(Val));
120 }
121 
122 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \
123 static DecodeStatus StaticDecoderName(MCInst &Inst, \
124                                        unsigned Imm, \
125                                        uint64_t /*Addr*/, \
126                                        const void *Decoder) { \
127   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); \
128   return addOperand(Inst, DAsm->DecoderName(Imm)); \
129 }
130 
131 #define DECODE_OPERAND_REG(RegClass) \
132 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
133 
134 DECODE_OPERAND_REG(VGPR_32)
135 DECODE_OPERAND_REG(VRegOrLds_32)
136 DECODE_OPERAND_REG(VS_32)
137 DECODE_OPERAND_REG(VS_64)
138 DECODE_OPERAND_REG(VS_128)
139 
140 DECODE_OPERAND_REG(VReg_64)
141 DECODE_OPERAND_REG(VReg_96)
142 DECODE_OPERAND_REG(VReg_128)
143 
144 DECODE_OPERAND_REG(SReg_32)
145 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
146 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
147 DECODE_OPERAND_REG(SRegOrLds_32)
148 DECODE_OPERAND_REG(SReg_64)
149 DECODE_OPERAND_REG(SReg_64_XEXEC)
150 DECODE_OPERAND_REG(SReg_128)
151 DECODE_OPERAND_REG(SReg_256)
152 DECODE_OPERAND_REG(SReg_512)
153 
154 DECODE_OPERAND_REG(AGPR_32)
155 DECODE_OPERAND_REG(AReg_128)
156 DECODE_OPERAND_REG(AReg_512)
157 DECODE_OPERAND_REG(AReg_1024)
158 DECODE_OPERAND_REG(AV_32)
159 DECODE_OPERAND_REG(AV_64)
160 
161 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst,
162                                          unsigned Imm,
163                                          uint64_t Addr,
164                                          const void *Decoder) {
165   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
166   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
167 }
168 
169 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst,
170                                          unsigned Imm,
171                                          uint64_t Addr,
172                                          const void *Decoder) {
173   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
174   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
175 }
176 
177 static DecodeStatus decodeOperand_VS_16(MCInst &Inst,
178                                         unsigned Imm,
179                                         uint64_t Addr,
180                                         const void *Decoder) {
181   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
182   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
183 }
184 
185 static DecodeStatus decodeOperand_VS_32(MCInst &Inst,
186                                         unsigned Imm,
187                                         uint64_t Addr,
188                                         const void *Decoder) {
189   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
190   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
191 }
192 
193 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst,
194                                            unsigned Imm,
195                                            uint64_t Addr,
196                                            const void *Decoder) {
197   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
198   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
199 }
200 
201 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst,
202                                            unsigned Imm,
203                                            uint64_t Addr,
204                                            const void *Decoder) {
205   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
206   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
207 }
208 
209 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst,
210                                             unsigned Imm,
211                                             uint64_t Addr,
212                                             const void *Decoder) {
213   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
214   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
215 }
216 
217 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst,
218                                           unsigned Imm,
219                                           uint64_t Addr,
220                                           const void *Decoder) {
221   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
222   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
223 }
224 
225 static DecodeStatus decodeOperand_VGPR_32(MCInst &Inst,
226                                          unsigned Imm,
227                                          uint64_t Addr,
228                                          const void *Decoder) {
229   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
230   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW32, Imm));
231 }
232 
233 #define DECODE_SDWA(DecName) \
234 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
235 
236 DECODE_SDWA(Src32)
237 DECODE_SDWA(Src16)
238 DECODE_SDWA(VopcDst)
239 
240 #include "AMDGPUGenDisassemblerTables.inc"
241 
242 //===----------------------------------------------------------------------===//
243 //
244 //===----------------------------------------------------------------------===//
245 
246 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
247   assert(Bytes.size() >= sizeof(T));
248   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
249   Bytes = Bytes.slice(sizeof(T));
250   return Res;
251 }
252 
253 DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table,
254                                                MCInst &MI,
255                                                uint64_t Inst,
256                                                uint64_t Address) const {
257   assert(MI.getOpcode() == 0);
258   assert(MI.getNumOperands() == 0);
259   MCInst TmpInst;
260   HasLiteral = false;
261   const auto SavedBytes = Bytes;
262   if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) {
263     MI = TmpInst;
264     return MCDisassembler::Success;
265   }
266   Bytes = SavedBytes;
267   return MCDisassembler::Fail;
268 }
269 
270 static bool isValidDPP8(const MCInst &MI) {
271   using namespace llvm::AMDGPU::DPP;
272   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
273   assert(FiIdx != -1);
274   if ((unsigned)FiIdx >= MI.getNumOperands())
275     return false;
276   unsigned Fi = MI.getOperand(FiIdx).getImm();
277   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
278 }
279 
280 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
281                                                 ArrayRef<uint8_t> Bytes_,
282                                                 uint64_t Address,
283                                                 raw_ostream &CS) const {
284   CommentStream = &CS;
285   bool IsSDWA = false;
286 
287   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
288   Bytes = Bytes_.slice(0, MaxInstBytesNum);
289 
290   DecodeStatus Res = MCDisassembler::Fail;
291   do {
292     // ToDo: better to switch encoding length using some bit predicate
293     // but it is unknown yet, so try all we can
294 
295     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
296     // encodings
297     if (Bytes.size() >= 8) {
298       const uint64_t QW = eatBytes<uint64_t>(Bytes);
299 
300       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
301         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
302         if (Res) {
303           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
304               == -1)
305             break;
306           if (convertDPP8Inst(MI) == MCDisassembler::Success)
307             break;
308           MI = MCInst(); // clear
309         }
310       }
311 
312       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
313       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
314         break;
315 
316       MI = MCInst(); // clear
317 
318       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
319       if (Res) break;
320 
321       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
322       if (Res) { IsSDWA = true;  break; }
323 
324       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
325       if (Res) { IsSDWA = true;  break; }
326 
327       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
328       if (Res) { IsSDWA = true;  break; }
329 
330       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
331         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
332         if (Res)
333           break;
334       }
335 
336       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
337       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
338       // table first so we print the correct name.
