1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUBaseInfo.h" 25 #include "llvm-c/DisassemblerTypes.h" 26 #include "llvm/BinaryFormat/ELF.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCDecoderOps.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/TargetRegistry.h" 35 #include "llvm/Support/AMDHSAKernelDescriptor.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "amdgpu-disassembler" 40 41 #define SGPR_MAX \ 42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 43 : AMDGPU::EncValues::SGPR_MAX_SI) 44 45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 46 47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 48 MCContext &Ctx, MCInstrInfo const *MCII) 49 : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), 50 MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) { 51 // ToDo: AMDGPUDisassembler supports only VI ISA. 52 if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) 53 report_fatal_error("Disassembly not yet supported for subtarget"); 54 } 55 56 inline static MCDisassembler::DecodeStatus 57 addOperand(MCInst &Inst, const MCOperand& Opnd) { 58 Inst.addOperand(Opnd); 59 return Opnd.isValid() ? 60 MCDisassembler::Success : 61 MCDisassembler::Fail; 62 } 63 64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 65 uint16_t NameIdx) { 66 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 67 if (OpIdx != -1) { 68 auto I = MI.begin(); 69 std::advance(I, OpIdx); 70 MI.insert(I, Op); 71 } 72 return OpIdx; 73 } 74 75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm, 76 uint64_t Addr, 77 const MCDisassembler *Decoder) { 78 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 79 80 // Our branches take a simm16, but we need two extra bits to account for the 81 // factor of 4. 82 APInt SignedOffset(18, Imm * 4, true); 83 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 84 85 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 86 return MCDisassembler::Success; 87 return addOperand(Inst, MCOperand::createImm(Imm)); 88 } 89 90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 91 const MCDisassembler *Decoder) { 92 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 93 int64_t Offset; 94 if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets. 95 Offset = SignExtend64<24>(Imm); 96 } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 97 Offset = Imm & 0xFFFFF; 98 } else { // GFX9+ supports 21-bit signed offsets. 99 Offset = SignExtend64<21>(Imm); 100 } 101 return addOperand(Inst, MCOperand::createImm(Offset)); 102 } 103 104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 105 const MCDisassembler *Decoder) { 106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 107 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 108 } 109 110 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val, 111 uint64_t Addr, 112 const MCDisassembler *Decoder) { 113 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 114 return addOperand(Inst, DAsm->decodeSplitBarrier(Val)); 115 } 116 117 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 118 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 119 uint64_t /*Addr*/, \ 120 const MCDisassembler *Decoder) { \ 121 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 122 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 123 } 124 125 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 126 // number of register. Used by VGPR only and AGPR only operands. 127 #define DECODE_OPERAND_REG_8(RegClass) \ 128 static DecodeStatus Decode##RegClass##RegisterClass( \ 129 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 130 const MCDisassembler *Decoder) { \ 131 assert(Imm < (1 << 8) && "8-bit encoding"); \ 132 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 133 return addOperand( \ 134 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 135 } 136 137 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 138 ImmWidth) \ 139 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 140 const MCDisassembler *Decoder) { \ 141 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 142 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 143 return addOperand(Inst, \ 144 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 145 MandatoryLiteral, ImmWidth)); \ 146 } 147 148 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 149 // get register class. Used by SGPR only operands. 150 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 151 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 152 153 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 154 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 155 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 156 // Used by AV_ register classes (AGPR or VGPR only register operands). 157 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth) \ 158 DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth, \ 159 Imm | AMDGPU::EncValues::IS_VGPR, false, 0) 160 161 // Decoder for Src(9-bit encoding) registers only. 162 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth) \ 163 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0) 164 165 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 166 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 167 // only. 168 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth) \ 169 DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0) 170 171 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 172 // Imm{9} is acc, registers only. 173 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth) \ 174 DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0) 175 176 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 177 // register from RegClass or immediate. Registers that don't belong to RegClass 178 // will be decoded and InstPrinter will report warning. Immediate will be 179 // decoded into constant of size ImmWidth, should match width of immediate used 180 // by OperandType (important for floating point types). 181 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth) \ 182 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm, \ 183 false, ImmWidth) 184 185 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 186 // and decode using 'enum10' from decodeSrcOp. 187 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth) \ 188 DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, \ 189 Imm | 512, false, ImmWidth) 190 191 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth) \ 192 DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9, \ 193 OpWidth, Imm, true, ImmWidth) 194 195 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 196 // when RegisterClass is used as an operand. Most often used for destination 197 // operands. 198 199 DECODE_OPERAND_REG_8(VGPR_32) 200 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 201 DECODE_OPERAND_REG_8(VReg_64) 202 DECODE_OPERAND_REG_8(VReg_96) 203 DECODE_OPERAND_REG_8(VReg_128) 204 DECODE_OPERAND_REG_8(VReg_256) 205 DECODE_OPERAND_REG_8(VReg_288) 206 DECODE_OPERAND_REG_8(VReg_352) 207 DECODE_OPERAND_REG_8(VReg_384) 208 DECODE_OPERAND_REG_8(VReg_512) 209 DECODE_OPERAND_REG_8(VReg_1024) 210 211 DECODE_OPERAND_REG_7(SReg_32, OPW32) 212 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 213 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 214 DECODE_OPERAND_REG_7(SReg_64, OPW64) 215 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 216 DECODE_OPERAND_REG_7(SReg_96, OPW96) 217 DECODE_OPERAND_REG_7(SReg_128, OPW128) 218 DECODE_OPERAND_REG_7(SReg_256, OPW256) 219 DECODE_OPERAND_REG_7(SReg_512, OPW512) 220 221 DECODE_OPERAND_REG_8(AGPR_32) 222 DECODE_OPERAND_REG_8(AReg_64) 223 DECODE_OPERAND_REG_8(AReg_128) 224 DECODE_OPERAND_REG_8(AReg_256) 225 DECODE_OPERAND_REG_8(AReg_512) 226 DECODE_OPERAND_REG_8(AReg_1024) 227 228 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128) 229 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512) 230 231 // Decoders for register only source RegisterOperands that use use 9-bit Src 232 // encoding: 'decodeOperand_<RegClass>'. 233 234 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32) 235 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64) 236 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128) 237 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256) 238 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32) 239 240 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32) 241 242 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32) 243 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64) 244 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128) 245 246 // Decoders for register or immediate RegisterOperands that use 9-bit Src 247 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'. 