339       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
340         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
341         if (Res)
342           break;
343       }
344     }
345 
346     // Reinitialize Bytes as DPP64 could have eaten too much
347     Bytes = Bytes_.slice(0, MaxInstBytesNum);
348 
349     // Try decode 32-bit instruction
350     if (Bytes.size() < 4) break;
351     const uint32_t DW = eatBytes<uint32_t>(Bytes);
352     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
353     if (Res) break;
354 
355     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
356     if (Res) break;
357 
358     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
359     if (Res) break;
360 
361     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
362       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
363       if (Res) break;
364     }
365 
366     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
367     if (Res) break;
368 
369     if (Bytes.size() < 4) break;
370     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
371     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
372     if (Res) break;
373 
374     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
375     if (Res) break;
376 
377     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
378     if (Res) break;
379 
380     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
381   } while (false);
382 
383   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
384               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
385               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
386               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
387               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
388               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
389               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
390     // Insert dummy unused src2_modifiers.
391     insertNamedMCOperand(MI, MCOperand::createImm(0),
392                          AMDGPU::OpName::src2_modifiers);
393   }
394 
395   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
396     int VAddr0Idx =
397         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
398     int RsrcIdx =
399         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
400     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
401     if (VAddr0Idx >= 0 && NSAArgs > 0) {
402       unsigned NSAWords = (NSAArgs + 3) / 4;
403       if (Bytes.size() < 4 * NSAWords) {
404         Res = MCDisassembler::Fail;
405       } else {
406         for (unsigned i = 0; i < NSAArgs; ++i) {
407           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
408                     decodeOperand_VGPR_32(Bytes[i]));
409         }
410         Bytes = Bytes.slice(4 * NSAWords);
411       }
412     }
413 
414     if (Res)
415       Res = convertMIMGInst(MI);
416   }
417 
418   if (Res && IsSDWA)
419     Res = convertSDWAInst(MI);
420 
421   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
422                                               AMDGPU::OpName::vdst_in);
423   if (VDstIn_Idx != -1) {
424     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
425                            MCOI::OperandConstraint::TIED_TO);
426     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
427          !MI.getOperand(VDstIn_Idx).isReg() ||
428          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
429       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
430         MI.erase(&MI.getOperand(VDstIn_Idx));
431       insertNamedMCOperand(MI,
432         MCOperand::createReg(MI.getOperand(Tied).getReg()),
433         AMDGPU::OpName::vdst_in);
434     }
435   }
436 
437   // if the opcode was not recognized we'll assume a Size of 4 bytes
438   // (unless there are fewer bytes left)
439   Size = Res ? (MaxInstBytesNum - Bytes.size())
440              : std::min((size_t)4, Bytes_.size());
441   return Res;
442 }
443 
444 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
445   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
446       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
447     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
448       // VOPC - insert clamp
449       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
450   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
451     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
452     if (SDst != -1) {
453       // VOPC - insert VCC register as sdst
454       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
455                            AMDGPU::OpName::sdst);
456     } else {
457       // VOP1/2 - insert omod if present in instruction
458       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
459     }
460   }
461   return MCDisassembler::Success;
462 }
463 
464 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
465   unsigned Opc = MI.getOpcode();
466   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
467 
468   // Insert dummy unused src modifiers.
469   if (MI.getNumOperands() < DescNumOps &&
470       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
471     insertNamedMCOperand(MI, MCOperand::createImm(0),
472                          AMDGPU::OpName::src0_modifiers);
473 
474   if (MI.getNumOperands() < DescNumOps &&
475       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
476     insertNamedMCOperand(MI, MCOperand::createImm(0),
477                          AMDGPU::OpName::src1_modifiers);
478 
479   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
480 }
481 
482 // Note that before gfx10, the MIMG encoding provided no information about
483 // VADDR size. Consequently, decoded instructions always show address as if it
484 // has 1 dword, which could be not really so.
485 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
486 
487   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
488                                            AMDGPU::OpName::vdst);
489 
490   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
491                                             AMDGPU::OpName::vdata);
492   int VAddr0Idx =
493       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
494   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
495                                             AMDGPU::OpName::dmask);
496 
497   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
498                                             AMDGPU::OpName::tfe);
499   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
500                                             AMDGPU::OpName::d16);
501 
502   assert(VDataIdx != -1);
503   assert(DMaskIdx != -1);
504   assert(TFEIdx != -1);
505 
506   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
507   bool IsAtomic = (VDstIdx != -1);
508   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
509 
510   bool IsNSA = false;
511   unsigned AddrSize = Info->VAddrDwords;
512 
513   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
514     unsigned DimIdx =
515         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
516     const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
517         AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
518     const AMDGPU::MIMGDimInfo *Dim =
519         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
520 
521     AddrSize = BaseOpcode->NumExtraArgs +
522                (BaseOpcode->Gradients ? Dim->NumGradients : 0) +
523                (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
524                (BaseOpcode->LodOrClampOrMip ? 1 : 0);
525     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
526     if (!IsNSA) {
527       if (AddrSize > 8)
528         AddrSize = 16;
529       else if (AddrSize > 4)
530         AddrSize = 8;
531     } else {
532       if (AddrSize > Info->VAddrDwords) {
533         // The NSA encoding does not contain enough operands for the combination
534         // of base opcode / dimension. Should this be an error?
535         return MCDisassembler::Success;
536       }
537     }
538   }
539 
540   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
541   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
542 
543   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
544   if (D16 && AMDGPU::hasPackedD16(STI)) {
545     DstSize = (DstSize + 1) / 2;
546   }
547 
548   // FIXME: Add tfe support
549   if (MI.getOperand(TFEIdx).getImm())
550     return MCDisassembler::Success;
551 
552   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
553     return MCDisassembler::Success;
554 
555   int NewOpcode =
556       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
557   if (NewOpcode == -1)
558     return MCDisassembler::Success;
559 
560   // Widen the register to the correct number of enabled channels.
561   unsigned NewVdata = AMDGPU::NoRegister;
562   if (DstSize != Info->VDataDwords) {
563     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
564 
565     // Get first subregister of VData
566     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
567     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
568     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
569 
570     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
571                                        &MRI.getRegClass(DataRCID));
572     if (NewVdata == AMDGPU::NoRegister) {
573       // It's possible to encode this such that the low register + enabled
574       // components exceeds the register count.
575       return MCDisassembler::Success;
576     }
577   }
578 
579   unsigned NewVAddr0 = AMDGPU::NoRegister;
580   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
581       AddrSize != Info->VAddrDwords) {
582     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
583     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
584     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
585 
586     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
587     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
588                                         &MRI.getRegClass(AddrRCID));
589     if (NewVAddr0 == AMDGPU::NoRegister)
590       return MCDisassembler::Success;
591   }
592 
593   MI.setOpcode(NewOpcode);
594 
595   if (NewVdata != AMDGPU::NoRegister) {
596     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
597 
598     if (IsAtomic) {
599       // Atomic operations have an additional operand (a copy of data)
600       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
601     }
602   }
603 
604   if (NewVAddr0 != AMDGPU::NoRegister) {
605     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
606   } else if (IsNSA) {
607     assert(AddrSize <= Info->VAddrDwords);
608     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
609              MI.begin() + VAddr0Idx + Info->VAddrDwords);
610   }
611 
612   return MCDisassembler::Success;
613 }
614 
615 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
616   return getContext().getRegisterInfo()->
617     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
618 }
619 
620 inline
621 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
622                                          const Twine& ErrMsg) const {
623   *CommentStream << "Error: " + ErrMsg;
624 
625   // ToDo: add support for error operands to MCInst.h
626   // return MCOperand::createError(V);
627   return MCOperand();
628 }
629 
630 inline
631 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
632   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
633 }
634 
635 inline
636 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
637                                                unsigned Val) const {
638   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
639   if (Val >= RegCl.getNumRegs())
640     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
641                            ": unknown register " + Twine(Val));
642   return createRegOperand(RegCl.getRegister(Val));
643 }
644 
645 inline
646 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
647                                                 unsigned Val) const {
648   // ToDo: SI/CI have 104 SGPRs, VI - 102
649   // Valery: here we accepting as much as we can, let assembler sort it out
650   int shift = 0;
651   switch (SRegClassID) {
652   case AMDGPU::SGPR_32RegClassID:
653   case AMDGPU::TTMP_32RegClassID:
654     break;
655   case AMDGPU::SGPR_64RegClassID:
656   case AMDGPU::TTMP_64RegClassID:
657     shift = 1;
658     break;
659   case AMDGPU::SGPR_128RegClassID:
660   case AMDGPU::TTMP_128RegClassID:
661   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
662   // this bundle?
663   case AMDGPU::SGPR_256RegClassID:
664   case AMDGPU::TTMP_256RegClassID:
665     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
666   // this bundle?
667   case AMDGPU::SGPR_512RegClassID:
668   case AMDGPU::TTMP_512RegClassID:
669     shift = 2;
670     break;
671   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
672   // this bundle?