248 249 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64) 250 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32) 251 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16) 252 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32) 253 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16) 254 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16) 255 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32) 256 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64) 257 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32) 258 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64) 259 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32) 260 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64) 261 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32) 262 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32) 263 264 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64) 265 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32) 266 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64) 267 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32) 268 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32) 269 270 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16) 271 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16) 272 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32) 273 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32) 274 275 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm, 276 uint64_t /*Addr*/, 277 const MCDisassembler *Decoder) { 278 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 279 assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used"); 280 281 bool IsHi = Imm & (1 << 9); 282 unsigned RegIdx = Imm & 0xff; 283 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 284 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 285 } 286 287 static DecodeStatus 288 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, 289 const MCDisassembler *Decoder) { 290 assert(isUInt<8>(Imm) && "8-bit encoding expected"); 291 292 bool IsHi = Imm & (1 << 7); 293 unsigned RegIdx = Imm & 0x7f; 294 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 295 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 296 } 297 298 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm, 299 uint64_t /*Addr*/, 300 const MCDisassembler *Decoder) { 301 assert(isUInt<9>(Imm) && "9-bit encoding expected"); 302 303 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 304 bool IsVGPR = Imm & (1 << 8); 305 if (IsVGPR) { 306 bool IsHi = Imm & (1 << 7); 307 unsigned RegIdx = Imm & 0x7f; 308 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 309 } 310 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 311 Imm & 0xFF, false, 16)); 312 } 313 314 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm, 315 uint64_t /*Addr*/, 316 const MCDisassembler *Decoder) { 317 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 318 319 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 320 bool IsVGPR = Imm & (1 << 8); 321 if (IsVGPR) { 322 bool IsHi = Imm & (1 << 9); 323 unsigned RegIdx = Imm & 0xff; 324 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 325 } 326 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 327 Imm & 0xFF, false, 16)); 328 } 329 330 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm, 331 uint64_t Addr, 332 const MCDisassembler *Decoder) { 333 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 334 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 335 } 336 337 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 338 uint64_t Addr, const void *Decoder) { 339 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 340 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 341 } 342 343 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 344 const MCRegisterInfo *MRI) { 345 if (OpIdx < 0) 346 return false; 347 348 const MCOperand &Op = Inst.getOperand(OpIdx); 349 if (!Op.isReg()) 350 return false; 351 352 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 353 auto Reg = Sub ? Sub : Op.getReg(); 354 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 355 } 356 357 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm, 358 AMDGPUDisassembler::OpWidthTy Opw, 359 const MCDisassembler *Decoder) { 360 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 361 if (!DAsm->isGFX90A()) { 362 Imm &= 511; 363 } else { 364 // If atomic has both vdata and vdst their register classes are tied. 365 // The bit is decoded along with the vdst, first operand. We need to 366 // change register class to AGPR if vdst was AGPR. 367 // If a DS instruction has both data0 and data1 their register classes 368 // are also tied. 369 unsigned Opc = Inst.getOpcode(); 370 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 371 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 372 : AMDGPU::OpName::vdata; 373 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 374 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 375 if ((int)Inst.getNumOperands() == DataIdx) { 376 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 377 if (IsAGPROperand(Inst, DstIdx, MRI)) 378 Imm |= 512; 379 } 380 381 if (TSFlags & SIInstrFlags::DS) { 382 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 383 if ((int)Inst.getNumOperands() == Data2Idx && 384 IsAGPROperand(Inst, DataIdx, MRI)) 385 Imm |= 512; 386 } 387 } 388 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 389 } 390 391 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm, 392 uint64_t Addr, 393 const MCDisassembler *Decoder) { 394 assert(Imm < (1 << 9) && "9-bit encoding"); 395 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 396 return addOperand( 397 Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true)); 398 } 399 400 static DecodeStatus 401 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 402 const MCDisassembler *Decoder) { 403 return decodeOperand_AVLdSt_Any(Inst, Imm, 404 AMDGPUDisassembler::OPW32, Decoder); 405 } 406 407 static DecodeStatus 408 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 409 const MCDisassembler *Decoder) { 410 return decodeOperand_AVLdSt_Any(Inst, Imm, 411 AMDGPUDisassembler::OPW64, Decoder); 412 } 413 414 static DecodeStatus 415 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 416 const MCDisassembler *Decoder) { 417 return decodeOperand_AVLdSt_Any(Inst, Imm, 418 AMDGPUDisassembler::OPW96, Decoder); 419 } 420 421 static DecodeStatus 422 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 423 const MCDisassembler *Decoder) { 424 return decodeOperand_AVLdSt_Any(Inst, Imm, 425 AMDGPUDisassembler::OPW128, Decoder); 426 } 427 428 static DecodeStatus 429 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr, 430 const MCDisassembler *Decoder) { 431 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160, 432 Decoder); 433 } 434 435 #define DECODE_SDWA(DecName) \ 436 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 437 438 DECODE_SDWA(Src32) 439 DECODE_SDWA(Src16) 440 DECODE_SDWA(VopcDst) 441 442 #include "AMDGPUGenDisassemblerTables.inc" 443 444 //===----------------------------------------------------------------------===// 445 // 446 //===----------------------------------------------------------------------===// 447 448 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 449 assert(Bytes.size() >= sizeof(T)); 450 const auto Res = 451 support::endian::read<T, llvm::endianness::little>(Bytes.data()); 452 Bytes = Bytes.slice(sizeof(T)); 453 return Res; 454 } 455 456 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 457 assert(Bytes.size() >= 12); 458 uint64_t Lo = 459 support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data()); 460 Bytes = Bytes.slice(8); 461 uint64_t Hi = 462 support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data()); 463 Bytes = Bytes.slice(4); 464 return DecoderUInt128(Lo, Hi); 465 } 466 467 // The disassembler is greedy, so we need to check FI operand value to 468 // not parse a dpp if the correct literal is not set. For dpp16 the 469 // autogenerated decoder checks the dpp literal 470 static bool isValidDPP8(const MCInst &MI) { 471 using namespace llvm::AMDGPU::DPP; 472 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); 473 assert(FiIdx != -1); 474 if ((unsigned)FiIdx >= MI.getNumOperands()) 475 return false; 476 unsigned Fi = MI.getOperand(FiIdx).getImm(); 477 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; 478 } 479 480 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 481 ArrayRef<uint8_t> Bytes_, 482 uint64_t Address, 483 raw_ostream &CS) const { 484 bool IsSDWA = false; 485 486 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 487 Bytes = Bytes_.slice(0, MaxInstBytesNum); 488 489 DecodeStatus Res = MCDisassembler::Fail; 490 do { 491 // ToDo: better to switch encoding length using some bit predicate 492 // but it is unknown yet, so try all we can 493 494 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 495 // encodings 496 if (isGFX11Plus() && Bytes.size() >= 12 ) { 497 DecoderUInt128 DecW = eat12Bytes(Bytes); 498 Res = 499 tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696, 500 MI, DecW, Address, CS); 501 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 502 break; 503 MI = MCInst(); // clear 504 Res = 505 tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696, 506 MI, DecW, Address, CS); 507 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 508 break; 509 MI = MCInst(); // clear 510 511 const auto convertVOPDPP = [&]() { 512 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) { 513 convertVOP3PDPPInst(MI); 514 } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) { 515 convertVOPCDPPInst(MI); // Special VOP3 case 516 } else { 517 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3); 518 convertVOP3DPPInst(MI); // Regular VOP3 case 519 } 520 }; 521 Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696, 522 MI, DecW, Address, CS); 523 if (Res) { 524 convertVOPDPP(); 525 break; 526 } 527 Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696, 528 MI, DecW, Address, CS); 529 if (Res) { 530 convertVOPDPP(); 531 break; 532 } 533 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS); 534 if (Res) 535 break; 536 537 Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS); 538 if (Res) 539 break; 540 } 541 // Reinitialize Bytes 542 Bytes = Bytes_.slice(0, MaxInstBytesNum); 543 544 if (Bytes.size() >= 8) { 545 const uint64_t QW = eatBytes<uint64_t>(Bytes); 546 547 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 548 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS); 549 if (Res) { 550 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) 551 == -1) 552 break; 553 if (convertDPP8Inst(MI) == MCDisassembler::Success) 554 break; 555 MI = MCInst(); // clear 556 } 557 } 558 559 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS); 560 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 561 break; 562 MI = MCInst(); // clear 563 564 Res = tryDecodeInst(DecoderTableDPP8GFX1164, 565 DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS); 566 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 567 break; 568 MI = MCInst(); // clear 569 570 Res = tryDecodeInst(DecoderTableDPP8GFX1264, 571 DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS); 572 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) 573 break; 574 MI = MCInst(); // clear 575 576 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS); 577 if (Res) break; 578 579 Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664, 580 MI, QW, Address, CS); 581 if (Res) { 582 