673   default:
674     llvm_unreachable("unhandled register class");
675   }
676 
677   if (Val % (1 << shift)) {
678     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
679                    << ": scalar reg isn't aligned " << Val;
680   }
681 
682   return createRegOperand(SRegClassID, Val >> shift);
683 }
684 
685 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
686   return decodeSrcOp(OPW32, Val);
687 }
688 
689 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
690   return decodeSrcOp(OPW64, Val);
691 }
692 
693 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
694   return decodeSrcOp(OPW128, Val);
695 }
696 
697 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
698   return decodeSrcOp(OPW16, Val);
699 }
700 
701 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
702   return decodeSrcOp(OPWV216, Val);
703 }
704 
705 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
706   // Some instructions have operand restrictions beyond what the encoding
707   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
708   // high bit.
709   Val &= 255;
710 
711   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
712 }
713 
714 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
715   return decodeSrcOp(OPW32, Val);
716 }
717 
718 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
719   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
720 }
721 
722 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
723   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
724 }
725 
726 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
727   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
728 }
729 
730 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
731   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
732 }
733 
734 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
735   return decodeSrcOp(OPW32, Val);
736 }
737 
738 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
739   return decodeSrcOp(OPW64, Val);
740 }
741 
742 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
743   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
744 }
745 
746 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
747   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
748 }
749 
750 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
751   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
752 }
753 
754 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
755   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
756 }
757 
758 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
759   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
760 }
761 
762 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
763   // table-gen generated disassembler doesn't care about operand types
764   // leaving only registry class so SSrc_32 operand turns into SReg_32
765   // and therefore we accept immediates and literals here as well
766   return decodeSrcOp(OPW32, Val);
767 }
768 
769 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
770   unsigned Val) const {
771   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
772   return decodeOperand_SReg_32(Val);
773 }
774 
775 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
776   unsigned Val) const {
777   // SReg_32_XM0 is SReg_32 without EXEC_HI
778   return decodeOperand_SReg_32(Val);
779 }
780 
781 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
782   // table-gen generated disassembler doesn't care about operand types
783   // leaving only registry class so SSrc_32 operand turns into SReg_32
784   // and therefore we accept immediates and literals here as well
785   return decodeSrcOp(OPW32, Val);
786 }
787 
788 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
789   return decodeSrcOp(OPW64, Val);
790 }
791 
792 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
793   return decodeSrcOp(OPW64, Val);
794 }
795 
796 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
797   return decodeSrcOp(OPW128, Val);
798 }
799 
800 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
801   return decodeDstOp(OPW256, Val);
802 }
803 
804 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
805   return decodeDstOp(OPW512, Val);
806 }
807 
808 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
809   // For now all literal constants are supposed to be unsigned integer
810   // ToDo: deal with signed/unsigned 64-bit integer constants
811   // ToDo: deal with float/double constants
812   if (!HasLiteral) {
813     if (Bytes.size() < 4) {
814       return errOperand(0, "cannot read literal, inst bytes left " +
815                         Twine(Bytes.size()));
816     }
817     HasLiteral = true;
818     Literal = eatBytes<uint32_t>(Bytes);
819   }
820   return MCOperand::createImm(Literal);
821 }
822 
823 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
824   using namespace AMDGPU::EncValues;
825 
826   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
827   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
828     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
829     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
830       // Cast prevents negative overflow.
831 }
832 
833 static int64_t getInlineImmVal32(unsigned Imm) {
834   switch (Imm) {
835   case 240:
836     return FloatToBits(0.5f);
837   case 241:
838     return FloatToBits(-0.5f);
839   case 242:
840     return FloatToBits(1.0f);
841   case 243:
842     return FloatToBits(-1.0f);
843   case 244:
844     return FloatToBits(2.0f);
845   case 245:
846     return FloatToBits(-2.0f);
847   case 246:
848     return FloatToBits(4.0f);
849   case 247:
850     return FloatToBits(-4.0f);
851   case 248: // 1 / (2 * PI)
852     return 0x3e22f983;
853   default:
854     llvm_unreachable("invalid fp inline imm");
855   }
856 }
857 
858 static int64_t getInlineImmVal64(unsigned Imm) {
859   switch (Imm) {
860   case 240:
861     return DoubleToBits(0.5);
862   case 241:
863     return DoubleToBits(-0.5);
864   case 242:
865     return DoubleToBits(1.0);
866   case 243:
867     return DoubleToBits(-1.0);
868   case 244:
869     return DoubleToBits(2.0);
870   case 245:
871     return DoubleToBits(-2.0);
872   case 246:
873     return DoubleToBits(4.0);
874   case 247:
875     return DoubleToBits(-4.0);
876   case 248: // 1 / (2 * PI)
877     return 0x3fc45f306dc9c882;
878   default:
879     llvm_unreachable("invalid fp inline imm");
880   }
881 }
882 
883 static int64_t getInlineImmVal16(unsigned Imm) {
884   switch (Imm) {
885   case 240:
886     return 0x3800;
887   case 241:
888     return 0xB800;
889   case 242:
890     return 0x3C00;
891   case 243:
892     return 0xBC00;
893   case 244:
894     return 0x4000;
895   case 245:
896     return 0xC000;
897   case 246:
898     return 0x4400;
899   case 247:
900     return 0xC400;
901   case 248: // 1 / (2 * PI)
902     return 0x3118;
903   default:
904     llvm_unreachable("invalid fp inline imm");
905   }
906 }
907 
908 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
909   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
910       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
911 
912   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
913   switch (Width) {
914   case OPW32:
915   case OPW128: // splat constants
916   case OPW512:
917   case OPW1024:
918     return MCOperand::createImm(getInlineImmVal32(Imm));
919   case OPW64:
920     return MCOperand::createImm(getInlineImmVal64(Imm));
921   case OPW16:
922   case OPWV216:
923     return MCOperand::createImm(getInlineImmVal16(Imm));
924   default:
925     llvm_unreachable("implement me");
926   }
927 }
928 
929 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
930   using namespace AMDGPU;
931 
932   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
933   switch (Width) {
934   default: // fall
935   case OPW32:
936   case OPW16:
937   case OPWV216:
938     return VGPR_32RegClassID;
939   case OPW64: return VReg_64RegClassID;
940   case OPW128: return VReg_128RegClassID;
941   }
942 }
943 
944 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
945   using namespace AMDGPU;
946 
947   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
948   switch (Width) {
949   default: // fall
950   case OPW32:
951   case OPW16:
952   case OPWV216:
953     return AGPR_32RegClassID;
954   case OPW64: return AReg_64RegClassID;
955   case OPW128: return AReg_128RegClassID;
956   case OPW256: return AReg_256RegClassID;
957   case OPW512: return AReg_512RegClassID;
958   case OPW1024: return AReg_1024RegClassID;
959   }
960 }
961 
962 
963 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
964   using namespace AMDGPU;
965 
966   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
967   switch (Width) {
968   default: // fall
969   case OPW32:
970   case OPW16:
971   case OPWV216:
972     return SGPR_32RegClassID;
973   case OPW64: return SGPR_64RegClassID;
974   case OPW128: return SGPR_128RegClassID;
975   case OPW256: return SGPR_256RegClassID;
976   case OPW512: return SGPR_512RegClassID;
977   }
978 }
979 
980 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
981   using namespace AMDGPU;
982 
983   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
984   switch (Width) {
985   default: // fall
986   case OPW32:
987   case OPW16:
988   case OPWV216:
989     return TTMP_32RegClassID;
990   case OPW64: return TTMP_64RegClassID;
991   case OPW128: return TTMP_128RegClassID;
992   case OPW256: return TTMP_256RegClassID;
993   case OPW512: return TTMP_512RegClassID;
994   }
995 }
996 
997 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
998   using namespace AMDGPU::EncValues;
999 
1000   unsigned TTmpMin =
1001       (isGFX9() || isGFX10()) ? TTMP_GFX9_GFX10_MIN : TTMP_VI_MIN;
1002   unsigned TTmpMax =
1003       (isGFX9() || isGFX10()) ? TTMP_GFX9_GFX10_MAX : TTMP_VI_MAX;
1004 
1005   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1006 }
1007 
1008 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val) const {
1009   using namespace AMDGPU::EncValues;
1010 
1011   assert(Val < 1024); // enum10
1012 
1013   bool IsAGPR = Val & 512;
1014   Val &= 511;
1015 
1016   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1017     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1018                                    : getVgprClassId(Width), Val - VGPR_MIN);
1019   }
1020   if (Val <= SGPR_MAX) {
1021     assert(SGPR_MIN == 0); // "SGPR_MIN <= Val" is always true and causes compilation warning.
1022     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1023   }
1024 
1025   int TTmpIdx = getTTmpIdx(Val);
1026   if (TTmpIdx >= 0) {
1027     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1028   }
1029 
1030   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1031     return decodeIntImmed(Val);
1032 
1033   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1034     return decodeFPImmed(Width, Val);
1035 
1036   if (Val == LITERAL_CONST)
1037     return decodeLiteralConstant();
1038 
1039   switch (Width) {
1040   case OPW32:
1041   case OPW16:
1042   case OPWV216:
1043     return decodeSpecialReg32(Val);
1044   case OPW64:
1045     return decodeSpecialReg64(Val);
1046   default:
1047     llvm_unreachable("unexpected immediate type");
1048   }
1049 }
1050 
1051 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1052   using namespace AMDGPU::EncValues;
1053 
1054   assert(Val < 128);
1055   assert(Width == OPW256 || Width == OPW512);
1056 
1057   if (Val <= SGPR_MAX) {
1058     assert(SGPR_MIN == 0); // "SGPR_MIN <= Val" is always true and causes compilation warning.