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 583 convertVOPCDPPInst(MI); 584 break; 585 } 586 587 Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664, 588 MI, QW, Address, CS); 589 if (Res) { 590 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) 591 convertVOPCDPPInst(MI); 592 break; 593 } 594 595 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS); 596 if (Res) { IsSDWA = true; break; } 597 598 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS); 599 if (Res) { IsSDWA = true; break; } 600 601 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS); 602 if (Res) { IsSDWA = true; break; } 603 604 if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) { 605 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS); 606 if (Res) 607 break; 608 } 609 610 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 611 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 612 // table first so we print the correct name. 613 if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) { 614 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS); 615 if (Res) 616 break; 617 } 618 } 619 620 // Reinitialize Bytes as DPP64 could have eaten too much 621 Bytes = Bytes_.slice(0, MaxInstBytesNum); 622 623 // Try decode 32-bit instruction 624 if (Bytes.size() < 4) break; 625 const uint32_t DW = eatBytes<uint32_t>(Bytes); 626 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS); 627 if (Res) break; 628 629 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS); 630 if (Res) break; 631 632 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS); 633 if (Res) break; 634 635 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 636 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS); 637 if (Res) 638 break; 639 } 640 641 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) { 642 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS); 643 if (Res) break; 644 } 645 646 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS); 647 if (Res) break; 648 649 Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW, 650 Address, CS); 651 if (Res) break; 652 653 Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW, 654 Address, CS); 655 if (Res) 656 break; 657 658 if (Bytes.size() < 4) break; 659 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; 660 661 if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) { 662 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS); 663 if (Res) 664 break; 665 } 666 667 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) { 668 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS); 669 if (Res) 670 break; 671 } 672 673 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS); 674 if (Res) break; 675 676 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS); 677 if (Res) break; 678 679 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS); 680 if (Res) break; 681 682 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS); 683 if (Res) break; 684 685 Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW, 686 Address, CS); 687 if (Res) 688 break; 689 690 Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW, 691 Address, CS); 692 if (Res) 693 break; 694 695 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS); 696 } while (false); 697 698 if (Res && AMDGPU::isMAC(MI.getOpcode())) { 699 // Insert dummy unused src2_modifiers. 700 insertNamedMCOperand(MI, MCOperand::createImm(0), 701 AMDGPU::OpName::src2_modifiers); 702 } 703 704 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 705 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { 706 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 707 AMDGPU::OpName::cpol); 708 if (CPolPos != -1) { 709 unsigned CPol = 710 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 711 AMDGPU::CPol::GLC : 0; 712 if (MI.getNumOperands() <= (unsigned)CPolPos) { 713 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 714 AMDGPU::OpName::cpol); 715 } else if (CPol) { 716 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 717 } 718 } 719 } 720 721 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 722 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 723 (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) { 724 // GFX90A lost TFE, its place is occupied by ACC. 725 int TFEOpIdx = 726 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 727 if (TFEOpIdx != -1) { 728 auto TFEIter = MI.begin(); 729 std::advance(TFEIter, TFEOpIdx); 730 MI.insert(TFEIter, MCOperand::createImm(0)); 731 } 732 } 733 734 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 735 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { 736 int SWZOpIdx = 737 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 738 if (SWZOpIdx != -1) { 739 auto SWZIter = MI.begin(); 740 std::advance(SWZIter, SWZOpIdx); 741 MI.insert(SWZIter, MCOperand::createImm(0)); 742 } 743 } 744 745 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { 746 int VAddr0Idx = 747 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 748 int RsrcIdx = 749 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 750 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 751 if (VAddr0Idx >= 0 && NSAArgs > 0) { 752 unsigned NSAWords = (NSAArgs + 3) / 4; 753 if (Bytes.size() < 4 * NSAWords) { 754 Res = MCDisassembler::Fail; 755 } else { 756 for (unsigned i = 0; i < NSAArgs; ++i) { 757 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 758 auto VAddrRCID = 759 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 760 MI.insert(MI.begin() + VAddrIdx, 761 createRegOperand(VAddrRCID, Bytes[i])); 762 } 763 Bytes = Bytes.slice(4 * NSAWords); 764 } 765 } 766 767 if (Res) 768 Res = convertMIMGInst(MI); 769 } 770 771 if (Res && (MCII->get(MI.getOpcode()).TSFlags & 772 (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE))) 773 Res = convertMIMGInst(MI); 774 775 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP)) 776 Res = convertEXPInst(MI); 777 778 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP)) 779 Res = convertVINTERPInst(MI); 780 781 if (Res && IsSDWA) 782 Res = convertSDWAInst(MI); 783 784 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 785 AMDGPU::OpName::vdst_in); 786 if (VDstIn_Idx != -1) { 787 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 788 MCOI::OperandConstraint::TIED_TO); 789 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 790 !MI.getOperand(VDstIn_Idx).isReg() || 791 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 792 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 793 MI.erase(&MI.getOperand(VDstIn_Idx)); 794 insertNamedMCOperand(MI, 795 MCOperand::createReg(MI.getOperand(Tied).getReg()), 796 AMDGPU::OpName::vdst_in); 797 } 798 } 799 800 int ImmLitIdx = 801 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 802 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 803 if (Res && ImmLitIdx != -1 && !IsSOPK) 804 Res = convertFMAanyK(MI, ImmLitIdx); 805 806 // if the opcode was not recognized we'll assume a Size of 4 bytes 807 // (unless there are fewer bytes left) 808 Size = Res ? (MaxInstBytesNum - Bytes.size()) 809 : std::min((size_t)4, Bytes_.size()); 810 return Res; 811 } 812 813 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 814 if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) { 815 // The MCInst still has these fields even though they are no longer encoded 816 // in the GFX11 instruction. 817 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 818 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 819 } 820 return MCDisassembler::Success; 821 } 822 823 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 824 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 825 MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 || 826 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 827 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 || 828 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 829 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 || 830 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 || 831 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) { 832 // The MCInst has this field that is not directly encoded in the 833 // instruction. 834 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 835 } 836 return MCDisassembler::Success; 837 } 838 839 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 840 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 841 STI.hasFeature(AMDGPU::FeatureGFX10)) { 842 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 843 // VOPC - insert clamp 844 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 845 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 846 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 847 if (SDst != -1) { 848 // VOPC - insert VCC register as sdst 849 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 850 AMDGPU::OpName::sdst); 851 } else { 852 // VOP1/2 - insert omod if present in instruction 853 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 854 } 855 } 856 return MCDisassembler::Success; 857 } 858 859 struct VOPModifiers { 860 unsigned OpSel = 0; 861 unsigned OpSelHi = 0; 862 unsigned NegLo = 0; 863 unsigned NegHi = 0; 864 }; 865 866 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 867 // Note that these values do not affect disassembler output, 868 // so this is only necessary for consistency with src_modifiers. 869 static VOPModifiers collectVOPModifiers(const MCInst &MI, 870 bool IsVOP3P = false) { 871 VOPModifiers Modifiers; 872 unsigned Opc = MI.getOpcode(); 873 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 874 AMDGPU::OpName::src1_modifiers, 875 AMDGPU::OpName::src2_modifiers}; 876 for (int J = 0; J < 3; ++J) { 877 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 878 if (OpIdx == -1) 879 continue; 880 881 unsigned Val = MI.getOperand(OpIdx).getImm(); 882 883 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 884 if (IsVOP3P) { 885 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 886 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 887 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 888 } else if (J == 0) { 889 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 890 } 891 } 892 893 return Modifiers; 894 } 895 896 // MAC opcodes have special old and src2 operands. 