1059     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1060   }
1061 
1062   int TTmpIdx = getTTmpIdx(Val);
1063   if (TTmpIdx >= 0) {
1064     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1065   }
1066 
1067   llvm_unreachable("unknown dst register");
1068 }
1069 
1070 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1071   using namespace AMDGPU;
1072 
1073   switch (Val) {
1074   case 102: return createRegOperand(FLAT_SCR_LO);
1075   case 103: return createRegOperand(FLAT_SCR_HI);
1076   case 104: return createRegOperand(XNACK_MASK_LO);
1077   case 105: return createRegOperand(XNACK_MASK_HI);
1078   case 106: return createRegOperand(VCC_LO);
1079   case 107: return createRegOperand(VCC_HI);
1080   case 108: return createRegOperand(TBA_LO);
1081   case 109: return createRegOperand(TBA_HI);
1082   case 110: return createRegOperand(TMA_LO);
1083   case 111: return createRegOperand(TMA_HI);
1084   case 124: return createRegOperand(M0);
1085   case 125: return createRegOperand(SGPR_NULL);
1086   case 126: return createRegOperand(EXEC_LO);
1087   case 127: return createRegOperand(EXEC_HI);
1088   case 235: return createRegOperand(SRC_SHARED_BASE);
1089   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1090   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1091   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1092   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1093   case 251: return createRegOperand(SRC_VCCZ);
1094   case 252: return createRegOperand(SRC_EXECZ);
1095   case 253: return createRegOperand(SRC_SCC);
1096   case 254: return createRegOperand(LDS_DIRECT);
1097   default: break;
1098   }
1099   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1100 }
1101 
1102 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1103   using namespace AMDGPU;
1104 
1105   switch (Val) {
1106   case 102: return createRegOperand(FLAT_SCR);
1107   case 104: return createRegOperand(XNACK_MASK);
1108   case 106: return createRegOperand(VCC);
1109   case 108: return createRegOperand(TBA);
1110   case 110: return createRegOperand(TMA);
1111   case 125: return createRegOperand(SGPR_NULL);
1112   case 126: return createRegOperand(EXEC);
1113   case 235: return createRegOperand(SRC_SHARED_BASE);
1114   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1115   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1116   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1117   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1118   case 251: return createRegOperand(SRC_VCCZ);
1119   case 252: return createRegOperand(SRC_EXECZ);
1120   case 253: return createRegOperand(SRC_SCC);
1121   default: break;
1122   }
1123   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1124 }
1125 
1126 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1127                                             const unsigned Val) const {
1128   using namespace AMDGPU::SDWA;
1129   using namespace AMDGPU::EncValues;
1130 
1131   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1132       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1133     // XXX: cast to int is needed to avoid stupid warning:
1134     // compare with unsigned is always true
1135     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1136         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1137       return createRegOperand(getVgprClassId(Width),
1138                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1139     }
1140     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1141         Val <= (isGFX10() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1142                           : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1143       return createSRegOperand(getSgprClassId(Width),
1144                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1145     }
1146     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1147         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1148       return createSRegOperand(getTtmpClassId(Width),
1149                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1150     }
1151 
1152     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1153 
1154     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1155       return decodeIntImmed(SVal);
1156 
1157     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1158       return decodeFPImmed(Width, SVal);
1159 
1160     return decodeSpecialReg32(SVal);
1161   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1162     return createRegOperand(getVgprClassId(Width), Val);
1163   }
1164   llvm_unreachable("unsupported target");
1165 }
1166 
1167 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1168   return decodeSDWASrc(OPW16, Val);
1169 }
1170 
1171 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1172   return decodeSDWASrc(OPW32, Val);
1173 }
1174 
1175 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1176   using namespace AMDGPU::SDWA;
1177 
1178   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1179           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1180          "SDWAVopcDst should be present only on GFX9+");
1181 
1182   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1183 
1184   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1185     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1186 
1187     int TTmpIdx = getTTmpIdx(Val);
1188     if (TTmpIdx >= 0) {
1189       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1190       return createSRegOperand(TTmpClsId, TTmpIdx);
1191     } else if (Val > SGPR_MAX) {
1192       return IsWave64 ? decodeSpecialReg64(Val)
1193                       : decodeSpecialReg32(Val);
1194     } else {
1195       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1196     }
1197   } else {
1198     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1199   }
1200 }
1201 
1202 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1203   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1204     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1205 }
1206 
1207 bool AMDGPUDisassembler::isVI() const {
1208   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1209 }
1210 
1211 bool AMDGPUDisassembler::isGFX9() const {
1212   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1213 }
1214 
1215 bool AMDGPUDisassembler::isGFX10() const {
1216   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1217 }
1218 
1219 static void checkError(DataExtractor::Cursor &C) {
1220   // For some malformed KD cases, the Cursor tends to hold Error::success().
1221   // We check that here to prevent runtime crash in this case.
1222   if (!C) {
1223     auto Err = C.takeError();
1224     assert(!Err);
1225   }
1226 }
1227 
1228 //===----------------------------------------------------------------------===//
1229 // AMDGPU specific symbol handling
1230 //===----------------------------------------------------------------------===//
1231 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1232   do {                                                                         \
1233     KdStream << Indent << DIRECTIVE " "                                        \
1234              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1235   } while (0)
1236 
1237 // NOLINTNEXTLINE(readability-identifier-naming)
1238 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1239     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1240   using namespace amdhsa;
1241   StringRef Indent = "\t";
1242 
1243   // We cannot accurately backward compute #VGPRs used from
1244   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1245   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1246   // simply calculate the inverse of what the assembler does.
1247 
1248   uint32_t GranulatedWorkitemVGPRCount =
1249       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1250       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1251 
1252   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1253                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1254 
1255   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1256 
1257   // We cannot backward compute values used to calculate
1258   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1259   // directives can't be computed:
1260   // .amdhsa_reserve_vcc
1261   // .amdhsa_reserve_flat_scratch
1262   // .amdhsa_reserve_xnack_mask
1263   // They take their respective default values if not specified in the assembly.
1264   //
1265   // GRANULATED_WAVEFRONT_SGPR_COUNT
1266   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1267   //
1268   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1269   // are set to 0. So while disassembling we consider that:
1270   //
1271   // GRANULATED_WAVEFRONT_SGPR_COUNT
1272   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1273   //
1274   // The disassembler cannot recover the original values of those 3 directives.
1275 
1276   uint32_t GranulatedWavefrontSGPRCount =
1277       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1278       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1279 
1280   if (isGFX10() && GranulatedWavefrontSGPRCount)
1281     return MCDisassembler::Fail;
1282 
1283   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1284                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1285 
1286   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1287   KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1288   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1289   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1290 
1291   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1292     return MCDisassembler::Fail;
1293 
1294   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1295                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1296   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1297                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1298   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1299                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1300   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1301                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1302 
1303   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1304     return MCDisassembler::Fail;
1305 
1306   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1307 
1308   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1309     return MCDisassembler::Fail;
1310 
1311   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1312 
1313   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1314     return MCDisassembler::Fail;
1315 
1316   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1317     return MCDisassembler::Fail;
1318 
1319   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1320 
1321   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1322     return MCDisassembler::Fail;
1323 
1324   if (isGFX10()) {
1325     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1326                     COMPUTE_PGM_RSRC1_WGP_MODE);
1327     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1328     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1329   }
1330   return MCDisassembler::Success;
1331 }
1332 
1333 // NOLINTNEXTLINE(readability-identifier-naming)
1334 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1335     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1336   using namespace amdhsa;
1337   StringRef Indent = "\t";
1338   PRINT_DIRECTIVE(
1339       ".amdhsa_system_sgpr_private_segment_wavefront_offset",
1340       COMPUTE_PGM_RSRC2_ENABLE_SGPR_PRIVATE_SEGMENT_WAVEFRONT_OFFSET);
1341   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1342                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1343   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1344                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1345   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1346                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1347   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1348                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1349   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1350                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1351 
1352   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1353     return MCDisassembler::Fail;
1354 
1355   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1356     return MCDisassembler::Fail;
1357 
1358   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1359     return MCDisassembler::Fail;
1360 
1361   PRINT_DIRECTIVE(
1362       ".amdhsa_exception_fp_ieee_invalid_op",
1363       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1364   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1365                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1366   PRINT_DIRECTIVE(
1367       ".amdhsa_exception_fp_ieee_div_zero",
1368       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1369   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1370                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1371   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1372                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1373   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1374                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1375   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1376                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1377 
1378   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1379     return MCDisassembler::Fail;
1380 
1381   return MCDisassembler::Success;
1382 }
1383 
1384 #undef PRINT_DIRECTIVE
1385 
1386 MCDisassembler::DecodeStatus
1387 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1388     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1389     raw_string_ostream &KdStream) const {
1390 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1391   do {                                                                         \
1392     KdStream << Indent << DIRECTIVE " "                                        \
1393              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1394   } while (0)
1395 
1396   uint16_t TwoByteBuffer = 0;
1397   uint32_t FourByteBuffer = 0;
1398   uint64_t EightByteBuffer = 0;
1399 
1400   StringRef ReservedBytes;
1401   StringRef Indent = "\t";
1402 
1403   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1404 
1405   switch (Cursor.tell()) {
1406   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1407     FourByteBuffer = DE.getU32(Cursor);
1408     checkError(Cursor);
1409     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1410              << '\n';
1411     return MCDisassembler::Success;
1412 
1413   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1414     FourByteBuffer = DE.getU32(Cursor);
1415     checkError(Cursor);
1416     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1417              << FourByteBuffer << '\n';
1418     return MCDisassembler::Success;
1419 
1420   case amdhsa::RESERVED0_OFFSET:
1421     // 8 reserved bytes, must be 0.
1422     EightByteBuffer = DE.getU64(Cursor);
1423     checkError(Cursor);
1424     if (EightByteBuffer) {
1425       return MCDisassembler::Fail;
1426     }
1427     return MCDisassembler::Success;
1428 
1429   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1430     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1431     // So far no directive controls this for Code Object V3, so simply skip for
1432     // disassembly.
1433     DE.skip(Cursor, 8);
1434     checkError(Cursor);
1435     return MCDisassembler::Success;
1436 
1437   case amdhsa::RESERVED1_OFFSET:
1438     // 20 reserved bytes, must be 0.
1439     ReservedBytes = DE.getBytes(Cursor, 20);
1440     checkError(Cursor);
1441     for (int I = 0; I < 20; ++I) {
1442       if (ReservedBytes[I] != 0) {
1443         return MCDisassembler::Fail;
1444       }
1445     }
1446     return MCDisassembler::Success;
1447 
1448   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1449     // COMPUTE_PGM_RSRC3
1450     //  - Only set for GFX10, GFX6-9 have this to be 0.
1451     //  - Currently no directives directly control this.