897 // src2 is tied to dst, while old is not tied (but assumed to be). 898 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 899 constexpr int DST_IDX = 0; 900 auto Opcode = MI.getOpcode(); 901 const auto &Desc = MCII->get(Opcode); 902 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 903 904 if (OldIdx != -1 && Desc.getOperandConstraint( 905 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 906 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 907 assert(Desc.getOperandConstraint( 908 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 909 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 910 (void)DST_IDX; 911 return true; 912 } 913 914 return false; 915 } 916 917 // Create dummy old operand and insert dummy unused src2_modifiers 918 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 919 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 920 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 921 insertNamedMCOperand(MI, MCOperand::createImm(0), 922 AMDGPU::OpName::src2_modifiers); 923 } 924 925 // We must check FI == literal to reject not genuine dpp8 insts, and we must 926 // first add optional MI operands to check FI 927 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 928 unsigned Opc = MI.getOpcode(); 929 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) { 930 convertVOP3PDPPInst(MI); 931 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) || 932 AMDGPU::isVOPC64DPP(Opc)) { 933 convertVOPCDPPInst(MI); 934 } else { 935 if (isMacDPP(MI)) 936 convertMacDPPInst(MI); 937 938 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 939 if (MI.getNumOperands() < DescNumOps && 940 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 941 auto Mods = collectVOPModifiers(MI); 942 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 943 AMDGPU::OpName::op_sel); 944 } else { 945 // Insert dummy unused src modifiers. 946 if (MI.getNumOperands() < DescNumOps && 947 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 948 insertNamedMCOperand(MI, MCOperand::createImm(0), 949 AMDGPU::OpName::src0_modifiers); 950 951 if (MI.getNumOperands() < DescNumOps && 952 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 953 insertNamedMCOperand(MI, MCOperand::createImm(0), 954 AMDGPU::OpName::src1_modifiers); 955 } 956 } 957 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; 958 } 959 960 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 961 if (isMacDPP(MI)) 962 convertMacDPPInst(MI); 963 964 unsigned Opc = MI.getOpcode(); 965 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 966 if (MI.getNumOperands() < DescNumOps && 967 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 968 auto Mods = collectVOPModifiers(MI); 969 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 970 AMDGPU::OpName::op_sel); 971 } 972 return MCDisassembler::Success; 973 } 974 975 // Note that before gfx10, the MIMG encoding provided no information about 976 // VADDR size. Consequently, decoded instructions always show address as if it 977 // has 1 dword, which could be not really so. 978 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 979 auto TSFlags = MCII->get(MI.getOpcode()).TSFlags; 980 981 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 982 AMDGPU::OpName::vdst); 983 984 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 985 AMDGPU::OpName::vdata); 986 int VAddr0Idx = 987 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 988 int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc 989 : AMDGPU::OpName::rsrc; 990 int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName); 991 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 992 AMDGPU::OpName::dmask); 993 994 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 995 AMDGPU::OpName::tfe); 996 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 997 AMDGPU::OpName::d16); 998 999 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 1000 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 1001 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 1002 1003 assert(VDataIdx != -1); 1004 if (BaseOpcode->BVH) { 1005 // Add A16 operand for intersect_ray instructions 1006 addOperand(MI, MCOperand::createImm(BaseOpcode->A16)); 1007 return MCDisassembler::Success; 1008 } 1009 1010 bool IsAtomic = (VDstIdx != -1); 1011 bool IsGather4 = TSFlags & SIInstrFlags::Gather4; 1012 bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE; 1013 bool IsNSA = false; 1014 bool IsPartialNSA = false; 1015 unsigned AddrSize = Info->VAddrDwords; 1016 1017 if (isGFX10Plus()) { 1018 unsigned DimIdx = 1019 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 1020 int A16Idx = 1021 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 1022 const AMDGPU::MIMGDimInfo *Dim = 1023 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 1024 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 1025 1026 AddrSize = 1027 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 1028 1029 // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms. 1030 // VIMAGE insts other than BVH never use vaddr4. 1031 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 1032 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA || 1033 Info->MIMGEncoding == AMDGPU::MIMGEncGfx12; 1034 if (!IsNSA) { 1035 if (!IsVSample && AddrSize > 12) 1036 AddrSize = 16; 1037 } else { 1038 if (AddrSize > Info->VAddrDwords) { 1039 if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) { 1040 // The NSA encoding does not contain enough operands for the 1041 // combination of base opcode / dimension. Should this be an error? 1042 return MCDisassembler::Success; 1043 } 1044 IsPartialNSA = true; 1045 } 1046 } 1047 } 1048 1049 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 1050 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 1051 1052 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 1053 if (D16 && AMDGPU::hasPackedD16(STI)) { 1054 DstSize = (DstSize + 1) / 2; 1055 } 1056 1057 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 1058 DstSize += 1; 1059 1060 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 1061 return MCDisassembler::Success; 1062 1063 int NewOpcode = 1064 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 1065 if (NewOpcode == -1) 1066 return MCDisassembler::Success; 1067 1068 // Widen the register to the correct number of enabled channels. 1069 unsigned NewVdata = AMDGPU::NoRegister; 1070 if (DstSize != Info->VDataDwords) { 1071 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 1072 1073 // Get first subregister of VData 1074 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 1075 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 1076 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 1077 1078 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 1079 &MRI.getRegClass(DataRCID)); 1080 if (NewVdata == AMDGPU::NoRegister) { 1081 // It's possible to encode this such that the low register + enabled 1082 // components exceeds the register count. 1083 return MCDisassembler::Success; 1084 } 1085 } 1086 1087 // If not using NSA on GFX10+, widen vaddr0 address register to correct size. 1088 // If using partial NSA on GFX11+ widen last address register. 1089 int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; 1090 unsigned NewVAddrSA = AMDGPU::NoRegister; 1091 if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && 1092 AddrSize != Info->VAddrDwords) { 1093 unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg(); 1094 unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0); 1095 VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; 1096 1097 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass; 1098 NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0, 1099 &MRI.getRegClass(AddrRCID)); 1100 if (!NewVAddrSA) 1101 return MCDisassembler::Success; 1102 } 1103 1104 MI.setOpcode(NewOpcode); 1105 1106 if (NewVdata != AMDGPU::NoRegister) { 1107 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 1108 1109 if (IsAtomic) { 1110 // Atomic operations have an additional operand (a copy of data) 1111 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 1112 } 1113 } 1114 1115 if (NewVAddrSA) { 1116 MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA); 1117 } else if (IsNSA) { 1118 assert(AddrSize <= Info->VAddrDwords); 1119 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 1120 MI.begin() + VAddr0Idx + Info->VAddrDwords); 1121 } 1122 1123 return MCDisassembler::Success; 1124 } 1125 1126 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 1127 // decoder only adds to src_modifiers, so manually add the bits to the other 1128 // operands. 