1452     FourByteBuffer = DE.getU32(Cursor);
1453     checkError(Cursor);
1454     if (!isGFX10() && FourByteBuffer) {
1455       return MCDisassembler::Fail;
1456     }
1457     return MCDisassembler::Success;
1458 
1459   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1460     FourByteBuffer = DE.getU32(Cursor);
1461     checkError(Cursor);
1462     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1463         MCDisassembler::Fail) {
1464       return MCDisassembler::Fail;
1465     }
1466     return MCDisassembler::Success;
1467 
1468   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1469     FourByteBuffer = DE.getU32(Cursor);
1470     checkError(Cursor);
1471     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1472         MCDisassembler::Fail) {
1473       return MCDisassembler::Fail;
1474     }
1475     return MCDisassembler::Success;
1476 
1477   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1478     using namespace amdhsa;
1479     TwoByteBuffer = DE.getU16(Cursor);
1480     checkError(Cursor);
1481 
1482     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1483                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1484     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1485                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1486     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1487                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1488     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1489                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1490     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1491                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1492     PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1493                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1494     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1495                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1496 
1497     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1498       return MCDisassembler::Fail;
1499 
1500     // Reserved for GFX9
1501     if (isGFX9() &&
1502         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1503       return MCDisassembler::Fail;
1504     } else if (isGFX10()) {
1505       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1506                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1507     }
1508 
1509     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1510       return MCDisassembler::Fail;
1511 
1512     return MCDisassembler::Success;
1513 
1514   case amdhsa::RESERVED2_OFFSET:
1515     // 6 bytes from here are reserved, must be 0.
1516     ReservedBytes = DE.getBytes(Cursor, 6);
1517     checkError(Cursor);
1518     for (int I = 0; I < 6; ++I) {
1519       if (ReservedBytes[I] != 0)
1520         return MCDisassembler::Fail;
1521     }
1522     return MCDisassembler::Success;
1523 
1524   default:
1525     llvm_unreachable("Unhandled index. Case statements cover everything.");
1526     return MCDisassembler::Fail;
1527   }
1528 #undef PRINT_DIRECTIVE
1529 }
1530 
1531 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1532     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1533   // CP microcode requires the kernel descriptor to be 64 aligned.
1534   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1535     return MCDisassembler::Fail;
1536 
1537   std::string Kd;
1538   raw_string_ostream KdStream(Kd);
1539   KdStream << ".amdhsa_kernel " << KdName << '\n';
1540 
1541   DataExtractor::Cursor C(0);
1542   while (C && C.tell() < Bytes.size()) {
1543     MCDisassembler::DecodeStatus Status =
1544         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1545 
1546     if (Status == MCDisassembler::Fail)
1547       return MCDisassembler::Fail;
1548   }
1549   KdStream << ".end_amdhsa_kernel\n";
1550   outs() << KdStream.str();
1551   return MCDisassembler::Success;
1552 }
1553 
1554 Optional<MCDisassembler::DecodeStatus>
1555 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1556                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1557                                   raw_ostream &CStream) const {
1558   // Right now only kernel descriptor needs to be handled.
1559   // We ignore all other symbols for target specific handling.
1560   // TODO:
1561   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1562   // Object V2 and V3 when symbols are marked protected.
1563 
1564   // amd_kernel_code_t for Code Object V2.
1565   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1566     Size = 256;
1567     return MCDisassembler::Fail;
1568   }
1569 
1570   // Code Object V3 kernel descriptors.
1571   StringRef Name = Symbol.Name;
1572   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1573     Size = 64; // Size = 64 regardless of success or failure.
1574     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1575   }
1576   return None;
1577 }
1578 
1579 //===----------------------------------------------------------------------===//
1580 // AMDGPUSymbolizer
1581 //===----------------------------------------------------------------------===//
1582 
1583 // Try to find symbol name for specified label
1584 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
1585                                 raw_ostream &/*cStream*/, int64_t Value,
1586                                 uint64_t /*Address*/, bool IsBranch,
1587                                 uint64_t /*Offset*/, uint64_t /*InstSize*/) {
1588 
1589   if (!IsBranch) {
1590     return false;
1591   }
1592 
1593   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1594   if (!Symbols)
1595     return false;
1596 
1597   auto Result = std::find_if(Symbols->begin(), Symbols->end(),
1598                              [Value](const SymbolInfoTy& Val) {
1599                                 return Val.Addr == static_cast<uint64_t>(Value)
1600                                     && Val.Type == ELF::STT_NOTYPE;
1601                              });
1602   if (Result != Symbols->end()) {
1603     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1604     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1605     Inst.addOperand(MCOperand::createExpr(Add));
1606     return true;
1607   }
1608   return false;
1609 }
1610 
1611 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1612                                                        int64_t Value,
1613                                                        uint64_t Address) {
1614   llvm_unreachable("unimplemented");
1615 }
1616 
1617 //===----------------------------------------------------------------------===//
1618 // Initialization
1619 //===----------------------------------------------------------------------===//
1620 
1621 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1622                               LLVMOpInfoCallback /*GetOpInfo*/,
1623                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1624                               void *DisInfo,
1625                               MCContext *Ctx,
1626                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1627   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1628 }
1629 
1630 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1631                                                 const MCSubtargetInfo &STI,
1632                                                 MCContext &Ctx) {
1633   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1634 }
1635 
1636 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1637   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1638                                          createAMDGPUDisassembler);
1639   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1640                                        createAMDGPUSymbolizer);
1641 }
1642