1129 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 1130 unsigned Opc = MI.getOpcode(); 1131 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1132 auto Mods = collectVOPModifiers(MI, true); 1133 1134 if (MI.getNumOperands() < DescNumOps && 1135 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 1136 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 1137 1138 if (MI.getNumOperands() < DescNumOps && 1139 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 1140 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1141 AMDGPU::OpName::op_sel); 1142 if (MI.getNumOperands() < DescNumOps && 1143 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1144 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1145 AMDGPU::OpName::op_sel_hi); 1146 if (MI.getNumOperands() < DescNumOps && 1147 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1148 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1149 AMDGPU::OpName::neg_lo); 1150 if (MI.getNumOperands() < DescNumOps && 1151 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1152 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1153 AMDGPU::OpName::neg_hi); 1154 1155 return MCDisassembler::Success; 1156 } 1157 1158 // Create dummy old operand and insert optional operands 1159 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1160 unsigned Opc = MI.getOpcode(); 1161 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1162 1163 if (MI.getNumOperands() < DescNumOps && 1164 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1165 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1166 1167 if (MI.getNumOperands() < DescNumOps && 1168 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1169 insertNamedMCOperand(MI, MCOperand::createImm(0), 1170 AMDGPU::OpName::src0_modifiers); 1171 1172 if (MI.getNumOperands() < DescNumOps && 1173 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1174 insertNamedMCOperand(MI, MCOperand::createImm(0), 1175 AMDGPU::OpName::src1_modifiers); 1176 return MCDisassembler::Success; 1177 } 1178 1179 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, 1180 int ImmLitIdx) const { 1181 assert(HasLiteral && "Should have decoded a literal"); 1182 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1183 unsigned DescNumOps = Desc.getNumOperands(); 1184 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1185 AMDGPU::OpName::immDeferred); 1186 assert(DescNumOps == MI.getNumOperands()); 1187 for (unsigned I = 0; I < DescNumOps; ++I) { 1188 auto &Op = MI.getOperand(I); 1189 auto OpType = Desc.operands()[I].OperandType; 1190 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1191 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1192 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1193 IsDeferredOp) 1194 Op.setImm(Literal); 1195 } 1196 return MCDisassembler::Success; 1197 } 1198 1199 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1200 return getContext().getRegisterInfo()-> 1201 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1202 } 1203 1204 inline 1205 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1206 const Twine& ErrMsg) const { 1207 *CommentStream << "Error: " + ErrMsg; 1208 1209 // ToDo: add support for error operands to MCInst.h 1210 // return MCOperand::createError(V); 1211 return MCOperand(); 1212 } 1213 1214 inline 1215 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1216 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1217 } 1218 1219 inline 1220 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1221 unsigned Val) const { 1222 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1223 if (Val >= RegCl.getNumRegs()) 1224 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1225 ": unknown register " + Twine(Val)); 1226 return createRegOperand(RegCl.getRegister(Val)); 1227 } 1228 1229 inline 1230 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1231 unsigned Val) const { 1232 // ToDo: SI/CI have 104 SGPRs, VI - 102 1233 // Valery: here we accepting as much as we can, let assembler sort it out 1234 int shift = 0; 1235 switch (SRegClassID) { 1236 case AMDGPU::SGPR_32RegClassID: 1237 case AMDGPU::TTMP_32RegClassID: 1238 break; 1239 case AMDGPU::SGPR_64RegClassID: 1240 case AMDGPU::TTMP_64RegClassID: 1241 shift = 1; 1242 break; 1243 case AMDGPU::SGPR_96RegClassID: 1244 case AMDGPU::TTMP_96RegClassID: 1245 case AMDGPU::SGPR_128RegClassID: 1246 case AMDGPU::TTMP_128RegClassID: 1247 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1248 // this bundle? 1249 case AMDGPU::SGPR_256RegClassID: 1250 case AMDGPU::TTMP_256RegClassID: 1251 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1252 // this bundle? 1253 case AMDGPU::SGPR_288RegClassID: 1254 case AMDGPU::TTMP_288RegClassID: 1255 case AMDGPU::SGPR_320RegClassID: 1256 case AMDGPU::TTMP_320RegClassID: 1257 case AMDGPU::SGPR_352RegClassID: 1258 case AMDGPU::TTMP_352RegClassID: 1259 case AMDGPU::SGPR_384RegClassID: 1260 case AMDGPU::TTMP_384RegClassID: 1261 case AMDGPU::SGPR_512RegClassID: 1262 case AMDGPU::TTMP_512RegClassID: 1263 shift = 2; 1264 break; 1265 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1266 // this bundle? 1267 default: 1268 llvm_unreachable("unhandled register class"); 1269 } 1270 1271 if (Val % (1 << shift)) { 1272 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1273 << ": scalar reg isn't aligned " << Val; 1274 } 1275 1276 return createRegOperand(SRegClassID, Val >> shift); 1277 } 1278 1279 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx, 1280 bool IsHi) const { 1281 unsigned RCID = 1282 IsHi ? AMDGPU::VGPR_HI16RegClassID : AMDGPU::VGPR_LO16RegClassID; 1283 return createRegOperand(RCID, RegIdx); 1284 } 1285 1286 // Decode Literals for insts which always have a literal in the encoding 1287 MCOperand 1288 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1289 if (HasLiteral) { 1290 assert( 1291 AMDGPU::hasVOPD(STI) && 1292 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1293 if (Literal != Val) 1294 return errOperand(Val, "More than one unique literal is illegal"); 1295 } 1296 HasLiteral = true; 1297 Literal = Val; 1298 return MCOperand::createImm(Literal); 1299 } 1300 1301 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const { 1302 // For now all literal constants are supposed to be unsigned integer 1303 // ToDo: deal with signed/unsigned 64-bit integer constants 1304 // ToDo: deal with float/double constants 1305 if (!HasLiteral) { 1306 if (Bytes.size() < 4) { 1307 return errOperand(0, "cannot read literal, inst bytes left " + 1308 Twine(Bytes.size())); 1309 } 1310 HasLiteral = true; 1311 Literal = Literal64 = eatBytes<uint32_t>(Bytes); 1312 if (ExtendFP64) 1313 Literal64 <<= 32; 1314 } 1315 return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal); 1316 } 1317 1318 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1319 using namespace AMDGPU::EncValues; 1320 1321 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1322 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1323 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1324 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1325 // Cast prevents negative overflow. 1326 } 1327 1328 static int64_t getInlineImmVal32(unsigned Imm) { 1329 switch (Imm) { 1330 case 240: 1331 return llvm::bit_cast<uint32_t>(0.5f); 1332 case 241: 1333 return llvm::bit_cast<uint32_t>(-0.5f); 1334 case 242: 1335 return llvm::bit_cast<uint32_t>(1.0f); 1336 case 243: 1337 return llvm::bit_cast<uint32_t>(-1.0f); 1338 case 244: 1339 return llvm::bit_cast<uint32_t>(2.0f); 1340 case 245: 1341 return llvm::bit_cast<uint32_t>(-2.0f); 1342 case 246: 1343 return llvm::bit_cast<uint32_t>(4.0f); 1344 case 247: 1345 return llvm::bit_cast<uint32_t>(-4.0f); 1346 case 248: // 1 / (2 * PI) 1347 return 0x3e22f983; 1348 default: 1349 llvm_unreachable("invalid fp inline imm"); 1350 } 1351 } 1352 1353 static int64_t getInlineImmVal64(unsigned Imm) { 1354 switch (Imm) { 1355 case 240: 1356 return llvm::bit_cast<uint64_t>(0.5); 1357 case 241: 1358 return llvm::bit_cast<uint64_t>(-0.5); 1359 case 242: 1360 return llvm::bit_cast<uint64_t>(1.0); 1361 case 243: 1362 return llvm::bit_cast<uint64_t>(-1.0); 1363 case 244: 1364 return llvm::bit_cast<uint64_t>(2.0); 1365 case 245: 1366 return llvm::bit_cast<uint64_t>(-2.0); 1367 case 246: 1368 return llvm::bit_cast<uint64_t>(4.0); 1369 case 247: 1370 return llvm::bit_cast<uint64_t>(-4.0); 1371 case 248: // 1 / (2 * PI) 1372 return 0x3fc45f306dc9c882; 1373 default: 1374 llvm_unreachable("invalid fp inline imm"); 1375 } 1376 } 1377 1378 static int64_t getInlineImmVal16(unsigned Imm) { 1379 switch (Imm) { 1380 case 240: 1381 return 0x3800; 1382 case 241: 1383 return 0xB800; 1384 case 242: 1385 return 0x3C00; 1386 case 243: 1387 return 0xBC00; 1388 case 244: 1389 return 0x4000; 1390 case 245: 1391 return 0xC000; 1392 case 246: 1393 return 0x4400; 1394 case 247: 1395 return 0xC400; 1396 case 248: // 1 / (2 * PI) 1397 return 0x3118; 1398 default: 1399 llvm_unreachable("invalid fp inline imm"); 1400 } 1401 } 1402 1403 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) { 1404 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN 1405 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1406 1407 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1408 // ImmWidth 0 is a default case where operand should not allow immediates. 1409 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1410 // use it to print verbose error message. 1411 switch (ImmWidth) { 1412 case 0: 1413 case 32: 1414 return MCOperand::createImm(getInlineImmVal32(Imm)); 1415 case 64: 1416 return MCOperand::createImm(getInlineImmVal64(Imm)); 1417 case 16: 1418 return MCOperand::createImm(getInlineImmVal16(Imm)); 1419 default: 1420 llvm_unreachable("implement me"); 1421 } 1422 } 1423 1424 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1425 using namespace AMDGPU; 1426 1427 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1428 switch (Width) { 1429 default: // fall 1430 case OPW32: 1431 case OPW16: 1432 case OPWV216: 1433 return VGPR_32RegClassID; 1434 case OPW64: 1435 case OPWV232: return VReg_64RegClassID; 1436 case OPW96: return VReg_96RegClassID; 1437 case OPW128: return VReg_128RegClassID; 1438 case OPW160: return VReg_160RegClassID; 1439 case OPW256: return VReg_256RegClassID; 1440 case OPW288: return VReg_288RegClassID; 1441 case OPW320: return VReg_320RegClassID; 1442 case OPW352: return VReg_352RegClassID; 1443 case OPW384: return VReg_384RegClassID; 1444 case OPW512: return VReg_512RegClassID; 1445 case OPW1024: return VReg_1024RegClassID; 1446 } 1447 } 1448 1449 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1450 using namespace AMDGPU; 1451 1452 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1453 switch (Width) { 1454 default: // fall 1455 case OPW32: 1456 case OPW16: 1457 case OPWV216: 1458 return AGPR_32RegClassID; 1459 case OPW64: 1460 case OPWV232: return AReg_64RegClassID; 1461 case OPW96: return AReg_96RegClassID; 1462 case OPW128: return AReg_128RegClassID; 1463 case OPW160: return AReg_160RegClassID; 1464 case OPW256: return AReg_256RegClassID; 1465 case OPW288: return AReg_288RegClassID; 1466 case OPW320: return AReg_320RegClassID; 1467 case OPW352: return AReg_352RegClassID; 1468 case OPW384: return AReg_384RegClassID; 1469 case OPW512: return AReg_512RegClassID; 1470 case OPW1024: return AReg_1024RegClassID; 1471 } 1472 } 1473 1474 1475 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1476 using namespace AMDGPU; 1477 1478 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1479 switch (Width) { 1480 default: // fall 1481 case OPW32: 1482 case OPW16: 1483 case OPWV216: 1484 return SGPR_32RegClassID; 1485 case OPW64: 1486 case OPWV232: return SGPR_64RegClassID; 1487 case OPW96: return SGPR_96RegClassID; 1488 case OPW128: return SGPR_128RegClassID; 1489 case OPW160: return SGPR_160RegClassID; 1490 case OPW256: return SGPR_256RegClassID; 1491 case OPW288: return SGPR_288RegClassID; 1492 case OPW320: return SGPR_320RegClassID; 1493 case OPW352: return SGPR_352RegClassID; 1494 case OPW384: return SGPR_384RegClassID; 1495 case OPW512: return SGPR_512RegClassID; 1496 } 1497 } 1498 1499 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1500 using namespace AMDGPU; 1501 1502 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1503 switch (Width) { 1504 default: // fall 1505 case OPW32: 1506 case OPW16: 1507 case OPWV216: 1508 return TTMP_32RegClassID; 1509 case OPW64: 1510 case OPWV232: return TTMP_64RegClassID; 1511 case OPW128: return TTMP_128RegClassID; 1512 case OPW256: return TTMP_256RegClassID; 1513 case OPW288: return TTMP_288RegClassID; 1514 case OPW320: return TTMP_320RegClassID; 1515 case OPW352: return TTMP_352RegClassID; 1516 case OPW384: return TTMP_384RegClassID; 1517 case OPW512: return TTMP_512RegClassID; 1518 } 1519 } 1520 1521 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1522 using namespace AMDGPU::EncValues; 1523 1524 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1525 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1526 1527 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1528 } 1529 1530 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1531 bool MandatoryLiteral, 1532 unsigned ImmWidth, bool IsFP) const { 1533 using namespace AMDGPU::EncValues; 1534 1535 assert(Val < 1024); // enum10 1536 1537 bool IsAGPR = Val & 512; 1538 Val &= 511; 1539 1540 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1541 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1542 : getVgprClassId(Width), Val - VGPR_MIN); 1543 } 1544 return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth, 1545 IsFP); 1546 } 1547 1548 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, 1549 unsigned Val, 1550 bool MandatoryLiteral, 1551 unsigned ImmWidth, 1552 bool IsFP) const { 1553 // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been 1554 // decoded earlier. 1555 assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0"); 1556 using namespace AMDGPU::EncValues; 1557 1558 if (Val <= SGPR_MAX) { 1559 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1560 static_assert(SGPR_MIN == 0); 1561 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1562 } 1563 1564 int TTmpIdx = getTTmpIdx(Val); 1565 if (TTmpIdx >= 0) { 1566 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1567 } 1568 1569 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1570 return decodeIntImmed(Val); 1571 1572 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1573 return decodeFPImmed(ImmWidth, Val); 1574 1575 if (Val == LITERAL_CONST) { 1576 if (MandatoryLiteral) 1577 // Keep a sentinel value for deferred setting 1578 return MCOperand::createImm(LITERAL_CONST); 1579 else 1580 return decodeLiteralConstant(IsFP && ImmWidth == 64); 1581 } 1582 1583 switch (Width) { 1584 case OPW32: 1585 case OPW16: 1586 case OPWV216: 1587 return decodeSpecialReg32(Val); 1588 case OPW64: 1589 case OPWV232: 1590 return decodeSpecialReg64(Val); 1591 default: 1592 llvm_unreachable("unexpected immediate type"); 1593 } 1594 } 1595 1596 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1597 // opposite of bit 0 of DstX. 1598 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1599 unsigned Val) const { 1600 int VDstXInd = 1601 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1602 assert(VDstXInd != -1); 1603 assert(Inst.getOperand(VDstXInd).isReg()); 1604 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1605 Val |= ~XDstReg & 1; 1606 auto Width = llvm::AMDGPUDisassembler::OPW32; 1607 return createRegOperand(getVgprClassId(Width), Val); 1608 } 1609 1610 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1611 using namespace AMDGPU; 1612 1613 switch (Val) { 1614 // clang-format off 1615 case 102: return createRegOperand(FLAT_SCR_LO); 1616 case 103: return createRegOperand(FLAT_SCR_HI); 1617 case 104: return createRegOperand(XNACK_MASK_LO); 1618 case 105: return createRegOperand(XNACK_MASK_HI); 1619 case 106: return createRegOperand(VCC_LO); 1620 case 107: return createRegOperand(VCC_HI); 1621 case 108: return createRegOperand(TBA_LO); 1622 case 109: return createRegOperand(TBA_HI); 1623 case 110: return createRegOperand(TMA_LO); 1624 case 111: return createRegOperand(TMA_HI); 1625 case 124: 1626 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1627 case 125: 1628 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1629 case 126: return createRegOperand(EXEC_LO); 1630 case 127: return createRegOperand(EXEC_HI); 1631 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1632 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1633 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1634 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1635 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1636 case 251: return createRegOperand(SRC_VCCZ); 1637 case 252: return createRegOperand(SRC_EXECZ); 1638 case 253: return createRegOperand(SRC_SCC); 1639 case 254: return createRegOperand(LDS_DIRECT); 1640 default: break; 1641 // clang-format on 1642 } 1643 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1644 } 1645 1646 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1647 using namespace AMDGPU; 1648 1649 switch (Val) { 1650 case 102: return createRegOperand(FLAT_SCR); 1651 case 104: return createRegOperand(XNACK_MASK); 1652 case 106: return createRegOperand(VCC); 1653 case 108: return createRegOperand(TBA); 1654 case 110: return createRegOperand(TMA); 1655 case 124: 1656 if (isGFX11Plus()) 1657 return createRegOperand(SGPR_NULL); 1658 break; 1659 case 125: 1660 if (!isGFX11Plus()) 1661 return createRegOperand(SGPR_NULL); 1662 break; 1663 case 126: return createRegOperand(EXEC); 1664 case 235: return createRegOperand(SRC_SHARED_BASE); 1665 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1666 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1667 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1668 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1669 case 251: return createRegOperand(SRC_VCCZ); 1670 case 252: return createRegOperand(SRC_EXECZ); 1671 case 253: return createRegOperand(SRC_SCC); 1672 default: break; 1673 } 1674 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1675 } 1676 1677 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, 1678 const unsigned Val, 1679 unsigned ImmWidth) const { 1680 using namespace AMDGPU::SDWA; 1681 using namespace AMDGPU::EncValues; 1682 1683 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 1684 STI.hasFeature(AMDGPU::FeatureGFX10)) { 1685 // XXX: cast to int is needed to avoid stupid warning: 1686 // compare with unsigned is always true 1687 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1688 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1689 return createRegOperand(getVgprClassId(Width), 1690 Val - SDWA9EncValues::SRC_VGPR_MIN); 1691 } 1692 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1693 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1694 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1695 return createSRegOperand(getSgprClassId(Width), 1696 Val - SDWA9EncValues::SRC_SGPR_MIN); 1697 } 1698 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1699 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1700 return createSRegOperand(getTtmpClassId(Width), 1701 Val - SDWA9EncValues::SRC_TTMP_MIN); 1702 } 1703 1704 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1705 1706 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1707 return decodeIntImmed(SVal); 1708 1709 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1710 return decodeFPImmed(ImmWidth, SVal); 1711 1712 return decodeSpecialReg32(SVal); 1713 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 1714 return createRegOperand(getVgprClassId(Width), Val); 1715 } 1716 llvm_unreachable("unsupported target"); 1717 } 1718 1719 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1720 return decodeSDWASrc(OPW16, Val, 16); 1721 } 1722 1723 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1724 return decodeSDWASrc(OPW32, Val, 32); 1725 } 1726 1727 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1728 using namespace AMDGPU::SDWA; 1729 1730 assert((STI.hasFeature(AMDGPU::FeatureGFX9) || 1731 STI.hasFeature(AMDGPU::FeatureGFX10)) && 1732 "SDWAVopcDst should be present only on GFX9+"); 1733 1734 bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64); 1735 1736 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1737 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1738 1739 int TTmpIdx = getTTmpIdx(Val); 1740 if (TTmpIdx >= 0) { 1741 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1742 return createSRegOperand(TTmpClsId, TTmpIdx); 1743 } else if (Val > SGPR_MAX) { 1744 return IsWave64 ? decodeSpecialReg64(Val) 1745 : decodeSpecialReg32(Val); 1746 } else { 1747 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1748 } 1749 } else { 1750 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1751 } 1752 } 1753 1754 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1755 return STI.hasFeature(AMDGPU::FeatureWavefrontSize64) 1756 ? decodeSrcOp(OPW64, Val) 1757 : decodeSrcOp(OPW32, Val); 1758 } 1759 1760 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const { 1761 return decodeSrcOp(OPW32, Val); 1762 } 1763 1764 bool AMDGPUDisassembler::isVI() const { 1765 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands); 1766 } 1767 1768 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1769 1770 bool AMDGPUDisassembler::isGFX90A() const { 1771 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts); 1772 } 1773 1774 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1775 1776 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1777 1778 bool AMDGPUDisassembler::isGFX10Plus() const { 1779 return AMDGPU::isGFX10Plus(STI); 1780 } 1781 1782 bool AMDGPUDisassembler::isGFX11() const { 1783 return STI.hasFeature(AMDGPU::FeatureGFX11); 1784 } 1785 1786 bool AMDGPUDisassembler::isGFX11Plus() const { 1787 return AMDGPU::isGFX11Plus(STI); 1788 } 1789 1790 bool AMDGPUDisassembler::isGFX12Plus() const { 1791 return AMDGPU::isGFX12Plus(STI); 1792 } 1793 1794 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1795 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch); 1796 } 1797 1798 bool AMDGPUDisassembler::hasKernargPreload() const { 1799 return AMDGPU::hasKernargPreload(STI); 1800 } 1801 1802 //===----------------------------------------------------------------------===// 1803 // AMDGPU specific symbol handling 1804 //===----------------------------------------------------------------------===// 1805 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) 1806 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1807 do { \ 1808 KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ 1809 } while (0) 1810 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK) \ 1811 do { \ 1812 KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \ 1813 << GET_FIELD(MASK) << '\n'; \ 1814 } while (0) 1815 1816 // NOLINTNEXTLINE(readability-identifier-naming) 1817 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1818 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1819 using namespace amdhsa; 1820 StringRef Indent = "\t"; 1821 1822 // We cannot accurately backward compute #VGPRs used from 1823 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1824 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1825 // simply calculate the inverse of what the assembler does. 1826 1827 uint32_t GranulatedWorkitemVGPRCount = 1828 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); 1829 1830 uint32_t NextFreeVGPR = 1831 (GranulatedWorkitemVGPRCount + 1) * 1832 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32); 1833 1834 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1835 1836 // We cannot backward compute values used to calculate 1837 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1838 // directives can't be computed: 1839 // .amdhsa_reserve_vcc 1840 // .amdhsa_reserve_flat_scratch 1841 // .amdhsa_reserve_xnack_mask 1842 // They take their respective default values if not specified in the assembly. 1843 // 1844 // GRANULATED_WAVEFRONT_SGPR_COUNT 1845 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1846 // 1847 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1848 // are set to 0. So while disassembling we consider that: 1849 // 1850 // GRANULATED_WAVEFRONT_SGPR_COUNT 1851 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1852 // 1853 // The disassembler cannot recover the original values of those 3 directives. 1854 1855 uint32_t GranulatedWavefrontSGPRCount = 1856 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); 1857 1858 if (isGFX10Plus() && GranulatedWavefrontSGPRCount) 1859 return MCDisassembler::Fail; 1860 1861 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1862 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1863 1864 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1865 if (!hasArchitectedFlatScratch()) 1866 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1867 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1868 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1869 1870 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) 1871 return MCDisassembler::Fail; 1872 1873 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1874 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1875 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1876 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1877 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1878 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1879 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1880 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1881 1882 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) 1883 return MCDisassembler::Fail; 1884 1885 if (!isGFX12Plus()) 1886 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", 1887 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP); 1888 1889 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) 1890 return MCDisassembler::Fail; 1891 1892 if (!isGFX12Plus()) 1893 PRINT_DIRECTIVE(".amdhsa_ieee_mode", 1894 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE); 1895 1896 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) 1897 return MCDisassembler::Fail; 1898 1899 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) 1900 return MCDisassembler::Fail; 1901 1902 if (isGFX9Plus()) 1903 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL); 1904 1905 if (!isGFX9Plus()) 1906 if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0) 1907 return MCDisassembler::Fail; 1908 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1) 1909 return MCDisassembler::Fail; 1910 if (!isGFX10Plus()) 1911 if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2) 1912 return MCDisassembler::Fail; 1913 1914 if (isGFX10Plus()) { 1915 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1916 COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE); 1917 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED); 1918 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS); 1919 } 1920 1921 if (isGFX12Plus()) 1922 PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling", 1923 COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN); 1924 1925 return MCDisassembler::Success; 1926 } 1927 1928 // NOLINTNEXTLINE(readability-identifier-naming) 1929 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 1930 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1931 using namespace amdhsa; 1932 StringRef Indent = "\t"; 1933 if (hasArchitectedFlatScratch()) 1934 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 1935 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1936 else 1937 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 1938 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 1939 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 1940 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 1941 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 1942 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 1943 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 1944 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 1945 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 1946 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 1947 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 1948 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 1949 1950 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) 1951 return MCDisassembler::Fail; 1952 1953 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) 1954 return MCDisassembler::Fail; 1955 1956 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) 1957 return MCDisassembler::Fail; 1958 1959 PRINT_DIRECTIVE( 1960 ".amdhsa_exception_fp_ieee_invalid_op", 1961 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 1962 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 1963 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 1964 PRINT_DIRECTIVE( 1965 ".amdhsa_exception_fp_ieee_div_zero", 1966 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 1967 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 1968 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 1969 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 1970 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 1971 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 1972 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 1973 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 1974 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 1975 1976 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) 1977 return MCDisassembler::Fail; 1978 1979 return MCDisassembler::Success; 1980 } 1981 1982 // NOLINTNEXTLINE(readability-identifier-naming) 1983 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( 1984 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1985 using namespace amdhsa; 1986 StringRef Indent = "\t"; 1987 if (isGFX90A()) { 1988 KdStream << Indent << ".amdhsa_accum_offset " 1989 << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4 1990 << '\n'; 1991 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0) 1992 return MCDisassembler::Fail; 1993 PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT); 1994 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1) 1995 return MCDisassembler::Fail; 1996 } else if (isGFX10Plus()) { 1997 if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) { 1998 PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count", 1999 COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT); 2000 } else { 2001 PRINT_PSEUDO_DIRECTIVE_COMMENT( 2002 "SHARED_VGPR_COUNT", COMPUTE_PGM_RSRC3_GFX10_PLUS_SHARED_VGPR_COUNT); 2003 } 2004 2005 if (isGFX11Plus()) { 2006 PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE", 2007 COMPUTE_PGM_RSRC3_GFX11_PLUS_INST_PREF_SIZE); 2008 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START", 2009 COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START); 2010 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END", 2011 COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_END); 2012 } else { 2013 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED0) 2014 return MCDisassembler::Fail; 2015 } 2016 2017 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED1) 2018 return MCDisassembler::Fail; 2019 2020 if (isGFX11Plus()) { 2021 PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP", 2022 COMPUTE_PGM_RSRC3_GFX11_PLUS_TRAP_ON_START); 2023 } else { 2024 if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED2) 2025 return MCDisassembler::Fail; 2026 } 2027 } else if (FourByteBuffer) { 2028 return MCDisassembler::Fail; 2029 } 2030 return MCDisassembler::Success; 2031 } 2032 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT 2033 #undef PRINT_DIRECTIVE 2034 #undef GET_FIELD 2035 2036 MCDisassembler::DecodeStatus 2037 AMDGPUDisassembler::decodeKernelDescriptorDirective( 2038 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 2039 raw_string_ostream &KdStream) const { 2040 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 2041 do { \ 2042 KdStream << Indent << DIRECTIVE " " \ 2043 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 2044 } while (0) 2045 2046 uint16_t TwoByteBuffer = 0; 2047 uint32_t FourByteBuffer = 0; 2048 2049 StringRef ReservedBytes; 2050 StringRef Indent = "\t"; 2051 2052 assert(Bytes.size() == 64); 2053 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 2054 2055 switch (Cursor.tell()) { 2056 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 2057 FourByteBuffer = DE.getU32(Cursor); 2058 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 2059 << '\n'; 2060 return MCDisassembler::Success; 2061 2062 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 2063 FourByteBuffer = DE.getU32(Cursor); 2064 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 2065 << FourByteBuffer << '\n'; 2066 return MCDisassembler::Success; 2067 2068 case amdhsa::KERNARG_SIZE_OFFSET: 2069 FourByteBuffer = DE.getU32(Cursor); 2070 KdStream << Indent << ".amdhsa_kernarg_size " 2071 << FourByteBuffer << '\n'; 2072 return MCDisassembler::Success; 2073 2074 case amdhsa::RESERVED0_OFFSET: 2075 // 4 reserved bytes, must be 0. 2076 ReservedBytes = DE.getBytes(Cursor, 4); 2077 for (int I = 0; I < 4; ++I) { 2078 if (ReservedBytes[I] != 0) { 2079 return MCDisassembler::Fail; 2080 } 2081 } 2082 return MCDisassembler::Success; 2083 2084 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 2085 // KERNEL_CODE_ENTRY_BYTE_OFFSET 2086 // So far no directive controls this for Code Object V3, so simply skip for 2087 // disassembly. 2088 DE.skip(Cursor, 8); 2089 return MCDisassembler::Success; 2090 2091 case amdhsa::RESERVED1_OFFSET: 2092 // 20 reserved bytes, must be 0. 2093 ReservedBytes = DE.getBytes(Cursor, 20); 2094 for (int I = 0; I < 20; ++I) { 2095 if (ReservedBytes[I] != 0) { 2096 return MCDisassembler::Fail; 2097 } 2098 } 2099 return MCDisassembler::Success; 2100 2101 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 2102 FourByteBuffer = DE.getU32(Cursor); 2103 return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); 2104 2105 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 2106 FourByteBuffer = DE.getU32(Cursor); 2107 return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); 2108 2109 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 2110 FourByteBuffer = DE.getU32(Cursor); 2111 return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); 2112 2113 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 2114 using namespace amdhsa; 2115 TwoByteBuffer = DE.getU16(Cursor); 2116 2117 if (!hasArchitectedFlatScratch()) 2118 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 2119 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 2120 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 2121 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 2122 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 2123 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 2124 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 2125 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 2126 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 2127 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 2128 if (!hasArchitectedFlatScratch()) 2129 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 2130 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 2131 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 2132 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 2133 2134 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 2135 return MCDisassembler::Fail; 2136 2137 // Reserved for GFX9 2138 if (isGFX9() && 2139 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 2140 return MCDisassembler::Fail; 2141 } else if (isGFX10Plus()) { 2142 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 2143 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2144 } 2145 2146 if (AMDGPU::getAmdhsaCodeObjectVersion() >= AMDGPU::AMDHSA_COV5) 2147 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 2148 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 2149 2150 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) 2151 return MCDisassembler::Fail; 2152 2153 return MCDisassembler::Success; 2154 2155 case amdhsa::KERNARG_PRELOAD_OFFSET: 2156 using namespace amdhsa; 2157 TwoByteBuffer = DE.getU16(Cursor); 2158 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) { 2159 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length", 2160 KERNARG_PRELOAD_SPEC_LENGTH); 2161 } 2162 2163 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) { 2164 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset", 2165 KERNARG_PRELOAD_SPEC_OFFSET); 2166 } 2167 return MCDisassembler::Success; 2168 2169 case amdhsa::RESERVED3_OFFSET: 2170 // 4 bytes from here are reserved, must be 0. 2171 ReservedBytes = DE.getBytes(Cursor, 4); 2172 for (int I = 0; I < 4; ++I) { 2173 if (ReservedBytes[I] != 0) 2174 return MCDisassembler::Fail; 2175 } 2176 return MCDisassembler::Success; 2177 2178 default: 2179 llvm_unreachable("Unhandled index. Case statements cover everything."); 2180 return MCDisassembler::Fail; 2181 } 2182 #undef PRINT_DIRECTIVE 2183 } 2184 2185 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( 2186 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 2187 // CP microcode requires the kernel descriptor to be 64 aligned. 2188 if (Bytes.size() != 64 || KdAddress % 64 != 0) 2189 return MCDisassembler::Fail; 2190 2191 // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10 2192 // requires us to know the setting of .amdhsa_wavefront_size32 in order to 2193 // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong 2194 // order. Workaround this by first looking up .amdhsa_wavefront_size32 here 2195 // when required. 2196 if (isGFX10Plus()) { 2197 uint16_t KernelCodeProperties = 2198 support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET], 2199 llvm::endianness::little); 2200 EnableWavefrontSize32 = 2201 AMDHSA_BITS_GET(KernelCodeProperties, 2202 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2203 } 2204 2205 std::string Kd; 2206 raw_string_ostream KdStream(Kd); 2207 KdStream << ".amdhsa_kernel " << KdName << '\n'; 2208 2209 DataExtractor::Cursor C(0); 2210 while (C && C.tell() < Bytes.size()) { 2211 MCDisassembler::DecodeStatus Status = 2212 decodeKernelDescriptorDirective(C, Bytes, KdStream); 2213 2214 cantFail(C.takeError()); 2215 2216 if (Status == MCDisassembler::Fail) 2217 return MCDisassembler::Fail; 2218 } 2219 KdStream << ".end_amdhsa_kernel\n"; 2220 outs() << KdStream.str(); 2221 return MCDisassembler::Success; 2222 } 2223 2224 std::optional<MCDisassembler::DecodeStatus> 2225 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, 2226 ArrayRef<uint8_t> Bytes, uint64_t Address, 2227 raw_ostream &CStream) const { 2228 // Right now only kernel descriptor needs to be handled. 2229 // We ignore all other symbols for target specific handling. 2230 // TODO: 2231 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 2232 // Object V2 and V3 when symbols are marked protected. 2233 2234 // amd_kernel_code_t for Code Object V2. 2235 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2236 Size = 256; 2237 return MCDisassembler::Fail; 2238 } 2239 2240 // Code Object V3 kernel descriptors. 2241 StringRef Name = Symbol.Name; 2242 if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) { 2243 Size = 64; // Size = 64 regardless of success or failure. 2244 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2245 } 2246 return std::nullopt; 2247 } 2248 2249 //===----------------------------------------------------------------------===// 2250 // AMDGPUSymbolizer 2251 //===----------------------------------------------------------------------===// 2252 2253 // Try to find symbol name for specified label 2254 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2255 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2256 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2257 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2258 2259 if (!IsBranch) { 2260 return false; 2261 } 2262 2263 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2264 if (!Symbols) 2265 return false; 2266 2267 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2268 return Val.Addr == static_cast<uint64_t>(Value) && 2269 Val.Type == ELF::STT_NOTYPE; 2270 }); 2271 if (Result != Symbols->end()) { 2272 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2273 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2274 Inst.addOperand(MCOperand::createExpr(Add)); 2275 return true; 2276 } 2277 // Add to list of referenced addresses, so caller can synthesize a label. 2278 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2279 return false; 2280 } 2281 2282 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2283 int64_t Value, 2284 uint64_t Address) { 2285 llvm_unreachable("unimplemented"); 2286 } 2287 2288 //===----------------------------------------------------------------------===// 2289 // Initialization 2290 //===----------------------------------------------------------------------===// 2291 2292 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2293 LLVMOpInfoCallback /*GetOpInfo*/, 2294 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2295 void *DisInfo, 2296 MCContext *Ctx, 2297 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2298 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2299 } 2300 2301 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2302 const MCSubtargetInfo &STI, 2303 MCContext &Ctx) { 2304 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2305 } 2306 2307 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2308 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2309 createAMDGPUDisassembler); 2310 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2311 createAMDGPUSymbolizer); 2312 } 2313